1
|
Peña-Galindo I, Bernales-Santolaya B, Montalva F, Gutiérrez J, Quesada-Alvarado F, Navarrete-Quintanilla S, Robbins V, Perez-Venegas DJ, Cortés-Hinojosa G, Seguel M, Chiang G. Pups on mercury: Tracking early life exposure on South American fur seals (Arctocephalus australis) and South American sea lions (Otaria byronia) in the Southeastern Pacific. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2025; 282:107325. [PMID: 40117900 DOI: 10.1016/j.aquatox.2025.107325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 03/11/2025] [Accepted: 03/13/2025] [Indexed: 03/23/2025]
Abstract
Mercury exists in three forms: elemental, inorganic, and organic, with methylmercury (MeHg) being the most concerning due to its ability to cross cellular barriers and bioaccumulate, particularly in marine mammals, where over 90 % of total mercury is in the MeHg form. Despite its importance, there is limited data on mercury bioaccumulation in marine mammals and maternal transfer mechanisms in the Southern Hemisphere. Pinnipeds, as ocean sentinels, are valuable for monitoring contaminants due to their ecological and biological traits. This study investigates mercury burdens and maternal transfer of mercury in South American sea lions (SASL) and South American fur seals (SAFS). Samples of clots and vibrissae from SASL pups and clots and milk from SAFS pups and females were analyzed. Total mercury (THg) levels in SASL ranged from 8.36 to 305.43 μg/Kg w.w. in clots and from 3071.8 to 28,034.5 μg/Kg d.w. in vibrissae. In SAFS, THg levels in clots ranged from 0.40 to 358.77 μg/Kg w.w. and in milk from 3.4 to 14.1 μg/Kg w.w. Significant differences were observed between newborn pups of both species, with a positive correlation between THg levels in clots from SAFS pups and females and between clots and vibrissae in SASL pups, indicating maternal transfer during gestation. Additionally, THg levels in SAFS pups decreased over time, suggesting biodilution. These species allow us to have a long term monitoring in both colonies and two different areas in Chile and are relevant findings to food security and the treatment of heavy metal contamination.
Collapse
Affiliation(s)
- I Peña-Galindo
- Programa de Doctorado en Medicina de la Conservación, Facultad de Ciencias de la Vida, Universidad Andrés Bello. Avenida República 440, Santiago 8320000, Santiago de Chile, Región Metropolitana, Chile; Escuela de Medicina Veterinaria, Facultad de Agronomía e Ingeniería Forestal, Facultad de Ciencias Biológicas, Facultad de Medicina, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, Macul, Santiago de Chile 7820244, Región Metropolitana, Chile
| | - B Bernales-Santolaya
- Programa de Doctorado en Salud Ambiental y Biomedicina, Universidad Mayor, Av. Alemania 281, 4801043 Temuco, Araucanía Chile
| | - F Montalva
- Guafo Science Research Group, Punta Weather, Isla Guafo s/n, Quellón, Región de los Lagos, Chile
| | - J Gutiérrez
- Guafo Science Research Group, Punta Weather, Isla Guafo s/n, Quellón, Región de los Lagos, Chile; Programa de Doctorado en Ciencias mención Ecología y Evolución, Facultad de Ciencias, Universidad Austral de Chile. Calle Independencia 631, Valdivia, 5110566, Región de los Ríos, Chile
| | - F Quesada-Alvarado
- Programa de Doctorado en Medicina de la Conservación, Facultad de Ciencias de la Vida, Universidad Andrés Bello. Avenida República 440, Santiago 8320000, Santiago de Chile, Región Metropolitana, Chile
| | - S Navarrete-Quintanilla
- Programa de doctorado en Ciencias Silvoagropecuarias y Veterinarias. Universidad de Chile. Av. Sta. Rosa 11735, La Pintana, Santiago de Chile 8820000, Región Metropolitana, Chile
| | - V Robbins
- Avian and Exotic Pet Clinic of Roanoke, 3959 Electric Road, Suite 155, Roanoke VA 24018, USA
| | - D J Perez-Venegas
- Guafo Science Research Group, Punta Weather, Isla Guafo s/n, Quellón, Región de los Lagos, Chile; Centro de Investigación y Gestión de Recursos Naturales (CIGREN), Instituto de Biología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile; Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile. Avenida República 440, Santiago 8320000, Santiago de Chile, Región Metropolitana, Chile
| | - G Cortés-Hinojosa
- Escuela de Medicina Veterinaria, Facultad de Agronomía e Ingeniería Forestal, Facultad de Ciencias Biológicas, Facultad de Medicina, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, Macul, Santiago de Chile 7820244, Región Metropolitana, Chile
| | - M Seguel
- Guafo Science Research Group, Punta Weather, Isla Guafo s/n, Quellón, Región de los Lagos, Chile; Pathobiology Department, School of Veterinary Medicine, St. George's University, True Blue, St. George's, Grenada
| | - G Chiang
- Centro de Investigación para la Sustentabilidad & Departamento de Ecología y Biodiversidad, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Avenida República 440, Santiago 8320000, Santiago de Chile, Región Metropolitana, Chile; Centro para la Resiliencia, Adaptación y Mitigación (CReAM), Universidad Mayor, Temuco, Av. Alemania 281, 4801043 Temuco, Araucanía Chile; Escuela de Agronomía, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Temuco P.O. Box 54-D, Chile.
| |
Collapse
|
2
|
Horai S, Nakamura M, Fujimura M, Eguchi A, Nakata K, Jogahara T, Oya Y, Yamamoto M, Kunisue T. Characteristics of the transfer of mercury and other trace elements between dam and fetus in a relatively high‑mercury content species, the small Indian mongoose (Urva auropunctata). THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 974:179108. [PMID: 40138906 DOI: 10.1016/j.scitotenv.2025.179108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 03/07/2025] [Accepted: 03/10/2025] [Indexed: 03/29/2025]
Abstract
We provide the first data regarding the maternal-to-fetal transfer of toxic trace elements (total Hg (THg) and organic Hg (OHg), As, Cd, and Pb) and seven essential minerals (Mg, Cr, Mn, Fe, Cu, Zn, and Se) in the tissues of 29 pairs of small Indian mongoose that were naturally exposed to metals. The fetal mass negatively correlated with the fetal liver O/THg ratio, suggesting that mineralization of Hg from the organic form might occur during fetal growth. The maternal THg and OHg concentrations and THg/Se molar ratios in whole blood and the fetal whole blood (FB)/maternal whole blood (MB) ratios of the OHg and THg concentrations significantly correlated with the fetal hepatic and cerebral Hg levels, indicating that the maternal blood THg and OHg concentrations and the THg/Se and FB/MB ratios may be useful biomarkers of the Hg contents of fetal organs. It was noted that the fetal THg and OHg levels in the liver and whole blood tended to be lower when the dams were exposed to high levels of Hg, suggesting that the placental barrier mechanism may be activated when mongooses are exposed to high levels of Hg. Analysis of the differences in trace element concentrations between maternal blood containing high (>0.044 ppm) and low (<0.044 ppm) Hg exposure showed that fetuses with high maternal Hg exposure may be at higher risk of Pb exposure and Zn depletion than those with dams exposed to low levels of Hg.
Collapse
Affiliation(s)
- Sawako Horai
- National Institute for Minamata Disease, 4058-18 Hama, Minamata, Kumamoto 867-0008, Japan.
| | - Masaaki Nakamura
- National Institute for Minamata Disease, 4058-18 Hama, Minamata, Kumamoto 867-0008, Japan
| | - Masatake Fujimura
- National Institute for Minamata Disease, 4058-18 Hama, Minamata, Kumamoto 867-0008, Japan
| | - Ai Eguchi
- National Institute for Minamata Disease, 4058-18 Hama, Minamata, Kumamoto 867-0008, Japan
| | - Katsushi Nakata
- Nansei Environmental Laboratory Co., Ltd., 4-4 Agarizaki, Nishihara, Okinawa 903-0105, Japan
| | - Takamichi Jogahara
- Department of Law, Economics, and Management, Okinawa University, 555 Kokuba, Naha, Okinawa 902-8521, Japan
| | - Yuki Oya
- Laboratory of Environmental Toxicology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan
| | - Megumi Yamamoto
- National Institute for Minamata Disease, 4058-18 Hama, Minamata, Kumamoto 867-0008, Japan
| | - Tatsuya Kunisue
- Center for Marine Environmental Studies, Ehime University, 2-5 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan
| |
Collapse
|
3
|
Wilman B, Bełdowska M, Rychter A, Popławska A. Impact of biometric parameters and seasonal condition on mercury (Hg) distribution in Harris mud crab (Rhithropanopeus harrisii) body. MARINE POLLUTION BULLETIN 2024; 209:117118. [PMID: 39406064 DOI: 10.1016/j.marpolbul.2024.117118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/02/2024] [Accepted: 10/06/2024] [Indexed: 11/28/2024]
Abstract
Mercury is a potent neurotoxin. The toxicity of Hg depends on the form in which it occurs, which consequently determines its bioavailability to the organism. The processes of distribution and elimination of Hg in organisms from lower trophic levels are still poorly understood. Therefore, in the present study, great point was paid separately to the soft tissues and hard tissues, which may play an important role in the detoxification of the crab's body from neurotoxicant. The study was conducted on the non-native species: Harris mud crab, collected in 2020. Concentrations of total mercury and its forms were carried out using a Direct Mercury Analyzer, DMA-80 (Milestone, Italy). Sex did not determine the Hg concentration of its forms in R. harrisii. Organism size influenced on crab body processes: biodilution of Hg during growth in summer and bioaccumulation of Hg before stagnation in autumn. The distribution of Hg in the crab's soft tissues and walking legs was related to the trophic origin of the mercury, while halide-bound mercury and semilabile forms and HgS were redistributed into the crab's carapace. This protects the soft tissue of crabs against the toxic effect of Hg. Consequently, a smaller load of Hg in the crabs can be introduced to the circulation or biomagnified in the food web in the region where R. harrisii is an important link of the trophic chain.
Collapse
Affiliation(s)
- Bartłomiej Wilman
- Department of Chemical Oceanography and Marine Geology, Laboratory of Toxic Substances Transformation, Faculty of Oceanography and Geography, University of Gdańsk, Al. Piłsudskiego 46, 81-378 Gdynia, Poland.
| | - Magdalena Bełdowska
- Department of Chemical Oceanography and Marine Geology, Laboratory of Toxic Substances Transformation, Faculty of Oceanography and Geography, University of Gdańsk, Al. Piłsudskiego 46, 81-378 Gdynia, Poland
| | - Agata Rychter
- Institute of Technology, State University of Applied Sciences in Elbląg, Wojska Polskiego 1, 82-300 Elbląg, Poland
| | - Angela Popławska
- Department of Chemical Oceanography and Marine Geology, Laboratory of Toxic Substances Transformation, Faculty of Oceanography and Geography, University of Gdańsk, Al. Piłsudskiego 46, 81-378 Gdynia, Poland
| |
Collapse
|
4
|
Salcedo S, Di Marzio A, Martínez-López E. Biomonitoring of persistent pollutants in grey seal (Halichoerus seagrypus) pups from the Gulf of Riga, Baltic Sea. MARINE POLLUTION BULLETIN 2024; 209:117198. [PMID: 39486196 DOI: 10.1016/j.marpolbul.2024.117198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/21/2024] [Accepted: 10/22/2024] [Indexed: 11/04/2024]
Abstract
We analyzed for the first time the concentration of potentially toxic trace elements Hg, As, Pb, Cr and Se and POPs (PCBs and OCPs) in tissues of 41 grey seal pups (Halichoerus grypus) stranded on the shores of the Gulf of Riga. Lanugo was the sample with the highest concentrations of all trace elements except Hg. The concentrations found in this biological matrix appeared as follows: Hg (2.50 ± 1.43 μg/g); Se (1.22 ± 0.82 μg/g); Cr (0.96 ± 1.51 μg/g); As (0.95 ± 1.03 μg/g); Pb (0.50 ± 0.60 μg/g). POPs were∑PCB (0.566 ± 0.520 μg/g), ∑DDT (0.522 ± 0.454 μg/g), ∑HCH (0.043 ± 0.045 μg/g) and Chlordane (0.041 μg/g). We detected brain Hg levels above the threshold described for neurobehavioural changes and some individuals also exceeded the toxic threshold described for PCBs. Thus, the health of grey seal pups could be affected by both groups of pollutants.
Collapse
Affiliation(s)
- S Salcedo
- Area of Toxicology, Oceanosphera Group, Department of Health Sciences, Faculty of Veterinary Medicine, University of Murcia, 30100 Murcia, Spain
| | - A Di Marzio
- Area of Toxicology, Oceanosphera Group, Department of Health Sciences, Faculty of Veterinary Medicine, University of Murcia, 30100 Murcia, Spain; Department of Science and Education, Rigas Nacionalais zoologiskais darzs (Riga Zoo), Meza prospekts 1, LV-1014 Riga, Latvia
| | - E Martínez-López
- Area of Toxicology, Oceanosphera Group, Department of Health Sciences, Faculty of Veterinary Medicine, University of Murcia, 30100 Murcia, Spain; Toxicology and Risk Assessment Group, Biomedical Research Institute of Murcia (IMIB-Arrixaca), University of Murcia, 30100 Murcia, Spain.
| |
Collapse
|
5
|
Mathews HQ, Callahan DL, Jeal K, Arnould JPY. Trophic and environmental influences on trace element concentrations in Australian fur seals. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176320. [PMID: 39322077 DOI: 10.1016/j.scitotenv.2024.176320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 09/12/2024] [Accepted: 09/14/2024] [Indexed: 09/27/2024]
Abstract
Trace elements (TE) in living organisms can have detrimental health impacts depending on their concentration. As many TEs are obtained through diet, trophic niche changes associated with the impacts of anthropogenic activities and climate-change may influence exposure to top predators. The Australian fur seal (Arctocephalus pusillus doriferus; AUFS) represents the greatest resident, marine predator biomass in south-eastern Australia. With adult female foraging ranges limited to the continental shelf, their source of TEs is geographically restricted. Plasma, red blood cell and milk samples collected between 1998 and 2022 at Kanowna Island, were analysed for TEs (As, Cd, Co, Cr, Cu, Fe, Hg, Mn, Ni, Pb, Se, Sn, V and Zn) using inductively-coupled plasma mass-spectrometry (ICP-MS). Plasma fatty-acid profiles and ocean climate variables were used to investigate trophic and environmental influences, respectively, on TE concentrations. Estimated whole blood concentrations in lactating females were comparable to levels reported in other marine mammals, except for Se and Mn. Correlations between adult tissues were negative for Mn and positive for As, Hg and Sn. Molar Se:Hg were high but within reported levels for pinnipeds. Element concentrations in pup plasma were greater than lactating females for Fe, Mn and Sn indicative of high transplacental transfer while doses of Se and As from milk exceeded tolerable effect levels for humans. Relationships with fatty-acid profiles suggest diet influenced concentrations of Cu, Hg, Mn, Sn, V and Zn in adult plasma. In addition, inter-annual variation in TE concentrations were influenced by broad-scale climate indices, including the Southern Annular Mode and the Southern Oscillation Index, and local conditions associated with the seasonally-active Bonney Upwelling. These findings indicate that TE concentrations in blood and milk of AUFS are and will continue to be affected by anticipated oceanographic changes, mediated by alterations in prey type availability, with potential impacts on the population's health.
Collapse
Affiliation(s)
- Heather Q Mathews
- School of Life and Environmental Sciences, Faculty of Science, Engineering and Built Environment, Deakin University, Burwood, Victoria, Australia; Krijgslaan 281/S8, Faculty of Science, Ghent University, Ghent, Belgium.
| | - Damien L Callahan
- School of Life and Environmental Sciences, Faculty of Science, Engineering and Built Environment, Deakin University, Burwood, Victoria, Australia.
| | - Kathryn Jeal
- School of Life and Environmental Sciences, Faculty of Science, Engineering and Built Environment, Deakin University, Burwood, Victoria, Australia.
| | - John P Y Arnould
- School of Life and Environmental Sciences, Faculty of Science, Engineering and Built Environment, Deakin University, Burwood, Victoria, Australia.
| |
Collapse
|
6
|
Murillo Cisneros DA, Bishop AM, Zenteno-Savín T, Rea L, Fadely B, Rosado-Berrios CA, Taylor RJ, O'Hara TM. Regional variations and drivers of essential and non-essential elements in Steller sea lion pups from the Aleutian Islands, Alaska. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 953:176103. [PMID: 39245392 DOI: 10.1016/j.scitotenv.2024.176103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 09/03/2024] [Accepted: 09/05/2024] [Indexed: 09/10/2024]
Abstract
Exposure and resulting tissue concentrations of various elements from natural and anthropogenic sources are influenced by multiple factors, such as geographic location, age, diet, and metabolic rate, that can influence wildlife health. Essential and non-essential elements were assessed in lanugo and whole blood collected in 2019 from 102 Steller sea lion (Eumetopias jubatus) pups from two rookeries from the western and central Aleutian Islands: Agattu (WAI, n = 54) and Ulak Islands (CAI, n = 48). Rookery, sex, dorsal standard length, and trophic ecology (ẟ15N, ẟ13C values) effects on element concentration were evaluated. Significant differences in element concentrations of lanugo were exhibited across rookeries (p < 0.05), except for zinc (Zn). For example, higher mercury (Hg) and selenium (Se) concentrations were observed in WAI than CAI, while other elements were lower in WAI. Whole blood showed higher sulfur (S) and Se concentrations in CAI compared to WAI, while WAI had elevated strontium (Sr) and Hg concentrations relative to CAI. Trophic ecology significantly influenced most element concentrations, possibly due to regional variations in adult female feeding and food web dynamics. Interactions between elements were found in lanugo across both rookeries, with varying strengths. Whole blood displayed less pronounced yet consistent associations, with variable intensities. Essential elements sodium (Na), potassium (K), and calcium (Ca) formed a distinct group whose interaction is crucial for nervous system function and muscle contraction. Another group comprised zinc (Zn), iron (Fe), manganese (Mn), magnesium (Mg), phosphorous (P), S, and Se, which are known for indirectly interacting with enzyme function and metabolic pathways. Hg and Se formed a distinct group probably due to their known chemical interactions and physiological protective interactions.
Collapse
Affiliation(s)
- Daniela A Murillo Cisneros
- Centro de Investigaciones Biológicas del Noroeste, S.C. Planeación Ambiental y Conservación, Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz, Baja California Sur C.P. 23096, Mexico
| | - Amanda M Bishop
- Department of Biological Sciences, University of Alaska Anchorage, Anchorage, AK 99508, USA; Institute of Northern Engineering, Water and Environmental Research Center, University of Alaska Fairbanks, Fairbanks, AK 99775, USA
| | - Tania Zenteno-Savín
- Centro de Investigaciones Biológicas del Noroeste, S.C. Planeación Ambiental y Conservación, Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz, Baja California Sur C.P. 23096, Mexico.
| | - Lorrie Rea
- Institute of Northern Engineering, Water and Environmental Research Center, University of Alaska Fairbanks, Fairbanks, AK 99775, USA
| | - Brian Fadely
- Marine Mammal Laboratory, Alaska Fisheries Science Center, National Marine Fisheries Service, NOAA, Seattle, WA 98115, USA
| | - Carlos A Rosado-Berrios
- Veterinary Integrative Biosciences, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Robert J Taylor
- Veterinary Integrative Biosciences, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Todd M O'Hara
- Institute of Northern Engineering, Water and Environmental Research Center, University of Alaska Fairbanks, Fairbanks, AK 99775, USA; Veterinary Integrative Biosciences, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
7
|
Keenan M, Misarti N, Horstmann L, Crawford SG, O'Hara T, Rea LD, Avery JP. Total mercury concentrations in Steller sea lion bone: Variability among locations and elements. MARINE POLLUTION BULLETIN 2024; 203:116471. [PMID: 38754323 DOI: 10.1016/j.marpolbul.2024.116471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/03/2024] [Accepted: 05/04/2024] [Indexed: 05/18/2024]
Abstract
Mercury is a global contaminant that bioaccumulates in a tissue-specific manner in long-lived predators such as Steller sea lions (SSL). Bone is a well-preserved material amenable for studying millennial scale trends; however, little is known about the distribution and variability of total mercury concentrations ([THg]) within individual bones and among bone elements in SSL. We assessed SSL bone [THg] variability with respect to physiologic age, bone type, longitudinally within a bone, and among bone elements. Pup bones (mean ± SD; 31.4 ± 13.58 ppb) had greater [THg] than adults (7.9 ± 1.91 ppb). There were greater and more variable [THg] within individual long bones near epiphyses compared to mid-diaphysis. Pup spongy bone in ribs (62.7 ± 44.79 ppb) had greater [THg] than long bones (23.5 ± 8.83 ppb) and phalanges (19.6 ± 10.78 ppb). These differences are likely due to variability in bone composition, growth, and turnover rate. This study informs standardized sampling procedures for [THg] in bone to improve interpretations of mercury variability over time and space.
Collapse
Affiliation(s)
- Mary Keenan
- Water and Environmental Research Center, Institute of Northern Engineering, University of Alaska, 1764 Tanana Loop, PO Box 75 5910, Fairbanks, AK 99775, USA; College of Fisheries and Ocean Sciences, University of Alaska, 2150 Koyukuk Drive, PO Box 757220, Fairbanks, AK 99775, USA.
| | - Nicole Misarti
- Water and Environmental Research Center, Institute of Northern Engineering, University of Alaska, 1764 Tanana Loop, PO Box 75 5910, Fairbanks, AK 99775, USA
| | - Lara Horstmann
- College of Fisheries and Ocean Sciences, University of Alaska, 2150 Koyukuk Drive, PO Box 757220, Fairbanks, AK 99775, USA
| | - Stephanie G Crawford
- Water and Environmental Research Center, Institute of Northern Engineering, University of Alaska, 1764 Tanana Loop, PO Box 75 5910, Fairbanks, AK 99775, USA
| | - Todd O'Hara
- Veterinary Integrative Biosciences, School of Veterinary Medicine & Biomedical Sciences, Texas A&M University, 402 Raymond Stotzer Pkwy, College Station, TX 77843, USA
| | - Lorrie D Rea
- Water and Environmental Research Center, Institute of Northern Engineering, University of Alaska, 1764 Tanana Loop, PO Box 75 5910, Fairbanks, AK 99775, USA
| | - Julie P Avery
- Water and Environmental Research Center, Institute of Northern Engineering, University of Alaska, 1764 Tanana Loop, PO Box 75 5910, Fairbanks, AK 99775, USA
| |
Collapse
|
8
|
Boyi JO, Sonne C, Dietz R, Rigét F, Siebert U, Lehnert K. Gene expression and trace elements in Greenlandic ringed seals (Pusa hispida). ENVIRONMENTAL RESEARCH 2024; 244:117839. [PMID: 38081340 DOI: 10.1016/j.envres.2023.117839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/29/2023] [Accepted: 11/30/2023] [Indexed: 12/19/2023]
Abstract
Marine top predators such as ringed seals biomagnify environmental contaminants; and with the increasing human activities in the Arctic, ringed seals are exposed to biologically significant concentrations of trace elements resulting in reproductive impairment, immunosuppression, and neurological damages. Little is known about the molecular effects of heavy metals on these vulnerable apex predators suffering from a rapidly changing Arctic with significant loss of sea-ice. In the present study, concentrations of cadmium (Cd), mercury (Hg) and selenium (Se) were measured in liver of sixteen Greenlandic ringed seals (nine adults and seven subadults) together with molecular biomarkers involved in bio-transformation, oxidative stress, endocrine disruption and immune activity in blood and blubber. The concentrations of trace elements increased in the following order: Hg > Se > Cd with levels of mercury and selenium being highest in adults. Aryl hydrocarbon receptor nuclear translocator (ARNT), peroxisome proliferator activated receptor alpha (PPARα, estrogen receptor alpha (ESR1), thyroid hormone receptor alpha (TRα) and interleukin - 2 (IL-2) mRNA transcript levels were highest in blubber, while heat shock protein 70 (HSP70) and interleukin - 10 (IL-10) were significantly higher in blood. There were no significant correlations between the concentrations of trace elements and mRNA transcript levels suggesting that stressors other than the trace elements investigated are responsible for the changes in gene expression levels. Since Hg seems to increase in Greenlandic ringed seals, there is a need to re-enforce health monitoring of this ringed seal population.
Collapse
Affiliation(s)
- Joy Ometere Boyi
- Institute for Terrestrial and Aquatic Wildlife Research, University of Veterinary Medicine Hannover, Foundation, Büsum, Germany.
| | - Christian Sonne
- Department of Ecoscience, Aarhus University, Roskilde, Denmark.
| | - Rune Dietz
- Department of Ecoscience, Aarhus University, Roskilde, Denmark.
| | - Frank Rigét
- Department of Ecoscience, Aarhus University, Roskilde, Denmark.
| | - Ursula Siebert
- Institute for Terrestrial and Aquatic Wildlife Research, University of Veterinary Medicine Hannover, Foundation, Büsum, Germany.
| | - Kristina Lehnert
- Institute for Terrestrial and Aquatic Wildlife Research, University of Veterinary Medicine Hannover, Foundation, Büsum, Germany.
| |
Collapse
|
9
|
Peterson SH, Peterson MG, Ackerman JT, Debier C, Goetsch C, Holser RR, Hückstädt LA, Johnson JC, Keates TR, McDonald BI, McHuron EA, Costa DP. Foraging behavior and age affect maternal transfer of mercury to northern elephant seal pups. Sci Rep 2024; 14:4693. [PMID: 38409311 PMCID: PMC10897339 DOI: 10.1038/s41598-024-54527-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 02/13/2024] [Indexed: 02/28/2024] Open
Abstract
Deep ocean foraging northern elephant seals (Mirounga angustirostris) consume fish and squid in remote depths of the North Pacific Ocean. Contaminants bioaccumulated from prey are subsequently transferred by adult females to pups during gestation and lactation, linking pups to mercury contamination in mesopelagic food webs (200-1000 m depths). Maternal transfer of mercury to developing seal pups was related to maternal mercury contamination and was strongly correlated with maternal foraging behavior (biotelemetry and isotopes). Mercury concentrations in lanugo (hair grown in utero) were among the highest observed worldwide for young pinnipeds (geometric mean 23.01 μg/g dw, range 8.03-63.09 μg/g dw; n = 373); thus, some pups may be at an elevated risk of sub-lethal adverse health effects. Fetal mercury exposure was affected by maternal foraging geographic location and depth; mercury concentrations were highest in pups of the deepest diving, pelagic females. Moreover, pup lanugo mercury concentrations were strongly repeatable among successive pups of individual females, demonstrating relative consistency in pup mercury exposure based on maternal foraging strategies. Northern elephant seals are biosentinels of a remote deep-sea ecosystem. Our results suggest that mercury within North Pacific mesopelagic food webs may also pose an elevated risk to other mesopelagic-foraging predators and their offspring.
Collapse
Affiliation(s)
- Sarah H Peterson
- Western Ecological Research Center, Dixon Field Station, U.S. Geological Survey, 800 Business Park Drive Suite D, Dixon, CA, USA.
- Institute of Marine Sciences, University of California Santa Cruz, Santa Cruz, CA, USA.
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, CA, USA.
| | - Michael G Peterson
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Joshua T Ackerman
- Western Ecological Research Center, Dixon Field Station, U.S. Geological Survey, 800 Business Park Drive Suite D, Dixon, CA, USA
| | - Cathy Debier
- Louvain Institute of Biomolecular Science and Technology, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Chandra Goetsch
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, CA, USA
- CSS, Inc, Fairfax, VA, USA
| | - Rachel R Holser
- Institute of Marine Sciences, University of California Santa Cruz, Santa Cruz, CA, USA
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Luis A Hückstädt
- Institute of Marine Sciences, University of California Santa Cruz, Santa Cruz, CA, USA
- Centre for Ecology and Conservation, University of Exeter, Penryn, UK
| | - Jennifer C Johnson
- Moss Landing Marine Labs, San Jose State University, Moss Landing, CA, USA
| | - Theresa R Keates
- Department of Ocean Sciences, University of California Santa Cruz, Santa Cruz, CA, USA
| | | | - Elizabeth A McHuron
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Daniel P Costa
- Institute of Marine Sciences, University of California Santa Cruz, Santa Cruz, CA, USA
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, CA, USA
| |
Collapse
|
10
|
Wilman B, Normant-Saremba M, Rychter A, Bełdowska M. Total body burden of neurotoxicant Hg in Chinese mitten crab (Eriocheir sinensis) - Considerations of distribution and human risk assessment. MARINE POLLUTION BULLETIN 2024; 199:116028. [PMID: 38217916 DOI: 10.1016/j.marpolbul.2024.116028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/03/2024] [Accepted: 01/03/2024] [Indexed: 01/15/2024]
Abstract
The Chinese mitten crab (Eriocheir sinensis) is considered one of the 100 most invasive alien species in the world. Despite this, its role in ecosystems, among others, in the trophodynamics of pollutants including mercury, is still not fully understood. Becoming an increasingly important and widespread element of the trophic chain in new areas arouses interest from humans as consumers. Hence it is important to determine the level of contaminants (including Hg) in alien species. In the present study, great attention was paid separately to the soft tissues and hard tissues of the exoskeleton, which may play an important role in the detoxification of the crab's body from toxic Hg. The study was conducted on crabs collected in 2011-2021 in the Vistula Lagoon. Concentrations of total mercury and its forms were carried out using a Direct Mercury Analyzer, DMA-80 (Milestone, Italy). The present study showed that mercury accumulation of the crab's body largely occurred through the gills, followed by the oral route. The distribution of Hg in the crab's organs was related to the trophic origin of the mercury, while halide-bound mercury and semilabile forms from the respiration (filtration) process were redistributed into the crab's exoskeleton. Male crabs, compared to females, had a higher Hg burden on internal organs such as their hepatopancreas and gonads. Hg concentration in hard tissues was closely related to the type of mineralization of the carapace. The elimination of Hg from the muscles and from the hepatopancreas into the carapace was one of the important detoxification processes of the crab's body. Thus, moulting crabs effectively remove Hg protecting its body from the neurotoxin. As a result, a smaller Hg load is biomagnified, making the crab's muscle tissue fit for human consumption. The observed decrease in Hg concentrations from 2011 to 2021, as well as the spatial variability of Hg in the crab's muscles, testify that the crab can serve as a biomonitor for ecosystem changes.
Collapse
Affiliation(s)
- Bartłomiej Wilman
- Department of Chemical Oceanography and Marine Geology, Faculty of Oceanography, University of Gdańsk, Al. Pilsudskiego 46, 81-378 Gdynia, Poland.
| | - Monika Normant-Saremba
- Department of Marine Ecology, Faculty of Oceanography, University of Gdańsk, Al. Pilsudskiego 46, 81-378 Gdynia, Poland
| | - Agata Rychter
- Institute of Technology, State University of Applied Sciences in Elbląg, Wojska Polskiego 1, 82-300 Elbląg, Poland
| | - Magdalena Bełdowska
- Department of Chemical Oceanography and Marine Geology, Faculty of Oceanography, University of Gdańsk, Al. Pilsudskiego 46, 81-378 Gdynia, Poland
| |
Collapse
|
11
|
Wilman B, Bełdowska M, Rychter A, Popławska A. Factors determining bioaccumulation of neurotoxicant Hg in the zebra mussels (Dreissena polymorpha): Influence of biometric parameters, sex and storage of shell. MARINE POLLUTION BULLETIN 2023; 197:115718. [PMID: 37922749 DOI: 10.1016/j.marpolbul.2023.115718] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 09/29/2023] [Accepted: 10/23/2023] [Indexed: 11/07/2023]
Abstract
One of benthic organisms exposed to contact with mercury in the southern Baltic is alien species of clam: Dreissena polymorpha. As this organism is increasingly dynamic in various regions of the world including the southern Baltic region, it is reasonable to ask whether it tolerates elevated concentrations of xenobiotics? Does it effectively eliminate Hg? The study determined the effects of biometric parameters and water temperature on the rate of accumulation and efficiency of eliminating Hg from body. Investigations focused on the shell which represents poorly-recognized role in the process of Hg distribution in clams. The results showed that especially during warm season, clams effectively reduced the levels of Hg in their body by the biodilution of Hg and reproduction. Important factor influencing detoxification was Hg transfer from the soft tissue to the shell. This protects the soft tissue against the toxic effect of Hg.
Collapse
Affiliation(s)
- Bartłomiej Wilman
- Department of Chemical Oceanography and Marine Geology, Laboratory of Toxic Substances Transformation, Faculty of Oceanography and Geography, University of Gdańsk, Al. Piłsudskiego 46, 81-378 Gdynia, Poland.
| | - Magdalena Bełdowska
- Department of Chemical Oceanography and Marine Geology, Laboratory of Toxic Substances Transformation, Faculty of Oceanography and Geography, University of Gdańsk, Al. Piłsudskiego 46, 81-378 Gdynia, Poland
| | - Agata Rychter
- Institute of Technology, State University of Applied Sciences in Elbląg, Wojska Polskiego 1, 82-300 Elbląg, Poland
| | - Angela Popławska
- Department of Chemical Oceanography and Marine Geology, Laboratory of Toxic Substances Transformation, Faculty of Oceanography and Geography, University of Gdańsk, Al. Piłsudskiego 46, 81-378 Gdynia, Poland
| |
Collapse
|
12
|
von Hellfeld R, Gade C, Vargesson N, Hastings A. Considerations for future quantitative structure-activity relationship (QSAR) modelling for heavy metals - A case study of mercury. Toxicology 2023; 499:153661. [PMID: 37924932 DOI: 10.1016/j.tox.2023.153661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/16/2023] [Accepted: 10/28/2023] [Indexed: 11/06/2023]
Abstract
With increasing annual chemical development and production, safety testing demands and requirements have also increased. In addition to traditional animal testing, quantitative structure-activity relationship (QSAR) modelling can be used to predict the biological effect of a chemical structure, based on the analysis of quantitative characteristics of structure features. Whilst suitable for e.g., pharmaceuticals, other compounds can be more challenging to model. The naturally occurring heavy metal mercury speciates in the environment, with some toxic species accumulating in aquatic organisms. Although this is well known, only little data is available from (eco)toxicological studies, none of which account for this speciation behaviour. The present work highlights the current toxicity data for mercury in aquatic animals and gaps in our understanding and data for future QSAR modelling. All publicly available ecotoxicology data was obtained from databases and literature. Only few studies could be determined that assessed mercury toxicity in aquatic species. Of these, likely speciation products were determined using PHREEQc. This highlighted that the mercury exposure species was not always the predominant species in the medium. Finally, the descriptors for the modelled species were obtained from ChemDes, highlighting the limited availability of such details. Additional testing is required, accounting for speciation and biological interactions, to successfully determine the toxicity profile of different mercury species in aquatic environments. In the present work, insufficient mercury-species specific data was obtained, to conduct QSAR modelling successfully. This highlights a significant lack of data, for a heavy metal with potentially fatal repercussions.
Collapse
Affiliation(s)
- Rebecca von Hellfeld
- School of Biological Sciences, University of Aberdeen, Aberdeen, Scotland, United Kingdom; National Decommissioning Centre, Aberdeen, Scotland, United Kingdom.
| | - Christoph Gade
- School of Biological Sciences, University of Aberdeen, Aberdeen, Scotland, United Kingdom; National Decommissioning Centre, Aberdeen, Scotland, United Kingdom
| | - Neil Vargesson
- School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, University of Aberdeen, Aberdeen, Scotland, United Kingdom
| | - Astley Hastings
- School of Biological Sciences, University of Aberdeen, Aberdeen, Scotland, United Kingdom; National Decommissioning Centre, Aberdeen, Scotland, United Kingdom
| |
Collapse
|
13
|
Jarzynowska M, Saniewska D, Fudala K, Wilman B, Balazy P, Płońska P, Saniewski M. Mercury and methylmercury in birds and marine mammals inhabiting the coastal zone of the two King George Island's bays: Admiralty and King George Bay (maritime Antarctic). MARINE POLLUTION BULLETIN 2023; 193:115237. [PMID: 37421914 DOI: 10.1016/j.marpolbul.2023.115237] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/16/2023] [Accepted: 06/28/2023] [Indexed: 07/10/2023]
Abstract
The Antarctic is particularly sensitive to mercury (Hg) pollution and even low levels of Hg may cause significant damage in this fragile environment. The aim of this study was to investigate routes of mercury and methylmercury (MeHg) elimination by animals inhabiting the maritime Antarctic. The results showed that organisms at the highest trophic level (elephant seal) have the highest concentrations of THg and MeHg in both excrement and fur samples. Interspecies differences in mercury levels were observed in materials sourced from penguins of the genus Pysgocelis.13C and 15N values confirmed differences in the diets and foraging areas, which may affect Hg concentration in the tissues we analyzed. Time variations in THg and MeHg concentrations were observed in the excrement of the penguin species, which may be due to periods of fasting and intense feeding closely related to egg laying and moulting stages.
Collapse
Affiliation(s)
- Małgorzata Jarzynowska
- University of Gdansk, Faculty of Oceanography and Geography, Al. Piłsudskiego 46, 81-378 Gdynia, Poland
| | - Dominika Saniewska
- University of Gdansk, Faculty of Oceanography and Geography, Al. Piłsudskiego 46, 81-378 Gdynia, Poland.
| | - Katarzyna Fudala
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, Warsaw, Poland
| | - Bartłomiej Wilman
- Institute of Meteorology and Water Management - National Research Institute, Waszyngtona 42, 81-342 Gdynia, Poland
| | - Piotr Balazy
- Institute of Oceanology, Polish Academy of Sciences, Powstańców Warszawy 55, 81-712, Sopot, Poland
| | - Patrycja Płońska
- University of Gdansk, Faculty of Oceanography and Geography, Al. Piłsudskiego 46, 81-378 Gdynia, Poland
| | - Michał Saniewski
- Institute of Meteorology and Water Management - National Research Institute, Waszyngtona 42, 81-342 Gdynia, Poland
| |
Collapse
|
14
|
Wilman B, Staniszewska M, Bełdowska M. Is the inhalation influence on the level of mercury and PAHs in the lungs of the baltic grey seal (Halichoerus grypusgrypus)? ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 320:121083. [PMID: 36649880 DOI: 10.1016/j.envpol.2023.121083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 06/17/2023]
Abstract
For many decades, mercury (Hg) has been recognized as one of the most dangerous environmental pollutants that negatively affects the ecosystem, including human health. Polycyclic aromatic hydrocarbons (PAHs) are hydrophobic, toxic and potentially carcinogenic compounds. The process of respiration in addition to dietary intake is a significant source of these compounds to the human or marine mammalian body. Therefore, the aim of this study was to determine the sources of PAHs and labile forms of mercury in the lungs of dead seals found in the southern Baltic Sea. Of the PAHs: pyrene, fluoranthene and chrysene showed the highest concentrations. Considering the content of individual Hg fractions, the highest percentage was characterized by Hg labile 1b (related to organic matter). In a few specimens, deviations from the trend described above were observed: a higher proportion of Hg labile 1a (mainly halide-bound forms of mercury than the mean value which may indicate their origin from aerosols). Hg concentrations increased with seal age due to bioaccumulation and biomagnification of Hg from food; therefore, adsorption of atmospheric mercury on alveoli is probably of decreasing importance with seal age. Ratios obtained: FLA/PYR <1; B(a)A/CHR <1; FLA/(PYR + FLA) < 0.4 indicate a petrogenic source. In contrast, high correlations of B(a)A, FLA and PYR and CHR with Hg suggest a common source of PAHs and mercury - from food. Conversely, the presence of pyrogenic (combustion-derived) benzo(a)pyrene in the lungs of these mammals could indicate a respiratory route of entry. Mercury and PAHs in the lungs of the seals studied were mainly of trophic origin, but the results presented here make the hypothesis of an airborne influx of Hg and PAHs into the lungs from marine mammals plausible. This is of particular importance in juveniles (pups), who, at the initial stage of life, spend time on land and do not obtain food on their own.
Collapse
Affiliation(s)
- Bartłomiej Wilman
- Department of Marine Chemistry and Environmental Protection, Institute of Oceanography, University of Gdansk, Al. Marszałka J. Piłsudskiego 46, 81-378 Gdynia, Poland.
| | - Marta Staniszewska
- Department of Marine Chemistry and Environmental Protection, Institute of Oceanography, University of Gdansk, Al. Marszałka J. Piłsudskiego 46, 81-378 Gdynia, Poland
| | - Magdalena Bełdowska
- Department of Marine Chemistry and Environmental Protection, Institute of Oceanography, University of Gdansk, Al. Marszałka J. Piłsudskiego 46, 81-378 Gdynia, Poland
| |
Collapse
|
15
|
Ryazanov SD, Fomin SV, Kalinchuk VV. Mercury content in the fur of sea otters (Enhydra lutris) from the Commander Islands. MARINE POLLUTION BULLETIN 2023; 188:114638. [PMID: 36706549 DOI: 10.1016/j.marpolbul.2023.114638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 01/17/2023] [Indexed: 06/18/2023]
Abstract
The sea otter (Enhydra lutris) is a keystone species in the ecosystem which is currently in depression in Russia. The objectives of this study were to: (1) establish if the sea otters from the Commander Islands have hazardous levels of mercury (Hg) in their fur; (2) assess Hg pollution in sea otters during a period of high abundance and population depression; (3) identify the age and sex differences in sea otters by Hg content. The sea otters were classified from no to low risk for Hg health effects. Differences in Hg content during periods of low and high population size were not statistically significant. Hg concentrations in adult sea otters were significantly higher than in the young, and higher in males than in females. This study presents the first data on Hg content in sea otters' fur and the first estimate of Hg contamination for the Commander Islands population.
Collapse
Affiliation(s)
- Sergey D Ryazanov
- V.I. Il'ichev Pacific Oceanological Institute, FEB RAS, 43, Baltiiskaya Str., Vladivostok 690041, Russia.
| | - Sergey V Fomin
- Kamchatka Branch of the Pacific Geographical Institute, FEB RAS, 6, Partizanskaya Str., Petropavlovsk-Kamchatsky 683000, Russia
| | - Viktor V Kalinchuk
- V.I. Il'ichev Pacific Oceanological Institute, FEB RAS, 43, Baltiiskaya Str., Vladivostok 690041, Russia.
| |
Collapse
|
16
|
Wilman B, Bełdowska M, Rychter A, Kornijów R. Different pathways of accumulation and elimination of neurotoxicant Hg and its forms in the clam Atlantic rangia (Rangia cuneata). THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:160018. [PMID: 36356744 DOI: 10.1016/j.scitotenv.2022.160018] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/19/2022] [Accepted: 11/03/2022] [Indexed: 06/16/2023]
Abstract
Mercury (Hg) is one of the most hazardous environmental pollutants, negatively affecting the ecosystem. The pathways of Hg elimination are well recognized in organisms from higher trophic levels compared to invertebrates such as clams. The aim of this study was to identify pathways of Hg accumulation in an alien species clams: Rangia cuneata, which represented an unrecognized source of Hg into the trophic chain of the southern Baltic Sea. An important aspect of this study was to determine Hg detoxification processes based on physiological state and biometric parameters of the atlatntic rangia. Special consideration was given to the role of shell in this process and the form of Hg in which it occurred. The study was also considered in terms of geographical changes in the Hg concentration in clams and the factors involved. Sex did not determine the concentration of Hg and its fraction in clams soft tissue and shell. Clams detoxified xenobiotic effectively in summer when their metabolism was accelerated. As a result, clams grew faster in warmer water than they accumulated Hg. In addition, this process was intensified by their reproduction. The mass of accumulated mercury was higher in the shell mass than in the body mass in summer. Transfer of Hg from the body to the shell depended on the forms Hg, mostly HgS. Geographical changes in the mercury concentration in clams was related to the form of Hg in the sediment. In areas where were more fines sediment fraction and organic matter accumulated in the sediment, mercury was present in a less bioavailable form, which caused that clams had lower Hg concentrations in their body. With assumption that in the future, due to its increasingly frequent occurrence, atlatntic rangia will become more common component of fish diet, a smaller load of toxic mercury will be introduced to the marine trophic chain.
Collapse
Affiliation(s)
- Bartłomiej Wilman
- Institute of Oceanography, University of Gdańsk, Al. Pilsudskiego 46, 81-378 Gdynia, Poland.
| | - Magdalena Bełdowska
- Institute of Oceanography, University of Gdańsk, Al. Pilsudskiego 46, 81-378 Gdynia, Poland
| | - Agata Rychter
- Univerity of Applied Sciences in Elbląg, Wojska Polskiego 1, 82-300 Elbląg, Poland
| | - Ryszard Kornijów
- Department of Fisheries Oceanography and Marine Ecology, National Marine Fisheries Research Institute, Kołłątaja 1, 81-332 Gdynia, Poland
| |
Collapse
|
17
|
Taylor S, Terkildsen M, McQuilty R, Lee D, Wing-Simpson A, Gray R. Non-essential heavy metals and protective effects of selenium against mercury toxicity in endangered Australian sea lion (Neophoca cinerea) pups with hookworm disease. ENVIRONMENT INTERNATIONAL 2022; 169:107521. [PMID: 36148712 DOI: 10.1016/j.envint.2022.107521] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 08/06/2022] [Accepted: 09/11/2022] [Indexed: 06/16/2023]
Abstract
The endangered Australian sea lion, Neophoca cinerea, faces ongoing population decline. Identification of key threats to N. cinerea population recovery, including disease and pollutants, is an objective of the species' recovery plan. Previous studies have identified Uncinaria sanguinis, an intestinal nematode, as a significant cause of disease and mortality in N. cinerea pups. Given the impact of heavy metals on the immune response, investigation of these pollutants is critical. To this end, the concentrations of arsenic (As), total mercury (Hg), cadmium (Cd), chromium (Cr), lead (Pb) and selenium (Se) were determined in blood collected from N. cinerea pups sampled during the 2017/18, 2019 and 2020/21 breeding seasons at Seal Bay Conservation Park, South Australia. Significant differences (p < 0.05) in Hg, As, Cr, and Se concentrations and molar ratio of Se:Hg were seen between breeding seasons. Pup age, maternal parity and inter-individual foraging behaviour were considered factors driving these differences. The concentrations of Hg (357, 198 and 241 µg/L) and As (225, 834 and 608 µg/L) were high in 2017/18, 2019 and 2020/21 respectively with Hg concentrations in the blood of N. cinerea pups above toxicological thresholds reported for marine mammals. The concentration of Se (1332, 647, 763 µg/L) and molar ratio of Se:Hg (9.47, 7.98 and 6.82) were low compared to other pinniped pups, indicating potential vulnerability of pups to the toxic effects of Hg. Significant (p < 0.05) negative associations for Pb and Cd with several red blood cell parameters suggest they could be exacerbating the anaemia caused by hookworm disease. Temporal (age-related) changes in element concentrations were also seen, such that pup age needs to be considered when interpreting bioaccumulation patterns. Further investigation of the role of elevated heavy metal concentrations on N. cinerea pup health, disease and development is recommended, particularly with respect to immunological impacts.
Collapse
Affiliation(s)
- Shannon Taylor
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Camperdown, NSW 2006, Australia
| | | | - Robert McQuilty
- Department of Chemical Pathology, Royal Prince Alfred Hospital, Camperdown, Sydney 2050, Australia
| | - David Lee
- Department of Chemical Pathology, Royal Prince Alfred Hospital, Camperdown, Sydney 2050, Australia
| | - Aileen Wing-Simpson
- Department of Chemical Pathology, Royal Prince Alfred Hospital, Camperdown, Sydney 2050, Australia
| | - Rachael Gray
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Camperdown, NSW 2006, Australia.
| |
Collapse
|
18
|
Fernández-Robledo A, Lares ML, Schramm-Urrutia Y. Trace metal concentrations in California sea lions from rookeries exposed to different levels of coastal urbanization in Baja California, Mexico. MARINE POLLUTION BULLETIN 2022; 184:114163. [PMID: 36182783 DOI: 10.1016/j.marpolbul.2022.114163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 09/15/2022] [Accepted: 09/18/2022] [Indexed: 06/16/2023]
Abstract
Concentrations of total mercury, total selenium, and cadmium ([THg], [TSe], [Cd]) were determined in hair of California sea lion (Zalophus californianus) pups from four islands of the Gulf of California and the Baja California Pacific coast (NG, CG, NP, and CP) to identify geographical differences and the effect of Se against Hg toxicity (TSe:THg molar ratio). THg displayed a strong north-south trend for both ecoregions, while TSe presented a significantly high concentration only for CG. TSe:THg molar ratios decreased when [THg] increased, with the lowest ratios presenting in NG pups, in which [THg] exceeded toxicological thresholds of concern. [Cd] presented similar values at all study sites except CG, which presented the lowest level. The present study shows that proximity to urbanized coastal areas has a strong influence on [THg] in pups, while [TSe] and [Cd] are probably more related to the physiological requirements of the species, and environmental conditions.
Collapse
Affiliation(s)
- A Fernández-Robledo
- Departamento de Oceanografía Biológica, Centro de Investigación Científica y de Educación Superior de Ensenada, Km. 107 Carretera Tijuana-Ensenada, Ensenada 22860, Baja California, Mexico
| | - M L Lares
- Departamento de Oceanografía Biológica, Centro de Investigación Científica y de Educación Superior de Ensenada, Km. 107 Carretera Tijuana-Ensenada, Ensenada 22860, Baja California, Mexico.
| | - Y Schramm-Urrutia
- Universidad Autónoma de Baja California, Facultad de Ciencias Marinas, Carretera Transpeninsular Ensenada-Tijuana No. 3917, Fraccionamiento Playitas, 22860 Ensenada, Baja California, Mexico
| |
Collapse
|
19
|
Puchades L, Gallego-Rios SE, Di Marzio A, Martínez-López E. Trace elements in blood of Baltic gray seal pups (Halichoerus grypus) from the Gulf of Riga and their relationship with biochemical and clinical parameters. MARINE POLLUTION BULLETIN 2022; 182:113973. [PMID: 35908491 DOI: 10.1016/j.marpolbul.2022.113973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 07/17/2022] [Accepted: 07/19/2022] [Indexed: 06/15/2023]
Abstract
Trace elements are pollutants of both natural and anthropogenic origin which can influence negatively on ecosystem and wildlife health. We evaluated trace element in blood samples of gray seal (Halichoerus grypus) stranded in the Gulf of Riga and their influence on their health status through hematological and biochemical profiles. Zn showed the highest levels followed by Cu > Se > Pb > THg > As. Cr and Cd were not detected. Most trace element levels were generally comparable to those reported in seal species; however, high Pb values were observed in those sample showing detectable concentrations (<0.046-257.6 μg/kg ww). Significant positive correlations were found between trace elements concentrations and various biochemical parameters, including Se-ASAT, Se:Hg-ASAT, Cu-TP, Cu-ALB, CuCa, Zn-ALAT, ZN-LDH, ZnP, Zn-Segment neutrophils, and Pb-CK. Nevertheless, most relationships were not strong enough (p > 0.04) to assume a toxicological implication. Despite its limitations, this information could serve as the baseline for future research.
Collapse
Affiliation(s)
- L Puchades
- Area of Toxicology, Department of Health Sciences, Faculty of Veterinary Medicine, University of Murcia, 30100 Murcia, Spain
| | - S E Gallego-Rios
- Area of Toxicology, Department of Health Sciences, Faculty of Veterinary Medicine, University of Murcia, 30100 Murcia, Spain; Pollution Diagnostics and Control Group (GDCON), School of the Environment, Faculty of Engineering, University Research Campus (SIU), University of Antioquia (U de A), Calle 70 No. 52-21, Medellin, Colombia
| | - A Di Marzio
- Area of Toxicology, Department of Health Sciences, Faculty of Veterinary Medicine, University of Murcia, 30100 Murcia, Spain; Rigas Nacionalais Zoologiskais Darzs (Riga Zoo), Meza prospekts 1, LV-1014 Riga, Latvia
| | - E Martínez-López
- Area of Toxicology, Department of Health Sciences, Faculty of Veterinary Medicine, University of Murcia, 30100 Murcia, Spain; Toxicology and Risk Assessment Group, Biomedical Research Institute of Murcia (IMIB-Arrixaca), University of Murcia, 30100 Murcia, Spain.
| |
Collapse
|
20
|
Murillo-Cisneros DA, McHuron EA, Zenteno-Savín T, Castellini JM, Field CL, O'Hara TM. Fetal mercury concentrations in central California Pacific harbor seals: Associated drivers and outcomes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 820:153246. [PMID: 35065116 DOI: 10.1016/j.scitotenv.2022.153246] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 01/12/2022] [Accepted: 01/14/2022] [Indexed: 06/14/2023]
Abstract
Mercury (Hg) is a well-known toxicant in wildlife and humans. High total Hg concentrations ([THg]) have been reported in central California harbor seals Phoca vitulina richardii. We evaluated the effects of presence/absence of early natal coat (lanugo), year (2012 to 2017), sex, stranding location, and trophic ecology (ẟ13C and ẟ15N values) on hair [THg] along coastal central California. Also examined were [THg] effects on growth rates of pups in rehabilitation and probability of release (e.g., successful rehabilitation). The [THg] ranged from 0.46-81.98 mg kg-1 dw, and ẟ15N and ẟ13C ranged from 13.6-21.5‰, and -17.2 to -13.0‰, respectively. Stranding location, year, and presence of lanugo coat were important factors explaining variation in [THg]. Seals from Sonoma and San Mateo County had higher [THg] than other locations. Seals with full or partial lanugo coat had lower [THg]. Seals from 2016 and 2017 had higher [THg] than those from 2015. Hair [THg] exceeded lower and upper toxicological thresholds (>20 mg kg-1 by year (5.88% to 23.53%); >30 mg kg-1 (0% to 12.31%)) with a pronounced increase from 2015 to 2016. Pups in 2017 had significantly higher odds ratio of [THg] above 20 mg kg-1 than pups of 2015, and pups in 2016 had significantly higher odds ratio than those from 2013 and 2015 (similar when using 30 mg kg-1). Pups in Sonoma County had the highest odds ratio for [THg] in lanugo above 20 mg kg-1. ẟ15N values were higher in 2015-2017, particularly relative to 2014, probably associated with the El Niño event. The [THg] was not a good predictor for probability of release and mass-specific growth rates in captivity. Further investigation of temporal trends of [THg] in harbor seals is warranted given the relatively high percentage of samples exceeding threshold values, particularly in the most recent sampling years.
Collapse
Affiliation(s)
- Daniela A Murillo-Cisneros
- Centro de Investigaciones Biológicas del Noroeste, S.C. Planeación Ambiental y Conservación, Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz, Baja California Sur C.P. 23096, Mexico
| | - Elizabeth A McHuron
- Cooperative Institute for Climate, Ocean, and Ecosystem Studies, University of Washington, 3737 Brooklyn Avenue NE, Seattle, WA 98195-5672, USA
| | - Tania Zenteno-Savín
- Centro de Investigaciones Biológicas del Noroeste, S.C. Planeación Ambiental y Conservación, Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz, Baja California Sur C.P. 23096, Mexico.
| | - J Margaret Castellini
- Department of Veterinary Medicine, University of Alaska Fairbanks, 2141 Koyokuk Dr, Fairbanks, AK 99775-7750, USA
| | - Cara L Field
- The Marine Mammal Center, 2000 Bunker Road, Fort Cronkhite, Sausalito, CA 94965, USA
| | - Todd M O'Hara
- Bilingual Laboratory of Toxicology, Veterinary Integrative Biosciences, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
21
|
MacMillan GA, Amyot M, Daoust PY, Lemire M. Age-specific trace element bioaccumulation in grey seals from the Gulf of St. Lawrence. CHEMOSPHERE 2022; 294:133640. [PMID: 35051521 DOI: 10.1016/j.chemosphere.2022.133640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 01/03/2022] [Accepted: 01/13/2022] [Indexed: 06/14/2023]
Abstract
We measured concentrations of 19 trace elements and mercury speciation in grey seals (Halichoerus grypus) from the Gulf of St. Lawrence (GSL), Canada. With interest growing in commercializing grey seal products for human consumption in this region, our goal was to measure essential and non-essential trace elements in grey seals to evaluate health concerns and nutritional benefits. From 2015 to 2019, 120 grey seals were sampled by hunters and researchers at 4 sites in the GSL. Muscle, liver, heart and kidney samples were analyzed for 10 non-essential elements (Sb, As, Be, B, Cd, Pb, Hg, Ni, Tl, Sn) and 9 essential elements (Co, Cr, Cu, Fe, Mg, Mn, Mo, Se, Zn). Both total mercury (THg) and methylmercury (MeHg) were analyzed for a subset of samples. Results showed a two-step bioaccumulation pattern with lower element concentrations in the muscle (Fe, Mg, Se) and livers (Cd, Cr, Hg, Mn, Mo, Se) of young-of-the-year harvested in the winter (<6 wks old) compared to older animals feeding at sea. We did not observe progressive age-dependent bioaccumulation for older seals (∼5 mos-29 yrs). Sex-specific differences were not very pronounced, but a few elements were 30-70% higher in the muscle (THg, MeHg) and liver (Mn, Zn) of male seals. Comparison to Canadian dietary reference intakes shows that a weekly portion of liver from young-of-the-year (<6 wks old) is a good source of essential elements (Cu, Fe) and that muscle and liver from this age category do not exceed reference values for toxic elements (As, Cd, Pb, MeHg). Discussions with regional public health professionals are on-going to develop dietary recommendations for the consumption of older grey seals.
Collapse
Affiliation(s)
- Gwyneth A MacMillan
- Department of Natural Resource Sciences, McGill University, Sainte-Anne-de-Bellevue, Québec, H9X 3V9, Canada.
| | - Marc Amyot
- Centre d'études nordiques, Département de sciences biologiques, Université de Montréal, Montréal, QC, H3C 3J7, Canada.
| | - Pierre-Yves Daoust
- Canadian Wildlife Health Cooperative, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE, C1A 4P3, Canada.
| | - Mélanie Lemire
- Centre de recherche du CHU de Québec -Université Laval, Département de médecine sociale et préventive, Institut de biologie intégrative et des systèmes (IBIS), Université Laval, Québec, G1V 0A6, QC, Canada.
| |
Collapse
|
22
|
Simokon MV, Trukhin AM. Analysis of essential and non-essential trace elements in the organs of a mother-fetus pair of spotted seals (Phoca largha) from the Sea of Japan. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:60622-60634. [PMID: 34164788 DOI: 10.1007/s11356-021-14971-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 06/14/2021] [Indexed: 06/13/2023]
Abstract
Concentrations of 22 essential and non-essential trace elements (Be, Al, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Mo, Ag, Cd, Sb, Ba, Tl, Pb, Th, U, and Hg) were measured in the organs of a mother-fetus pair (at the last trimester of pregnancy) of spotted seals from the Sea of Japan. The concentrations of eleven elements are reported for the first time. Eight organs of the pair were examined: lungs, heart, liver, kidneys, intestines, spleen, muscles, and bones. All trace elements detected in the organs of the mother were found also in the organs of the fetus at various concentrations. Placenta is not an effective barrier to prevent non-essential elements from getting into the fetus, but can control entry of some of them, e.g., aluminum, cadmium, and mercury. In most organs of the fetus, the concentrations of toxic trace elements (beryllium, antimony, thorium, and uranium) were noticeably higher than in the same organs of the mother, which indicates that during pregnancy female removes excess of non-essential trace elements by transferring them to the fetal body through the placental barrier.
Collapse
Affiliation(s)
- Mikhail V Simokon
- Pacific Branch, Russian Federal Research Institute of Fisheries and Oceanography (VNIRO), per. Shevchenko 4, Vladivostok, Russia, 690091
| | - Alexey M Trukhin
- V.I. Il'ichev Pacific Oceanological Institute, Far Eastern Branch, Russian Academy of Sciences, ul. Baltiyskaya 43, Vladivostok, Russia, 690041.
| |
Collapse
|
23
|
Lian M, Field CL, van Wijngaarden E, Rios C, Castellini JM, Greig DJ, Rea LD, Coleman DJ, Thomson CE, Gulland FMD, O'Hara TM. Assessment of clinical outcomes associated with mercury concentrations in harbor seal pups (Phoca vitulina richardii) in central California. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 758:143686. [PMID: 33279198 DOI: 10.1016/j.scitotenv.2020.143686] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 11/06/2020] [Indexed: 06/12/2023]
Abstract
Monomethyl mercury (MeHg+) from the diet can cause mild to severe neurotoxicosis in fish-eating mammals. Chronic and low-level in utero exposure also can be neurotoxic, as documented in laboratory animal studies and epidemiologic investigations. In free-ranging animals, it is challenging to study low-level exposure related neurotoxicosis, and few studies have investigated the relationship between mercury (Hg) and adverse outcomes in wild populations. Relative to Hg concentrations on admission we evaluated different types of behaviors for 267 Pacific harbor seal (HS; Phoca vitulina richardii) pups at The Marine Mammal Center from 2015 to 2019 during rehabilitation after stranding and maternal separation. Admitted HS pups underwent a clinical exam; including sex and weight determination, and hair (partly lanugo grown in utero) and blood samples were collected for total Hg concentration ([THg]) determination. All pups were monitored weekly (behavior assessments included response to tactile stimulation, movement, swimming, interactions with other seals, hand feeding, and feeding independently), and days in rehabilitation and survival were recorded. There was a significant negative correlation between [THg] and responses to tactile stimulation and movements, measured in both hair and whole blood (p < 0.05). This relationship was found both during the intensive care unit (ICU) stage, and during the pool stage of rehabilitation. Additionally, there was a significant association between greater [THg] and number of days spent in rehabilitation, although there was no relationship between [THg] and survival. There was a significant sex difference, with greater [THg] in female pups, which contrasts with previously published findings in juvenile and adult harbor seals. Our findings support small, but significant associations between gestational THg exposure and clinical effects for tactile sensory response and movement, and longer rehabilitation durations for HS pups, although there was considerable variability among animals.
Collapse
Affiliation(s)
- Marianne Lian
- Department of Veterinary Medicine, University of Alaska Fairbanks, 2141 Koyokuk Dr, Fairbanks, AK 99775-7750, USA; Department of Chemistry and Biochemistry, University of Alaska Fairbanks, 900 Yukon Dr Rm. 194, Fairbanks, AK 99775-6160, USA.
| | - Cara L Field
- The Marine Mammal Center, 2000 Bunker Road, Fort Cronkhite, Sausalito, CA 94965, USA
| | - Edwin van Wijngaarden
- University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Rochester, NY 14642, USA
| | - Carlos Rios
- The Marine Mammal Center, 2000 Bunker Road, Fort Cronkhite, Sausalito, CA 94965, USA
| | - J Margaret Castellini
- Department of Veterinary Medicine, University of Alaska Fairbanks, 2141 Koyokuk Dr, Fairbanks, AK 99775-7750, USA
| | - Denise J Greig
- The Marine Mammal Center, 2000 Bunker Road, Fort Cronkhite, Sausalito, CA 94965, USA
| | - Lorrie D Rea
- Water and Environmental Research Center, Institute of Northern Engineering, University of Alaska Fairbanks, 1764 Tanana Loop, Fairbanks, AK 99775, USA
| | - Denver J Coleman
- The Marine Mammal Center, 2000 Bunker Road, Fort Cronkhite, Sausalito, CA 94965, USA
| | - Christine E Thomson
- Department of Veterinary Medicine, University of Alaska Fairbanks, 2141 Koyokuk Dr, Fairbanks, AK 99775-7750, USA; Animal Referral Hospital Brisbane, Sinnamon Park, Brisbane, Queensland, Australia
| | - Frances M D Gulland
- The Marine Mammal Center, 2000 Bunker Road, Fort Cronkhite, Sausalito, CA 94965, USA
| | - Todd M O'Hara
- Department of Veterinary Medicine, University of Alaska Fairbanks, 2141 Koyokuk Dr, Fairbanks, AK 99775-7750, USA; Veterinary Integrative Biosciences, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
24
|
Reindl AR, Saniewska D, Grajewska A, Falkowska L, Saniewski M. Alimentary exposure and elimination routes of rare earth elements (REE) in marine mammals from the Baltic Sea and Antarctic coast. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 754:141947. [PMID: 32916487 DOI: 10.1016/j.scitotenv.2020.141947] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 08/22/2020] [Accepted: 08/22/2020] [Indexed: 06/11/2023]
Abstract
Marine mammals found at the top of the trophic pyramid are excellent bioindicators of pollutants in the marine environment, the concentrations of which increase along with the trophic level of the organism. As these animals are usually protected species, their contamination has to be assessed non-invasively by analysing excrement and epidermal structures such as fur or claws. The present study involved testing the excrement and fur of the grey seal (Halichoerus grypus) from the Southern Baltic coast and the Southern elephant seal (Mirounga leonine) from Admiralty Bay, along with fish muscle (food) and the lithological background of both areas, for the presence of rare earth elements (REE). The soil on the Baltic coast is characterized by the predomination of light rare earth elements (LREE): yttrium, lanthanum and cerium (∑REE = 7.86 mg·kg-1 dw). In the soil and bedrock of Admiralty Bay all REEs were found except for terbium, thulium and lutetium (∑REE = 96.1 mg·kg-1 dw). The REE levels found in the muscles of Baltic herring (∑REE = 0.057 mg·kg-1 ww) were lower than those in the muscles of marbled rockcod (∑REE = 0.540 mg·kg-1 ww). The situation was analogous in the mammals, with the REE concentrations in grey seal fur (∑REE = 0.489 mg·kg-1 dw) and excrement (∑REE = 0.676 mg·kg-1 dw) being lower than those found in the fur (∑REE = 10.1 mg·kg-1 dw) and excrement (∑REE = 83.6 mg·kg-1 dw) of the elephant seal. The LREE/HREE partition coefficients in the grey seal excrement (3.37) and its fur (4.00), but also in the faeces of the elephant seal (2.63) and its fur (2.65), indicate that in each species the process of elimination from the body occurs in similar proportions.
Collapse
Affiliation(s)
- Andrzej R Reindl
- University of Gdansk, Faculty of Oceanography and Geography, Department of Marine Chemistry and Environmental Protection, Al. Marszałka Piłsudskiego 46, 81-378 Gdynia, Poland
| | - Dominika Saniewska
- University of Gdansk, Faculty of Oceanography and Geography, Department of Marine Chemistry and Environmental Protection, Al. Marszałka Piłsudskiego 46, 81-378 Gdynia, Poland
| | - Agnieszka Grajewska
- Institute of Meteorology and Water Management - National Research Institute, Waszyngtona 42 Str., 81-342 Gdynia, Poland.
| | - Lucyna Falkowska
- University of Gdansk, Faculty of Oceanography and Geography, Department of Marine Chemistry and Environmental Protection, Al. Marszałka Piłsudskiego 46, 81-378 Gdynia, Poland
| | - Michał Saniewski
- Institute of Meteorology and Water Management - National Research Institute, Waszyngtona 42 Str., 81-342 Gdynia, Poland
| |
Collapse
|
25
|
Rea LD, Castellini JM, Avery JP, Fadely BS, Burkanov VN, Rehberg MJ, O'Hara TM. Regional variations and drivers of mercury and selenium concentrations in Steller sea lions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 744:140787. [PMID: 32717470 DOI: 10.1016/j.scitotenv.2020.140787] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 07/01/2020] [Accepted: 07/04/2020] [Indexed: 06/11/2023]
Abstract
Mercury (Hg) can be neurotoxic to mammals and impact reproduction, whereas selenium (Se) is an important antioxidant known to ameliorate some adverse effects of Hg. Total Hg concentrations ([THg]) were measured in lanugo (pelage grown in utero) of 812 Steller sea lion (Eumetopias jubatus) pups across Alaska and Russia to assess fetal exposure during late gestation. The molar ratio of total Se to THg (TSe:THg) was determined in whole blood collected from 291 pups. Stable isotope ratios of carbon and nitrogen were measured in sections of vibrissae (whiskers, n = 498) and in lanugo (n = 480) of pups grown during late gestation to track diet variations among adult females that can drive Hg and Se exposure during this critical fetal development period. Lanugo [THg] ranged from 1.4 to 73.7 μg/g dry weight with the lowest median [THg] in Southeast Alaska. Pups from the Western Aleutian Islands had higher median lanugo [THg] than pups from other metapopulations in Alaska. Over 25% of pups in the Western Aleutian Islands had [THg] above published risk thresholds (20 μg/g) for other mammals. Whole blood molar TSe:THg was significantly lower in the Western Aleutian Islands and in some parts of the Central Aleutian Islands with higher molar ratios found in the Eastern Aleutian Islands and Central Gulf of Alaska. This suggests a limitation on potential protective functions of Se in the western regions with the highest relative [THg]. The Central Aleutian Island pups with [THg] over 20 μg/g had higher δ15N ratios than pups with lower [THg] suggesting dams consuming higher trophic level prey is a key driver for Hg exposure. However, regional differences likely reflect variability in diet of the dam during gestation and in Hg food web dynamics between oceanic regimes east and west of key passes in the Aleutian Islands.
Collapse
Affiliation(s)
- L D Rea
- Institute of Northern Engineering, Water and Environmental Research Center, University of Alaska Fairbanks, Fairbanks, AK 99775, USA; Alaska Department of Fish and Game, Division of Wildlife Conservation, Anchorage, AK 99518, USA.
| | - J M Castellini
- Department of Veterinary Medicine, College of Natural Sciences and Mathematics, University of Alaska Fairbanks, Fairbanks, AK 99775, USA.
| | - J P Avery
- Institute of Northern Engineering, Water and Environmental Research Center, University of Alaska Fairbanks, Fairbanks, AK 99775, USA.
| | - B S Fadely
- Marine Mammal Laboratory, Alaska Fisheries Science Center, National Marine Fisheries Service, NOAA, Seattle, WA 98115, USA.
| | - V N Burkanov
- Marine Mammal Laboratory, Alaska Fisheries Science Center, National Marine Fisheries Service, NOAA, Seattle, WA 98115, USA; Kamchatka Branch of the Pacific Geographical Institute, Far East Branch of Russian Academy of Sciences, 6 Partizanskaya Street, Petropavlovsk-Kamchatsky 683000, Russia.
| | - M J Rehberg
- Alaska Department of Fish and Game, Division of Wildlife Conservation, Anchorage, AK 99518, USA.
| | - T M O'Hara
- Department of Veterinary Medicine, College of Natural Sciences and Mathematics, University of Alaska Fairbanks, Fairbanks, AK 99775, USA; Veterinary Integrative Biosciences, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA.
| |
Collapse
|
26
|
Grajewska A, Falkowska L, Saniewska D, Pawliczka I. Fur and faeces - Routes of mercury elimination in the Baltic grey seal (Halichoerus grypus grypus). THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 717:137050. [PMID: 32062253 DOI: 10.1016/j.scitotenv.2020.137050] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 01/29/2020] [Accepted: 01/30/2020] [Indexed: 06/10/2023]
Abstract
This study focused on evaluating the elimination of Hg by Baltic grey seals (Halichoerus grypus grypus) via faeces and pelage. In addition, we investigated the potential for ecosystem contamination via these routes. Faeces and fur were collected in 2014-2017 from captive adult grey seals and their pups. The concentrations of total mercury (THg) and methylmercury (MeHg) were measured in the samples. The amount of mercury eliminated in a labile form (the sum of the bioavailable Hg(II) and methylmercury) was also determined. An adult seal removed about 46% of mercury supplied with food via the faeces, of which only 17% was MeHg. Considering that mercury is mainly supplied to the body as MeHg, it can be assumed that mercury excreted along with faeces has undergone transformation inside the animal body. Despite the much higher THg and MeHg concentrations measured in fur, the incorporation of mercury into newly formed fur is a less effective method of Hg elimination removing just 4% of mercury entering the body via the alimentary route. The presence of mercury in lanugo is evidence of maternal transfer. First droppings of the pups were characterised by the highest content of MeHg and a low THg concentration. Then, despite the limited supply of mercury with food, and the rapid growth of the pup, the concentration of THg increased, suggesting that mercury started to be transformed into less toxic forms. It was estimated that faeces and fur expelled by seals could deliver about 800 g of mercury to the Baltic Sea. For both faeces and fur, most of the mercury (>95% for excrements and >85% for fur) was expelled in a labile form that can be quickly recycled.
Collapse
Affiliation(s)
- Agnieszka Grajewska
- University of Gdansk, Faculty of Oceanography and Geography, Institute of Oceanography, Department of Marine Chemistry and Environmental Protection, Al. Marszałka Piłsudskiego 46, 81-378 Gdynia, Poland.
| | - Lucyna Falkowska
- University of Gdansk, Faculty of Oceanography and Geography, Institute of Oceanography, Department of Marine Chemistry and Environmental Protection, Al. Marszałka Piłsudskiego 46, 81-378 Gdynia, Poland
| | - Dominika Saniewska
- University of Gdansk, Faculty of Oceanography and Geography, Institute of Oceanography, Department of Marine Chemistry and Environmental Protection, Al. Marszałka Piłsudskiego 46, 81-378 Gdynia, Poland
| | - Iwona Pawliczka
- University of Gdansk, Faculty of Oceanography and Geography, Institute of Oceanography, Professor Krzysztof Skóra Hel Marine Station, ul. Morska 2, 84-150 Hel, Poland
| |
Collapse
|