1
|
Zhang X, Rui J, Yang S, Fu R, Qiu Y. Enhanced immobilization of Cd(II) by successive isomorphic substitution with Ca(II) and Mg(II) from ternary layered double hydroxides. JOURNAL OF HAZARDOUS MATERIALS 2025; 490:137771. [PMID: 40037195 DOI: 10.1016/j.jhazmat.2025.137771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 02/16/2025] [Accepted: 02/25/2025] [Indexed: 03/06/2025]
Abstract
The challenge with calcium-containing layered double hydroxides (LDHs) for stabilizing Cd(II) lies in the poor release of Ca(II) into solution, which is crucial for isomorphic substitution with Cd(II). To overcome this, we developed a ternary CaMgAl-LDH (OLDH) that enhances cation release and creates more vacant sites for Cd(II). Our findings reveal that OLDH has a significantly higher Cd(II) immobilizing capacity of 5.38 mmol/g compared to CaAl-LDH (4.54 mmol/g) and MgAl-LDH (0.78 mmol/g) at an initial pH of 5.0. This is attributed to its enhanced isomorphic substitution efficiency of 84.6 % and surface complexation of 15.4 %. The solubility product constant (Ksp) of the resulting Cd-containing LDH was 25 orders of magnitude smaller than that of OLDH, indicating a more stable crystalline product due to the presence of Ca(II). Additionally, 100 % of Ca(II) and 35 % of Mg(II) in OLDH were sequentially released to engage in stepwise isomorphic substitution. The inclusion of Mg(II) in OLDH tends to expose under-coordinated divalent metal centers, which was confirmed by experimental observations and density functional theory (DFT) calculations. This research provides a deeper understanding of the mechanism for Cd(II) immobilization by ternary LDHs and offers practical guidance for the preparation of immobilizers with respect to efficient isomorphic substitution.
Collapse
Affiliation(s)
- Xiaoxian Zhang
- Department of Environmental Science, College of Environmental Science and Engineering, Tongji University, State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China; The Testing and Technology Center for Industrial Products, Shenzhen Customs, Shenzhen 518067, China
| | - Junnan Rui
- Department of Environmental Science, College of Environmental Science and Engineering, Tongji University, State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Shuyi Yang
- Department of Environmental Science, College of Environmental Science and Engineering, Tongji University, State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Rongbing Fu
- Department of Environmental Science, College of Environmental Science and Engineering, Tongji University, State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Yuping Qiu
- Department of Environmental Science, College of Environmental Science and Engineering, Tongji University, State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
2
|
Zhang Z, Tang L, Luo J, Tan J, Jiang X. Comparative study of Mg/Al-LDH and Mg/Fe-LDH on adsorption and loss control of 2,4-dichlorophenoxyacetic acid. ADVANCED BIOTECHNOLOGY 2025; 3:4. [PMID: 39883343 DOI: 10.1007/s44307-024-00055-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/25/2024] [Accepted: 12/15/2024] [Indexed: 01/31/2025]
Abstract
Low efficiency and high surface runoff of 2,4-dichlorophenoxyacetic acid (2,4-D) from agricultural field threaten crop yield severely. Layered double hydroxides (LDH) have shown promising adsorption properties for 2,4-D. However, the comparison of two environmentally friendly LDHs (i.e. Mg/Al-LDH vs Mg/Fe-LDH) on adsorption of 2,4-D and corresponding intrinsic mechanisms are still unclear, and the studies on the leaching control of 2,4-D by LDHs in soil environment are particularly limited. In this study, Mg/Al-LDH and Mg/Fe-LDH were selected to conduct their adsorption kinetics experiment for 2,4-D combined with the characterization technology. The results showed that the adsorption capacity of Mg/Al-LDH and Mg/Fe-LDH for 2,4-D was up to 242 mg kg-1 and 64 mg kg-1, respectively, which were negatively correlated with pH. Adsorption mechanisms of both Mg/Al-LDH and Mg/Fe-LDH for 2,4-D are dominated by chemical adsorption, including electrostatic attraction and inner sphere complexation, but no interlayer adsorption mechanism. Mg/Al-LDH contains smaller metal ion radius, which provides greater surface charge density, resulting in greater electrostatic attraction and inner sphere complexation to 2,4-D compared to Mg/Fe-LDH. The greater adsorption capacity of Mg/Al-LDH for 2,4-D was driven by the higher adsorption energy (Eads) and lower electron density, as corroborated by density functional theory (DFT) calculation. The soil column experiment further verified that Mg/Al-LDH could control the loss of 2,4-D more effectively, and the leaching amount could be significantly reduced by 61.7%, while the effect of Mg/Fe-LDH was only 24.2%. This study provides theoretical guidance for screening more potential LDH types to solve the leaching loss of 2,4-D from soil and improve its effectiveness in agricultural production.
Collapse
Affiliation(s)
- Zeyuan Zhang
- School of Agriculture and Biotechnology, Sun Yat-Sen University, Shenzhen, Guangdong, 518107, People's Republic of China
| | - Liangjie Tang
- School of Agriculture and Biotechnology, Sun Yat-Sen University, Shenzhen, Guangdong, 518107, People's Republic of China
| | - Jing Luo
- School of Agriculture and Biotechnology, Sun Yat-Sen University, Shenzhen, Guangdong, 518107, People's Republic of China
| | - Jinfang Tan
- School of Agriculture and Biotechnology, Sun Yat-Sen University, Shenzhen, Guangdong, 518107, People's Republic of China
| | - Xiaoqian Jiang
- School of Agriculture and Biotechnology, Sun Yat-Sen University, Shenzhen, Guangdong, 518107, People's Republic of China.
| |
Collapse
|
3
|
Yang X, Zhou Y, Hu J, Zheng Q, Zhao Y, Lv G, Liao L. Clay minerals and clay-based materials for heavy metals pollution control. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176193. [PMID: 39278488 DOI: 10.1016/j.scitotenv.2024.176193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/09/2024] [Accepted: 09/09/2024] [Indexed: 09/18/2024]
Abstract
Heavy metal contamination is a huge hazard to the environment and human health, and research into removing heavy metals from their primary sources (industrial and agricultural wastes) has increased significantly. Adsorption has received interest due to its distinct benefits over other treatment approaches. The distinctive qualities of clay minerals, such as their high specific surface area, strong cation exchange capacity, and varied structures, make them particularly ideal for use in the manufacture of adsorbents. The customizable structure and performance of clay minerals allow for unprecedented diversity in adsorbent creation, opening up new possibilities for the development of high-efficiency and functional adsorption technologies. In this review, various approaches for developing optimal adsorbents from raw materials are presented. Then, the correlation between functionalization and performance is investigated, focusing on the effects of structural features and surface properties on adsorption performance. The research progress on the synthesis of adsorbents using clay minerals and other functional materials is systematically reported. Finally, the challenges and opportunities in designing and utilizing innovative clay mineral adsorbents are discussed.
Collapse
Affiliation(s)
- Xiaotong Yang
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China
| | - Yi Zhou
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China.
| | - Jingjing Hu
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China
| | - Qinwen Zheng
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China
| | - Yunpu Zhao
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China
| | - Guocheng Lv
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China
| | - Libing Liao
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China
| |
Collapse
|
4
|
Liu C, Liu Y, Bai G, Li Q, Zhou Q, Liu L, Kong L, Xia S, Wu Z, Quintana M, Li T, Zhang Y. Silicate-based mineral materials promote submerged plant growth: Insights from plant physiology and microbiomes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 952:175992. [PMID: 39241876 DOI: 10.1016/j.scitotenv.2024.175992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/17/2024] [Accepted: 08/31/2024] [Indexed: 09/09/2024]
Abstract
Restoring submerged plants naturally has been a significant challenge in water ecology restoration programs. Some silicate-based mineral materials have shown promise in improving the substrate properties for plant growth. While it is well-established that silicate mineral materials enhance submerged plant growth by improving salt release and reducing salt stress, the influence of rhizosphere microorganisms on phytohormone synthesis and key enzyme activities has been underestimated. This study focused on two typical silicate mineral materials, bentonite and maifanite, to investigate their effects on Myriophyllum oguraense from both plant physiology and microbiome perspectives. The results demonstrated that both bentonite and maifanite regulated the synthesis of phytohormones such as gibberellin (GA) and methyl salicylate (MESA), leading to inhibition of cellular senescence and promotion of cell division. Moreover, these silicate mineral materials enhanced the activity of antioxidant enzymes, thereby reducing intracellular reactive oxygen species levels. They also optimized the structure of rhizosphere microbial communities, increasing the proportion of functional microorganisms like Nitrospirota and Sva0485, which indirectly influenced plant metabolism. Analysis of sediment physicochemical properties revealed increased rare earth elements, macronutrients, and oxygen content in pore water in the presence of silicate materials, creating favorable conditions for root growth. Overall, these findings shed light on the multifaceted mechanisms by which natural silicate mineral materials promote the growth of aquatic plants, offering a promising solution for restoring aquatic vegetation in eutrophic lake sediments.
Collapse
Affiliation(s)
- Changzi Liu
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (CAS), Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yunli Liu
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (CAS), Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guoliang Bai
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (CAS), Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Qi Li
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (CAS), Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Qiaohong Zhou
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (CAS), Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Lei Liu
- State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430071, China
| | - Lingwei Kong
- Key Laboratory of Coastal Environment and Resources Research of Zhejiang Province, School of Engineering, Westlake University, Hangzhou 310024, China
| | - Shibin Xia
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Zhenbin Wu
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (CAS), Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Mildred Quintana
- Facultad de Ciencias, Universidad Autonoma de San Luis Potosi, San Luis Potosi 78210, Mexico
| | - Tao Li
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (CAS), Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yi Zhang
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (CAS), Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
5
|
Qi R, Qian C, Li Y, Wang Y. Biofilm formation on MgFe-LDH@quartz sand as novel wetland substrate under varied C/N ratios for BDE-47 removal. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 361:124779. [PMID: 39168436 DOI: 10.1016/j.envpol.2024.124779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/09/2024] [Accepted: 08/19/2024] [Indexed: 08/23/2024]
Abstract
Layered double hydroxide (LDH)-coated substrates could enhance the removal of various wastewater-born pollutants. However, research on biofilms attached to LDH-coatings and their synergistic purification effects on strongly hydrophobic persistent organic pollutants (POPs) remains limited. This study aims to investigate biofilm formation on MgFe-LDH@quartz sand and its effectiveness in removing tetrabromodiphenyl ether (BDE-47), an emerging halogenated POP in municipal wastewater. Under different C/N ratios (3, 5, and 10), BDE-47 removal rates ranged from 28.0% to 41.6% after 72 h. The optimal performance was achieved with LDH coating at C/N = 5, when substrate biofilm reached its highest extracelluar polymer substances (EPS) content, dehydrogenase activity and relative hydrophobicity. Moreover, distinct distribution patterns of EPS components' fluorescence peaks were observed in the LDH-coating treatment using three dimensional excitation-emission matrix (3D-EEM). While substrate adsorption was the primary mechanism for BDE-47 removal, accounting for 59.6%-83.4% of the total, biofilm adsorption and degradation contributed a relatively lower amount, ranging from 11.5% to 21.4%, and were more dependent on the C/N ratio. Notably, the maximum carrying capacity of protein predicted by the logistic growth model exhibited a strong positive correlation with the total BDE-47 removal rate (R2 = 0.82, p < 0.05), highlighting the importance of biofilm extracelluar proteins.
Collapse
Affiliation(s)
- Rao Qi
- School of Environmental Studies, China University of Geosciences, No. 388 Lumo Road, Hongshan District, Wuhan, 430074, PR China
| | - Cheng Qian
- School of Environmental Studies, China University of Geosciences, No. 388 Lumo Road, Hongshan District, Wuhan, 430074, PR China
| | - Yi Li
- School of Environmental Studies, China University of Geosciences, No. 388 Lumo Road, Hongshan District, Wuhan, 430074, PR China
| | - Yafen Wang
- School of Environmental Studies, China University of Geosciences, No. 388 Lumo Road, Hongshan District, Wuhan, 430074, PR China; Hubei Provincial Engineering Research Center of Systematic Water Pollution Control, China University of Geosciences, Wuhan, 430074, PR China.
| |
Collapse
|
6
|
Wu X, Li R, Lin J. Contrasting effects of MgAl- and MgFe-based layered double hydroxides on phosphorus mobilization and microbial communities in sediment. CHEMOSPHERE 2024; 346:140643. [PMID: 37939924 DOI: 10.1016/j.chemosphere.2023.140643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 09/08/2023] [Accepted: 11/06/2023] [Indexed: 11/10/2023]
Abstract
The effects of two types of layered double hydroxides (LDH) in-situ treatment on sediment phosphorus (P) mobilization and microbial community's structure were studied comparatively. The results presented that magnesium/aluminum-based (MA) and magnesium/iron (MF)-based LDH displayed great phosphate uptake ability in aqueous solution in a broad pH range of 3-8. The maximum phosphate sorption capacity of MA was 64.89 mg/g, around four times greater than that of MF (14.32 mg/g). Most of phosphate bound by MA and MF is hard to re-liberate under reduction and ordinary pH (5-9) conditions. In the in-situ remediation, the MA and MF capping/amendment both prevented P migration from the sediment to the overlying water (OL-water) under long-term anaerobic conditions, and MA had a better interception efficiency compared to MF in the same application mode. MA amendment significantly reduced mobile P (Mob-P) content in sediment and could remain its stable Mob-P inactivation capacity over a wide pH range. On the contrary, MF amendment increased Mob-P content in sediment and exhibited a variable ability to inactivate Mob-P under elevated pH conditions. MF can decrease Mob-P content at pH of 7 and 11 but increase Mob-P content at pH of 8-10. Under resuspension conditions, MA and MF capping groups still maintained low P levels in OL-water, while MA capping simultaneously showed a certain degree of resistance to sediment resuspension, but it had a weaker stabilizing effect for sediment than MF. Microbial community analysis manifested neither MA nor MF addition observably altered the sediment microbial diversity, but impacted the functional microorganisms' abundance and reshaped the microbial community's structure, intervening the sediment-P stabilization. Viewed from environmental friendliness, control efficiency, stability of P fixation capacity, and application convenience, MA capping wrapped by fabric is more suitable for addressing internal P loading in eutrophic lakes and holds great potential application.
Collapse
Affiliation(s)
- Xiaolong Wu
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, 230009, PR China
| | - Ruzhong Li
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, 230009, PR China.
| | - Jianwei Lin
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, 201306, PR China
| |
Collapse
|
7
|
Yao YZ, Shi YJ, Hu KH. Preparation of Molybdenum Disulfide with Different Nanostructures and Its Adsorption Performance for Copper (Ⅱ) Ion in Water. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1194. [PMID: 37049287 PMCID: PMC10096653 DOI: 10.3390/nano13071194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/24/2023] [Accepted: 03/24/2023] [Indexed: 06/19/2023]
Abstract
The environmental problems in the world are attracting increasing amounts of attention, and heavy metal pollution in the water has become one of the focuses of the ecological environment. Molybdenum disulfide (MoS2) has excellent adsorption performance because of its extremely high specific surface area and unique active site structure, which has attracted an increasing amount of attention in the field of heavy metal disposal in various types of water. In this paper, two sorts of MoS2 nanoparticles, spherical and lamellar, were synthesized by different chemical methods. Their morphology and structure were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and a Raman spectrometer. The adsorption properties of two sorts of MoS2 nanoparticles for copper (Ⅱ) ions in water were investigated by changing the pH value, adsorption time, initial concentration of solution, adsorption temperature, etc. Finally, the adsorption mechanism was analyzed by kinetic, isothermal, and thermodynamic models. The results show that two microstructures of MoS2 nanoparticles can be used as efficient adsorption materials for removing heavy metal ions from water, although there are differences in adsorption capacity between them, which expands the theoretical basis of heavy metal adsorption in a water environment.
Collapse
Affiliation(s)
- You-Zhi Yao
- School of Materials Engineering, Wuhu Institute of Technology, 201 Wenjin Rd., Wuhu 241003, China;
| | - Yong-Jie Shi
- School of Energy Materials and Chemical Engineering, Hefei University, 99 Jinxiu Avenue, Hefei Economic and Technological Development Zone, Hefei 230601, China;
| | - Kun-Hong Hu
- School of Energy Materials and Chemical Engineering, Hefei University, 99 Jinxiu Avenue, Hefei Economic and Technological Development Zone, Hefei 230601, China;
| |
Collapse
|
8
|
Song W, Zhang X, Zhang L, Yu Z, Li X, Li Y, Cui Y, Zhao Y, Yan L. Removal of various aqueous heavy metals by polyethylene glycol modified MgAl-LDH: Adsorption mechanisms and vital role of precipitation. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
9
|
Lu X, Gao M, Yang S, Tang D, Yang F, Deng Y, Zhou Y, Wu X, Zan F. Effects of the aeration mode on nitrogen removal in a compact constructed rapid infiltration system for advanced wastewater treatment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:74677-74687. [PMID: 35641746 DOI: 10.1007/s11356-022-21049-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 05/19/2022] [Indexed: 06/15/2023]
Abstract
The configuration and the effective operation of constructed rapid infiltration (CRI) systems are of significance for advanced wastewater treatment. In this study, a novel CRI system was developed with a compact structure consisting of two stages, i.e., oxic and anoxic stages. The CRI system was continuously operated for about 140 days under different aeration modes, i.e., tidal flow, continuous aeration, and intermittent aeration. Nitrogen removal was not desirable with tidal flow due to the insufficient oxygen supply in the oxic stage for nitrification, while continuous aeration could achieve good performance for chemical oxygen demand (COD), ammonium, total nitrogen (TN), and total phosphorus (TP) removal. By comparison, the CRI system operated with intermittent aeration was more favorable due to the effective removal ability for pollutants and relatively lower energy demand. The microbial community analysis revealed that Proteobacteria was the dominant phylum in both oxic and anoxic stages of the developed CRI system. Functional microbial groups (Plasticicumulans, Pseudomonas, and Nitrospira in the oxic stage; Thauera, Candidatus_Competibacter, and Dechloromonas in the anoxic stage) were identified for the mediation of carbon, nitrogen, and phosphorus in the system. This study evaluated the feasibility and the optimal aeration mode of the developed CRI system for advanced wastewater treatment, which could satisfy the requirement for the high standard of effluent quality.
Collapse
Affiliation(s)
- Xiejuan Lu
- School of Environmental Science and Engineering, Key Laboratory of Water & Wastewater Treatment (HUST), MOHURD and Hubei Provincial Engineering Research Center for Water Quality Safety and Pollution Control, Huazhong University of Science and Technology, Wuhan, China
| | - Minggang Gao
- School of Environmental Science and Engineering, Key Laboratory of Water & Wastewater Treatment (HUST), MOHURD and Hubei Provincial Engineering Research Center for Water Quality Safety and Pollution Control, Huazhong University of Science and Technology, Wuhan, China
| | - Si Yang
- School of Environmental Science and Engineering, Key Laboratory of Water & Wastewater Treatment (HUST), MOHURD and Hubei Provincial Engineering Research Center for Water Quality Safety and Pollution Control, Huazhong University of Science and Technology, Wuhan, China
| | - Dingding Tang
- China Construction Third Bureau Green Industry Investment Co., Ltd, Wuhan, China
| | - Fan Yang
- China Construction Third Bureau Green Industry Investment Co., Ltd, Wuhan, China
| | - Yangfan Deng
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Yan Zhou
- China Construction Third Bureau Green Industry Investment Co., Ltd, Wuhan, China
| | - Xiaohui Wu
- School of Environmental Science and Engineering, Key Laboratory of Water & Wastewater Treatment (HUST), MOHURD and Hubei Provincial Engineering Research Center for Water Quality Safety and Pollution Control, Huazhong University of Science and Technology, Wuhan, China
| | - Feixiang Zan
- School of Environmental Science and Engineering, Key Laboratory of Water & Wastewater Treatment (HUST), MOHURD and Hubei Provincial Engineering Research Center for Water Quality Safety and Pollution Control, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
10
|
Guan X, Yuan X, Zhao Y, Wang H, Wang H, Bai J, Li Y. Application of functionalized layered double hydroxides for heavy metal removal: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:155693. [PMID: 35526616 DOI: 10.1016/j.scitotenv.2022.155693] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 04/22/2022] [Accepted: 04/30/2022] [Indexed: 06/14/2023]
Abstract
Layered double hydroxides (LDHs) are ionic laminar composites composed of positively charged brucite-like layers with an interlayered region containing charged compensating anions and solvation molecules. Such functional LDHs materials present a strong potential for heavy metal treatment especially for wastewater and soil, due to the large surface area and layered structure. This paper started with the background of techniques for heavy metals treatment and then discussed the potential environmental toxic effects, feasibility, stability of LDH composites. The preparation strategies of LDHs composites, and their application were summarized, followed by main mechanisms involving chelation, complexation, surface precipitation, ion exchange. This work also presented the potential environmental toxic effects, feasibility, stability of LDHs composites, reuse of waste liquid and the ratio adjustment of M2+ and N3+ for LDHs synthesis. While most efforts focused on improving the absorption capacity of LDHs by composites construction, ignoring the toxicity effects and detailed mechanism investigation. Based on a thorough review of the latest development, the challenges and perspectives would be proposed, offering promising insights on environmental purification via LDHs based materials.
Collapse
Affiliation(s)
- Xian Guan
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environment Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China; School of Civil and Environmental, Hunan University of Science and Engineering, Yongzhou 425199, PR China
| | - Xingzhong Yuan
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environment Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China.
| | - Yanlan Zhao
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environment Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Hou Wang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environment Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Hui Wang
- Department of Chemical Engineering, University College London, London WC1E 7JE, UK.
| | - Jing Bai
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environment Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Ying Li
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environment Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| |
Collapse
|
11
|
Ali Q, Ayaz M, Yu C, Wang Y, Gu Q, Wu H, Gao X. Cadmium tolerant microbial strains possess different mechanisms for cadmium biosorption and immobilization in rice seedlings. CHEMOSPHERE 2022; 303:135206. [PMID: 35660052 DOI: 10.1016/j.chemosphere.2022.135206] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 05/18/2022] [Accepted: 05/31/2022] [Indexed: 05/06/2023]
Abstract
Heavy metal remediation, such as cadmium (Cd2+) by microbial strains is efficient and environment-friendly. In this current study, we exploited the potential of Bacillus strains (Cd2+-tolerant; NMTD17, GBSW22, and LLTC96) to regulate Cd2+ biosorption mechanisms and improve rice seedling growth. The results showed that initial concentration and contact time affected Cd2+ biosorption, and the kinetic models of pseudo orders were effective in the elaborate biosorption process. Mainly, the bacterial cell wall had the potential for Cd2+ biosorption, and we found non-significant biosorption alterations among bacterial strains' inner and outer surfaces of cell membranes. Furthermore, the Fourier transform infrared (FTIR) spectroscopy analysis identified the differences in functional groups, such as C-N, PO2, -SO3, CO, COOH, C-O, C-N, -OH, and -NH that interact in biosorption by Bacillus strains. The scanning electron microscopy-energy dispersive spectroscopy (SEM-EDS) examination revealed that the binding of Cd2+ to microbes was mostly based on ion exchange pathways. Moreover, the Bacillus strains responded to Cd2+ stress in rice under pot experiment at various concentrations (0, 0.25, and 0.50 mg kg-1), and they also influenced the chlorophyll contents and antioxidants activities were studied. The analysis of physio-morphological parameters was observed to be increased, which indicated that all Bacillus strains showed significant effects on rice growth under Cd2+ stress. These results revealed that the selected strains had the capability for additional use in the development of Cd2+ bioremediation methods. These strains also provided plant growth-promoting (PGP) traits that can alleviate the harmful effects of Cd2+ in rice plants.
Collapse
Affiliation(s)
- Qurban Ali
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Muhammad Ayaz
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Chenjie Yu
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yujie Wang
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Qin Gu
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Huijun Wu
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xuewen Gao
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
12
|
Gherca D, Borhan AI, Mihai MM, Herea DD, Stoian G, Roman T, Chiriac H, Lupu N, Buema G. Magnetite-induced topological transformation of 3D hierarchical MgAl layered double hydroxides to highly dispersed 2D magnetic hetero-nanosheets for effective removal of cadmium ions from aqueous solutions. MATERIALS CHEMISTRY AND PHYSICS 2022; 284:126047. [DOI: 10.1016/j.matchemphys.2022.126047] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
13
|
Yu X, Peng S, Cao W, Huang G. Efficient adsorption of strontium by in-situ electrochemical synthesis of monohydric phosphate intercalated layered double hydroxides. NEW J CHEM 2022. [DOI: 10.1039/d2nj03311a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this study, in-situ electrochemical synthesis of monohydric phosphate intercalated layered double hydroxide was used to treat the simulated strontium-containing low-level waste liquids. The removal rate of Sr2+ was 99.24%...
Collapse
|
14
|
Remediation of Cr(VI)/Cd(ІІ)-Contaminated Groundwater with Simulated Permeable Reaction Barriers Filled with Composite of Sodium Dodecyl Benzene Sulfonate-Modified Maifanite and Anhydride-Modified Fe@SiO2@Polyethyleneimine: Environmental Factors and Effectiveness. ADSORPT SCI TECHNOL 2021. [DOI: 10.1155/2021/4998706] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
A composite material of sodium dodecyl benzene sulfonate- (SDBS-) modified maifanite and anhydride-modified Fe@SiO2@PEI (PEI) was used as an adsorbent for the removal of hexavalent chromium (Cr(VI)) and bivalent cadmium (Cd(II)) from groundwater by using column experiments and simulated PRB test. In this study, the optimum proportion of SDBS-modified maifanite and anhydride-modified Fe@SiO2@PEI was 5 : 1. In the column experiments, it was found that the penetration time increased with the increase of the initial concentrations (30, 60, and 90 mg/L) and the decrease of the flow rates (5.45, 10.9, and 16.35 mL/min) at an influent pH of
. It was also obtained that the removal rates of Cr(VI) and Cd(ІІ) reached 99.93% and 99.79% at an initial Cr(VI) and Cd(ІІ) concentration of 30 mg/L with the flow rate of 10.9 mL/min, respectively, at 6 h. Furthermore, excellent removal effectiveness of Cr(VI) and Cd(ІІ) (85.94% and 83.45%, respectively) was still achieved in simulated PRB test at a flow rate of 5.45 mL/min with the heavy metal solution concentration of
mg/L (Cr(VI) and Cd(II) concentration were, respectively,
5 mg/L); and the adsorbent had not completely failed by the end of the trial. Yoon-Nelson model was successfully applied to predict the breakthrough curves for the assessment of composite material heavy metal removal performance and was in good agreement with the experimental data of the heavy metal removal efficiency. The strong removal ability of the adsorbent could be attributed to the fact that maifanite with a large diameter can provide support and increase the permeability coefficient and porosity and that zero-valent iron (ZVI) can convert Cr(VI) to Cr(III) and improve the adsorption capacity of maifanite. The obtained results suggested that the novel PRB fillers have great significance for preventing and controlling Cr(VI)/Cd(ІІ)-contaminated groundwater.
Collapse
|
15
|
Tang Y, Liao X, Zhang X, Peng G, Gao J, Chen L. Enhanced adsorption of hexavalent chromium and the microbial effect on quartz sand modified with Al-layered double hydroxides. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 762:143094. [PMID: 33131846 DOI: 10.1016/j.scitotenv.2020.143094] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 10/04/2020] [Accepted: 10/11/2020] [Indexed: 06/11/2023]
Abstract
To enhance the hexavalent chromium (Cr(VI)) removal performance of simulated constructed rapid infiltration systems (CRIS) with quartz sand (QS) substrate, QS coated with Al-layered double hydroxides (Al-LDHs@QS) was prepared by the co-precipitation method under alkaline conditions. A scanning electron microscope (SEM), energy dispersive spectrometer (EDS) and X-ray diffractometer (XRD) were used to characterize QS before and after modification. The result showed that the Al-LDHs were successfully coated on the surface of the QS. The isotherm adsorption experiment indicated that compared with the original QS, the adsorption property of the modified QS changed from monolayered chemical adsorption to multilayered physical adsorption, perhaps because of different types of adsorption forces. Moreover, the adsorption capacity of modified QS was significantly enhanced and ZnAl-LDHs@QS had a maximum adsorption capacity (1428.57 mg·kg-1) nearly 6 times greater than that of the original QS (232.56 mg·kg-1). Adsorption experiments at different pH showed that the adsorption capacity of ZnAl-LDHs@QS gradually increased as acidity decreased. High-throughput sequencing revealed that the relative abundance of chrome-tolerant microorganisms at the phylum and family levels were increased in modified QS compared with original QS. Hemocytometer counting revealed enhanced microbial quantity on the surface of QS after modification. The content of extracellular polymeric substances (EPS) and the enzymatic activity of the microorganisms adhered to the surface of modified and original QS were detected, results showed that Al-LDHs had an obvious influence on the promotion of EPS secretion and enhanced the enzymatic activity of microorganisms. These changes indicated that the modified QS created better conditions for microorganism growth, and the improved microbial effect caused strong biosorption, resulting in greatly enhanced Cr(VI) removal. Thus, ZnAl-LDHs@QS is a better choice for CRIS to remove Cr(VI).
Collapse
Affiliation(s)
- Yuqi Tang
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan 430070, China
| | - Xiaoshu Liao
- China Construction Third Bureau Green Industry Investment Co., Ltd, Wuhan 430100, China
| | - Xiangling Zhang
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan 430070, China.
| | - Guanping Peng
- China Construction Third Bureau Green Industry Investment Co., Ltd, Wuhan 430100, China
| | - Jingtian Gao
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan 430070, China; School of Energy and Environment, Inner Mongolia University of Science & Technology, Baotou 014010, China
| | - Lihong Chen
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan 430070, China
| |
Collapse
|
16
|
Zhang X, Shan R, Li X, Yan L, Ma Z, Jia R, Sun S. Effective removal of Cu(II), Pb(II) and Cd(II) by sodium alginate intercalated MgAl-layered double hydroxide: adsorption properties and mechanistic studies. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2021; 83:975-984. [PMID: 33617502 DOI: 10.2166/wst.2021.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
To improve the adsorption efficiency of layered double hydroxides (LDHs) for heavy metals, a novel sodium alginate (SA) intercalated MgAl-LDH (SA-LDH) was synthesized in this work. SA-LDH was characterized by XRD, FTIR, XPS and employed as adsorbent for Cd(II), Pb(II), Cu(II) elimination. Adsorbent dosage, initial pH and contact time, which are regarded as several key parameters, were optimized. The results showed that SA-LDH exhibited better adsorption performance compared with the pristine MgAl-LDH. The maximum adsorption capacities of SA-LDH for Cu(II), Pb(II) and Cd(II) reached 0.945, 1.176 and 0.850 mmol/g, respectively. The possible mechanisms were analyzed by XPS, XRD and FTIR. The results showed that Cd(II), Pb(II) and Cu(II) may be removed by SA-LDH via (i) bonding or complexation with Sur-OH or Sur-O- of SA-LDH, (ii) precipitation of metal hydroxides or carbonates, (iii) isomorphic substitution, and (iv) chelation with -COO- in the interlayers. This work provides an effective method for the development of LDH-based adsorbent and the treatment of wastewater containing heavy metals.
Collapse
Affiliation(s)
- Xue Zhang
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China E-mail: ;
| | - Ranran Shan
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China E-mail: ;
| | - Xuguang Li
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China E-mail: ;
| | - Liangguo Yan
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China E-mail: ;
| | - Zhenmin Ma
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China E-mail: ;
| | - Ruibao Jia
- Shandong Province Water Supply and Drainage Monitoring Center, Jinan 250101, China
| | - Shaohua Sun
- Shandong Province Water Supply and Drainage Monitoring Center, Jinan 250101, China
| |
Collapse
|
17
|
Liu Y, Han F, Bai G, Kong L, Liu Z, Wang C, Liu B, He F, Wu Z, Zhang Y. The promotion effects of silicate mineral maifanite on the growth of submerged macrophytes Hydrilla verticillata. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 267:115380. [PMID: 32892006 DOI: 10.1016/j.envpol.2020.115380] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 07/30/2020] [Accepted: 08/04/2020] [Indexed: 06/11/2023]
Abstract
The effects of maifanite on the physiological and phytochemical process of submerged macrophytes Hydrilla verticillate (H.verticillata) were investigated for the first time in the study. The growth index: plant biomass, root length, plant height and leaf spacing, and physiological and phytochemical indexes: chlorophyll, soluble protein, malondialdehyde (MDA), peroxidase (POD), superoxide dismutase (SOD) content and vitality of the roots of H.verticillata were tested. The results found that maifanite can significantly promote the growth of H.verticillata. The modified maifanite were more conducive to plant growth compared with the raw maifanite, and the MM1 group had the best growth promoting effect. The physiological and phytochemical indexes showed that maifanite can delay the aging process of H.verticillata (P < 0.05). The possible reasons for promoting H.verticillata growth were that maifanite can provide excellent propagation conditions for plant rhizosphere microorganisms, contains abundant major and microelements, and improve the sediment microenvironment. This study may provide a technique for the further application of maifanite in the field of ecological restoration.
Collapse
Affiliation(s)
- Yunli Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Fan Han
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, PR China; School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, PR China
| | - Guoliang Bai
- School of Environmental Studies, China University of Geosciences, Wuhan, 430074, PR China
| | - Lingwei Kong
- Environmental Research and Design Institute of Zhejiang Province, Hangzhou, 310007, PR China
| | - Zisen Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, PR China
| | - Chuan Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, PR China
| | - Biyun Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, PR China
| | - Feng He
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, PR China
| | - Zhenbin Wu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, PR China
| | - Yi Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China.
| |
Collapse
|
18
|
Wang W, Ni J, Chen L, Ai Z, Zhao Y, Song S. Synthesis of carboxymethyl cellulose-chitosan-montmorillonite nanosheets composite hydrogel for dye effluent remediation. Int J Biol Macromol 2020; 165:1-10. [DOI: 10.1016/j.ijbiomac.2020.09.154] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 09/16/2020] [Accepted: 09/20/2020] [Indexed: 12/13/2022]
|
19
|
Azad H, Mohsennia M. A novel free-standing polyvinyl butyral-polyacrylonitrile/ZnAl-layered double hydroxide nanocomposite membrane for enhanced heavy metal removal from wastewater. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118487] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
20
|
Chi Y, Huang Y, Wang J, Chen X, Chu S, Hayat K, Xu Z, Xu H, Zhou P, Zhang D. Two plant growth promoting bacterial Bacillus strains possess different mechanisms in adsorption and resistance to cadmium. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 741:140422. [PMID: 32615431 DOI: 10.1016/j.scitotenv.2020.140422] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 06/15/2020] [Accepted: 06/20/2020] [Indexed: 06/11/2023]
Abstract
Microorganisms are promising biosorbents for decontaminating cadmium-polluted soil or water systems, but the underlying remediation mechanisms are still unclear. In this study, the cadmium biosorption mechanisms and capabilities of plant growth-promoting microorganisms (Bacillus megaterium NCT-2 and Bacillus paranthracis NT1) were investigated. Batch biosorption experiments showed that the optimal biosorption conditions for B. megaterium NCT-2 and B. paranthracis NT1 were pH 6.0, a biomass dosage of 1.0 g L-1, and an initial Cd2+ concentration of 10 mg L-1, and pH 8.0, a biomass dosage of 1.0 g L-1, and an initial Cd2+ concentration of 10 mg L-1, respectively. The biosorption processes of both biosorbents were well described by the pseudo-second order kinetic model, which indicated that the biosorption of Cd2+ was mainly chemisorption. The intracellular accumulation portion of adsorbed Cd2+ in B. megaterium NCT-2 was much higher than in B. paranthracis NT1 (43.11% and 3.25%, respectively), which resulted in the lower cadmium tolerance (14 mg L-1 and 280 mg L-1, respectively) and higher cadmium removal efficiency (46.79% and 20.45%, respectively) of B. megaterium NCT-2 compared to B. paranthracis NT1. SEM-EDS and FTIR analysis suggested the probable interactions of Cd2+ with the biosorbent surface ligands, such as -OH, -NH, -SO3, CO and -COOH during surface adsorption. Results of qRT-PCR illustrated that the difference in cadmium resistant mechanism and adsorption performance between B. megaterium NCT-2 and B. paranthracis NT1 may be regulated by the genes cadA, zitB, khtT, and bshA and cadA, trkA, czcD, and bshA, respectively. Our results revealed that these two biosorbents have the potential for further use in the development of cadmium remediation technologies and could provide insight into the mechanisms of cadmium biosorption.
Collapse
Affiliation(s)
- Yaowei Chi
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China; School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Areas, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yueyuan Huang
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Juncai Wang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Areas, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xunfeng Chen
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Areas, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shaohua Chu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Areas, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Kashif Hayat
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Areas, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zheng Xu
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Hong Xu
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Pei Zhou
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Areas, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Dan Zhang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Areas, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
21
|
Mallakpour S, Hatami M, Hussain CM. Recent innovations in functionalized layered double hydroxides: Fabrication, characterization, and industrial applications. Adv Colloid Interface Sci 2020; 283:102216. [PMID: 32763493 DOI: 10.1016/j.cis.2020.102216] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 07/25/2020] [Accepted: 07/26/2020] [Indexed: 12/21/2022]
Abstract
Layered Double Hydroxides (LDHs) are a group of hydrotalcite-like nano-sized materials with cationic layers and exchangeable interlayer anions. The wide range of divalent and trivalent cationic metals and anionic compounds are employed in the synthesis of LDH materials, which have improved their importance among the researchers. Because of their high anion exchange property, memory effect, tunable behavior, bio-friendly, simple preparation, and their affordability, these nano-materials are essentially interested today. Modification of LDHs improves their behaviours to make them appropriate in industrial fields, including biological, adsorbent, mechanical, optical, thermal, electrical fields, etc. This review has critically discussed the structural features, main properties, and also clarified the most important methods of modification and intercalation of LDH nano-materials. Moreover, some novel reported researches related to the successful modification of LDH materials have been characterized and briefly the advantages, disadvantages, and applications are presented in the industrial fields.
Collapse
|
22
|
Wang W, Wen T, Bai H, Zhao Y, Ni J, Yang L, Xia L, Song S. Adsorption toward Cu(II) and inhibitory effect on bacterial growth occurring on molybdenum disulfide-montmorillonite hydrogel surface. CHEMOSPHERE 2020; 248:126025. [PMID: 32006838 DOI: 10.1016/j.chemosphere.2020.126025] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 01/22/2020] [Accepted: 01/24/2020] [Indexed: 06/10/2023]
Abstract
Novel molybdenum disulfide-montmorillonite (MoS2@2DMMT) hydrogels for Cu(II) removal and inhibition on bacterial growth were successfully prepared. MoS2 was first in-situ growth onto 2DMMT platelet through hydrothermal method and then cross-linked with organic reagents to form hydrogels. The flower-like structure of synthesized MoS2 could be clearly observed in MoS2@2DMMT by SEM. The synthesized hydrogels possessed a three-dimensional macroporous structure, offering a free access for contaminants to get inside and combine with the active sites. Adsorption tests revealed that efficient Cu(II) removal (65.75 mg/g) could be achieved within a short time (30 min) at pH 5. The pseudo-second-order kinetics model and Langmuir isotherm model indicated the existence of chemisorption and monolayer absorption for Cu(II) onto MoS2@2DMMT hydrogels. Characterizations of EDS and XPS indicated that Cu(II) reacted with groups of carboxyl, hydroxyl and amidogen. Bacteriostatic tests revealed that almost a complete bacteriostatic was achieved with just small dosage (0.8 mg/mL) of MoS2@2DMMT hydrogels after the Cu(II) removal under the normal illumination. The mechanism was ascribed to the destructive effect of Cu(II) to the cytomembrane and the damage of reactive oxygen species (ROS) to the DNA. Such hydrogel not only provided insights for treating co-existing contaminates, but also guides for designing novel polymer materials from two-dimensional (2D) nano-materials.
Collapse
Affiliation(s)
- Wei Wang
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Luoshi Road 122, Wuhan, Hubei, 430070, China; School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan, Hubei, 430070, China
| | - Tong Wen
- School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan, Hubei, 430070, China
| | - Haoyu Bai
- School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan, Hubei, 430070, China
| | - Yunliang Zhao
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Luoshi Road 122, Wuhan, Hubei, 430070, China; School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan, Hubei, 430070, China.
| | - Jiaming Ni
- School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan, Hubei, 430070, China
| | - Lang Yang
- School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan, Hubei, 430070, China
| | - Ling Xia
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Luoshi Road 122, Wuhan, Hubei, 430070, China; School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan, Hubei, 430070, China
| | - Shaoxian Song
- School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan, Hubei, 430070, China; Hubei Provincial Collaborative Innovation Center for High Efficient Utilization of Vanadium Resources, Wuhan University of Technology, Luoshi Road 122, Wuhan, Hubei, 430070, China.
| |
Collapse
|
23
|
Han F, Zhang Y, Liu Z, Wang C, Luo J, Liu B, Qiu D, He F, Wu Z. Effects of maifanite on growth, physiological and phytochemical process of submerged macrophytes Vallisneria spiralis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 189:109941. [PMID: 31761555 DOI: 10.1016/j.ecoenv.2019.109941] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 11/08/2019] [Accepted: 11/09/2019] [Indexed: 06/10/2023]
Abstract
The restoration of submerged plants is critical for the reconstruction of eutrophic lake ecosystems. The growth of submerged plants is influenced by many factors. For the first time in this study, the effects of silicate-mineral maifanite supplement on the growth, physiological and phytochemical process of Vallisneria spiralis (V. spiralis) were investigated by an outdoor PVC barrel experiment, to provide a technical reference for further applications in aquatic ecological restoration. The results show that the maifanite could significantly promote the growth of V. spiralis. Specifically, the biomass, height, number of leaves, leaf width, root length, and root activity of V. spiralis in the maifanite-supplemented group were better than those of the control (P < 0.05). Moreover, the modified maifanite group performed better than the raw maifanite group (P < 0.05). The photosynthetic pigment, root activity, and the malondialdehyde and peroxidase activity of the maifanite-treated V. spiralis were better than those of the control to some extent. It was found that maifanite contained abundant major and trace elements, which are required for the growth of V. spiralis. It is concluded that maifanite is beneficial to the growth of V. spiralis and can be further applied to the ecological restoration of eutrophic lakes.
Collapse
Affiliation(s)
- Fan Han
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Yi Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
| | - Zisen Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chuan Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Ji Luo
- Center for Environmental Research and Technology, University of California-Riverside, California, USA
| | - Biyun Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Dongru Qiu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Feng He
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Zhenbin Wu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, China
| |
Collapse
|
24
|
Khalifa ME, Abdelrahman EA, Hassanien MM, Ibrahim WA. Application of Mesoporous Silica Nanoparticles Modified with Dibenzoylmethane as a Novel Composite for Efficient Removal of Cd(II), Hg(II), and Cu(II) Ions from Aqueous Media. J Inorg Organomet Polym Mater 2019. [DOI: 10.1007/s10904-019-01384-w] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
25
|
Abdelrahman EA, Abdel-Salam ET, El Rayes SM, Mohamed NS. Facile synthesis of graft copolymers of maltodextrin and chitosan with 2-acrylamido-2-methyl-1-propanesulfonic acid for efficient removal of Ni(II), Fe(III), and Cd(II) ions from aqueous media. JOURNAL OF POLYMER RESEARCH 2019. [DOI: 10.1007/s10965-019-1920-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|