1
|
Desjardins K, Ponton DE, Bilodeau F, Rosabal M, Amyot M. Determinants of trace element accumulation in soft-shell clams (Mya arenaria) in Eastern Canada and implications for human consumption. JOURNAL OF HAZARDOUS MATERIALS 2025; 493:138385. [PMID: 40311523 DOI: 10.1016/j.jhazmat.2025.138385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Revised: 03/23/2025] [Accepted: 04/21/2025] [Indexed: 05/03/2025]
Abstract
Marine clams are an important country food with high nutritional value while being a route of human exposure to metals. The fresh- and salt-water interface in estuaries may impact metal speciation, leading to changes in bioavailability and bioaccumulation in clams. We evaluated which environmental variables correlate best with bioaccumulation of total mercury (THg), methylmercury (MeHg), and the sum of rare earth elements (ΣREEY) by the soft-shell clam (Mya arenaria) at the mouth of two contrasting rivers. We measured essential and non-essential elements, and nine arsenic (As) species in clams to assess the consumption risks and benefits to consumers. Results showed that clams near the coast of the higher DOC and dammed Romaine River yielded higher THg, MeHg, and ΣREEY concentrations than clams collected at the mouth of the undammed Mingan River. Clams more exposed to saline waters, as inferred from carbon (δ13C) and sulfur (δ34S) isotopic signatures, had lower THg, MeHg, and ΣREEY bioaccumulation. Positive correlations were identified between THg in clams and sediments, as well as ΣREEY concentrations in both matrices, suggesting a transfer to clams from this compartment through filter feeding. The evaluation of the nutritional intake indicated that clams were a good source of iron (Fe) and selenium (Se). More than 40 % of total As were organic forms of arsenobetaine (AsB). Therefore, a monthly portion of 188 g of soft-shell clam for elderly adults and pregnant or childbearing women and a monthly portion of 94 g for children should not lead to intake risks from non-essential elements.
Collapse
Affiliation(s)
- Kimberley Desjardins
- Groupe de recherche interuniversitaire en limnologie (GRIL), Département de sciences biologiques, Complexe des sciences, Université de Montréal, 1375 Avenue Thérèse-Lavoie-Roux, Montréal, Québec H2V 0B3, Canada; Ministère de l'Environnement, de la Lutte contre les changements climatiques, de la Faune et des Parcs, Longueuil, Québec J4K 2T5, Canada
| | - Dominic E Ponton
- Groupe de recherche interuniversitaire en limnologie (GRIL), Département de sciences biologiques, Complexe des sciences, Université de Montréal, 1375 Avenue Thérèse-Lavoie-Roux, Montréal, Québec H2V 0B3, Canada
| | - François Bilodeau
- Direction Environnement, Hydro-Québec, 800 Boul. De Maisonneuve Est, Montréal, Québec H2Z 1A4, Canada
| | - Maikel Rosabal
- Groupe de recherche interuniversitaire en limnologie (GRIL), Département des sciences biologiques, Université du Québec à Montréal, C.P. 8888, Succursale Centre-Ville, Montréal, Québec H3C 3P8, Canada
| | - Marc Amyot
- Groupe de recherche interuniversitaire en limnologie (GRIL), Département de sciences biologiques, Complexe des sciences, Université de Montréal, 1375 Avenue Thérèse-Lavoie-Roux, Montréal, Québec H2V 0B3, Canada.
| |
Collapse
|
2
|
Zhao W, Gan R, Xian B, Wu T, Wu G, Huang S, Wang R, Liu Z, Zhang Q, Bai S, Fu M, Zhang Y. Overview of Methylation and Demethylation Mechanisms and Influencing Factors of Mercury in Water. TOXICS 2024; 12:715. [PMID: 39453135 PMCID: PMC11511217 DOI: 10.3390/toxics12100715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/15/2024] [Accepted: 09/25/2024] [Indexed: 10/26/2024]
Abstract
Mercury, particularly in its methylated form, poses a significant environmental and health risk in aquatic ecosystems. While the toxicity and bioaccumulation of mercury are well documented, there remains a critical gap in our understanding of the mechanisms governing mercury methylation and demethylation in aquatic environments. This review systematically examines the complex interplay of chemical, biological, and physical factors that influence mercury speciation and transformation in natural water systems. We provide a comprehensive analysis of methylation and demethylation processes, specifically focusing on the dominant role of methanogenic bacteria. Our study highlights the crucial function of hgcAB genes in facilitating mercury methylation by anaerobic microorganisms, an area that represents a frontier in current research. By synthesizing the existing knowledge and identifying key research priorities, this review offers novel insights into the intricate dynamics of mercury cycling in aquatic ecosystems. Our findings provide a theoretical framework to inform future studies and guide pollution management strategies for mercury and its compounds in aquatic environments.
Collapse
Affiliation(s)
- Wenyu Zhao
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China; (W.Z.); (B.X.); (T.W.); (Z.L.); (Q.Z.); (S.B.); (M.F.)
- Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin 541004, China
| | - Runjie Gan
- Guangxi Beitou Environmental Protection & Water Group Co., Ltd., Nanning 530025, China
| | - Bensen Xian
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China; (W.Z.); (B.X.); (T.W.); (Z.L.); (Q.Z.); (S.B.); (M.F.)
| | - Tong Wu
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China; (W.Z.); (B.X.); (T.W.); (Z.L.); (Q.Z.); (S.B.); (M.F.)
| | - Guoping Wu
- Ecological Environment Monitoring Station of Shunde, Foshan 528399, China; (G.W.); (S.H.)
| | - Shixin Huang
- Ecological Environment Monitoring Station of Shunde, Foshan 528399, China; (G.W.); (S.H.)
| | - Ronghua Wang
- Hengsheng Water Environment Treatment Co., Ltd., Guilin 541100, China
| | - Zixuan Liu
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China; (W.Z.); (B.X.); (T.W.); (Z.L.); (Q.Z.); (S.B.); (M.F.)
| | - Qin Zhang
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China; (W.Z.); (B.X.); (T.W.); (Z.L.); (Q.Z.); (S.B.); (M.F.)
- Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin 541004, China
| | - Shaoyuan Bai
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China; (W.Z.); (B.X.); (T.W.); (Z.L.); (Q.Z.); (S.B.); (M.F.)
- Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin 541004, China
| | - Mingming Fu
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China; (W.Z.); (B.X.); (T.W.); (Z.L.); (Q.Z.); (S.B.); (M.F.)
- Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin 541004, China
| | - Yanan Zhang
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China; (W.Z.); (B.X.); (T.W.); (Z.L.); (Q.Z.); (S.B.); (M.F.)
- Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin 541004, China
| |
Collapse
|
3
|
Jeong H, Ali W, Zinck P, Souissi S, Lee JS. Toxicity of methylmercury in aquatic organisms and interaction with environmental factors and coexisting pollutants: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 943:173574. [PMID: 38823721 DOI: 10.1016/j.scitotenv.2024.173574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/20/2024] [Accepted: 05/25/2024] [Indexed: 06/03/2024]
Abstract
Mercury is a hazardous heavy metal that is distributed worldwide in aquatic ecosystems. Methylmercury (MeHg) poses significant toxicity risks to aquatic organisms, primarily through bioaccumulation and biomagnification, due to its strong affinity for protein thiol groups, which results in negative effects even at low concentrations. MeHg exposure can cause various physiological changes, oxidative stress, neurotoxicity, metabolic disorders, genetic damage, and immunotoxicity. To assess the risks of MeHg contamination in actual aquatic ecosystems, it is important to understand how MeHg interacts with environmental factors such as temperature, pH, dissolved organic matter, salinity, and other pollutants such as microplastics and organic compounds. Complex environmental conditions can cause potential toxicity, such as synergistic, antagonistic, and unchanged effects, of MeHg in aquatic organisms. This review focuses on demonstrating the toxic effects of single MeHg exposure and the interactive relationships between MeHg and surrounding environmental factors or pollutants on aquatic organisms. Our review also recommends further research on biological and molecular responses in aquatic organisms to better understand the potential toxicity of combinational exposure.
Collapse
Affiliation(s)
- Haksoo Jeong
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Wajid Ali
- Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide, F-59000 Lille, France; Univ. Lille, CNRS, Univ. Littoral Côte d'Opale, IRD, UMR-8187-LOG, Laboratoire d'Océanologie et de Géosciences, Station Marine de Wimereux, F-59000 Lille, France
| | - Philippe Zinck
- Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide, F-59000 Lille, France
| | - Sami Souissi
- Univ. Lille, CNRS, Univ. Littoral Côte d'Opale, IRD, UMR-8187-LOG, Laboratoire d'Océanologie et de Géosciences, Station Marine de Wimereux, F-59000 Lille, France; Center of Excellence for Ocean Engineering, National Taiwan Ocean University, Keelung 20224, Taiwan; Operation Center for Enterprise Academia Networking, National Taiwan Ocean University, Keelung 20224, Taiwan
| | - Jae-Seong Lee
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea.
| |
Collapse
|
4
|
Jeong H, Byeon E, Lee JS, Kim HS, Sayed AEDH, Bo J, Wang M, Wang DZ, Park HG, Lee JS. Single and combined effects of increased temperature and methylmercury on different stages of the marine rotifer Brachionus plicatilis. JOURNAL OF HAZARDOUS MATERIALS 2024; 466:133448. [PMID: 38244454 DOI: 10.1016/j.jhazmat.2024.133448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/24/2023] [Accepted: 01/03/2024] [Indexed: 01/22/2024]
Abstract
Rapid, anthropogenic activity-induced global warming is a severe problem that not only raises water temperatures but also shifts aquatic environments by increasing the bioavailability of heavy metals (HMs), with potentially complicated effects on aquatic organisms, including small aquatic invertebrates. For this paper, we investigated the combined effects of temperature (23 and 28 °C) and methylmercury (MeHg) by measuring physiological changes, bioaccumulation, oxidative stress, antioxidants, and the mitogen-activated protein kinase signaling pathway in the marine rotifer Brachionus plicatilis. High temperature and MeHg adversely affected the survival rate, lifespan, and population of rotifers, and bioaccumulation, oxidative stress, and biochemical reactions depended on the developmental stage, with neonates showing higher susceptibility than adults. These findings demonstrate that increased temperature enhances potentially toxic effects from MeHg, and susceptibility differs with the developmental stage. This study provides a comprehensive understanding of the combined effects of elevated temperature and MeHg on rotifers. ENVIRONMENTAL IMPLICATION: Methylmercury (MeHg) is a widespread and harmful heavy metal that can induce lethal effects on aquatic organisms in even trace amounts. The toxicity of metals can vary depending on various environmental conditions. In particular, rising temperatures are considered a major factor affecting bioavailability and toxicity by changing the sensitivity of organisms. However, there are few studies on the combinational effects of high temperatures and MeHg on aquatic animals, especially invertebrates. Our research would contribute to understanding the actual responses of aquatic organisms to complex aquatic environments.
Collapse
Affiliation(s)
- Haksoo Jeong
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Eunjin Byeon
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Jin-Sol Lee
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, South Korea
| | - Hyung Sik Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, South Korea
| | - Alaa El-Din H Sayed
- Department of Zoology, Faculty of Science, Assiut University, Assiut 71516, Egypt
| | - Jun Bo
- Laboratory of Marine Biology and Ecology, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Minghua Wang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Da-Zhi Wang
- State Key Laboratory of Marine Environmental Science, College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Heum Gi Park
- Department of Marine Ecology and Environment, College of Life Sciences, Gangneung-Wonju National University, Gangneung 25457, South Korea
| | - Jae-Seong Lee
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea.
| |
Collapse
|
5
|
Wei H, Xie D, Wang DZ, Wang M. A Meta-analysis Reveals Global Change Stressors Potentially Aggravate Mercury Toxicity in Marine Biota. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:219-230. [PMID: 38152998 DOI: 10.1021/acs.est.3c07294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
Growing evidence demonstrates that global change can modulate mercury (Hg) toxicity in marine organisms; however, the consensus on such effect is lacking. Here, we conducted a meta-analysis to evaluate the effects of global change stressors on Hg biotoxicity according to the IPCC projections (RCP 8.5) for 2100, including ocean acidification (-0.4 units), warming (+4 °C), and their combination (acidification-warming). The results indicated an overall aggravating effect (ln RRΔ = -0.219) of global change on Hg toxicity in marine organisms, while the effect varied with different stressors; namely, acidification potentially alleviates Hg biotoxicity (ln RRΔ = 0.117) while warming and acidification-warming have an aggravating effect (ln RRΔ = -0.328 and -0.097, respectively). Moreover, warming increases Hg toxicity in different trophic levels, i.e., primary producers (ln RRΔ = -0.198) < herbivores (ln RRΔ = -0.320) < carnivores (ln RRΔ = -0.379), implying increasing trends of Hg biomagnification through the food web. Notably, ocean hypoxia appears to boost Hg biotoxicity, although it was not considered in our meta-analysis because of the small sample size. Given the persistent global change and combined effects of these stressors in marine environments, multigeneration and multistressor research is urgently needed to fully disclose the impacts of global change on Hg pollution and its risk.
Collapse
Affiliation(s)
- Hui Wei
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems/College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Dongmei Xie
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems/College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Da-Zhi Wang
- State Key Laboratory of Marine Environmental Science/College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Minghua Wang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems/College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| |
Collapse
|
6
|
Bradford MA, Mallory ML, O'Driscoll NJ. Ecology and environmental characteristics influence methylmercury bioaccumulation in coastal invertebrates. CHEMOSPHERE 2024; 346:140502. [PMID: 37866498 DOI: 10.1016/j.chemosphere.2023.140502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 10/14/2023] [Accepted: 10/19/2023] [Indexed: 10/24/2023]
Abstract
Quantifying mercury (Hg) concentrations in invertebrates is fundamental to determining risk for bioaccumulation in higher trophic level organisms in coastal food webs. Bioaccumulation is influenced by local mercury concentrations, site geochemistry, individual feeding ecologies, and trophic position. We sampled seven species of invertebrates from five coastal sites in the Minas Basin, Bay of Fundy, and determined body concentrations of methylmercury (MeHg), total mercury (THg), and stable isotopes of nitrogen (δ15N) and carbon (δ13C). To evaluate the effects of environmental chemistry on Hg production and bioaccumulation, bulk sediments from all sites were analysed for THg, %Loss on ignition (LOI) (carbon), and sulfur isotopes (δ34S), and concentrations of MeHg, Total Organic Carbon (TOC), sulfate, and sulfide were measured in porewaters. The mean concentration of MeHg in tissues for all invertebrates sampled was 10.03 ± 7.04 ng g-1). MeHg in porewater (mean = 0.22-1.59 ng L-1) was the strongest predictor of invertebrate MeHg, but sediment δ34S (-0.80-14.1‰) was also a relatively strong predictor. δ34S in tissues (measured in three species; Corophium volutator, Ilyanassa obsoleta, and Littorina littorea) were positively related to MeHg in invertebrates (r = 0.55, 0.22, and 0.71 respectively), and when used in combination with δ15N and δ13C values improved predictions of Hg concentrations in biota. Hg concentrations in the amphipod Corophium volutator (mean MeHg = 10.60 ± 1.90 ng g-1) were particularly well predicted using porewater and sediment chemistry, highlighting this species as a useful bioindicator of Hg contamination in sediments of the Bay of Fundy.
Collapse
Affiliation(s)
- Molly A Bradford
- Earth and Environmental Science Department, Acadia University, Wolfville, Nova Scotia, Canada.
| | - Mark L Mallory
- Biology Department, Acadia University, Wolfville, Nova Scotia, Canada
| | - Nelson J O'Driscoll
- Earth and Environmental Science Department, Acadia University, Wolfville, Nova Scotia, Canada
| |
Collapse
|
7
|
Molina A, Duque G, Cogua P. Effect of environmental variables on mercury accumulation in sediments of an anthropogenically impacted tropical estuary (Buenaventura Bay, Colombian Pacific). ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:1316. [PMID: 37833421 PMCID: PMC10575815 DOI: 10.1007/s10661-023-11721-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 08/15/2023] [Indexed: 10/15/2023]
Abstract
Estuaries are the main entry areas of mercury to the marine environment and are important to understand the effect of this contaminant on marine organisms, since it accumulates in the sediments becoming available to enter the food trophic chain. This study aims to determine the environmental variables that mainly influence the spatiotemporal dynamics of total mercury accumulation in sediments of tropical estuaries. Sediment samples were collected from interior and exterior areas of the estuary during the dry and rainy seasons, representing the spatiotemporal gradients of the estuary. The grain size, organic matter content (OM), and total mercury concentration (THg) of the sediment samples were determined. In addition, salinity, temperature, dissolved oxygen, and pH of the water column associated with each sediment sample were assessed. The variations in environmental conditions, OM and THg in sediment were in accordance with a gradient which goes from conditions influenced by fresh water in the inner estuary to conditions influenced by sea water in the outer part of the estuary. The OM and THg in sediments presented similar variation patterns; they were higher in the rainy season than in the dry season and in the interior area of the estuary than in the exterior area. Despite the complex dynamic observed in the distribution and accumulation processes of mercury in sediments, these processes could be modeled from OM and salinity parameters. Due to the correlations found, in the process of accumulation of mercury in sediments the OM could represents the pathway of transport and accumulation of THg, and salinity could represent the influence of the hydroclimatic variations and environmental gradients of the estuary.
Collapse
Affiliation(s)
- Andrés Molina
- Grupo de investigación en Ecología y Contaminación Acuática, Universidad Nacional de Colombia, Sede Palmira, Palmira, Colombia
| | - Guillermo Duque
- Universidad Nacional de Colombia, Sede Palmira, Facultad de Ingeniería y Administración, Palmira, Colombia.
| | - Pilar Cogua
- Universidad de Santiago de Cali, Facultad de Ciencias Básicas, Cali, Colombia
| |
Collapse
|
8
|
Gu L, Hu B, Fu Y, Zhou W, Li X, Huang K, Zhang Q, Fu J, Zhang H, Zhang A, Fu J, Jiang G. Occurrence and risk assessment of organophosphate esters in global aquatic products. WATER RESEARCH 2023; 240:120083. [PMID: 37224669 DOI: 10.1016/j.watres.2023.120083] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 05/12/2023] [Accepted: 05/13/2023] [Indexed: 05/26/2023]
Abstract
Organophosphate esters (OPEs), as an important class of new pollutants, have been pervasively detected in global aquatic products, arousing widespread public concern due to their potential bioaccumulative behavior and consequent risks. With the continuous improvement of living standards of citizens, there have been constant increment of the proportion of aquatic products in diets of people. The levels of OPEs exposed to residents may also be rising due to the augmented consumption of aquatic products, posing potential hazards on human health, especially for people in coastal areas. The present study integrated the concentrations, profiles, bioaccumulation, and trophic transfer of OPEs in global aquatic products, including Mollusca, Crustacea, and fish, evaluated health risks of OPEs through aquatic products in daily diets by Mont Carol Simulation (MCS), and found Asia has been the most polluted area in terms of the concentration of OPEs in aquatic products, and would have been increasingly polluted. Among all studied OPEs, chlorinated OPEs generally showed accumulation predominance. It is worth noting that some OPEs were found bioaccumulated and/or biomagnified in aquatic ecosystems. Though MCS revealed relative low exposure risks of residents, sensitive and special groups such as children, adolescents, and fishermen may face more serious health risks than the average residents. Finally, knowledge gaps and recommendations for future research are discussed encouraging more long-term and systematic global monitoring, comprehensive studies of novel OPEs and OPEs metabolites, and more toxicological studies to completely evaluate the potential risks of OPEs.
Collapse
Affiliation(s)
- Luyao Gu
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Boyuan Hu
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yilin Fu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049 China
| | - Wei Zhou
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Xiaomin Li
- Institute of Quality Standard and Testing Technology for Agro-Products, The Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
| | - Kai Huang
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Qun Zhang
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jie Fu
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China.
| | - Haiyan Zhang
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Aiqian Zhang
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, Institute of Environment and Health, Jianghan University, Wuhan 430056, China; Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049 China
| | - Jianjie Fu
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, Institute of Environment and Health, Jianghan University, Wuhan 430056, China; Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049 China.
| | - Guibin Jiang
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, Institute of Environment and Health, Jianghan University, Wuhan 430056, China; Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049 China
| |
Collapse
|
9
|
Yan J, Li R, Ali MU, Wang C, Wang B, Jin X, Shao M, Li P, Zhang L, Feng X. Mercury migration to surface water from remediated mine waste and impacts of rainfall in a karst area - Evidence from Hg isotopes. WATER RESEARCH 2023; 230:119592. [PMID: 36638731 DOI: 10.1016/j.watres.2023.119592] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/04/2023] [Accepted: 01/06/2023] [Indexed: 06/17/2023]
Abstract
Mine waste (MW) in historical mercury (Hg) mining areas continuously emits Hg into local environment, including aquatic ecosystems. Tracing Hg migration process from MW and determining its relative contribution to Hg pollution is critical for understanding the environmental impact of MW remediation. In this study, we combined data of Hg concentration, speciation, and isotope to address this issue in the Wanshan Hg mining area in southwest China. We found that rainfall can elevate Hg concentrations in river water and control the partitioning and transport of Hg in karst fissure zones through changing the hydrological conditions. A consistently large offset of δ202Hg (1.24‰) was observed between dissolved Hg (DHg) and particulate Hg (PHg) in surface water during the low-flow period (LFP), which may have been related to the relatively stable hydrologic conditions and unique geological background (karst fissure zones) of the karst region (KR). Results from the ternary Hg isotopic mixing model showed that, despite an order of magnitude reduction in Hg concentration and flux in river water after remediation, the remediated MW is still a significant source of Hg pollution to local aquatic ecosystems, accounting for 49.3 ± 11.9% and 37.8 ± 11.8% of river DHg in high flow period (HFP) and LFP, respectively. This study provides new insights into Hg migration and transportation in aquatic ecosystem and pollution source apportionment in Hg polluted area, which can be used for making polices for future remediation actions.
Collapse
Affiliation(s)
- Junyao Yan
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, China; University of Chinese Academy of Sciences, Beijing, China
| | - Ruolan Li
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, China; University of Chinese Academy of Sciences, Beijing, China
| | - Muhammad Ubaid Ali
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, China
| | - Chuan Wang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, China; University of Chinese Academy of Sciences, Beijing, China
| | - Bo Wang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, China
| | - Xingang Jin
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, China
| | - Mingyu Shao
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, China; University of Chinese Academy of Sciences, Beijing, China
| | - Ping Li
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, China.
| | - Leiming Zhang
- Air Quality Research Division, Science and Technology Branch, Environment and Climate Change Canada, Toronto M3H 5T4, Canada
| | - Xinbin Feng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, China
| |
Collapse
|
10
|
Laske SM, Burke SM, Carey MP, Swanson HK, Zimmerman CE. Investigating effects of climate-induced changes in water temperature and diet on mercury concentrations in an Arctic freshwater forage fish. ENVIRONMENTAL RESEARCH 2023; 218:114851. [PMID: 36414108 DOI: 10.1016/j.envres.2022.114851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/28/2022] [Accepted: 11/16/2022] [Indexed: 06/16/2023]
Abstract
The amount of mercury (Hg) in Arctic lake food webs is, and will continue to be, affected by rapid, ongoing climate change. At warmer temperatures, fish require more energy to sustain growth; changes in their metabolic rates and consuming prey with potentially higher Hg concentrations could result in increased Hg accumulation. To examine the potential implications of climate warming on forage fish Hg accumulation in Arctic lakes, we quantified growth and Hg accumulation in Ninespine Stickleback Pungitius pungitius under different temperature and diet scenarios using bioenergetics models. Four scenarios were considered that examined the role of climate, diet, climate × diet, and climate × diet × elevated prey Hg. As expected, annual fish growth increased with warmer temperatures, but growth rates and Hg accumulation were largely diet dependent. Compared to current growth rates of 0.3 g⋅y-1, fish growth increased at least 200% for fish consuming energy-dense benthic prey and decreased at least 40% for fish consuming pelagic prey. Compared to baseline levels, the Hg burden per kilocalorie of Ninespine Stickleback declined up to 43% with benthic consumption - indicating strong somatic growth dilution - but no more than 4% with pelagic consumption; elevated prey Hg concentrations led to moderate Hg declines in benthic-foraging fish and Hg increases in pelagic-foraging fish. Bioenergetics models demonstrated the complex interaction of water temperature, growth, prey proportions, and prey Hg concentrations that respond to climate change. Further work is needed to resolve mechanisms and rates linking climate change to Hg availability and uptake in Arctic freshwater systems.
Collapse
Affiliation(s)
- Sarah M Laske
- U. S. Geological Survey, Alaska Science Center, Anchorage, AK, USA.
| | - Samantha M Burke
- Department of Biology and Water Institute, University of Waterloo, Waterloo, Ontario, Canada
| | - Michael P Carey
- U. S. Geological Survey, Alaska Science Center, Anchorage, AK, USA
| | - Heidi K Swanson
- Department of Biology and Water Institute, University of Waterloo, Waterloo, Ontario, Canada
| | | |
Collapse
|
11
|
Yang Q, Guo Y, Xiang Y, Chen L, Liu G, Liu Y, Shi J, Hu L, Liang Y, Yin Y, Cai Y, Jiang G. Toward efficient bioremediation of methylmercury in sediment using merB overexpressed Escherichia coli. WATER RESEARCH 2023; 229:119502. [PMID: 36549184 DOI: 10.1016/j.watres.2022.119502] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 11/26/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
Sediment is the primary hotspot for microbial production of toxic and bio-accumulative methylmercury (MeHg). Common remediation strategies such as sediment dredging and capping can be too expensive and cannot degrade MeHg efficiently. Here, we constructed an Escherichia coli strain overexpressing merB gene (DH5α J23106) and assessed the effectiveness of this recombinant strain in degradation of MeHg in culture medium and sediment. DH5α J23106 can efficiently degrade MeHg (with initial concentration from 0.01 to 50 ng/mL) to more than 81.6% in a culture medium under anoxic and oxic conditions. Enriched isotope addition (199HgCl2) revealed that this recombinant strain can degrade 78.6% of newly produced Me199Hg in actual sediment, however the biodegradation decreased to 36.3% for intrinsic MeHg. Degradation of spiked MeHg after aging in anoxic and oxic sediments further demonstrated DH5α J23106 can efficiently degrade newly produced MeHg and the degradation decreased with aging significantly, especially for oxic sediment. Eight sediments were further assessed for the biodegradation of aged MeHg by DH5α J23106 under oxic conditions, with degradation ratios ranging from 9.0% to 66.9%. When combined with (NH4)2S2O3 leaching, the degradation of MeHg increased by 15.8-38.8% in on-site and off-site modes through enhanced MeHg bioavailability in some of these sediments. Thus, this recombinant strain DH5α J23106 can degrade MeHg efficiently and have the potential for remediating bioavailable MeHg in contaminated sediments.
Collapse
Affiliation(s)
- Qingqing Yang
- Laboratory of Environmental Nanotechnology and Health Effect, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China; Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, Institute of Environment and Health, Jianghan University, Wuhan, China; School of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Yingying Guo
- Laboratory of Environmental Nanotechnology and Health Effect, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yuping Xiang
- Laboratory of Environmental Nanotechnology and Health Effect, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Lufeng Chen
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, Institute of Environment and Health, Jianghan University, Wuhan, China; School of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Guangliang Liu
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, United States
| | - Yanwei Liu
- Laboratory of Environmental Nanotechnology and Health Effect, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jianbo Shi
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Ligang Hu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yong Liang
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, Institute of Environment and Health, Jianghan University, Wuhan, China; School of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Yongguang Yin
- Laboratory of Environmental Nanotechnology and Health Effect, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China; Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, Institute of Environment and Health, Jianghan University, Wuhan, China.
| | - Yong Cai
- Laboratory of Environmental Nanotechnology and Health Effect, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, United States
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
12
|
Bradford MA, Mallory ML, O'Driscoll NJ. The Complex Interactions Between Sediment Geochemistry, Methylmercury Production, and Bioaccumulation in Intertidal Estuarine Ecosystems: A Focused Review. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2022; 110:26. [PMID: 36571620 DOI: 10.1007/s00128-022-03653-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 11/20/2022] [Indexed: 06/17/2023]
Abstract
Due to their natural geochemistry, intertidal estuarine ecosystems are vulnerable to bioaccumulation of methylmercury (MeHg), a neurotoxin that readily bioaccumulates in organisms. Determining MeHg concentrations in intertidal invertebrates at the base of the food web is crucial in determining MeHg exposure in higher trophic level organisms like fish and birds. The processes that govern the production of MeHg in coastal ecosystems are influenced by many geochemical factors including sulfur species, organic matter, and salinity. The interactions of these factors with mercury are complex, and a wide variety of results have been reported in the literature. This paper reviews conceptual models to better clarify the various geochemical and physical factors that impact MeHg production and bioavailability in intertidal ecosystems.
Collapse
Affiliation(s)
| | - Mark L Mallory
- Biology Department, Acadia University, Wolfville, NS, Canada
| | - Nelson J O'Driscoll
- Earth and Environmental Science Department, Acadia University, Wolfville, NS, Canada
| |
Collapse
|
13
|
Antony S, Antony S, Rebello S, George S, Biju DT, R R, Madhavan A, Binod P, Pandey A, Sindhu R, Awasthi MK. Bioremediation of Endocrine Disrupting Chemicals- Advancements and Challenges. ENVIRONMENTAL RESEARCH 2022; 213:113509. [PMID: 35660566 DOI: 10.1016/j.envres.2022.113509] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 05/08/2022] [Accepted: 05/18/2022] [Indexed: 06/15/2023]
Abstract
Endocrine Disrupting Chemicals (EDCs), major group of recalcitrant compounds, poses a serious threat to the health and future of millions of human beings, and other flora and fauna for years to come. A close analysis of various xenobiotics undermines the fact that EDC is structurally diverse chemical compounds generated as a part of anthropogenic advancements as well as part of their degradation. Regardless of such structural diversity, EDC is common in their ultimate drastic effect of impeding the proper functioning of the endocrinal system, basic physiologic systems, resulting in deregulated growth, malformations, and cancerous outcomes in animals as well as humans. The current review outlines an overview of various EDCs, their toxic effects on the ecosystem and its inhabitants. Conventional remediation methods such as physico-chemical methods and enzymatic approaches have been put into action as some form of mitigation measures. However, the last decade has seen the hunt for newer technologies and methodologies at an accelerated pace. Genetically engineered microbial degradation, gene editing strategies, metabolic and protein engineering, and in-silico predictive approaches - modern day's additions to our armamentarium in combating the EDCs are addressed. These additions have greater acceptance socially with lesser dissonance owing to reduced toxic by-products, lower health trepidations, better degradation, and ultimately the prevention of bioaccumulation. The positive impact of such new approaches on controlling the menace of EDCs has been outlaid. This review will shed light on sources of EDCs, their impact, significance, and the different remediation and bioremediation approaches, with a special emphasis on the recent trends and perspectives in using sustainable approaches for bioremediation of EDCs. Strict regulations to prevent the release of estrogenic chemicals to the ecosystem, adoption of combinatorial methods to remove EDC and prevalent use of bioremediation techniques should be followed in all future endeavors to combat EDC pollution. Moreover, the proper development, growth and functioning of future living forms relies on their non-exposure to EDCs, thus remediation of such chemicals present even in nano-concentrations should be addressed gravely.
Collapse
Affiliation(s)
- Sherly Antony
- Department of Microbiology, Pushpagiri Institute of Medical Sciences and Research Centre, Thiruvalla, 689 101, Kerala, India
| | - Sham Antony
- Pushpagiri Research Centre, Pushpagiri Institute of Medical Sciences and Research Centre, Thriuvalla, 689 101, Kerala, India
| | - Sharrel Rebello
- School of Food Science & Technology, Mahatma Gandhi University, Kottayam, India
| | - Sandhra George
- Pushpagiri Research Centre, Pushpagiri Institute of Medical Sciences and Research Centre, Thriuvalla, 689 101, Kerala, India
| | - Devika T Biju
- Pushpagiri Research Centre, Pushpagiri Institute of Medical Sciences and Research Centre, Thriuvalla, 689 101, Kerala, India
| | - Reshmy R
- Department of Science and Humanities, Providence College of Engineering, Chengannur, 689 122, Kerala, India
| | - Aravind Madhavan
- Rajiv Gandhi Centre for Biotechnology, Jagathy, Trivandrum, 695 014, India
| | - Parameswaran Binod
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, 695 019, Kerala, India
| | - Ashok Pandey
- Center for Innovation and Translational Research, CSIR-Indian Institute of Toxicology Research, Lucknow, 226 001, India; Centre for Energy and Environmental Sustainability, Lucknow, 226 029, Uttar Pradesh, India
| | - Raveendran Sindhu
- Department of Food Technology, T K M Institute of Technology, Kollam, 691 505, Kerala, India.
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province, 712100, China.
| |
Collapse
|
14
|
He X, Wallace WG, Reinfelder JR. Grass Shrimp ( Palaemonetes pugio) as a Trophic Link for Methylmercury Accumulation in Urban Salt Marshes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:8071-8081. [PMID: 35584355 DOI: 10.1021/acs.est.2c01184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Grass shrimp (Palaemonetes pugio) represent a potential link in the transfer of methylmercury (MeHg) from salt marsh sediments to transient young-of-the-year (YOY) fish. Across six salt marshes subject to varying degrees of Hg contamination, MeHg concentration in grass shrimp was significantly correlated with MeHg in sediment (p < 0.05, R2 = 0.81). Bioenergetic models show that grass shrimp alone account for 12-90% of MeHg observed in YOY striped bass and 6-22% of MeHg in YOY summer flounder. Direct accumulation of MeHg from grass shrimp to YOY fish increased with MeHg levels in grass shrimp and sediment. However, in the most contaminated salt marshes with the highest levels of MeHg in grass shrimp and sediment, indirect accumulation of MeHg from grass shrimp by YOY summer flounder, whose diet is dominated by benthic forage fish (mummichog), is predicted to plateau because higher concentrations of MeHg in grass shrimp are offset by a lower proportion of grass shrimp in the mummichog diet. Our results demonstrate that grass shrimp are an important trophic link in the bioaccumulation of MeHg in salt marsh food webs and that MeHg accumulation in YOY fish varies with both the concentration of MeHg in salt marsh sediments and benthic food web structure.
Collapse
Affiliation(s)
- Xiaoshuai He
- Department of Environmental Sciences, Rutgers University, New Brunswick, New Jersey 08901, United States
| | - William G Wallace
- Department of Biology, College of Staten Island, City University of New York, Staten Island, New York 10314, United States
| | - John R Reinfelder
- Department of Environmental Sciences, Rutgers University, New Brunswick, New Jersey 08901, United States
| |
Collapse
|
15
|
Wu Z, Li Z, Shao B, Zhang Y, He W, Lu Y, Gusvitskii K, Zhao Y, Liu Y, Wang X, Tong Y. Impact of dissolved organic matter and environmental factors on methylmercury concentrations across aquatic ecosystems inferred from a global dataset. CHEMOSPHERE 2022; 294:133713. [PMID: 35074323 DOI: 10.1016/j.chemosphere.2022.133713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 06/14/2023]
Abstract
Mercury (Hg) input into ecosystems is estimated to have increased by twofold to fivefold since the industrial revolution. In aquatic ecosystems, methylmercury (MeHg) receives the most attentions of all the Hg species due to its neurotoxicity and strong bioaccumulation capacity in food chain. Dissolved organic matter (DOM) is crucial in impacting aquatic Hg transformation. However, only few spatially constrained studies have attempted to quantify the relative importance of DOM and other factors (e.g., Hg availability, temperature, pH, and land-use type) on MeHg concentration. In this study, we collected data of 585 water samples at 373 sites globally, including lakes, rivers, estuaries, and wetlands, and characterized the global pattern of MeHg distribution and environmental drivers of aquatic MeHg concentration. Our results showed that MeHg concentrations ranged from detection limits to 11 (geometric mean 0.11 and average 0.29) ng/L, and the highest MeHg concentration and Hg methylation potential were observed in wetlands. A positive relationship was observed between MeHg fraction in the total mercury (THg) and DOM for all the aquatic ecosystems. Using the structural equation modeling, we found that Hg availability was a dominant factor in impacting water MeHg concentration followed by DOM. According to 129 samples of specific DOM source information, we found that the percentage of THg as MeHg (%MeHg) in water dominated by the autochthonous DOM was higher than that dominated by the allochthonous DOM. Our results could advance understanding of aquatic Hg cycling and their environmental drivers, which are fundamental for predicting and mitigating MeHg productions and its potential health risks for humans.
Collapse
Affiliation(s)
- Zhengyu Wu
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Zhike Li
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Bo Shao
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Yiyan Zhang
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Wei He
- School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing, 100083, China
| | - Yiren Lu
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Kair Gusvitskii
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Yingxin Zhao
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Yurong Liu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xuejun Wang
- College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Yindong Tong
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China.
| |
Collapse
|
16
|
Elezz AA, Castillo A, Hassan HM, Alsaadi HA, Vethamony P. Distribution and environmental geochemical indices of mercury in tar contaminated beaches along the coast of Qatar. MARINE POLLUTION BULLETIN 2022; 175:113349. [PMID: 35092929 DOI: 10.1016/j.marpolbul.2022.113349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 01/10/2022] [Accepted: 01/12/2022] [Indexed: 06/14/2023]
Abstract
The current study aimed to gauge total mercury (THg) concentration and the environmental geochemical indices in tarmat contaminated sediments and test their presence in targeted coastal species. Layers of hard asphalt-like tarmats and sediment samples were collected from 34 sites along the coast of Qatar. The mean concentration of THg in tarmat-sediment mixture is 89 ± 20 ng·g-1. THg concentration varies significantly between the northern and eastern coasts. Geographically, sampling area were divided into four zones according to the relative closeness with low to serious potential ecological risk index (Er), moderate pollution load index (PLI), moderate Geoaccumulation index (Igeo), and no toxic risk (TRI) trending as Northern (Zones 4, 3) > North-Eastern (Zone 1) > Western (Zone 2) coasts. Three biota classes (Gastropoda, Bivalvia, and Crustacea) were sampled on the tarmat which the hermit crab (Clibanarius signatus) from Ras Rakan island obtained the highest THg (977 ng·g-1) and BSAF (29.70).
Collapse
Affiliation(s)
- Ahmed Abou Elezz
- Environmental Science Center, Qatar University, Doha, P.O. Box 2713, State of Qatar.
| | - Azenith Castillo
- Environmental Science Center, Qatar University, Doha, P.O. Box 2713, State of Qatar.
| | | | | | - Ponnumony Vethamony
- Environmental Science Center, Qatar University, Doha, P.O. Box 2713, State of Qatar
| |
Collapse
|
17
|
Wu P, Kainz MJ, Valdés F, Zheng S, Winter K, Wang R, Branfireun B, Chen CY, Bishop K. Elevated temperature and browning increase dietary methylmercury, but decrease essential fatty acids at the base of lake food webs. Sci Rep 2021; 11:16859. [PMID: 34413329 PMCID: PMC8376977 DOI: 10.1038/s41598-021-95742-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 07/05/2021] [Indexed: 12/31/2022] Open
Abstract
Climate change scenarios predict increases in temperature and organic matter supply from land to water, which affect trophic transfer of nutrients and contaminants in aquatic food webs. How essential nutrients, such as polyunsaturated fatty acids (PUFA), and potentially toxic contaminants, such as methylmercury (MeHg), at the base of aquatic food webs will be affected under climate change scenarios, remains unclear. The objective of this outdoor mesocosm study was to examine how increased water temperature and terrestrially-derived dissolved organic matter supply (tDOM; i.e., lake browning), and the interaction of both, will influence MeHg and PUFA in organisms at the base of food webs (i.e. seston; the most edible plankton size for zooplankton) in subalpine lake ecosystems. The interaction of higher temperature and tDOM increased the burden of MeHg in seston (< 40 μm) and larger sized plankton (microplankton; 40–200 μm), while the MeHg content per unit biomass remained stable. However, PUFA decreased in seston, but increased in microplankton, consisting mainly of filamentous algae, which are less readily bioavailable to zooplankton. We revealed elevated dietary exposure to MeHg, yet decreased supply of dietary PUFA to aquatic consumers with increasing temperature and tDOM supply. This experimental study provides evidence that the overall food quality at the base of aquatic food webs deteriorates during ongoing climate change scenarios by increasing the supply of toxic MeHg and lowering the dietary access to essential nutrients of consumers at higher trophic levels.
Collapse
Affiliation(s)
- Pianpian Wu
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Uppsala, Sweden. .,Department of Biological Sciences, Dartmouth College, Hanover, USA.
| | - Martin J Kainz
- WasserCluster Lunz- Biologische Station, Lunz Am See, Austria.,Department of Biomedical Research, Danube University Krems, Krems, Austria
| | | | - Siwen Zheng
- College of Environmental Science and Engineering, Tongji University, Shanghai, China
| | | | - Rui Wang
- College of Environmental Science and Engineering, Tongji University, Shanghai, China
| | | | - Celia Y Chen
- Department of Biological Sciences, Dartmouth College, Hanover, USA
| | - Kevin Bishop
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
18
|
Chen CY, Buckman KL, Shaw A, Curtis A, Taylor M, Montesdeoca M, Driscoll C. The influence of nutrient loading on methylmercury availability in Long Island estuaries. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 268:115510. [PMID: 33221612 PMCID: PMC8410480 DOI: 10.1016/j.envpol.2020.115510] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 08/18/2020] [Accepted: 08/23/2020] [Indexed: 05/05/2023]
Abstract
Estuaries provide critical habitat for food webs supporting fish and shellfish consumed by humans, but estuarine ecosystem health has been threatened by increases in nitrogen loading as well as inputs of the neurotoxin, mercury (Hg), which biomagnifies in food webs and poses risk to humans and wildlife. In this study, the effects of nutrient loading on the fate of Hg in shallow coastal estuaries were examined to evaluate if their interaction enhances or reduces Hg bioavailability in sediments, the water column, and concentrations in lower trophic level fish (Fundulus heteroclitus and Menidia menidia). Multiple sites were sampled within two human impacted coastal lagoons, Great South Bay (GSB) and Jamaica Bay (JB), on the southern coast of Long Island, NY, United States of America (U.S.A.). Carbon (C), nitrogen (N), sulfur (S), Hg, and methylmercury (MeHg) were measured in surface sediments and the water column, and total Hg (THg) was measured in two species of forage fish. Minimal differences were found in dissolved and particulate Hg, dissolved organic carbon (DOC), and salinity between the two bays. Across lagoons, concentrations of chlorophyll-a were correlated with total suspended solids (TSS), and water column THg and MeHg was largely associated with the particulate fraction. Methylmercury concentrations in particulates decreased with increasing TSS and chlorophyll-a, evidence of biomass dilution of MeHg with increasing productivity at the base of the food chain. Water column Hg was associated with THg concentrations in Atlantic silversides, while mummichog THg concentrations were related to sediment concentrations, reflecting their different feeding strategies. Finally, higher nutrient loading (lower C:N in sediments) while related to lower particulate concentrations coincided with higher bioaccumulation factors (BAF) for Hg in both fish species. Thus, in shallow coastal lagoons, increased nutrient loading resulted in decreased Hg concentrations at the base of the food web but resulted in greater bioaccumulation of Hg to fish relative to its availability in algal food.
Collapse
Affiliation(s)
- Celia Y Chen
- Department of Biological Sciences, Dartmouth College, 78 College Street, Hanover, NH, 03755, USA.
| | - Kate L Buckman
- Department of Biological Sciences, Dartmouth College, 78 College Street, Hanover, NH, 03755, USA
| | - Amy Shaw
- Department of Civil and Environmental Engineering, Syracuse University, 151 Link Hall, Syracuse, NY, 13244, USA
| | - Amanda Curtis
- Department of Biological Sciences, Dartmouth College, 78 College Street, Hanover, NH, 03755, USA
| | - Mariah Taylor
- Department of Civil and Environmental Engineering, Syracuse University, 151 Link Hall, Syracuse, NY, 13244, USA
| | - Mario Montesdeoca
- Department of Civil and Environmental Engineering, Syracuse University, 151 Link Hall, Syracuse, NY, 13244, USA
| | - Charles Driscoll
- Department of Civil and Environmental Engineering, Syracuse University, 151 Link Hall, Syracuse, NY, 13244, USA
| |
Collapse
|
19
|
Eckley CS, Gilmour CC, Janssen S, Luxton TP, Randall PM, Whalin L, Austin C. The assessment and remediation of mercury contaminated sites: A review of current approaches. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 707:136031. [PMID: 31869604 PMCID: PMC6980986 DOI: 10.1016/j.scitotenv.2019.136031] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 12/07/2019] [Accepted: 12/07/2019] [Indexed: 04/13/2023]
Abstract
Remediation of mercury (Hg) contaminated sites has long relied on traditional approaches, such as removal and containment/capping. Here we review contemporary practices in the assessment and remediation of industrial-scale Hg contaminated sites and discuss recent advances. Significant improvements have been made in site assessment, including the use of XRF to rapidly identify the spatial extent of contamination, Hg stable isotope fractionation to identify sources and transformation processes, and solid-phase characterization (XAFS) to evaluate Hg forms. The understanding of Hg bioavailability for methylation has been improved by methods such as sequential chemical extractions and porewater measurements, including the use of diffuse gradient in thin-film (DGT) samplers. These approaches have shown varying success in identifying bioavailable Hg fractions and further study and field applications are needed. The downstream accumulation of methylmercury (MeHg) in biota is a concern at many contaminated sites. Identifying the variables limiting/controlling MeHg production-such as bioavailable inorganic Hg, organic carbon, and/or terminal electron acceptors (e.g. sulfate, iron) is critical. Mercury can be released from contaminated sites to the air and water, both of which are influenced by meteorological and hydrological conditions. Mercury mobilized from contaminated sites is predominantly bound to particles, highly correlated with total sediment solids (TSS), and elevated during stormflow. Remediation techniques to address Hg contamination can include the removal or containment of Hg contaminated materials, the application of amendments to reduce mobility and bioavailability, landscape/waterbody manipulations to reduce MeHg production, and food web manipulations through stocking or extirpation to reduce MeHg accumulated in desired species. These approaches often rely on knowledge of the Hg forms/speciation at the site, and utilize physical, chemical, thermal and biological methods to achieve remediation goals. Overall, the complexity of Hg cycling allows many different opportunities to reduce/mitigate impacts, which creates flexibility in determining suitable and logistically feasible remedies.
Collapse
Affiliation(s)
- Chris S Eckley
- U.S. Environmental Protection Agency, Region-10, 1200 6th Ave, Seattle, WA 98101, USA.
| | - Cynthia C Gilmour
- Smithsonian Environmental Research Center, 647 Contees Wharf Rd., Edgewater, MD 21037-0028, USA.
| | - Sarah Janssen
- USGS Upper Midwest Water Science Center, 8505 Research Way, Middleton, WI 53562, USA.
| | - Todd P Luxton
- US Environmental Protection Agency, Office of Research and Development, National Risk Management Research Laboratory, 26 West Martin Luther King Drive, Cincinnati, OH 45268, USA.
| | - Paul M Randall
- US Environmental Protection Agency, Office of Research and Development, Cincinnati, OH, USA.
| | - Lindsay Whalin
- San Francisco Bay Water Board, 1515 Clay St., Ste. 1400, Oakland, CA 94612, USA.
| | - Carrie Austin
- San Francisco Bay Water Board, 1515 Clay St., Ste. 1400, Oakland, CA 94612, USA.
| |
Collapse
|