1
|
de Araújo EEN, Gueiros LA, Dos Santos Júnior JA, Dos Santos Amaral R, Fernández ZH, Bezerra MBCF, do Nascimento Santos JM, Coutinho AP, do Rêgo Nascimento J, Dos Santos YM. Teeth and alveolar bones as tracers of metals and radionuclides in inhabitants of a uranium region. ENVIRONMENTAL RESEARCH 2024; 259:119510. [PMID: 38971359 DOI: 10.1016/j.envres.2024.119510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/06/2024] [Accepted: 06/28/2024] [Indexed: 07/08/2024]
Abstract
Biodosimetry can define risks in inhabitants of areas with potential contaminants, ensuring environmental protection and living conditions due to toxic and radioactive effects. This study aimed to evaluate metals and radionuclides in dental structures and alveolar bones in residents of a uranium area in Paraíba and Pernambuco, Brazil. Eighty-nine specimens were pulverized, fractionated, and chemically prepared for analysis by EDXRF, FAAS, and ICP-MS. Levels of Ca, Cu, Fe, Si, Mn, Ni, Pb, Sr, Ti, V, Zn, K, Mn, Th, and U were investigated. Higher concentrations were measured for Ca, with an average of 272,986.4 mg kg-1. Ni presented in lower concentrations, with an average of 30.4 mg kg-1. For U, concentrations ranged from 1.5 to 145.0 mg kg-1, with more than 27% of the samples above the reference value of 8.1 μg kg-1. For Th, almost 38% of the results were above the limit of 3.5 μg kg-1. In the bone spicules, the contents of U and Th ranged from 45.1 to 1451.2 μg kg-1 and from 7.5 to 78.4 μg kg-1, in this order. The levels of radionuclides were more expressive for the teeth collected in São José do Sabugi, suggesting contamination through food and water consumption. In the bone spicules, the levels of U were up to 179 times higher than the safety limit. The results indicate a possible risk of contamination with probable induced radiobiological effects.
Collapse
Affiliation(s)
- Eduardo Eudes Nóbrega de Araújo
- Radioecology Group, Department of Nuclear Energy, Center of Technology and Geosciences, Federal University of Pernambuco. Avenida Professor Luiz Freire, 1000, Cidade Universitária, 50740-545, Recife PE, Brazil
| | - Luiz Alcino Gueiros
- Department of Clinical and Preventive Dentistry at the Federal University of Pernambuco. Avenida Prof. Artur de Sá, 329-481, Cidade Universitária, 50740-525, Recife PE, Brazil
| | - José Araújo Dos Santos Júnior
- Radioecology Group, Department of Nuclear Energy, Center of Technology and Geosciences, Federal University of Pernambuco. Avenida Professor Luiz Freire, 1000, Cidade Universitária, 50740-545, Recife PE, Brazil.
| | - Romilton Dos Santos Amaral
- Radioecology Group, Department of Nuclear Energy, Center of Technology and Geosciences, Federal University of Pernambuco. Avenida Professor Luiz Freire, 1000, Cidade Universitária, 50740-545, Recife PE, Brazil
| | - Zahily Herrero Fernández
- Radioecology Group, Department of Nuclear Energy, Center of Technology and Geosciences, Federal University of Pernambuco. Avenida Professor Luiz Freire, 1000, Cidade Universitária, 50740-545, Recife PE, Brazil; Núcleo de Tecnologia, Centro Acadêmico do Agreste, Universidade Federal de Pernambuco, Av. Marielle Franco, s/n, km 59, 55014-900, Caruaru/PE, Brazil
| | - Mariana Brayner Cavalcante Freire Bezerra
- Radioecology Group, Department of Nuclear Energy, Center of Technology and Geosciences, Federal University of Pernambuco. Avenida Professor Luiz Freire, 1000, Cidade Universitária, 50740-545, Recife PE, Brazil
| | - Josineide Marques do Nascimento Santos
- Radioecology Group, Department of Nuclear Energy, Center of Technology and Geosciences, Federal University of Pernambuco. Avenida Professor Luiz Freire, 1000, Cidade Universitária, 50740-545, Recife PE, Brazil; Núcleo de Tecnologia, Centro Acadêmico do Agreste, Universidade Federal de Pernambuco, Av. Marielle Franco, s/n, km 59, 55014-900, Caruaru/PE, Brazil
| | - Artur Paiva Coutinho
- Núcleo de Tecnologia, Centro Acadêmico do Agreste, Universidade Federal de Pernambuco, Av. Marielle Franco, s/n, km 59, 55014-900, Caruaru/PE, Brazil
| | - Jeddson do Rêgo Nascimento
- Institute of Integral Medicine Professor Fernando Figueira. Rua dos Coelhos, 300 Boa Vista, 50070-902, Recife PE, Brazil
| | - Yasmin Marques Dos Santos
- Radioecology Group, Department of Nuclear Energy, Center of Technology and Geosciences, Federal University of Pernambuco. Avenida Professor Luiz Freire, 1000, Cidade Universitária, 50740-545, Recife PE, Brazil
| |
Collapse
|
2
|
Goodwin J, Kenneth Marcus R, McRae G, Sturgeon RE, Mester Z. Characterization of arsenic species by liquid sampling-atmospheric pressure glow discharge ionization mass spectrometry. Anal Bioanal Chem 2024; 416:3585-3594. [PMID: 38703200 PMCID: PMC11156724 DOI: 10.1007/s00216-024-05312-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/11/2024] [Accepted: 04/15/2024] [Indexed: 05/06/2024]
Abstract
A liquid sampling-atmospheric pressure glow discharge (LS-APGD) ionization source operating at a nominal power of 30 W and solution flow rate of 30 µL min-1 and supported in a He sheath gas flow rate of 500 mL min-1 was interfaced to an Orbitrap mass spectrometer and assessed for use in rapid identification of inorganic and organic arsenic species, including As(III), As(V), monomethylarsonic acid, dimethylarsinic acid, and arsenobetaine in a 2% (v/v) nitric acid medium. Mass spectral acquisition in low-resolution mode, using only the ion trap analyzer, provided detection of protonated molecular ions for AsBet (m/z 179), DMA (m/z 139), MMA (m/z 141), and As(V) (m/z 143). As(III) is oxidized to As(V), likely due to in-source processes. Typical fragmentation of these compounds resulted in the loss of either water or methyl groups, as appropriate, i.e., introducing DMA also generated ions corresponding to MMA and As(V) as dissociation products. Structure assignments were also confirmed by high-resolution Orbitrap measurements. Spectral fingerprint assignments were based on the introduction of solutions containing 5 µg mL-1 of each arsenic compound.
Collapse
Affiliation(s)
- Joseph Goodwin
- Department of Chemistry, Clemson University, Clemson, SC, 29634, USA
| | - R Kenneth Marcus
- Department of Chemistry, Clemson University, Clemson, SC, 29634, USA
| | - Garnet McRae
- Metrology Research Center, National Research Council Canada, Ottawa, Ontario, K1A0R6, Canada
| | - Ralph E Sturgeon
- Metrology Research Center, National Research Council Canada, Ottawa, Ontario, K1A0R6, Canada
| | - Zoltan Mester
- Metrology Research Center, National Research Council Canada, Ottawa, Ontario, K1A0R6, Canada.
| |
Collapse
|
3
|
Hu Z, Wu X, Du Y, Zou W, Dong H, Song M, Hang T, Lu Y. Health risk assessment for human mercury exposure from Cinnabaris-containing Baizi Yangxin Pills in healthy volunteers Po administration. J Trace Elem Med Biol 2024; 83:127398. [PMID: 38245934 DOI: 10.1016/j.jtemb.2024.127398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/04/2024] [Accepted: 01/15/2024] [Indexed: 01/23/2024]
Abstract
BACKGROUND Cinnabaris (α-HgS), a mineral traditional Chinese material medica, has been used in combination with other herbs manifesting some definite therapeutic effects for thousands of years. But the currently reported mercury poisoning incidents raised the doubts about the safety of Cinnabaris-containing traditional Chinese medicines (TCMs). Baizi Yangxin Pills (BZYXP) is a Cinnabaris-containing TCM widely used in clinical practice. This study evaluated the health risk of mercury exposure from BZYXP in healthy volunteers based on the total mercury and mercury species analysis of blood and urine after single and multiple doses of BZYXP. METHODS Blood pharmacokinetics and urinary excretion studies of mercury were compared between single (9 g, once daily) and multiple doses (9 g, twice daily, continued for 7 days) of BZYXP. The whole blood and urine samples were collected at the specific points or periods after the administration of BZYXP. The total mercury and mercury species in blood and urine samples were determined by cold vapor-atomic fluorescence spectrometry (CV-AFS) and HPLC-CV-AFS, respectively. RESULTS The mercury was excreted slowly and accumulated obviously after continuous exposure of BZYXP. Moreover, the well-known neurotoxin methylmercury (MeHg) was detected in blood samples after 7 days' administration of BZYXP. In the urine samples, only Hg(II) was detected. Therefore, long-term use of BZYXP will cause mercury poisoning due to mercury's high accumulative properties and MeHg formation. CONCLUSION Cinnabaris-containing TCMs such as BZYXP should be restricted to cases in which alternatives are available, and the blood mercury species profile should be monitored during the long-term clinical medication.
Collapse
Affiliation(s)
- Zhaoliang Hu
- Key Laboratory of Drug Quality Control and Pharmacovigilance (China Pharmaceutical University), Ministry of Education, Nanjing, China; Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, China
| | - Xiao Wu
- Key Laboratory of Drug Quality Control and Pharmacovigilance (China Pharmaceutical University), Ministry of Education, Nanjing, China; Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, China; School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yi Du
- Department of Pharmacy, First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, China
| | - Wenyu Zou
- Key Laboratory of Drug Quality Control and Pharmacovigilance (China Pharmaceutical University), Ministry of Education, Nanjing, China; Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, China
| | - Haijuan Dong
- The Public Laboratory Platform, China Pharmaceutical University, Nanjing, China
| | - Min Song
- Key Laboratory of Drug Quality Control and Pharmacovigilance (China Pharmaceutical University), Ministry of Education, Nanjing, China; Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, China
| | - Taijun Hang
- Key Laboratory of Drug Quality Control and Pharmacovigilance (China Pharmaceutical University), Ministry of Education, Nanjing, China; Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, China.
| | - Yuting Lu
- Key Laboratory of Drug Quality Control and Pharmacovigilance (China Pharmaceutical University), Ministry of Education, Nanjing, China; Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, China.
| |
Collapse
|
4
|
Wang X, Qiao Y, Zhang J, Song Y, Han Q. A SYBR Green I-based aptasensor for the label-free, fluorometric, and anti-interference detection of MeHg . Anal Bioanal Chem 2024; 416:299-311. [PMID: 37932512 DOI: 10.1007/s00216-023-05018-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/25/2023] [Accepted: 10/18/2023] [Indexed: 11/08/2023]
Abstract
Methylmercury (MeHg+) is a common form of organic mercury that is substantially more toxic than inorganic mercury and is more likely to accumulate in organisms through biological enrichment. Therefore, developing a method to enable the specific and rapid detection of MeHg+ in seafood is important and remains challenging to accomplish. Herein, a rapid, label-free fluorescence detection method for MeHg+ determination was developed based on SYBR Green I. The detection system implemented "add and measure" detection mode can be completed in 10 min. Under optimal assay conditions, the detection platform showed a linear relationship with the concentration of MeHg+ within 1-50 nM (Y = 8.573x + 42.89, R2 = 0.9928), with a detection limit of 0.3218 nM. The results obtained for competitive substances, such as inorganic mercury ions and anions, show a high specificity of the method. In addition, this method successfully detected MeHg+ in seawater and marine products, with an accompanying spike recovery rate of 96.45-105.1%.
Collapse
Affiliation(s)
- Xiaoyan Wang
- Engineering Research Center for Molecular Diagnosis, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, Yunnan, China
| | - Yinuo Qiao
- Engineering Research Center for Molecular Diagnosis, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, Yunnan, China
| | - Jinyang Zhang
- Engineering Research Center for Molecular Diagnosis, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, Yunnan, China
| | - Yuzhu Song
- Engineering Research Center for Molecular Diagnosis, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, Yunnan, China
| | - Qinqin Han
- Engineering Research Center for Molecular Diagnosis, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, Yunnan, China.
| |
Collapse
|
5
|
Martinez-Morata I, Sobel M, Tellez-Plaza M, Navas-Acien A, Howe CG, Sanchez TR. A State-of-the-Science Review on Metal Biomarkers. Curr Environ Health Rep 2023; 10:215-249. [PMID: 37337116 PMCID: PMC10822714 DOI: 10.1007/s40572-023-00402-x] [Citation(s) in RCA: 71] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/26/2023] [Indexed: 06/21/2023]
Abstract
PURPOSE OF REVIEW Biomarkers are commonly used in epidemiological studies to assess metals and metalloid exposure and estimate internal dose, as they integrate multiple sources and routes of exposure. Researchers are increasingly using multi-metal panels and innovative statistical methods to understand how exposure to real-world metal mixtures affects human health. Metals have both common and unique sources and routes of exposure, as well as biotransformation and elimination pathways. The development of multi-element analytical technology allows researchers to examine a broad spectrum of metals in their studies; however, their interpretation is complex as they can reflect different windows of exposure and several biomarkers have critical limitations. This review elaborates on more than 500 scientific publications to discuss major sources of exposure, biotransformation and elimination, and biomarkers of exposure and internal dose for 12 metals/metalloids, including 8 non-essential elements (arsenic, barium, cadmium, lead, mercury, nickel, tin, uranium) and 4 essential elements (manganese, molybdenum, selenium, and zinc) commonly used in multi-element analyses. RECENT FINDINGS We conclude that not all metal biomarkers are adequate measures of exposure and that understanding the metabolic biotransformation and elimination of metals is key to metal biomarker interpretation. For example, whole blood is a good biomarker of exposure to arsenic, cadmium, lead, mercury, and tin, but it is not a good indicator for barium, nickel, and uranium. For some essential metals, the interpretation of whole blood biomarkers is unclear. Urine is the most commonly used biomarker of exposure across metals but it should not be used to assess lead exposure. Essential metals such as zinc and manganese are tightly regulated by homeostatic processes; thus, elevated levels in urine may reflect body loss and metabolic processes rather than excess exposure. Total urinary arsenic may reflect exposure to both organic and inorganic arsenic, thus, arsenic speciation and adjustment for arsebonetaine are needed in populations with dietary seafood consumption. Hair and nails primarily reflect exposure to organic mercury, except in populations exposed to high levels of inorganic mercury such as in occupational and environmental settings. When selecting biomarkers, it is also critical to consider the exposure window of interest. Most populations are chronically exposed to metals in the low-to-moderate range, yet many biomarkers reflect recent exposures. Toenails are emerging biomarkers in this regard. They are reliable biomarkers of long-term exposure for arsenic, mercury, manganese, and selenium. However, more research is needed to understand the role of nails as a biomarker of exposure to other metals. Similarly, teeth are increasingly used to assess lifelong exposures to several essential and non-essential metals such as lead, including during the prenatal window. As metals epidemiology moves towards embracing a multi-metal/mixtures approach and expanding metal panels to include less commonly studied metals, it is important for researchers to have a strong knowledge base about the metal biomarkers included in their research. This review aims to aid metals researchers in their analysis planning, facilitate sound analytical decision-making, as well as appropriate understanding and interpretation of results.
Collapse
Affiliation(s)
- Irene Martinez-Morata
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, 722 West 168th Street, 1107, New York, NY, 10032, USA.
| | - Marisa Sobel
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, 722 West 168th Street, 1107, New York, NY, 10032, USA
| | - Maria Tellez-Plaza
- Centro Nacional de Epidemiología, Instituto de Salud Carlos III, Madrid, Spain
| | - Ana Navas-Acien
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, 722 West 168th Street, 1107, New York, NY, 10032, USA
| | - Caitlin G Howe
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Tiffany R Sanchez
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, 722 West 168th Street, 1107, New York, NY, 10032, USA
| |
Collapse
|
6
|
Alilović A, Živković I, Horvat M. Optimisation of distillation as an isolation method for the determination of low methylmercury concentrations in urine samples. Talanta 2023; 264:124765. [PMID: 37295056 DOI: 10.1016/j.talanta.2023.124765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/09/2023] [Accepted: 06/01/2023] [Indexed: 06/12/2023]
Abstract
Methylmercury (MeHg) speciation in urine requires a robust, reproducible and sensitive technique that enables reliable measurements in limited sample volumes. Conventional MeHg extraction by acid digestion allows for processing of only small amounts of urine digest, making accurate MeHg determination in low-concentration samples virtually impossible. Distillation has been proven as an efficient isolation method with very low detection limits for measuring MeHg in water samples; therefore, in this study, it was optimised for urine samples. Combined with aqueous phase ethylation, purging with nitrogen, preconcentration on Tenax trap, isothermal gas chromatography and cold vapour atomic fluorescence detection, distillation achieved high and repeatable urine spike recoveries of 94% ± 7%. Larger measured aliquot volume led to a significantly lower limit of detection (LOD) for distillation compared with acid digestion (1.1 versus 5.5 pg g-1 urine). Thirty-two general population urine samples were analysed using both methods, and the results were compared. Distillation led to better separation of MeHg from inorganic Hg and the matrix. Good correlation was observed between the results obtained by the two methods for samples with MeHg concentrations above 10 pg g-1 urine (slope = 0.9492, R2 = 0.9879). For samples below this MeHg concentration, distillation was superior, enabling the measurement of MeHg in 9 out of 12 urine samples that were below the LOD of acid digestion. Distillation had significantly lower measurement uncertainty, particularly in the low-concentration samples, where the expanded combined standard uncertainty of the acid digestion method reached as high as 43.2% (k = 2), predominantly owing to poor sample repeatability.
Collapse
Affiliation(s)
- Adna Alilović
- International Postgraduate School Jožef Stefan, Ljubljana, Slovenia
| | - Igor Živković
- International Postgraduate School Jožef Stefan, Ljubljana, Slovenia; Department of Environmental Sciences, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Milena Horvat
- International Postgraduate School Jožef Stefan, Ljubljana, Slovenia; Department of Environmental Sciences, Jožef Stefan Institute, Ljubljana, Slovenia.
| |
Collapse
|
7
|
Pang Q, Gu J, Wang H, Zhang Y. Global Health Impact of Atmospheric Mercury Emissions from Artisanal and Small-Scale Gold Mining. iScience 2022; 25:104881. [PMID: 36039300 PMCID: PMC9418800 DOI: 10.1016/j.isci.2022.104881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/13/2022] [Accepted: 08/02/2022] [Indexed: 12/02/2022] Open
Abstract
Artisanal and small-scale gold mining (ASGM) is the leading source of mercury (Hg), a global neurotoxin. Past research has focused on the health impacts on miners and nearby residents; here, we estimate the risk for global general populations by employing a comprehensive atmosphere-land-ocean-ecosystem and exposure-risk-valuation model framework. Our results suggest that ASGM sources contribute 12%, 10%, and 0.63% to the atmospheric Hg deposition, plankton methylmercury concentrations, and soil total Hg concentrations at present day, respectively, and cause 5.8×105 points of intelligence quotient decrements and 1,430 deaths for global general populations per year. The monetized global health impact of ASGM ($154 billion) is 1.5 times its local impact and accounts for half of the total revenue of ASGM ($319 billion). A major spatial decoupling between the health impact and economic gains is also revealed, suggesting that intervention measures such as awareness-raising, capacity-building, and technology transfer funded by the Global North are cost-effective. Contributions of ASGM to MeHg concentrations in different organisms are calculated The global health impact of atmospheric Hg from ASGM is first revealed The health impacts and economic gains of ASGM are compared Intervention measures for ASGM are proved to be cost-effective
Collapse
|
8
|
Baragaño D, Ratié G, Sierra C, Chrastný V, Komárek M, Gallego JR. Multiple pollution sources unravelled by environmental forensics techniques and multivariate statistics. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127413. [PMID: 34879507 DOI: 10.1016/j.jhazmat.2021.127413] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/20/2021] [Accepted: 09/30/2021] [Indexed: 06/13/2023]
Abstract
Industrial sites affected by anthropogenic contamination, both past and present-day, commonly have intricate pollutant patterns, and source discrimination can be thus highly challenging. To this goal, this paper presents a novel approach combining multivariate statistics and environmental forensic techniques. The efficiency of this methodology was exemplified in a severely polluted estuarine area (Avilés, Spain), where factor analysis and clustering were performed to identify sub-areas with distinct geochemical behaviour. Once six clusters were defined and a pollution index applied, forensic tools revealed that the As speciation, Pb isotopes, and PAHs molecular ratios were useful to categorise the cluster groups on the basis of distinct pollution sources: Zn-smelting, coaly particles and waste disposal. Overall, this methodology offers valuable insight into pollution sources identification, which can be extended to comparable scenarios of complexly polluted environmental compartments. The information gathered using this approach is also important for the planning of risk assessment procedures and potential remediation strategies.
Collapse
Affiliation(s)
- D Baragaño
- INDUROT and Environmental Biogeochemistry & Raw Materials Group, Campus de Mieres, University of Oviedo, 33600 Mieres, Spain.
| | - G Ratié
- Department of Environmental Geosciences, Faculty of Environmental Sciences, Czech University of Life Sciences, Kamýcká 129, 16500 Prague, Czech Republic
| | - C Sierra
- Escuela Superior de Ingenieros de Minas y Energía, Campus de Vegazana, University of León, 24071 León, Spain
| | - V Chrastný
- Department of Environmental Geosciences, Faculty of Environmental Sciences, Czech University of Life Sciences, Kamýcká 129, 16500 Prague, Czech Republic
| | - M Komárek
- Department of Environmental Geosciences, Faculty of Environmental Sciences, Czech University of Life Sciences, Kamýcká 129, 16500 Prague, Czech Republic
| | - J R Gallego
- INDUROT and Environmental Biogeochemistry & Raw Materials Group, Campus de Mieres, University of Oviedo, 33600 Mieres, Spain
| |
Collapse
|
9
|
HBM4EU Occupational Biomonitoring Study on e-Waste-Study Protocol. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph182412987. [PMID: 34948598 PMCID: PMC8701897 DOI: 10.3390/ijerph182412987] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 11/27/2021] [Accepted: 12/01/2021] [Indexed: 11/16/2022]
Abstract
Workers involved in the processing of electronic waste (e-waste) are potentially exposed to toxic chemicals. If exposure occurs, this may result in uptake and potential adverse health effects. Thus, exposure surveillance is an important requirement for health risk management and prevention of occupational disease. Human biomonitoring by measurement of specific biomarkers in body fluids is considered as an effective method of exposure surveillance. The aim of this study is to investigate the internal exposure of workers processing e-waste using a human biomonitoring approach, which will stimulate improved work practices and contribute to raising awareness of potential hazards. This exploratory study in occupational exposures in e-waste processing is part of the European Human Biomonitoring Initiative (HBM4EU). Here we present a study protocol using a cross sectional survey design to study worker’s exposures and compare these to the exposure of subjects preferably employed in the same company but with no known exposure to industrial recycling of e-waste. The present study protocol will be applied in six to eight European countries to ensure standardised data collection. The target population size is 300 exposed and 150 controls. Biomarkers of exposure for the following chemicals will be used: chromium, cadmium and lead in blood and urine; brominated flame retardants and polychlorobiphenyls in blood; mercury, organophosphate flame retardants and phthalates in urine, and chromium, cadmium, lead and mercury in hair. In addition, the following effect biomarkers will be studied: micronuclei, epigenetic, oxidative stress, inflammatory markers and telomere length in blood and metabolomics in urine. Occupational hygiene sampling methods (airborne and settled dust, silicon wristbands and handwipes) and contextual information will be collected to facilitate the interpretation of the biomarker results and discuss exposure mitigating interventions to further reduce exposures if needed. This study protocol can be adapted to future European-wide occupational studies.
Collapse
|
10
|
Yang S, Wang B, Qin C, Yin R, Li P, Liu J, Point D, Maurice L, Sonke JE, Zhang L, Feng X. Compound-Specific Stable Isotope Analysis Provides New Insights for Tracking Human Monomethylmercury Exposure Sources. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:12493-12503. [PMID: 34468125 DOI: 10.1021/acs.est.1c01771] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Monomethylmercury (MMHg) exposure can induce adverse neurodevelopmental effects in humans and is a global environmental health concern. Human exposure to MMHg occurs predominately through the consumption of fishery foods and rice in Asia, but it is challenging to quantify these two exposure sources. Here, we innovatively utilized MMHg compound-specific stable isotope analyses (MMHg-CSIA) of the hair to quantify the human MMHg sources in coastal and inland areas, where fishery foods and rice are routinely consumed. Our data showed that the fishery foods and rice end members had distinct Δ199HgMMHg values in both coastal and inland areas. The Δ199HgMMHg values of the human hair were comparable to those of fishery foods but not those of rice. Positive shifts in the δ202HgMMHg values of the hair from diet were observed in the study areas. Additionally, significant differences in δ202Hg versus Δ199Hg were detected between MMHg and inorganic Hg (IHg) in the human hair but not in fishery foods and rice. A binary mixing model was developed to estimate the human MMHg exposures from fishery foods and rice using Δ199HgMMHg data. The model results suggested that human MMHg exposures were dominated (>80%) by fishery food consumption and were less affected by rice consumption in both the coastal and inland areas. This study demonstrated that the MMHg-CSIA method can provide unique information for tracking human MMHg exposure sources by excluding the deviations from dietary surveys, individual MMHg absorption/demethylation efficiencies, and the confounding effects of IHg.
Collapse
Affiliation(s)
- Shaochen Yang
- Hubei Key Laboratory of Critical Zone Evolution, School of Earth Sciences, China University of Geosciences, Wuhan 430074, China
| | - Bo Wang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Chongyang Qin
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Runsheng Yin
- State Key Laboratory of Ore Deposit Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Ping Li
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
- CAS Center for Excellence in Quaternary Science and Global Change, Xi'an 710061, China
| | - Jinling Liu
- Hubei Key Laboratory of Critical Zone Evolution, School of Earth Sciences, China University of Geosciences, Wuhan 430074, China
| | - David Point
- Observatory Midi-Pyrénées, Geosciences Environment Toulouse Laboratory, Research Institute for the Development (IRD), University of Toulouse and CNRS, Toulouse 31400, France
| | - Laurence Maurice
- Observatory Midi-Pyrénées, Geosciences Environment Toulouse Laboratory, Research Institute for the Development (IRD), University of Toulouse and CNRS, Toulouse 31400, France
| | - Jeroen E Sonke
- Observatory Midi-Pyrénées, Geosciences Environment Toulouse Laboratory, Research Institute for the Development (IRD), University of Toulouse and CNRS, Toulouse 31400, France
| | - Leiming Zhang
- Air Quality Research Division, Science and Technology Branch, Environment and Climate Change Canada, Toronto M3H 5T4, Canada
| | - Xinbin Feng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
- CAS Center for Excellence in Quaternary Science and Global Change, Xi'an 710061, China
| |
Collapse
|
11
|
Rahman Z, Singh VP. The relative impact of toxic heavy metals (THMs) (arsenic (As), cadmium (Cd), chromium (Cr)(VI), mercury (Hg), and lead (Pb)) on the total environment: an overview. ENVIRONMENTAL MONITORING AND ASSESSMENT 2019; 191:419. [PMID: 31177337 DOI: 10.1007/s10661-019-7528-7] [Citation(s) in RCA: 541] [Impact Index Per Article: 90.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 05/08/2019] [Indexed: 05/18/2023]
Abstract
Certain five heavy metals viz. arsenic (As), cadmium (Cd), chromium (Cr)(VI), mercury (Hg), and lead (Pb) are non-threshold toxins and can exert toxic effects at very low concentrations. These heavy metals are known as most problematic heavy metals and as toxic heavy metals (THMs). Several industrial activities and some natural processes are responsible for their high contamination in the environment. In recent years, high concentrations of heavy metals in different natural systems including atmosphere, pedosphere, hydrosphere, and biosphere have become a global issue. These THMs have severe deteriorating effects on various microorganisms, plants, and animals. Human exposure to the THMs may evoke serious health injuries and impairments in the body, and even certain extremities can cause death. In all these perspectives, this review provides a comprehensive account of the relative impact of the THMs As, Cd, Cr(VI), Hg, and Pb on our total environment.
Collapse
Affiliation(s)
- Zeeshanur Rahman
- Department of Botany, Zakir Husain Delhi College, University of Delhi, Delhi, 110002, India.
| | - Ved Pal Singh
- Department of Botany, University of Delhi, Delhi, 110007, India
| |
Collapse
|