1
|
Hong Y, Chen Z, Huang Z, Zheng C, Liu J, Zeng C, Kong X, Zhang C, Huang M. Leveraging big data to elucidate the impact of heavy metal nanoparticles on anammox processes in wastewater treatment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 382:125243. [PMID: 40245740 DOI: 10.1016/j.jenvman.2025.125243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 03/26/2025] [Accepted: 04/01/2025] [Indexed: 04/19/2025]
Abstract
Anammox is a highly efficient nitrogen removal process, yet the effects of metal/metal-oxide nanoparticles (M/MONPs) on these systems remain underexplored. This study investigates the impact of various M/MONPs on the nitrogen removal rate (NRR). Pearson correlation analysis and statistical evaluation indicates that silver and copper oxide nanoparticles exhibit the highest inhibitory effect, with an inhibition rate of 83.4 % and 73.7 %, respectively. Furthermore, Machine learning models, particularly extreme gradient boost (XGBoost), demonstrate superior performance, with R2 values exceeding 0.91. SHapley Additive exPlanations (SHAP) feature importance analysis highlighted nanoparticles concentration, influent ammonia nitrogen concentration as the most influential factors. Additionally, Partial Dependence Plots (PDP) analysis of key features provided further clarity on the optimal ranges for these critical variables. The present study provides a novel predictive methodology and optimization strategies for enhancing the NRR of anammox system under M/MONPs stress, informed by comprehensive big data analysis.
Collapse
Affiliation(s)
- Yiqun Hong
- Guangdong Provincial Engineering Research Center of Intelligent Low-carbon Pollution Prevention and Digital Technology & Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou, 510006, PR China; SCNU (NAN'AN) Green and Low-carbon Innovation Center, Nan'an SCNU Institute of Green and Low-carbon Research, Quanzhou, 362300, PR China
| | - Zhenguo Chen
- Guangdong Provincial Engineering Research Center of Intelligent Low-carbon Pollution Prevention and Digital Technology & Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou, 510006, PR China; SCNU (NAN'AN) Green and Low-carbon Innovation Center, Nan'an SCNU Institute of Green and Low-carbon Research, Quanzhou, 362300, PR China.
| | - Zehua Huang
- SCNU (NAN'AN) Green and Low-carbon Innovation Center, Nan'an SCNU Institute of Green and Low-carbon Research, Quanzhou, 362300, PR China
| | - Chunying Zheng
- Guangdong Provincial Engineering Research Center of Intelligent Low-carbon Pollution Prevention and Digital Technology & Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou, 510006, PR China
| | - Junxing Liu
- Guangdong Provincial Engineering Research Center of Intelligent Low-carbon Pollution Prevention and Digital Technology & Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou, 510006, PR China; SCNU (NAN'AN) Green and Low-carbon Innovation Center, Nan'an SCNU Institute of Green and Low-carbon Research, Quanzhou, 362300, PR China
| | - Chenxi Zeng
- Guangdong Provincial Engineering Research Center of Intelligent Low-carbon Pollution Prevention and Digital Technology & Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou, 510006, PR China; SCNU (NAN'AN) Green and Low-carbon Innovation Center, Nan'an SCNU Institute of Green and Low-carbon Research, Quanzhou, 362300, PR China
| | - Xiangfa Kong
- Guangdong Provincial Engineering Research Center of Intelligent Low-carbon Pollution Prevention and Digital Technology & Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou, 510006, PR China; SCNU (NAN'AN) Green and Low-carbon Innovation Center, Nan'an SCNU Institute of Green and Low-carbon Research, Quanzhou, 362300, PR China
| | - Chao Zhang
- Guangdong Provincial Engineering Research Center of Intelligent Low-carbon Pollution Prevention and Digital Technology & Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou, 510006, PR China; SCNU (NAN'AN) Green and Low-carbon Innovation Center, Nan'an SCNU Institute of Green and Low-carbon Research, Quanzhou, 362300, PR China
| | - Mingzhi Huang
- Guangdong Provincial Engineering Research Center of Intelligent Low-carbon Pollution Prevention and Digital Technology & Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou, 510006, PR China; SCNU (NAN'AN) Green and Low-carbon Innovation Center, Nan'an SCNU Institute of Green and Low-carbon Research, Quanzhou, 362300, PR China.
| |
Collapse
|
2
|
Ma Y, Gu X, Zhang Y, Yan P, Zhang M, Sun S, Ren T, Tang L, He S. Unveiling the microplastic perturbation on surface flow constructed wetlands with macrophytes of different life forms: Responses of nitrogen removal and sensory quality. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135283. [PMID: 39053072 DOI: 10.1016/j.jhazmat.2024.135283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/18/2024] [Accepted: 07/20/2024] [Indexed: 07/27/2024]
Abstract
Microplastics (MPs) discharging into constructed wetlands pose risks to these ecosystems. Nevertheless, the perturbation of MPs to different types of macrophytes, which play important roles in purifying pollutants of wetlands, has not been fully elucidated. In this study, polystyrene MPs (PS-MPs) perturbation on nitrogen removal and sensory quality of surface flow constructed wetlands planted with emergent and submerged macrophytes were investigated. PS-MPs enhanced N removal efficiencies temporarily, whereas the N removal rate constants were declined as exposure time was prolonged. The NH4+-N removal rate constants declined by 25.78 % and 34.03 % in E and S groups respectively. The NO3--N removal rate constants declined by 22.13 % in the S groups. Denitrifiers including Thiobacillus, Rhodobacter, and Sulfuritalea were stressed. The sensory quality deteriorated after PS-MPs exposure, which was significantly related to changes in Chlorophyll a, particle size distribution, and colored dissolved organic matter. Turbidity in E groups and chroma in S groups were greatly affected by PS-MPs. Overall, under MPs exposure, macrophytes in E groups were more suitable for nitrogen removal, and macrophytes in S groups better purified the turbidity. The study could provide the basis for better allocation of macrophytes in CWs to reduce the purifying risk by PS-MPs disturbance.
Collapse
Affiliation(s)
- Yujia Ma
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Xushun Gu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Yu Zhang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Pan Yan
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Manping Zhang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Shanshan Sun
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Tongtong Ren
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Li Tang
- Shanghai Gardens (Group) Co., Ltd., Shanghai 200023, PR China
| | - Shengbing He
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 20092, PR China; Shanghai Engineering Research Center of Landscape Water Environment, Shanghai 200031, PR China.
| |
Collapse
|
3
|
Xiang Z, Xu Y, Dong W, Zhao Y, Chen X. Effects of sliver nanoparticles on nitrogen removal by the heterotrophic nitrification-aerobic denitrification bacteria Zobellella sp. B307 and their toxicity mechanisms. MARINE POLLUTION BULLETIN 2024; 203:116381. [PMID: 38692001 DOI: 10.1016/j.marpolbul.2024.116381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 04/12/2024] [Accepted: 04/13/2024] [Indexed: 05/03/2024]
Abstract
Due to the widespread use of sliver nanoparticles (AgNPs), a large amount of AgNPs has inevitably been released into the environment, and there is growing concern about the toxicity of AgNPs to nitrogen-functional bacteria. In addition to traditional anaerobic denitrifying bacteria, heterotrophic nitrification-aerobic denitrification (HNAD) bacteria are also important participants in the nitrogen cycle. However, the mechanisms by which AgNPs influence HNAD bacteria have yet to be explicitly demonstrated. In this study, the inhibitory effects of different concentrations of AgNPs on a HNAD bacteria Zobellella sp. B307 were investigated, and the underlying mechanism was explored by analyzing the antioxidant system and the activities of key denitrifying enzymes. Results showed that AgNPs could inhibit the growth and the HNAD ability of Zobellella sp. B307. AgNPs could accumulate on the surface of bacterial cells and significantly destroyed the cell membrane integrity. Further studies demonstrated that the presence of high concentration of AgNPs could result in the overproduction of reactive oxygen species (ROS) and related oxidative stress in the cells. Furthermore, the catalytic activities of key denitrifying enzymes (nitrate reductase (NAR), nitrite reductase (NIR), and nitrous oxide reductase (N2OR)) were significantly suppressed under exposure to a high concentration of AgNPs (20 mg·L-1), which might be responsible for the inhibited nitrogen removal performance of strain B307. This work could improve our understanding of the inhibitory effect and underlying mechanism of AgNPs on HNAD bacteria.
Collapse
Affiliation(s)
- Zhuangzhuang Xiang
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Yibo Xu
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Wenlong Dong
- Shandong Marine Forecast and Hazard Mitigation Service, Qingdao 266100, China
| | - Yangguo Zhao
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; Key Laboratory of Marine Environment and Ecology (Ocean University of China), Ministry of Education, Qingdao 266100, China
| | - Xi Chen
- College of Marine Life Science, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
4
|
Yu Y, Wu C, Li X, Wu L, Yang Q, Petropoulos E, Feng Y. The impact of Ag nanoparticles on methane emission in two typical paddy soils. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 323:121215. [PMID: 36740168 DOI: 10.1016/j.envpol.2023.121215] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 01/10/2023] [Accepted: 02/03/2023] [Indexed: 06/18/2023]
Abstract
Numerous applications of Ag nanoparticles (AgNPs) have increased the likelihood of their release and accumulation in agroecosystem. Thus far, few studies have evaluated the impacts of AgNPs to soil methane emissions and the microbial dynamics. In this study, microcosmic experiments were conducted to investigate the responses of methanogenic processes from two paddy soils (Cambisols and Ultisols) subjected to four AgNPs doses (0.1, 1, 10 and 50 mg/kg). The results showed that 0.1 and 1 mg/kg AgNPs had no significant effects on CH4 emissions, but 50 mg/kg AgNPs increased soil CH4 emissions in both paddy soils. The aggravation effect of AgNPs on CH4 emissions was more apparent in Ultisols compared to Cambisols paddy soils. Real-time PCR suggested that 50 mg/kg AgNPs significantly increased the ratio of methanogenic to bacterial gene for both paddy soils. Amplicon sequencing indicated that methanogenic community was clustered into a separate group after 50 mg/kg AgNPs exposure. Structural equation model illustrated that Methanosarcinales was both significantly responded to AgNPs in Cambisols and Ultisols soils; however, Methanocellales significantly responded to AgNPs only in Cambisols soils. Subsequently, uncontrolled use of AgNPs may account as an environmental risk due to the potentially increased soil CH4 emissions in paddy ecosystems.
Collapse
Affiliation(s)
- Yongjie Yu
- Key Laboratory of Agrometeorology of Jiangsu Province, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Chen Wu
- Key Laboratory of Agrometeorology of Jiangsu Province, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Xin Li
- College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Lingyu Wu
- Key Laboratory of Agrometeorology of Jiangsu Province, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Qinyu Yang
- Key Laboratory of Agrometeorology of Jiangsu Province, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | | | - Youzhi Feng
- College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China; State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing 210095, China.
| |
Collapse
|
5
|
Xu Y, Zhang D, Xue Q, Bu C, Wang Y, Zhang B, Wang Y, Qin Q. Long-term nitrogen and phosphorus removal, shifts of functional bacteria and fate of resistance genes in bioretention systems under sulfamethoxazole stress. J Environ Sci (China) 2023; 126:1-16. [PMID: 36503739 DOI: 10.1016/j.jes.2022.03.045] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/24/2022] [Accepted: 03/31/2022] [Indexed: 06/17/2023]
Abstract
To understand the long-term performance of bioretention systems under sulfamethoxazole (SMX) stress, an unplanted bioretention system (BRS) and two modified BRSs with coconut-shell activated carbon (CAC) and CAC/zero-valent-iron (Fe0) granules (CAC-BRS and Fe/CAC-BRS) were established. Both CAC-BRS and Fe/CAC-BRS significantly outperformed BRS in removing total nitrogen (TN) (CAC-BRS: 82.48%; Fe/CAC-BRS: 78.08%; BRS: 47.51%), total phosphorous (TP) (CAC-BRS: 79.36%; Fe/CAC-BRS: 98.26%; BRS: 41.99%), and SMX (CAC-BRS: 99.74%, Fe/CAC-BRS: 99.80%; BRS: 23.05%) under the long-term SMX exposure (0.8 mg/L, 205 days). High-throughput sequencing revealed that the microbial community structures of the three BRSs shifted greatly in upper zones after SMX exposure. Key functional genera, dominantly Nitrospira, Rhodoplanes, Desulfomicrobium, Geobacter, were identified by combining the functional prediction by the FAPROTAX database with the dominant genera. The higher abundance of nitrogen functional genes (nirK, nirS and nosZ) in CAC-BRS and Fe/CAC-BRS might explain the more efficient TN removal in these two systems. Furthermore, the relative abundance of antibiotic-resistant genes (ARGs) sulI and sulII increased in all BRSs along with SMX exposure, suggesting the selection of bacteria containing sul genes. Substrates tended to become reservoirs of sul genes. Also, co-occurrence network analysis revealed distinct potential host genera of ARGs between upper and lower zones. Notably, Fe/CAC-BRS succeeded to reduce the effluent sul genes by 1-2 orders of magnitude, followed by CAC-BRS after 205-day exposure. This study demonstrated that substrate modification was crucial to maintain highly efficient nutrients and SMX removals, and ultimately extend the service life of BRSs in treating SMX wastewater.
Collapse
Affiliation(s)
- Yan Xu
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing 210096, China
| | - Danyi Zhang
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing 210096, China
| | - Qingju Xue
- Nanjing Institute of Geography & Limnology, Chinese Academy of Sciences (NIGLAS), Nanjing 210008, China
| | - Chibin Bu
- Department of Gastroenterology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210096, China
| | - Yajun Wang
- School of Civil Engineering, Lanzhou University of Technology, Lanzhou 730050, China
| | - Benchi Zhang
- Department of Environmental Systems Engineering, University of Regina, SK S4S0A2, Canada
| | - Ying Wang
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing 210096, China
| | - Qingdong Qin
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing 210096, China.
| |
Collapse
|
6
|
Zhang X, Hou X, Ma L, Shi Y, Zhang D, Qu K. Analytical methods for assessing antimicrobial activity of nanomaterials in complex media: advances, challenges, and perspectives. J Nanobiotechnology 2023; 21:97. [PMID: 36941596 PMCID: PMC10026445 DOI: 10.1186/s12951-023-01851-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 03/07/2023] [Indexed: 03/23/2023] Open
Abstract
Assessing the antimicrobial activity of engineered nanomaterials (ENMs), especially in realistic scenarios, is of great significance for both basic research and applications. Multiple analytical methods are available for analysis via off-line or on-line measurements. Real-world samples are often complex with inorganic and organic components, which complicates the measurements of microbial viability and/or metabolic activity. This article highlights the recent advances achieved in analytical methods including typical applications and specifics regarding their accuracy, cost, efficiency, and user-friendliness. Methodological drawbacks, technique gaps, and future perspectives are also discussed. This review aims to help researchers select suitable methods for gaining insight into antimicrobial activities of targeted ENMs in artificial and natural complex matrices.
Collapse
Affiliation(s)
- Xuzhi Zhang
- Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
| | - Xiangyi Hou
- School of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, 201306, China
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, China
| | - Liangyu Ma
- Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
| | - Yaqi Shi
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, China
| | - Dahai Zhang
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, China.
| | - Keming Qu
- Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China.
| |
Collapse
|
7
|
Yan Y, Xie Y, Zhang J, Li R, Ali A, Cai Z, Huang X, Liu L. Effects of Reductive Soil Disinfestation Combined with Liquid-Readily Decomposable Compounds and Solid Plant Residues on the Bacterial Community and Functional Composition. MICROBIAL ECOLOGY 2022:10.1007/s00248-022-02139-w. [PMID: 36374338 DOI: 10.1007/s00248-022-02139-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 11/01/2022] [Indexed: 06/16/2023]
Abstract
Reductive soil disinfestation (RSD) incorporated with sole plant residues or liquid-readily decomposable compounds is an effective management strategy to improve soil health. However, the synthetic effects of RSD incorporated with liquid-readily decomposable compounds and solid plant residues on soil ecosystem services remain unclear. Field experiments were carried out to investigate the effects of untreated soil (CK), RSD incorporated with sawdust (SA), molasses (MO), and their combinations (SA + MO) on the bacterial community and functional composition. The results showed that RSD treatments significantly altered soil bacterial community structure compared to CK treatment. The bacterial community structure and composition in MO and SA + MO treatments were clustered compared to SA treatment. This was mainly attributed to the readily decomposable carbon sources in molasses having a stronger driving force to reshape the soil microbial community during the RSD process. Furthermore, the functional compositions, such as the disinfestation efficiency of F. oxysporum (96.4 - 99.1%), abundances of nitrogen functional genes, soil metabolic activity, and functional diversity, were significantly increased in all of the RSD treatments. The highest disinfestation efficiency and abundances of denitrification (nirS and nrfA) and nitrogen fixation (nifH) genes were observed in SA + MO treatment. Specifically, SA + MO treatment enriched more abundant beneficial genera, e.g., Oxobacter, Paenibacillus, Cohnella, Rummeliibacillus, and Streptomyces, which were significantly and positively linked to disinfestation efficiency, soil metabolic activity, and denitrification processes. Our results indicated that combining RSD practices with liquid-readily decomposable compounds and solid plant residues could effectively improve soil microbial community and functional composition.
Collapse
Affiliation(s)
- Yuanyuan Yan
- Engineering Technology Research Center of Jiangxi Universities and Colleges for Selenium Agriculture, College of Life Science and Environmental Resources, Yichun University, Yichun, 336000, China
- School of Geography, Nanjing Normal University, Nanjing, 210023, China
| | - Yi Xie
- Engineering Technology Research Center of Jiangxi Universities and Colleges for Selenium Agriculture, College of Life Science and Environmental Resources, Yichun University, Yichun, 336000, China
- School of Geography, Nanjing Normal University, Nanjing, 210023, China
| | - Jingqing Zhang
- School of Geography, Nanjing Normal University, Nanjing, 210023, China
| | - Ruimin Li
- School of Geography, Nanjing Normal University, Nanjing, 210023, China
| | - Ahmad Ali
- School of Geography, Nanjing Normal University, Nanjing, 210023, China
| | - Zucong Cai
- School of Geography, Nanjing Normal University, Nanjing, 210023, China
- Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing, 210023, China
- Jiangsu Engineering Research Center for Soil Utilization & Sustainable Agriculture, Nanjing Normal University, Nanjing, 210023, China
| | - Xinqi Huang
- School of Geography, Nanjing Normal University, Nanjing, 210023, China
- Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing, 210023, China
- Jiangsu Engineering Research Center for Soil Utilization & Sustainable Agriculture, Nanjing Normal University, Nanjing, 210023, China
| | - Liangliang Liu
- Engineering Technology Research Center of Jiangxi Universities and Colleges for Selenium Agriculture, College of Life Science and Environmental Resources, Yichun University, Yichun, 336000, China.
- School of Geography, Nanjing Normal University, Nanjing, 210023, China.
| |
Collapse
|
8
|
Xu X, Li H, Guo M, Zeng M, Liu W, Wu N, Liang J, Cao J. Deciphering performance and potential mechanism of anammox-based nitrogen removal process responding to nanoparticulate and ionic forms of different heavy metals through big data analysis. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
9
|
Hong Y, Tu Q, Cheng H, Huangfu X, Chen Z, He Q. Chronic high-dose silver nanoparticle exposure stimulates N 2O emissions by constructing anaerobic micro-environment. WATER RESEARCH 2022; 225:119104. [PMID: 36155009 DOI: 10.1016/j.watres.2022.119104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 09/05/2022] [Accepted: 09/10/2022] [Indexed: 06/16/2023]
Abstract
Silver nanoparticles (Ag-NPs) were found to be responsible for nitrous oxide (N2O) generation; however, the mechanism of Ag-NP induced N2O production remains controversial and needs to be elucidated. In this study, chronic Ag-NP exposure experiments were conducted in five independent sequencing batch biofilm reactors to systematically assess the effects of Ag-NPs on N2O emission. The results indicated that a low dose of Ag-NPs (< 1 mg/L) slightly suppressed N2O generation by less than 22.99% compared with the no-Ag-NP control method. In contrast, a high dose (5 mg/L) of Ag-NPs stimulated N2O emission by 67.54%. ICP-MS and SEM-EDS together revealed that high Ag-NP content accumulated on the biofilm surface when exposed to 5 mg/L Ag-NPs. N2O and DO microelectrodes, as well as N2O isotopic composition analyses, further demonstrated that the accumulated Ag-NPs construct the anaerobic zone in the biofilm, which is the primary factor for the stimulation of the nitrite reduction pathway to release N2O. A metagenomic analysis further attributed the higher N2O emissions under exposure to a high dose of Ag-NPs to the higher relative abundance of narB and nirK genes (i.e. 1.52- and 1.29-fold higher, respectively). These findings collectively suggest that chronic exposure to high doses of Ag-NPs could enhance N2O emissions by forming anaerobic micro-environments in biofilms.
Collapse
Affiliation(s)
- Yiyihui Hong
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Qianqian Tu
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, China; China TieGong Investment & Construction Group Co., Ltd, Beijing 101300, China
| | - Hong Cheng
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, China.
| | - Xiaoliu Huangfu
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Ziwei Chen
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Qiang He
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| |
Collapse
|
10
|
Khan SZ, Zaidi AA, Naseer MN, AlMohamadi H. Nanomaterials for biogas augmentation towards renewable and sustainable energy production: A critical review. Front Bioeng Biotechnol 2022; 10:868454. [PMID: 36118570 PMCID: PMC9478561 DOI: 10.3389/fbioe.2022.868454] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 07/26/2022] [Indexed: 11/22/2022] Open
Abstract
Nanotechnology is considered one of the most significant advancements in science and technology over the last few decades. However, the contemporary use of nanomaterials in bioenergy production is very deficient. This study evaluates the application of nanomaterials for biogas production from different kinds of waste. A state-of-the-art comprehensive review is carried out to elaborate on the deployment of different categories of nano-additives (metal oxides, zero-valent metals, various compounds, carbon-based nanomaterials, nano-composites, and nano-ash) in several kinds of biodegradable waste, including cattle manure, wastewater sludge, municipal solid waste, lake sediments, and sanitary landfills. This study discusses the pros and cons of nano-additives on biogas production from the anaerobic digestion process. Several all-inclusive tables are presented to appraise the literature on different nanomaterials used for biogas production from biomass. Future perspectives to increase biogas production via nano-additives are presented, and the conclusion is drawn on the productivity of biogas based on various nanomaterials. A qualitative review of relevant literature published in the last 50 years is conducted using the bibliometric technique for the first time in literature. About 14,000 research articles are included in this analysis, indexed on the Web of Science. The analysis revealed that the last decade (2010–20) was the golden era for biogas literature, as 84.4% of total publications were published in this timeline. Moreover, it was observed that nanomaterials had revolutionized the field of anaerobic digestion, methane production, and waste activated sludge; and are currently the central pivot of the research community. The toxicity of nanomaterials adversely affects anaerobic bacteria; therefore, using bioactive nanomaterials is emerging as the best alternative. Conducting optimization studies by varying substrate and nanomaterials’ size, concentration and shape is still a field. Furthermore, collecting and disposing nanomaterials at the end of the anaerobic process is a critical environmental challenge to technology implementation that needs to be addressed before the nanomaterials assisted anaerobic process could pave its path to the large-scale industrial sector.
Collapse
Affiliation(s)
- Sohaib Z. Khan
- Department of Mechanical Engineering, Faculty of Engineering, Islamic University of Madina, Madinah, Saudi Arabia
- *Correspondence: Sohaib Z. Khan,
| | - Asad A. Zaidi
- Department of Mechanical Engineering, Faculty of Engineering Science and Technology, Hamdard University, Karachi, Pakistan
| | - Muhammad Nihal Naseer
- Department of Engineering Sciences, PN Engineering College, National University of Sciences and Technology, Karachi, Pakistan
| | - Hamad AlMohamadi
- Department of Chemical Engineering, Faculty of Engineering, Islamic University of Madinah, Madinah, Saudi Arabia
| |
Collapse
|
11
|
Jiang J, Wang X, Zhang Y, Zhang J, Gu X, He S, Duan S, Ma J, Wang L, Luo P. The Aggregation and Dissolution of Citrate-Coated AgNPs in High Ammonia Nitrogen Wastewater and Sludge from UASB-Anammox Reactor. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:9502. [PMID: 35954858 PMCID: PMC9367828 DOI: 10.3390/ijerph19159502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/25/2022] [Accepted: 07/28/2022] [Indexed: 12/07/2022]
Abstract
Silver nanoparticles (AgNPs) are released into the sewage pipes and ultimately wastewater treatment plants during manufacturing, use, and end-life disposal. AgNPs in wastewater treatment plants aggregate or dissolve, and may affect the microbial community and subsequent pollutant removal efficiency. This study aims to quantitatively investigate the fate of AgNPs in synthetic high ammonia nitrogen wastewater (SW) and sludge from an up-flow anaerobic sludge blanket (UASB) anammox reactor using a nanoparticle tracking analysis (NTA), dynamic light scattering (DLS), transmission electron microscope (TEM), and atomic absorption spectroscopy (AAS). Results showed that 18.1 mM NH4+, 2.11 mM Mg2+ in SW caused less negative zeta potential (ζ-potential, -18.4 vs. -37.4 mV), aggregation (388.8 vs. 21.5 nm), and settlement (80%) of citrate-coated AgNPs (cit-AgNPs) in 220 min. The presence of 18.5 mM Cl- in SW formed AgCl2-, AgCl(aq) and eventually promoted the dissolution (9.3%) of cit-AgNPs. Further exposure of SW-diluted AgNPs to sludge (42 mg L-1 humic acid) and induced a more negative ζ-potential (-22.2 vs. -18.4 mV) and smaller aggregates (313.4 vs. 388.8 nm) due to the steric and hindrance effect. The promoted Ag dissolution (34.4% vs. 9.3%) was also observed after the addition of sludge and the possible reason may be the production of Ag(NH3)2+ by the coexistence of HA from sludge and NH4+ from SW. These findings on the fate of AgNPs can be used to explain why AgNPs had limited effects on the sludge-retained bacteria which are responsible for the anammox process.
Collapse
Affiliation(s)
- Jiachao Jiang
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, 1 Daxue Road, Xuzhou 221116, China; (X.W.); (Y.Z.); (J.Z.); (X.G.); (S.H.); (L.W.)
- Jiangsu Key Laboratory of Resources and Environmental Information Engineering, China University of Mining and Technology, Xuzhou 221116, China
| | - Xin Wang
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, 1 Daxue Road, Xuzhou 221116, China; (X.W.); (Y.Z.); (J.Z.); (X.G.); (S.H.); (L.W.)
| | - Yuanyuan Zhang
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, 1 Daxue Road, Xuzhou 221116, China; (X.W.); (Y.Z.); (J.Z.); (X.G.); (S.H.); (L.W.)
| | - Jiageng Zhang
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, 1 Daxue Road, Xuzhou 221116, China; (X.W.); (Y.Z.); (J.Z.); (X.G.); (S.H.); (L.W.)
| | - Xiujun Gu
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, 1 Daxue Road, Xuzhou 221116, China; (X.W.); (Y.Z.); (J.Z.); (X.G.); (S.H.); (L.W.)
| | - Shilong He
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, 1 Daxue Road, Xuzhou 221116, China; (X.W.); (Y.Z.); (J.Z.); (X.G.); (S.H.); (L.W.)
| | - Shuo Duan
- Key Laboratory for Deep Processing of Major Grain and Oil of Ministry of Education, College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China;
| | - Jianli Ma
- Solid Waste and Soil Environment Research Centre, Tianjin Academy of Eco–Environmental Sciences, Tianjin 300191, China;
| | - Lizhang Wang
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, 1 Daxue Road, Xuzhou 221116, China; (X.W.); (Y.Z.); (J.Z.); (X.G.); (S.H.); (L.W.)
| | - Ping Luo
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, 1 Daxue Road, Xuzhou 221116, China; (X.W.); (Y.Z.); (J.Z.); (X.G.); (S.H.); (L.W.)
| |
Collapse
|
12
|
Kalinowska A, Pierpaoli M, Jankowska K, Fudala-Ksiazek S, Remiszewska-Skwarek A, Łuczkiewicz A. Insights into the microbial community of treated wastewater, its year-round variability and impact on the receiver, using cultivation, microscopy and amplicon-based methods. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 829:154630. [PMID: 35307432 DOI: 10.1016/j.scitotenv.2022.154630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 02/21/2022] [Accepted: 03/13/2022] [Indexed: 06/14/2023]
Abstract
Apart from chemical constituents, wastewater treatment plant (WWTP) effluents also release microorganisms that can be important to the receiving water bodies either from a sanitary point of view, or taking to the account the biogeochemical potential of the recipients. However, little is known about the treated wastewater microbial community, its composition, seasonal changes, functions and fate in the waters of the receiver. Thus, this study presents a synergistic approach coupling new and traditional methods: analytical chemistry, classical microbiology (cultivation- and microscopy-based methods), as well as Next Generation Sequencing and a quantitative real-time polymerase chain reaction (qPCR). The results show that in terms of bacterial community composition, treated wastewater differed from the environmental samples, irrespectively if they were related or unrelated to the WWTP effluent discharge. The canonical correspondence analysis (CCA) taking into account chemical parameters and taxonomical biodiversity indirectly confirmed the seasonal deterioration of the treated wastewater quality as a result of temperature-driven change of activated sludge community structure and biomass washout (observed also by DAPI staining). Despite seasonal fluctuations of total suspended solids and inter-related parameters (such as COD, BOD, TN, TP), the treated wastewater quality remained within current discharge limits. It was due to treatment processes intensively adjusted by WWTP operators, particularly those necessary to maintain an appropriate rate of autotrophic processes of nitrification and to support biological phosphorus removal. This can explain the observed microbiome composition similarity among WWTP effluents at high taxonomic levels. Obtained data also suggest that besides wastewater treatment efficiency, WWTP effluents are still sources of both human-related microorganisms as well as bacteria equipped in genes involved in N-cycling. Their potential of participation in nutrients cycling in the receivers is widely unknown and require critical attention and better understanding.
Collapse
Affiliation(s)
- Agnieszka Kalinowska
- Department of Environmental Engineering Technology, Faculty of Civil and Environmental Engineering, Gdansk University of Technology, 11/12 Narutowicza St., Gdansk 80-233, Poland.
| | - Mattia Pierpaoli
- Department of Metrology and Optoelectronics, Faculty of Electronics, Telecommunications and Informatics, Gdansk University of Technology, 11/12 Narutowicza St., Gdansk 80-233, Poland.
| | - Katarzyna Jankowska
- Department of Environmental Engineering Technology, Faculty of Civil and Environmental Engineering, Gdansk University of Technology, 11/12 Narutowicza St., Gdansk 80-233, Poland.
| | - Sylwia Fudala-Ksiazek
- Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdansk University of Technology, 11/12 Narutowicza St., Gdansk 80-233, Poland.
| | - Anna Remiszewska-Skwarek
- Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdansk University of Technology, 11/12 Narutowicza St., Gdansk 80-233, Poland.
| | - Aneta Łuczkiewicz
- Department of Environmental Engineering Technology, Faculty of Civil and Environmental Engineering, Gdansk University of Technology, 11/12 Narutowicza St., Gdansk 80-233, Poland.
| |
Collapse
|
13
|
Jiao K, Yang B, Wang H, Xu W, Zhang C, Gao Y, Sun W, Li F, Ji D. The individual and combined effects of polystyrene and silver nanoparticles on nitrogen transformation and bacterial communities in an agricultural soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 820:153358. [PMID: 35077800 DOI: 10.1016/j.scitotenv.2022.153358] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 06/14/2023]
Abstract
The effects of emerging contaminants micro/nanoplastics (MPs/NPs) and silver nanoparticles (Ag NPs) on health have attracted universal concern throughout the world. However, it is unclear on the combined effects of MPs/NPs and Ag NPs on the biogeochemistry cycle such as nitrogen transformation and functional microorganism in the soil. In the present study, we conducted a 45-day soil microcosm experiment with polystyrene (PS) MPs/NPs and Ag NPs to investigate their combined impact on nitrogen cycling and the bacterial community. The results showed that MPs or NPs exerted limited effects on nitrogen transformation in the soil. The combined effects of PS MPs/NPs and Ag NPs were mainly caused by the presence of Ag NPs. However, PS NPs alleviated the inhibition of anammox and denitrification induced by Ag NPs via upregulating anammox-related genes and elevating nitrate and nitrite reductase activities. PS MPs + Ag NPs treatment significantly reduced bacterial diversity. PS MPs/NPs + Ag NPs increased the relative abundances of denitrifying Cupriavidus by 0.32% and 0.06% but decreased nitrogen-fixing functional microorganisms of Microvirga (by 2.05% and 2.24%), Bacillus (by 0.16% and 0.22%), and Herbaspirillum (by 0.14% and 0.07%) at the genus level compared with Ag NPs alone. The significant downregulation of nitrogen-fixing genes (K02586, K02588, and K02591) was observed in PS MPs/NPs + Ag NPs treatment compared to Ag NPs in the nitrogen metabolism pathway. Moreover, g-Lysobacter and g-Aquimonas were identified as biomarkers in PS MPs + Ag NPs and PS NPs + Ag NPs by LEfSe analysis. Our study sheds the light that changes of functional microorganism abundances contributed to the alteration of nitrogen transformation. Taking the particle size of plastics into account will be helpful to accurately assess the combined ecological risks of plastics and nanomaterial contaminants.
Collapse
Affiliation(s)
- Keqin Jiao
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China; Shaanxi Key Laboratory of Land Consolidation, Xi'an 710054, China
| | - Baoshan Yang
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China; Shaanxi Key Laboratory of Land Consolidation, Xi'an 710054, China
| | - Hui Wang
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China; Shaanxi Key Laboratory of Land Consolidation, Xi'an 710054, China.
| | - Wenxue Xu
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China; Shaanxi Key Laboratory of Land Consolidation, Xi'an 710054, China
| | - Chuanfeng Zhang
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China; Shaanxi Key Laboratory of Land Consolidation, Xi'an 710054, China
| | - Yongchao Gao
- Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Shandong Provincial Key Laboratory of Applied Microbiology, 28789 East Jingshi Road, Jinan 250103, China
| | - Wen Sun
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China; Shaanxi Key Laboratory of Land Consolidation, Xi'an 710054, China
| | - Feng Li
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China; Shaanxi Key Laboratory of Land Consolidation, Xi'an 710054, China
| | - Dandan Ji
- College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Science), Jinan 250353, China
| |
Collapse
|
14
|
Zhang X, Dang D, Zheng L, Wu L, Wu Y, Li H, Yu Y. Effect of Ag Nanoparticles on Denitrification and Microbial Community in a Paddy Soil. Front Microbiol 2022; 12:785439. [PMID: 35003016 PMCID: PMC8727482 DOI: 10.3389/fmicb.2021.785439] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 11/23/2021] [Indexed: 11/30/2022] Open
Abstract
The extensive application of Ag nanoparticles (AgNPs) in industry, agriculture, and food processing areas increases the possibility of its release and accumulation to agroecosystem, but the effects of AgNPs to denitrification and the microbial community in paddy ecosystems are still poorly studied. In this study, microcosmic simulation experiments were established to investigate the response of soil denitrification to different levels of AgNPs (i.e., 0.1, 1, 10, and 50 mg/kg) in a paddy soil. Real-time quantitative PCR and high-throughput sequencing were conducted to reveal the microbial mechanism of the nanometer effect. The results showed that, though 0.1–10 mg/kg AgNPs had no significant effects on denitrification rate and N2O emission rate compared to CK and bulk Ag treatments, 50 mg/kg AgNPs significantly stimulated more than 60% increase of denitrification rate and N2O emission rate on the 3rd day (P < 0.05). Real-time quantitative PCR revealed that 50 mg/kg AgNPs significantly decreased the abundance of 16S bacterial rRNA gene, nirS/nirK, cnorB, and nosZ genes, but it did not change the narG gene abundance. The correlation analysis further revealed that the cumulative N2O emission was positively correlated with the ratio of all the five tested denitrifying genes to bacterial 16S rRNA gene (P < 0.05), indicating that the tolerance of narG gene to AgNPs was the key factor of the increase in denitrification in the studied soil. High-throughput sequencing showed that only the 50-mg/kg-AgNP treatment significantly changed the microbial community composition compared to bulk Ag and CK treatments. The response of microbial phylotypes to AgNPs suggested that the most critical bacteria which drove the stimulation of 50 mg/kg AgNPs on N2O emission were Firmicutes and β-proteobacteria, such as Clotridiales, Burkholderiales, and Anaerolineales. This study revealed the effects of AgNPs to denitrification in a paddy ecosystem and could provide a scientific basis for understanding of the environmental and toxicological effects of Ag nanomaterials.
Collapse
Affiliation(s)
- Xiao Zhang
- Key Laboratory of Agrometeorology of Jiangsu Province, Nanjing University of Information Science and Technology, Nanjing, China
| | - Di Dang
- Key Laboratory of Agrometeorology of Jiangsu Province, Nanjing University of Information Science and Technology, Nanjing, China
| | - Lingsi Zheng
- Key Laboratory of Agrometeorology of Jiangsu Province, Nanjing University of Information Science and Technology, Nanjing, China
| | - Lingyu Wu
- Key Laboratory of Agrometeorology of Jiangsu Province, Nanjing University of Information Science and Technology, Nanjing, China
| | - Yu Wu
- Key Laboratory of Agrometeorology of Jiangsu Province, Nanjing University of Information Science and Technology, Nanjing, China
| | - Haoruo Li
- Key Laboratory of Agrometeorology of Jiangsu Province, Nanjing University of Information Science and Technology, Nanjing, China
| | - Yongjie Yu
- Key Laboratory of Agrometeorology of Jiangsu Province, Nanjing University of Information Science and Technology, Nanjing, China.,Key Laboratory of Karst Dynamics, MNR and Guangxi, Institute of Karst Geology, Chinese Academy of Geological Sciences, Guilin, China
| |
Collapse
|
15
|
Wang L, Yang D, Ma F, Wang G, You Y. Recent advances in responses of arbuscular mycorrhizal fungi - Plant symbiosis to engineered nanoparticles. CHEMOSPHERE 2022; 286:131644. [PMID: 34346335 DOI: 10.1016/j.chemosphere.2021.131644] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 07/19/2021] [Accepted: 07/21/2021] [Indexed: 06/13/2023]
Abstract
The application of engineered nanomaterials (ENMs) is increasing in all walks of life, inevitably resulting in a high risk of ENMs entering the natural environment. Recent studies have demonstrated that phytoaccumulation of ENMs in the environment may be detrimental to plants to varying degrees. However, plants primarily assimilate ENMs through the roots, which are inevitably affected by rhizomicroorganisms. In this review, we focus on a group of common rhizomicroorganisms-arbuscular mycorrhizal fungi (AMF). These fungi contribute to ENMs immobilization and inhibition of phytoaccumulation, improvement of host plant growth and activation of systematic protection in response to excess ENMs stress. In present review, we summarize the biological responses of plants to ENMs and the modulatory mechanisms of AMF on the immobilization of ENMs in substrate-plant interfaces, and indirectly regulatory mechanisms of AMF on the deleterious effects of ENMs on host plants. In addition, the information of feedback of ENMs on mycorrhizal symbiosis and the prospects of future research on the fate and mechanism of phyto-toxicity of ENMs mediated by AMF in the environment are also addressed. In view of above, synergistic reaction of plants and AMF may prove to be a cost-effective and eco-friendly technology to bio-control potential ENMs contamination on a sustainable basis.
Collapse
Affiliation(s)
- Li Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environmental, Harbin Institute of Technology, 73 Huanghe Road, Harbin, 150090, PR China.
| | - Dongguang Yang
- State Key Laboratory of Urban Water Resource and Environment, School of Environmental, Harbin Institute of Technology, 73 Huanghe Road, Harbin, 150090, PR China
| | - Fang Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Environmental, Harbin Institute of Technology, 73 Huanghe Road, Harbin, 150090, PR China
| | - Gen Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environmental, Harbin Institute of Technology, 73 Huanghe Road, Harbin, 150090, PR China
| | - Yongqiang You
- State Key Laboratory of Urban Water Resource and Environment, School of Environmental, Harbin Institute of Technology, 73 Huanghe Road, Harbin, 150090, PR China
| |
Collapse
|
16
|
Ma Y, Huang J, Han T, Yan C, Cao C, Cao M. Comprehensive metagenomic and enzyme activity analysis reveals the negatively influential and potentially toxic mechanism of polystyrene nanoparticles on nitrogen transformation in constructed wetlands. WATER RESEARCH 2021; 202:117420. [PMID: 34280806 DOI: 10.1016/j.watres.2021.117420] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 06/22/2021] [Accepted: 07/04/2021] [Indexed: 06/13/2023]
Abstract
The widespread use of nanoplastics inevitably leads to their increasing emission into constructed wetlands (CWs). However, little is known about the impacts of nanoplastics on nitrogen transformation in CWs. In this study, the influence of polystyrene nanoparticles (PS NPs), one of the most widely used plastics, on the nitrogen transformation in CWs was comprehensively investigated, and the influential and toxic mechanism was evaluated through metagenomic analysis (DNA level) and key enzyme activities (protein level) related to N-transformation metabolism and antioxidant systems. The results showed that over 97% of PS NPs were retained in CWs, and the biofilm of sand was the main sink of PS NPs. Exposure to 1 and 10 mg/L PS NPs suppressed the nitrogen transformation, causing a certain degree of inhibition in TN removal, especially in the relatively short term of the exposure experiment (p < 0.05). At the protein level, 1 and 10 mg/L PS NPs negatively affect enzyme activities involved in denitrification (nitrate reductase and nitrite reductase) and electron transport system activity (ETSA). In contrast, 10 mg/L of PS NPs significantly suppressed the activities of nitrifying enzymes (ammonia monooxygenase, hydroxylamine dehydrogenase and nitrite oxidoreductase), whereas 1 mg/L PS NPs showed no impacts on nitrifying enzymes. Metagenomic analysis further certified that PS NPs restrained the relative abundances of genes involved in nitrogen transformation including nitrification and denitrification biochemical metabolisms (the electron production, electron transport and electron consumption processes). It also indicated that PS NPs could affect nitrogen transformation by reducing the abundance of genes for electron donor and ATP production involved in carbon metabolism (glycolysis and tricarboxylic acid cycle metabolism). In our study, the potential toxic mechanisms of PS NPs attributed to over production of reactive oxygen species and variations of antioxidant systems in macrophytes and microorganisms. These results provided valuable information for evaluating the impacts of PS NPs on CWs and arouse more attention to their impacts on the global geochemical nitrogen and carbon cycles.
Collapse
Affiliation(s)
- Yixuan Ma
- Dept. of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing 210096, China
| | - Juan Huang
- Dept. of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing 210096, China.
| | - Tingwei Han
- Dept. of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing 210096, China
| | - Chunni Yan
- Dept. of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing 210096, China
| | - Chong Cao
- Dept. of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing 210096, China
| | - Meifang Cao
- Dept. of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing 210096, China
| |
Collapse
|
17
|
Wu S, Gaillard JF, Gray KA. The impacts of metal-based engineered nanomaterial mixtures on microbial systems: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 780:146496. [PMID: 34030287 DOI: 10.1016/j.scitotenv.2021.146496] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 02/23/2021] [Accepted: 03/11/2021] [Indexed: 05/24/2023]
Abstract
The last decade has witnessed tremendous growth in the commercial use of metal-based engineered nanomaterials (ENMs) for a wide range of products and processes. Consequently, direct and indirect release into environmental systems may no longer be considered negligible or insignificant. Yet, there is an active debate as to whether there are real risks to human or ecological health with environmental exposure to ENMs. Previous research has focused primarily on the acute effects of individual ENMs using pure cultures under controlled laboratory environments, which may not accurately reveal the ecological impacts of ENMs under real environmental conditions. The goal of this review is to assess our current understanding of ENM effects as we move from exposure of single to multiple ENMs or microbial species. For instance, are ENMs' impacts on microbial communities predicted by their intrinsic physical or chemical characteristics or their effects on single microbial populations; how do chronic ENM interactions compare to acute toxicity; does behavior under simplified laboratory conditions reflect that in environmental media; finally, is biological stress modified by interactions in ENM mixtures relative to that of individual ENM? This review summarizes key findings and our evolving understanding of the ecological effects of ENMs under complex environmental conditions on microbial systems, identifies the gaps in our current knowledge, and indicates the direction of future research.
Collapse
Affiliation(s)
- Shushan Wu
- Department of Civil and Environmental Engineering, Northwestern University, USA.
| | | | - Kimberly A Gray
- Department of Civil and Environmental Engineering, Northwestern University, USA.
| |
Collapse
|
18
|
Cao C, Huang J, Yan CN, Zhang XX, Ma YX. Impacts of Ag and Ag 2S nanoparticles on the nitrogen removal within vertical flow constructed wetlands treating secondary effluent. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 777:145171. [PMID: 33676207 DOI: 10.1016/j.scitotenv.2021.145171] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/29/2020] [Accepted: 01/10/2021] [Indexed: 06/12/2023]
Abstract
In this study, the effects of silver (Ag NPs) and sliver sulfide nanoparticles (Ag2S NPs) on nitrogen removal and nitrogen functional microbes in constructed wetlands were investigated. The obtained results demonstrated that inhibition extent on nitrogen removal relied on NPs types and high concentrations NPs showed higher negative effects. 0.5 mg/L Ag NPs had no influence on NH4+-N removal, amoA and nxrA gene copies, whereas Ag2S NPs and Ag+ decreased NH4+-N removal by reducing abundances of nitrifying genes. The concentrations of NO3--N and TN in all 0.5 mg/L obviously increased compared with control, resulting from decreasing functional genes and denitrifying bacteria. And 0.5 mg/L Ag NPs exhibited largest inhibitory effects, with the highest NO3--N effluent concentrations. 2 mg/L Ag NPs decreased NH4+-N removal, but adverse effects gradually vanished with extension of time, whereas both Ag2S NPs and Ag+ at 2 mg/L influenced NH4+-N transformation and decreased the abundance of amoA and nxrA genes and the AOB Nitrosomonas in CWs. Moreover, 2 mg/L of Ag NPs reduced NO3--N removal by decreasing abundance of nirS and key denitrifying bacteria. To sum up, the inhibition mechanisms concluded from current results were possibly in that Ag NPs exhibited nanotoxicity rather than ionic toxicity.
Collapse
Affiliation(s)
- Chong Cao
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing 211189, China
| | - Juan Huang
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing 211189, China.
| | - Chun-Ni Yan
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing 211189, China
| | - Xin-Xin Zhang
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing 211189, China
| | - Yi-Xuan Ma
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing 211189, China
| |
Collapse
|
19
|
Xiao J, Huang J, Wang M, Huang M, Wang Y. The fate and long-term toxic effects of NiO nanoparticles at environmental concentration in constructed wetland: Enzyme activity, microbial property, metabolic pathway and functional genes. JOURNAL OF HAZARDOUS MATERIALS 2021; 413:125295. [PMID: 33609865 DOI: 10.1016/j.jhazmat.2021.125295] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 01/22/2021] [Accepted: 01/30/2021] [Indexed: 06/12/2023]
Abstract
Although the potential threats of metallic oxide nanoparticles (MNPs) to constructed wetland (CW) have been broadly reported, limited information is available regarding the long-term impact of nickel oxide nanoparticles (NiO NPs) on CWs at the environmentally relevant concentrations. Here, we comprehensively elucidated the responses in the treatment performance, enzyme activities, microbial properties, metabolic pathways and functional genes of CWs to chronic exposure of NiO NPs (0.1 and 1 mg/L) for 120 days, with a quantitative analysis on the fate and migration of NiO NPs within CWs. Nitrogen removal evidently declined under the long-term exposure to NiO NPs. Besides, NiO NPs induced a deterioration in phosphorus removal, but gradually restored over time. The activities of dehydrogenase (DHA), phosphatase (PST), urease (URE), ammonia oxygenase (AMO) and nitrate reductase (NAR) were inhibited to some extent under NiO NPs stress. Furthermore, NiO NPs exposure reduced bacterial diversity, shifted microbial composition and obviously inhibited the transcription of the ammonia oxidizing and denitrifying functional genes. The results of nickel mass balance indicated that the major removal mechanism of NiO NPs in CWs was through substrate adsorption and plants uptake. Thus, the ecological impacts of prolonged NiO NPs exposure at environmental concentrations should not be neglected.
Collapse
Affiliation(s)
- Jun Xiao
- School of Civil Engineering, Southeast University, Nanjing, Jiangsu 211189, PR China
| | - Juan Huang
- School of Civil Engineering, Southeast University, Nanjing, Jiangsu 211189, PR China.
| | - Mingyu Wang
- School of Civil Engineering, Southeast University, Nanjing, Jiangsu 211189, PR China
| | - Minjie Huang
- School of Civil Engineering, Southeast University, Nanjing, Jiangsu 211189, PR China
| | - Ying Wang
- School of Civil Engineering, Southeast University, Nanjing, Jiangsu 211189, PR China
| |
Collapse
|
20
|
Cao C, Huang J, Yan CN, Ma YX, Xiao J, Zhang XX. Comparative analysis of upward and downward vertical flow constructed wetlands on the nitrogen removal and functional microbes treating wastewater containing Ag nanoparticles. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 278:111573. [PMID: 33137687 DOI: 10.1016/j.jenvman.2020.111573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 10/23/2020] [Accepted: 10/24/2020] [Indexed: 06/11/2023]
Abstract
This study investigated impacts of silver nanoparticles (AgNPs) on nitrogen removal within constructed wetlands (CWs) with different flow directions. The obtained results showed that addition of AgNPs at 0.5 and 2 mg/L significantly inhibited NH4+-N removal, resulting from lower abundances of functional genes (amoA and nxrA) within CWs. And higher abundances of amoA and nxrA genes at 0.5 mg/L were observed in downward flow CW, leading to better NH4+-N removal, compared to upward flow CW. Besides, nitrifying genes amoA and nxrA in upward flow CW at 2.0 mg/L exhibited higher than downward flow CW, explaining better NH4+-N removal in upward flow CW. 0.5 mg/L AgNPs significantly declined NO3--N and TN removal, resulted from decreasing abundances of nirK, nirS and nosZ. In contrast, abundances of nirK, nirS and nosZ genes had slightly lower or higher than before adding AgNPs in upward flow CW, leading to lower NO3--N and TN effluent concentrations. High throughput sequencing also indicated the changes of functional bacterial community after exposing to AgNPs.
Collapse
Affiliation(s)
- Chong Cao
- Dept. of Municipal Engineering, School of Civil Engineering, Southeast University, No. 2 Southeast University Road, Nanjing, Jiangsu Province, 211189, China
| | - Juan Huang
- Dept. of Municipal Engineering, School of Civil Engineering, Southeast University, No. 2 Southeast University Road, Nanjing, Jiangsu Province, 211189, China.
| | - Chun-Ni Yan
- Dept. of Municipal Engineering, School of Civil Engineering, Southeast University, No. 2 Southeast University Road, Nanjing, Jiangsu Province, 211189, China
| | - Yi-Xuan Ma
- Dept. of Municipal Engineering, School of Civil Engineering, Southeast University, No. 2 Southeast University Road, Nanjing, Jiangsu Province, 211189, China
| | - Jun Xiao
- Dept. of Municipal Engineering, School of Civil Engineering, Southeast University, No. 2 Southeast University Road, Nanjing, Jiangsu Province, 211189, China
| | - Xin-Xin Zhang
- Dept. of Municipal Engineering, School of Civil Engineering, Southeast University, No. 2 Southeast University Road, Nanjing, Jiangsu Province, 211189, China
| |
Collapse
|
21
|
Tang S, Liao Y, Xu Y, Dang Z, Zhu X, Ji G. Microbial coupling mechanisms of nitrogen removal in constructed wetlands: A review. BIORESOURCE TECHNOLOGY 2020; 314:123759. [PMID: 32654809 DOI: 10.1016/j.biortech.2020.123759] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 06/18/2020] [Accepted: 06/19/2020] [Indexed: 06/11/2023]
Abstract
Nitrogen removal through microorganisms is the most important pathway in constructed wetlands (CWs). In this review, we summarize the microbial coupling mechanisms of nitrogen removal, which are the common methods of nitrogen transformation. The electron pathways are shortened and consumption of oxygen and energy is reduced during the coupling of nitrogen transformation functional microorganisms. The highly efficient nitrogen removal mechanisms are cultivated from the design conditions in CWs, such as intermittent aeration and tidal flow. The coupling of microorganisms and substrates enhances nitrogen removal mainly by supplying electrons, and plants affect nitrogen transformation functional microorganisms by the release of oxygen and exudates from root systems as well as providing carriers for microbial attachment. In addition, inorganic elements such as Fe, S and H act as electron donors to drive the autotrophic denitrification process in CWs.
Collapse
Affiliation(s)
- Shuangyu Tang
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, Department of Environmental Engineering, Peking University, Beijing 100871, China
| | - Yinhao Liao
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, Department of Environmental Engineering, Peking University, Beijing 100871, China
| | - Yichan Xu
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, Department of Environmental Engineering, Peking University, Beijing 100871, China
| | - Zhengzhu Dang
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, Department of Environmental Engineering, Peking University, Beijing 100871, China
| | - Xianfang Zhu
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, Department of Environmental Engineering, Peking University, Beijing 100871, China
| | - Guodong Ji
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, Department of Environmental Engineering, Peking University, Beijing 100871, China.
| |
Collapse
|
22
|
Ebrahimbabaie P, Meeinkuirt W, Pichtel J. Phytoremediation of engineered nanoparticles using aquatic plants: Mechanisms and practical feasibility. J Environ Sci (China) 2020; 93:151-163. [PMID: 32446451 DOI: 10.1016/j.jes.2020.03.034] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 03/12/2020] [Accepted: 03/13/2020] [Indexed: 05/04/2023]
Abstract
Certain plants have demonstrated the capability to take up and accumulate metals, thus offering the potential to remediate metal-contaminated water and sediment. Several aquatic species have further been identified which can take up metal and metal oxide engineered nanoparticles (ENPs). It is important to evaluate if aquatic plants exhibiting potential for metal phytoremediation can be applied to remediation of metallic ENPs. Understanding the interactions between ENPs and aquatic plants, and evaluating possible influences on metal uptake and phytoremediation processes is therefore essential. This review article will address the feasibility of green plants for treatment of ENP-affected aquatic ecosystems. Discussion will include common types of ENPs in current use; transformations of ENPs in aquatic systems; the importance of microorganisms in supporting plant growth; ENP entry into the plant; the influence of microorganisms in promoting plant uptake; and recent findings in phytoremediation of ENP-affected water, including applications to constructed wetlands.
Collapse
Affiliation(s)
- Parisa Ebrahimbabaie
- Ball State University, Environment, Geology and Natural Resources, Muncie, IN 47306, USA
| | | | - John Pichtel
- Ball State University, Environment, Geology and Natural Resources, Muncie, IN 47306, USA.
| |
Collapse
|
23
|
Lee YJ, Lee DJ. Impact of adding metal nanoparticles on anaerobic digestion performance - A review. BIORESOURCE TECHNOLOGY 2019; 292:121926. [PMID: 31409520 DOI: 10.1016/j.biortech.2019.121926] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 07/25/2019] [Accepted: 07/27/2019] [Indexed: 06/10/2023]
Abstract
Anaerobic digestion is the most widely adopted biological waste treatment processes with renewable energy production. The effects of adding metal nanoparticles (NPs) on improving digestion performance are well noted. This paper reviewed the traditional view on the cytotoxicity of NPs to living organisms and the contemporary view of mechanisms for enhancement in anaerobic digestion performance in the presence of metal NPs. The complicated interactions acquire further studies for comprehending the physical and chemical interactions of metal NPs to the constituent compounds and to the living cells, and the involvement of mechanisms such as direct interspecies electron transfer for better design and control of the "NP strategy" for anaerobic digestion performance enhancement.
Collapse
Affiliation(s)
- Yu-Jen Lee
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Duu-Jong Lee
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan; Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan; College of Technology and Engineering, National Taiwan Normal University, Taipei 10610, Taiwan.
| |
Collapse
|