1
|
Li Z, García-Girón J, Zhang J, Jia Y, Jiang X, Xie Z. Anthropogenic impacts on multiple facets of macroinvertebrate α and β diversity in a large river-floodplain ecosystem. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 874:162387. [PMID: 36848991 DOI: 10.1016/j.scitotenv.2023.162387] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 02/17/2023] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
Anthropogenic disturbances have become one of the primary causes of biodiversity decline in freshwater ecosystems. Beyond the well-documented loss of taxon richness in increasingly impacted ecosystems, our knowledge on how different facets of α and β diversity respond to human disturbances is still limited. Here, we examined the responses of taxonomic (TD), functional (FD) and phylogenetic (PD) α and β diversity of macroinvertebrate communities to human impact across 33 floodplain lakes surrounding the Yangtze River. We found that most pairwise correlations between TD and FD/PD were low and non-significant, whereas FD and PD metrics were instead positively and significantly correlated. All facets of α diversity decreased from weakly to strongly impacted lakes owing to the removal of sensitive species harboring unique evolutionary legacies and phenotypes. By contrast, the three facets of β diversity responded inconsistently to anthropogenic disturbance: while FDβ and PDβ showed significant impairment in moderately and strongly impacted lakes as a result of spatial homogenization, TDβ was lowest in weakly impacted lakes. The multiple facets of diversity also responded differently to the underlying environmental gradients, re-emphasizing that taxonomic, functional and phylogenetic diversities provide complementary information on community dynamics. However, the explanatory power of our machine learning and constrained ordination models was relatively low and suggests that unmeasured environmental features and stochastic processes may strongly contribute to macroinvertebrate communities in floodplain lakes suffering from variable levels of anthropogenic degradation. We finally suggested guidelines for effective conservation and restoration targets aimed at achieving healthier aquatic biotas in a context of increasing human impact across the 'lakescape' surrounding the Yangtze River, the most important being the control of nutrient inputs and increased spatial spillover effects to promote natural metasystem dynamics.
Collapse
Affiliation(s)
- Zhengfei Li
- The Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| | - Jorge García-Girón
- Geography Research Unit, University of Oulu, P.O. Box 3000, FI-90014 Oulu, Finland; Department of Biodiversity and Environmental Management, University of León, Campus de Vegazana, 24007 León, Spain.
| | - Junqian Zhang
- The Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| | - Yintao Jia
- The Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Xiaoming Jiang
- The Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; State Key Laboratory of Eco-hydraulic in Northwest Arid Region of China, Xi'an University of Technology, Xi'an, 710048, Shaanxi, China.
| | - Zhicai Xie
- The Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| |
Collapse
|
2
|
Stoczynski L, Scott MC, Bower L, Peoples BK. Effects of environment and metacommunity delineation on multiple dimensions of stream fish beta diversity. Front Ecol Evol 2023. [DOI: 10.3389/fevo.2023.1077994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023] Open
Abstract
IntroductionBeta diversity represents changes in community composition among locations across a landscape. While the effects of human activities on beta diversity are becoming clearer, few studies have considered human effects on the three dimensions of beta diversity: taxonomic, functional, and phylogenetic. Including anthropogenic factors and multiple dimensions of biodiversity may explain additional variation in stream fish beta diversity, providing new insight into how metacommunities are structured within different spatial delineations.MethodsIn this study, we used a 350 site stream fish abundance dataset from South Carolina, United States to quantify beta diversity explainable by spatial, natural environmental, and anthropogenic variables. We investigated three spatial delineations: (1) a single whole-state metacommunity delineated by political boundaries, (2) two metacommunities delineated by a natural geomorphic break separating uplands from lowlands, and (3) four metacommunities delineated by natural watershed boundaries. Within each metacommunity we calculated taxonomic, functional, and phylogenetic beta diversity and used variation partitioning to quantify spatial, natural environmental, and anthropogenic contributions to variations in beta diversity.ResultsWe explained 25–81% of the variation in stream fish beta diversity. The importance of these three factors in structuring metacommunities differed among the diversity dimensions, providing complementary perspectives on the processes shaping beta diversity in fish communities. The effect of spatial, natural environmental, and anthropogenic factors varied among the spatial delineations, which indicate conclusions drawn from variation partitioning may depend on the spatial delineation chosen by researchers.DiscussionOur study highlights the importance of considering human effects on metacommunity structure, quantifying multiple dimensions of beta diversity, and careful consideration of user-defined metacommunity boundaries in beta diversity analyses.
Collapse
|
3
|
Chanut PCM, Burdon FJ, Datry T, Robinson CT. Convergence in floodplain pond communities indicates different pathways to community assembly. AQUATIC SCIENCES 2023; 85:59. [PMID: 37016666 PMCID: PMC10066089 DOI: 10.1007/s00027-023-00957-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 03/11/2023] [Indexed: 05/06/2023]
Abstract
Disturbance can strongly influence ecosystems, yet much remains unknown about the relative importance of key processes (selection, drift, and dispersal) in the recovery of ecological communities following disturbance. We combined field surveys with a field experiment to elucidate mechanisms governing the recovery of aquatic macroinvertebrates in habitats of an alluvial floodplain following flood disturbance. We monitored macroinvertebrates in 24 natural parafluvial habitats over 60 days after a major flood, as well as the colonization of 24 newly-built ponds by macroinvertebrates over 45 days in the same floodplain. We examined the sources of environmental variation and their relative effects on aquatic assemblages using a combination of null models and Mantel tests. We also used a joint species distribution model to investigate the importance of primary metacommunity structuring processes during recovery: selection, dispersal, and drift. Contrary to expectations, we found that beta diversity actually decreased among natural habitats over time after the flood or the creation of the ponds, instead of increasing. This result was despite environmental predictors showing contrasting patterns for explaining community variation over time in the natural habitats compared with the experimental ponds. Flood heterogeneity across the floodplain and spatial scale differences between the experimental ponds and the natural habitats seemingly constrained the balance between deterministic and stochastic processes driving the ecological convergence of assemblages over time. While environmental selection was the dominant structuring process in both groups, biotic interactions also had a prominent influence on community assembly. These findings have profound implications towards understanding metacommunity structuring in riverscapes that includes common linkages between disturbance heterogeneity, spatial scale properties, and community composition. Supplementary Information The online version contains supplementary material available at 10.1007/s00027-023-00957-9.
Collapse
Affiliation(s)
- P. C. M. Chanut
- Department of Aquatic Ecology, Eawag, 8600 Duebendorf, Switzerland
- Institute of Integrative Biology, ETH-Zurich, 8092 Zurich, Switzerland
| | - F. J. Burdon
- Te Aka Mātuatua - School of Science, University of Waikato, Hamilton, New Zealand
| | - T. Datry
- INRAE, UR RiverLy, Centre de Lyon-Villeurbanne, Villeurbanne, France
| | - C. T. Robinson
- Department of Aquatic Ecology, Eawag, 8600 Duebendorf, Switzerland
- Institute of Integrative Biology, ETH-Zurich, 8092 Zurich, Switzerland
| |
Collapse
|
4
|
Wang H, Zhang X, Shan H, Ren W, Wen Z, Tian Y, Weigel B, Ni L, Cao T. Biodiversity buffers the impact of eutrophication on ecosystem functioning of submerged macrophytes on the Yunnan-Guizhou Plateau, Southwest China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 314:120210. [PMID: 36170892 DOI: 10.1016/j.envpol.2022.120210] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/28/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
Increasing eutrophication poses a considerable threat to freshwater ecosystems, which are closely associated with human well-being. As important functional entities for freshwater ecosystems, submerged macrophytes have suffered rapidly decline with eutrophication. However, it is unclear whether and how submerged macrophytes maintain their ecological functions under increasing eutrophication stress and the underlying patterns in the process. In the current study, we conducted an extensive survey of submerged macrophytes in 49 lakes and reservoirs (67% of them are eutrophic) on the Yunnan-Guizhou Plateau of southwestern China to reveal the relationship between submerged macrophyte biodiversity and ecosystem functioning (BEF) under eutrophication stress. Results showed that submerged macrophytes species richness, functional diversity (FD), and β diversity had positive effects on ecosystem functioning, even under eutrophication. Functional diversity was a stronger predictor of community biomass than species richness and β diversity, while species richness explained higher coverage variability than FD and β diversity. This suggests that species richness was a reliable indicator when valid functional traits cannot be collected in considering specific ecological process. With increasing eutrophication in water bodies, the mechanisms underlying biodiversity-ecosystem functioning evolved from "niche complementarity" to "selection effects", as evidenced by decreased species turnover and increased nestedness. Furthermore, the relative growth rate, specific leaf area, and ramet size in trade-off of community functional composition became smaller along eutrophication while flowering duration and shoot height became longer. This study contributes to a better understanding of positive BEF in freshwater ecosystems, despite increasing anthropogenic impacts. Protecting the environment remained the effective way to protect biodiversity and corresponding ecological functions and services. It will be important to consider different facets of biodiversity on ecosystem functioning in future studies to improve effective management plans.
Collapse
Affiliation(s)
- Hao Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaolin Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
| | - Hang Shan
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wenjing Ren
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zihao Wen
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuqing Tian
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Benjamin Weigel
- Research Centre for Ecological Change, Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Leyi Ni
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Te Cao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| |
Collapse
|
5
|
Wang J, Wang Y, Qu M, Feng Y, Wu B, Lu Q, He N, Li J. Testing the Functional and Phylogenetic Assembly of Plant Communities in Gobi Deserts of Northern Qinghai-Tibet Plateau. FRONTIERS IN PLANT SCIENCE 2022; 13:952074. [PMID: 35923883 PMCID: PMC9340061 DOI: 10.3389/fpls.2022.952074] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 06/21/2022] [Indexed: 06/15/2023]
Abstract
The mechanism governing plant community assembly across large-scale Gobi deserts remains unclear. Here, we inferred the roles of different assembly processes in structuring plant communities in the Gobi deserts of the Qinghai-Tibet Plateau by using a phylogenetic tree, and leaf and root traits. The functional and phylogenetic structures of 183 plant communities were assessed, and their distributions were linked with environmental gradients. Our results demonstrated that functional convergence was prevalent in most functional traits (75% of the traits) and accentuated when all traits were combined. The phylogenetic structure exhibited significant divergence. We observed the contrasting response of functional and phylogenetic assembly structures to environmental gradients. More importantly, we found that the shifts in the functional assembly along environmental gradients were trait-specific, with dominant roles of local factors, such as gravel coverage and soil attributes, in determining the distribution patterns of most traits. However, the distribution patterns of leaf P concentration (LPC), root N concentration (RNC), and root P concentration (RPC) were mainly driven by climatic factors. These results reveal that niche-based processes, such as abiotic filtering and weaker competitive exclusion, are the major drivers of species co-occurrence, which results in the widespread coexistence of phylogenetically distinct but functionally similar species within the Gobi plant community. Our findings could improve the understanding of plant community assembly processes and biodiversity maintenance in extremely harsh drylands.
Collapse
Affiliation(s)
- Jianming Wang
- School of Ecology Nature Conservation, Beijing Forestry University, Beijing, China
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Science, Beijing, China
| | - Yin Wang
- School of Ecology Nature Conservation, Beijing Forestry University, Beijing, China
| | - Mengjun Qu
- School of Ecology Nature Conservation, Beijing Forestry University, Beijing, China
| | - Yiming Feng
- Institute of Desertification Studies, Chinese Academy of Forestry, Beijing, China
| | - Bo Wu
- Institute of Desertification Studies, Chinese Academy of Forestry, Beijing, China
| | - Qi Lu
- Institute of Desertification Studies, Chinese Academy of Forestry, Beijing, China
| | - Nianpeng He
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Science, Beijing, China
| | - Jingwen Li
- School of Ecology Nature Conservation, Beijing Forestry University, Beijing, China
| |
Collapse
|
6
|
Beta Diversity Patterns Unlock the Community Assembly of Woody Plant Communities in the Riparian Zone. FORESTS 2022. [DOI: 10.3390/f13050673] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Beta diversity refers to changes in community composition across time and space, including species richness and replacement. Few studies have examined beta diversity patterns of riparian vegetation communities in terms of taxonomic, phylogenetic and functional attributes. In this study, we conducted a field survey of woody plant communities in the riparian zone of the Lijiang River Basin in China. We analyze variations in taxonomic, phylogenetic and functional beta diversity, the relative contributions of species richness and replacement to beta diversity and the relationships between beta diversity and environmental distance and geographical distance. The results show that: (1) replacement was the dominant component of taxonomic beta diversity and richness was the dominant component of functional and phylogenetic beta diversity; and (2) dispersal limitation and habitat filtering jointly drive the community assembly of woody plant communities in the riparian zone of the Lijiang River Basin. Therefore, when formulating conservation strategies for woody plants along the Lijiang River riparian zone, improving ecological communities and enhancing species dispersal between communities should be given equal attention. From a taxonomic perspective, it is more suitable to establish several small nature reserves, whereas from phylogenetic and functional perspectives, protection should focus on larger nature reserves.
Collapse
|
7
|
Ge Y, Meng X, Heino J, García‐Girón J, Liu Y, Li Z, Xie Z. Stochasticity overrides deterministic processes in structuring macroinvertebrate communities in a plateau aquatic system. Ecosphere 2021. [DOI: 10.1002/ecs2.3675] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Affiliation(s)
- Yihao Ge
- The Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology Chinese Academy of Sciences Wuhan China
- University of Chinese Academy of Sciences Beijing China
| | - Xingliang Meng
- The Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology Chinese Academy of Sciences Wuhan China
| | - Jani Heino
- Freshwater Centre Finnish Environment Institute Paavo Havaksen Tie 3P.O. Box 413 Oulu FI‐90014 Finland
| | - Jorge García‐Girón
- Group for Limnology and Environmental Biotechnology Area of Ecology Universidad de León Campus de Vegazana León Spain
| | - Yang Liu
- The Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology Chinese Academy of Sciences Wuhan China
- University of Chinese Academy of Sciences Beijing China
| | - Zhengfei Li
- The Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology Chinese Academy of Sciences Wuhan China
| | - Zhicai Xie
- The Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology Chinese Academy of Sciences Wuhan China
| |
Collapse
|
8
|
Ma F, Yang L, Lv T, Zuo Z, Zhao H, Fan S, Liu C, Yu D. The Biodiversity–Biomass Relationship of Aquatic Macrophytes Is Regulated by Water Depth: A Case Study of a Shallow Mesotrophic Lake in China. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.650001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The relationship between biodiversity and productivity (or biomass production) (BPR) has been a popular topic in macroecology and debated for decades. However, this relationship is poorly understood in macrophyte communities, and the mechanism of the BPR pattern of the aquatic macrophyte community is not clear. We investigated 78 aquatic macrophyte communities in a shallow mesotrophic freshwater lake in the middle and lower reaches of the Yangtze River in China. We analyzed the relationship between biodiversity (species richness, diversity, and evenness indices) and community biomass, and the effects of water environments and interspecific interactions on biodiversity–biomass patterns. Unimodal patterns between community biomass and diversity indices instead of evenness indices are shown, and these indicate the importance of both the number and abundance of species when studying biodiversity–biomass patterns under mesotrophic conditions. These patterns were moderated by species identity biologically and water depth environmentally. However, water depth determined the distribution and growth of species with different life-forms as well as species identities through environmental filtering. These results demonstrate that water depth regulates the biodiversity–biomass pattern of the aquatic macrophyte community as a result of its effect on species identity and species distribution. Our study may provide useful information for conservation and restoration of macrophyte vegetation in shallow lakes through matching water depth and species or life-form combinations properly to reach high ecosystem functions and services.
Collapse
|
9
|
He X, Brown C, Lin L. Relative importance of deterministic and stochastic processes for beta diversity of bird assemblages in Yunnan, China. Ecosphere 2021. [DOI: 10.1002/ecs2.3545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Xuelian He
- CAS Key Laboratory of Tropical Forest Ecology Xishuangbanna Tropical Botanical Garden Chinese Academy of Sciences Kunming650223China
- National Forest Ecosystem Research Station at Xishuangbanna Menglun Mengla Yunnan666303China
| | - Calum Brown
- Karlsruhe Institute of Technology Institute of Meteorology and Climate Research, Atmospheric Environmental Research (IMK‐IFU) Garmisch‐Partenkirchen Germany
| | - Luxiang Lin
- CAS Key Laboratory of Tropical Forest Ecology Xishuangbanna Tropical Botanical Garden Chinese Academy of Sciences Kunming650223China
- National Forest Ecosystem Research Station at Xishuangbanna Menglun Mengla Yunnan666303China
- Southeast Asia Biodiversity Research Institute Chinese Academy of Sciences Menglun Mengla Yunnan666303China
| |
Collapse
|
10
|
Li Z, Chen X, Jiang X, Tonkin JD, Xie Z, Heino J. Distance decay of benthic macroinvertebrate communities in a mountain river network: Do dispersal routes and dispersal ability matter? THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 758:143630. [PMID: 33218801 DOI: 10.1016/j.scitotenv.2020.143630] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 10/19/2020] [Accepted: 11/07/2020] [Indexed: 06/11/2023]
Abstract
Environmental heterogeneity and dispersal limitation are important drivers of beta diversity; however, their relative influence on the two fundamental components of beta diversity (i.e., species replacement and richness difference) has not been fully examined in montane streams. Here, we examined the relative importance of local environmental gradients and three physical distance matrices (i.e., overland, watercourse and cost distances) on beta diversity and its two components for a macroinvertebrate metacommunity in a stream network. To provide additional insights into community assembly, we also analysed variation in two deconstructed sub-communities based on dispersal ability (i.e., weak and strong dispersers). Both environmental filters and physical distances (dispersal limitation) drove patterns of overall beta diversity, with the former generally prevailing over the latter. Species replacement components showed stronger correlations with environmental gradients than physical distances, while the opposite is true for the richness difference components. Overland distances were generally more important than cost and watercourse distances for community dissimilarity of stream macroinvertebrates, implying that lateral dispersal out of stream corridors through flight was the major dispersal route in the studied steam network. As expected, community dissimilarity of strong dispersers was primarily shaped by environmental filtering, while community dissimilarity of weak dispersers was associated with the joint effects of environmental filtering and dispersal limitation. Our findings demonstrate that partitioning overall dissimilarity into species replacement and richness difference provides more insights into the processes driving spatial variability in biological communities compared with the utilization of total beta diversity alone. Our results support the notion that maintaining environmental heterogeneity and natural connectivity of stream networks should be effective measures to conserve regional biodiversity.
Collapse
Affiliation(s)
- Zhengfei Li
- The Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| | - Xiao Chen
- The Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Xiaoming Jiang
- The Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; State Key Laboratory of Eco-hydraulic in Northwest Arid Region of China, Xi'an University of Technology, Xi'an 710048, China.
| | - Jonathan D Tonkin
- School of Biological Sciences, University of Canterbury, Christchurch 8140, New Zealand.
| | - Zhicai Xie
- The Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| | - Jani Heino
- Freshwater Centre, Finnish Environment Institute, Paavo Havaksen Tie 3, P.O. Box 413, FI-90014 Oulu, Finland.
| |
Collapse
|
11
|
García-Girón J, Heino J, Baastrup-Spohr L, Bove CP, Clayton J, de Winton M, Feldmann T, Fernández-Aláez M, Ecke F, Grillas P, Hoyer MV, Kolada A, Kosten S, Lukács BA, Mjelde M, Mormul RP, Rhazi L, Rhazi M, Sass L, Xu J, Alahuhta J. Global patterns and determinants of lake macrophyte taxonomic, functional and phylogenetic beta diversity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 723:138021. [PMID: 32213415 DOI: 10.1016/j.scitotenv.2020.138021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 03/16/2020] [Accepted: 03/16/2020] [Indexed: 06/10/2023]
Abstract
Documenting the patterns of biological diversity on Earth has always been a central challenge in macroecology and biogeography. However, for the diverse group of freshwater plants, such research program is still in its infancy. Here, we examined global variation in taxonomic, functional and phylogenetic beta diversity patterns of lake macrophytes using regional data from six continents. A data set of ca. 480 lake macrophyte community observations, together with climatic, geographical and environmental variables, was compiled across 16 regions worldwide. We (a) built the very first phylogeny comprising most freshwater plant lineages; (b) exploited a wide array of functional traits that are important to macrophyte autoecology or that relate to lake ecosystem functioning; (c) assessed if different large-scale beta diversity patterns show a clear latitudinal gradient from the equator to the poles using null models; and (d) employed evolutionary and regression models to first identify the degree to which the studied functional traits show a phylogenetic signal, and then to estimate community-environment relationships at multiple spatial scales. Our results supported the notion that ecological niches evolved independently of phylogeny in macrophyte lineages worldwide. We also showed that taxonomic and phylogenetic beta diversity followed the typical global trend with higher diversity in the tropics. In addition, we were able to confirm that species, multi-trait and lineage compositions were first and foremost structured by climatic conditions at relatively broad spatial scales. Perhaps more importantly, we showed that large-scale processes along latitudinal and elevational gradients have left a strong footprint in the current diversity patterns and community-environment relationships in lake macrophytes. Overall, our results stress the need for an integrative approach to macroecology, biogeography and conservation biology, combining multiple diversity facets at different spatial scales.
Collapse
Affiliation(s)
- Jorge García-Girón
- Ecology Unit, University of León, Campus de Vegazana S/N, 24071 León, Spain.
| | - Jani Heino
- Finnish Environment Institute, Freshwater Centre, P.O. Box 413, 90014 Oulu, Finland.
| | - Lars Baastrup-Spohr
- Freshwater Biological Laboratory, Department of Biology, University of Copenhagen, Universitetsparken 4, 2100 København Ø, Denmark.
| | - Claudia P Bove
- Departamento de Botânica, Museu Nacional, Universidade Federal do Rio de Janeiro, Quinta da Boa Vista, Rio de Janeiro, RJ 20940-040, Brazil
| | - John Clayton
- National Institute of Water and Atmospheric Research Limited, P.O. Box 11115, Hamilton, New Zealand.
| | - Mary de Winton
- National Institute of Water and Atmospheric Research Limited, P.O. Box 11115, Hamilton, New Zealand.
| | - Tõnu Feldmann
- Centre for Limnology, Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, 61117 Rannu, Tartumaa, Estonia.
| | | | - Frauke Ecke
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences (SLU), P.O. Box 7050, 750 07 Uppsala, Sweden; Department of Wildlife, Fish and Environmental Studies, Swedish University of Agricultural Sciences (SLU), 901 83 Umeå, Sweden.
| | - Patrick Grillas
- Tour du Valat, Research Institute for the Conservation of Mediterranean Wetlands, Le Sambuc, 13200 Arles, France.
| | - Mark V Hoyer
- Fisheries and Aquatic Sciences, School of Forest Resources and Conservation, Institute of Food and Agricultural Services, University of Florida, 7922 NW 71st Street, Gainesville, FL 32609, USA.
| | - Agnieszka Kolada
- Department of Freshwater Protection, Institute of Environmental Protection-National Research Institute, Krucza 5/11D, 00-548 Warsaw, Poland.
| | - Sarian Kosten
- Department of Aquatic Ecology and Environmental Biology, Institute for Water and Wetland Research, Radboud University, Heyendaalseweg 135, 6525AJ Nijmegen, the Netherlands.
| | - Balázs A Lukács
- Department of Tisza River Research, MTA Centre for Ecological Research, DRI, Bem tér 18/C, Debrecen 4026, Hungary.
| | - Marit Mjelde
- Norwegian Institute for Water Research (NIVA), Gaustadalléen 21, 0349 Oslo, Norway.
| | - Roger P Mormul
- Department of Biology, Research Group in Limnology, Ichthyology and Aquaculture-Nupélia, State University of Maringá, Av. Colombo 5790, Bloco H90, CEP-87020-900 Mringá, PR, Brazil
| | - Laila Rhazi
- Research Center of Plant and Microbial Biotechnologies, Biodiversity and Environment, Faculty of Sciences, Mohammed V University in Rabat, 4 avenue Ibn Battouta, B.P. 1014 RP, Rabat, Morocco
| | - Mouhssine Rhazi
- Faculty of Science and Technology, Department of Biology, Moulay Ismail University, PB 509, Boutalamine, Errachidia, Morocco
| | - Laura Sass
- Illinois Natural History Survey, Prairie Research Institute, University of Illinois, 1816 South Oak Street, Champaign, IL 61820, USA.
| | - Jun Xu
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430070, China.
| | - Janne Alahuhta
- Finnish Environment Institute, Freshwater Centre, P.O. Box 413, 90014 Oulu, Finland; Geography Research Unit, University of Oulu, P.O. Box 3000, 90014 Oulu, Finland.
| |
Collapse
|
12
|
García-Girón J, García P, Fernández-Aláez M, Bécares E, Fernández-Aláez C. Bridging population genetics and the metacommunity perspective to unravel the biogeographic processes shaping genetic differentiation of Myriophyllum alterniflorum DC. Sci Rep 2019; 9:18097. [PMID: 31792324 PMCID: PMC6889409 DOI: 10.1038/s41598-019-54725-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 11/19/2019] [Indexed: 11/08/2022] Open
Abstract
The degree to which dispersal limitation interacts with environmental filtering has intrigued metacommunity ecologists and molecular biogeographers since the beginning of both research disciplines. Since genetic methods are superior to coarse proxies of dispersal, understanding how environmental and geographic factors influence population genetic structure is becoming a fundamental issue for population genetics and also one of the most challenging avenues for metacommunity ecology. In this study of the aquatic macrophyte Myriophyllum alterniflorum DC., we explored the spatial genetic variation of eleven populations from the Iberian Plateau by means of microsatellite loci, and examined if the results obtained through genetic methods match modern perspectives of metacommunity theory. To do this, we applied a combination of robust statistical routines including network analysis, causal modelling and multiple matrix regression with randomization. Our findings revealed that macrophyte populations clustered into genetic groups that mirrored their geographic distributions. Importantly, we found a significant correlation between genetic variation and geographic distance at the regional scale. By using effective (genetic) dispersal estimates, our results are broadly in line with recent findings from metacommunity theory and re-emphasize the need to go beyond the historically predominant paradigm of understanding environmental heterogeneity as the main force driving macrophyte diversity patterns.
Collapse
Affiliation(s)
- Jorge García-Girón
- Group for Limnology and Environmental Biotechnology, Area of Ecology, Universidad de León, Campus de Vegazana, León, Spain.
| | - Pedro García
- Department of Molecular Biology, Universidad de León, Campus de Vegazana, León, Spain
| | - Margarita Fernández-Aláez
- Group for Limnology and Environmental Biotechnology, Area of Ecology, Universidad de León, Campus de Vegazana, León, Spain
| | - Eloy Bécares
- Group for Limnology and Environmental Biotechnology, Area of Ecology, Universidad de León, Campus de Vegazana, León, Spain
| | - Camino Fernández-Aláez
- Group for Limnology and Environmental Biotechnology, Area of Ecology, Universidad de León, Campus de Vegazana, León, Spain
| |
Collapse
|
13
|
Diversity of Understory Communities in Boreal Forests: Influences of Forest Type, Latitude, and Spatial Scale. FORESTS 2019. [DOI: 10.3390/f10111003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Understory vegetation hosts high biodiversity and plays a critical role in the ecosystem processes of boreal forests. However, the drivers of understory plant diversity in this high-latitude ecosystem remain uncertain. To investigate the influences of forest type and latitude on understory beta diversity at different scales, we quantified the species composition of Vaccinium uliginosum Linnaeus communities under broadleaf and coniferous forests at two latitudes at the quadrat (2 × 2 m) and plot (10 × 10 m) scales in the Greater Xing’an Mountains, NE China. At the quadrat scale, species alpha diversity of V. uliginosum communities was higher in broadleaf forests than that in coniferous forests at both latitudes. The differences in species beta diversity (the Sørensen’s dissimilarity) in two forest types depended on the latitude: beta diversity in broadleaf forests was higher than that in coniferous forests at the higher latitude, while beta diversity in coniferous forests was higher at the lower latitude. At the plot scale, alpha and beta diversity of V. uliginosum communities decreased from broadleaf forests to coniferous forests at the higher latitude, and they did not show significant differences between forest types at the lower latitude. These results indicate the interactive effects of forest type and latitude on beta diversity of understory vegetation. Moreover, the influences of forest type and latitude on species alpha and beta diversity were different across the two spatial scales, suggesting that the assembly mechanisms underlying species diversity may be different at different scales. Understanding the maintenance of understory vegetation diversity will benefit the conservation and management of boreal forests.
Collapse
|