1
|
Zhou G, Kong X, Zeng D, Huang X, Zhang S, Teng X, Xing Y. New insights of polyacrylamide on volatile fatty acid accumulation: Sludge crushing mechanism and microbial community function. BIORESOURCE TECHNOLOGY 2025; 427:132386. [PMID: 40086699 DOI: 10.1016/j.biortech.2025.132386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 03/05/2025] [Accepted: 03/09/2025] [Indexed: 03/16/2025]
Abstract
To investigate the impact of polyacrylamide (PAM) on hydrolysis, acidification, and microbial properties during anaerobic fermentation of waste activated sludge (WAS), the fermentation system was supplemented with four different concentrations of PAM. Results showed that PAM inhibited WAS cell disruption, which reduced volatile fatty acid (VFA) production but increased the proportions of propionic acid. The addition of PAM reduced protease and α-glucosidase activities by 41.52-75.58% and 21.7-41.63%, respectively, thus inhibiting the breakdown of organic substrates. Microbiologically, PAM reduced microbial richness and diversity, but increased the relative abundances of Bacteroidota and Actinobacteriota, which promoted the production of propionic acid. Additionally, PAM lowered the levels of key hydrolytic and acidogenic enzymes. This study offers further theoretical insights into how PAM influences VFA production during anaerobic sludge fermentation.
Collapse
Affiliation(s)
- Guorun Zhou
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Xiangji Kong
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment of the People's Republic of China, Key Laboratory of Pesticide Environment Assessment and Pollution Control, Nanjing 210042, China
| | - Daojing Zeng
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Xiao Huang
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China; Shenzhen Key Laboratory of Water Resource Utilization and Environmental Pollution Control, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China.
| | - Shuai Zhang
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Xindong Teng
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Yixiao Xing
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China
| |
Collapse
|
2
|
Li XF, Zhang WS, Qi S, Zhao JF, Sun ZY, Tang YQ. Anaerobic Volatile Fatty Acid Production Performance and Microbial Community Characteristics from Solid Fraction of Alkali-Thermal Treated Waste-Activated Sludge: Focusing on the Effects of Different pH Conditions. Appl Biochem Biotechnol 2025:10.1007/s12010-025-05244-x. [PMID: 40317442 DOI: 10.1007/s12010-025-05244-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/21/2025] [Indexed: 05/07/2025]
Abstract
The waste-activated sludge (WAS) is rich in organic matter and various nutrients. Alkali-thermal hydrolysis of WAS can be employed to produce a liquid fertilizer with high plant-promoting nutrient content. However, the solid fraction (abbreviated as SF) generated from this process requires further treatment. Although there have been studies on the recovery of plant nutrients from WAS via alkali-thermal hydrolysis, researches on the safe treatment of the SF are limited. This study aims to explore the potential and the microbiological mechanisms on anaerobic volatile fatty acid (VFA) production from the SF under different pH conditions (i.e., 6, 7, 8, 9, and 10). The results showed that the VFA yield was highest at pH 6, reaching 4095.84 mg COD/L (i.e., 0.16 g-COD/g-volatile solids), followed by pH 10, 8, 7, and 9, with acetate being the main component (> 56%). Microbial community analysis revealed that members in phyla Firmicutes and Bacteroidota constituted the main acid-producing microbial community during the anaerobic fermentation of SF. Furthermore, different pH conditions influenced the yield and composition of VFAs by altering the structure and functions of microbial community. This research provides a new direction for the fully resourceful utilization of sludge by producing both liquid fertilizer and VFAs from WAS.
Collapse
Affiliation(s)
- Xiu-Fang Li
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Wen-Shuai Zhang
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Sheng Qi
- Laiwu Taihe Biochemistry Co., Ltd, Jinan, 250022, Shandong, China
| | - Jun-Feng Zhao
- Laiwu Taihe Biochemistry Co., Ltd, Jinan, 250022, Shandong, China
| | - Zhao-Yong Sun
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, Sichuan, China.
| | - Yue-Qin Tang
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, Sichuan, China
| |
Collapse
|
3
|
Liu X, Luo J, Xu Q, Lu Q, Ni BJ, Wang D. Roles and opportunities of quorum sensing in natural and engineered anaerobic digestion systems. WATER RESEARCH 2025; 275:123190. [PMID: 39862801 DOI: 10.1016/j.watres.2025.123190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 01/01/2025] [Accepted: 01/21/2025] [Indexed: 01/27/2025]
Abstract
Anaerobic digestion (AD) is a biological process in which anaerobic microorganisms convert organic matter into methane-rich gas, contributing to the cycling of carbon and other nutrients. Quorum sensing (QS), a microbial communication mechanism, plays a critical role in regulating population-level behaviors within AD systems. This review systematically examines the roles and applications of QS in AD, emphasizing its importance in enhancing process efficiency. The review begins by exploring the pathways and characteristics of QS in key functional microorganisms involved in AD. We analyze the response mechanisms of QS to key environmental variables and their effects on the structure and function of microbe communities and extracellular polymeric substances secretion. Potential applications of QS in engineered AD systems are discussed, with a focus on promoting system startup, improving operational efficiency, and enhancing resistance and stability. The use of exogenous signaling molecules and quorum quenching reagents to optimize AD performance is also evaluated. Additionally, the ecological significance of QS in natural environments, such as seafloor sediments and wetlands, is explored, emphasizing its role in regulating AD-related microorganisms within complex microbial communities. Finally, the review identifies current knowledge gaps and outlines future research directions in AD, including QS database development, QS-engineered bacteria excavation, and advanced analytical methods assistants. This comprehensive review aims to bridge existing gaps in QS-related knowledge in AD and provide fresh perspectives for studying microbial communication and collaboration through QS.
Collapse
Affiliation(s)
- Xuran Liu
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China.
| | - Jianying Luo
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Qing Xu
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Qi Lu
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Bing-Jie Ni
- School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Dongbo Wang
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China.
| |
Collapse
|
4
|
Lizama AC, Figueiras CC, Pedreguera AZ, Saady NMC, Ruiz Espinoza JE. Improving the anaerobic digestion of sewage sludge by adding cobalt nanoparticles. ENVIRONMENTAL TECHNOLOGY 2025; 46:1744-1754. [PMID: 39292531 DOI: 10.1080/09593330.2024.2404648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 09/10/2024] [Indexed: 09/20/2024]
Abstract
This work evaluated the effects of cobalt nanoparticles (CoNPs) (0.025-7 mg/gVS) on the intensification of sewage sludge anaerobic digestion (AD) using biochemical methane potential (BMP) tests. This study was motivated by the need to improve the efficiency and stability of anaerobic digestion of sewage sludge, a critical process in waste management and renewable energy production. The effects at doses less than 2 mg/gVS were not substantial, but 3-7 mg/gVS improved the performance. The maximum biogas yield was 232 mL/gVS (at a dose of 7 mg/gVS), whereas it was 132 mL/gVS in the control (zero dose). Similarly, the reductions in the volatile solids and methane contents reached maxima of 16 and 74.3%, respectively. The analyses of volatile fatty acids, redox potential, and electron transfer system activity indicated that the addition of CoNPs stimulated the early stages of AD. Finally, acetate consumption and the increase in CH4 content suggested that CoNPs positively affected system stability and acetoclastic methanogenesis. That is, CoNPs effectively intensified the behaviour and stability of the anaerobic process. The novelty of this research lies in the comprehensive evaluation of the effects of CoNPs across a wide range of doses on sewage sludge AD, providing new insights into the optimisation of this process for increased biogas production and organic matter reduction.
Collapse
Affiliation(s)
| | | | | | - Noori M Cata Saady
- Department of Civil Engineering, Memorial University of Newfoundland, St. John's,Canada
| | | |
Collapse
|
5
|
Perez-Esteban N, Tully R, Peces M, Dosta J, Astals S. Consistent acidogenic co-fermentation of waste activated sludge and food waste under thermophilic conditions. WATER RESEARCH 2025; 271:122970. [PMID: 39709884 DOI: 10.1016/j.watres.2024.122970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/21/2024] [Accepted: 12/12/2024] [Indexed: 12/24/2024]
Abstract
Acidogenic co-fermentation of waste activated sludge (WAS) and food waste (FW) under thermophilic conditions enhances process consistency, while overcoming the problem of acetic acid consumption due to growing methanogens. Two long-term continuous co-fermentation experiments were carried out with a WAS:FW mixture (70:30 % in VS) at organic loading rate of 8 gVS/(L·d). Experiment 1 assessed the impact of temperature (35 °C and 55 °C) and WAS origin (WAS_A and WAS_B) in two collection periods. Experiment 2 evaluated the consistency at 55 °C by testing three WAS origins (WAS_A, WAS_B and WAS_C) in 3 additional collection periods. Experimental results showed that at 55 °C, the solubilisation yield was enhanced compared to 35 °C, although this did not always lead to higher fermentation yield. The fermentation product profile was affected by the operating temperature, with 55 °C promoting the accumulation of acetic and butyric acids. Acetic acid consumption was only detected at 35 °C in fermenters treating WAS_A, whereas it was not observed in fermenters treating WAS_B. This consumption was prevented at 55 °C, as none of the 13 fermenters continuous operation showed acetic acid consumption. Acetic acid consumption was attributed to species midas_s_9557 (genus Methanosarcina), an aceticlastic methanogen, which did not grow under 55 °C. Temperature had a more significant effect on the microbial community structure than WAS origin. Functional redundancy was demonstrated by each fermenter having its own distinct microbial consortium while maintaining constant metabolic functions at 55 °C. Overall, the acidogenic co-fermentation of WAS and FW at 55 °C is regarded as a robust and consistent biotechnology.
Collapse
Affiliation(s)
- N Perez-Esteban
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
| | - R Tully
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain; School of Chemistry, Glasglow University, Joseph Black Building, University Pl, Glasglow G12 8QQ, UK
| | - M Peces
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain; Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, 9220 Aalborg, Denmark
| | - J Dosta
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
| | - S Astals
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain.
| |
Collapse
|
6
|
Kuang Y, Chen Y, Wei Y, Zhao J. New insights into the production of volatile fatty acids through low-temperature anaerobic fermentation of sludge enhanced by peracetic acid. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2025; 91:554-566. [PMID: 40087965 DOI: 10.2166/wst.2025.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 02/17/2025] [Indexed: 03/17/2025]
Abstract
The production of short-chain fatty acids (SCFAs) through anaerobic fermentation is a significant strategy for the resource utilization of excess sludge (ES). However, the limitations of low temperatures and slow ES hydrolysis rates have resulted in less than optimal volatile fatty acid (VFA) accumulation. This study reports a new method for improving ES low-temperature anaerobic fermentation for VFA production using peracetic acid (PAA) pretreatment and elucidates the underlying mechanisms. The results showed that at 10 °C, PAA significantly enhanced the release of organic matter during ES anaerobic fermentation, increasing the soluble chemical oxygen demand concentration in the fermentation liquid, thereby creating conditions for subsequent acidification processes and VFAs accumulation. When the PAA dosage was 9%, the production of VFAs reached approximately 239.5 mg COD/g volatile suspended solids (VSS), which was 1.47 times that of the control group. Mechanistic analysis revealed that PAA improved sludge hydrolysis and acidification under low-temperature conditions but inhibited VFAs consumption, increased the activity of enzymes related to the hydrolysis and acidification processes, and suppressed the activity of F420, thereby enhancing VFA accumulation. The findings provide an alternative solution for the low-temperature biological resource utilization of ES.
Collapse
Affiliation(s)
- Yan Kuang
- School of Architecture and Engineering, Qingdao Binhai University, Qingdao 266555, China
| | - Yan Chen
- School of Architecture and Engineering, Qingdao Binhai University, Qingdao 266555, China
| | - Yan Wei
- School of Architecture and Engineering, Qingdao Binhai University, Qingdao 266555, China
| | - Jianwei Zhao
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China E-mail:
| |
Collapse
|
7
|
Chen K, Yang L, Zhang J, Rene ER, Wang D, Chen W, Li Z, Zhu H. Coupling of biocarriers and dynamic membrane for an enhanced volatile fatty acids production from sludge anaerobic fermentation. BIORESOURCE TECHNOLOGY 2025; 415:131725. [PMID: 39477159 DOI: 10.1016/j.biortech.2024.131725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/10/2024] [Accepted: 10/28/2024] [Indexed: 11/05/2024]
Abstract
Efficiently and economically recovering volatile fatty acids (VFAs) from sludge anaerobic fermentation (AF) poses a significant challenge. This study discovered a synergistic enhancement effect on VFAs production and membrane fouling control by combining polyethylene (PE) biocarriers and dynamic membrane technology (DM) in an anaerobic bioreactor. The reduced sludge particle size and enhanced hydrolysis efficiency led to a VFAs yield of 1200 mg/L, which is 2.4 times higher than that of traditional AF processes and 1.7 times greater than using the DM module alone. The introduction of PE promoted the enrichment of hydrolytic bacteria, particularly the Christensenellaceae_R-7_group, and facilitated the biotransformation of organic matter. The frictional properties of PE significantly reduced DM fouling, maintaining the transmembrane pressure drop below 30 kPa throughout operation without the need for DM module replacement or cleaning. This study presents a novel approach for resource recovery from sludge through AF, offering new opportunities in the field.
Collapse
Affiliation(s)
- Kai Chen
- Beijing Key Lab for Source Control Technology of Water Pollution, Beijing Forestry University, Beijing 100083, China
| | - Lisha Yang
- Beijing Key Lab for Source Control Technology of Water Pollution, Beijing Forestry University, Beijing 100083, China
| | - Jing Zhang
- China Institute of Water Resources and Hydropower Research, Beijing 100038, China
| | - Eldon R Rene
- Department of Water Supply, Sanitation and Environmental Engineering, IHE Delft Institute for Water Education, Westvest 7, P.O. Box 3015, 2601DA Delft, the Netherlands
| | - Dongquan Wang
- China Water Investment Co., Ltd., Beijing 100053, China
| | - Wangyang Chen
- China Water Investment Co., Ltd., Beijing 100053, China
| | - Zhuo Li
- Beijing Key Lab for Source Control Technology of Water Pollution, Beijing Forestry University, Beijing 100083, China
| | - Hongtao Zhu
- Beijing Key Lab for Source Control Technology of Water Pollution, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
8
|
Liang M, Chen J, Dong Y, Guo G, Wu X, Zan F. Feasibility assessment and underlying mechanisms of metabisulfite pretreatment for enhanced volatile fatty acids production from anaerobic sludge fermentation. WATER RESEARCH 2024; 265:122286. [PMID: 39190952 DOI: 10.1016/j.watres.2024.122286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 08/09/2024] [Accepted: 08/15/2024] [Indexed: 08/29/2024]
Abstract
Employing chemical pretreatment for waste activated sludge (WAS) fermentation is crucial to achieving sustainable sludge management. This study investigated the feasibility of metabisulfite (MS) pretreatment for enhancing volatile fatty acids (VFAs) production from WAS. The results show that after 24-h MS pretreatment, the content of soluble organic matter and loosely bound extracellular polymeric substances (LB-EPS), especially proteins, increased significantly. During the fermentation, MS pretreatment under alkaline conditions was more efficient, with VFA peaking on the fifth day, showing a 140 % increase compared to the alkaline control group. Correlation analysis suggests that the dosage of MS, rather than pH, is closely related to the levels of soluble protein, polysaccharides, LB-EPS, and subsequential VFAs production, while alkaline conditions facilitate the dissolution of total organic carbon. Furthermore, sulfite radicals (SO3•-) are attributed to cell inactivation and lysis, while alkaline conditions initially reduce the size of the flocs, further promoting MS for attacking flocs, thereby improving the performance of fermentation. The study also found that MS pretreatment reduced microbial community diversity, enriched hydrolytic and fermentation bacteria (Actinobacteriota and Firmicutes), and suppressed methanogens (Methanobacteriaceae and Methanosaetaceae), making it a safe, viable, and cost-effective chemical agent for sustainable sludge management.
Collapse
Affiliation(s)
- Muxiang Liang
- School of Environmental Science and Engineering, Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Jing Chen
- School of Environmental Science and Engineering, Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yongrui Dong
- School of Environmental Science and Engineering, Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Gang Guo
- School of Environmental Science and Engineering, Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Xiaohui Wu
- School of Environmental Science and Engineering, Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Feixiang Zan
- School of Environmental Science and Engineering, Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, Huazhong University of Science and Technology, Wuhan, 430074, China.
| |
Collapse
|
9
|
Wang X, Huang S, Wang S, Chen S, Dong S, Zhu Y. Effect of D-limonene on volatile fatty acids production from anaerobic fermentation of waste activated sludge under pH regulation: performance and mechanisms. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122828. [PMID: 39383742 DOI: 10.1016/j.jenvman.2024.122828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/30/2024] [Accepted: 10/02/2024] [Indexed: 10/11/2024]
Abstract
D-limonene extracted from citrus peels possesses an inhibitory effect on methanogenic archaea. This study is aimed to bridge the research gap on the influence of D-limonene on volatile fatty acids (VFA) production from waste activated sludge (WAS) and to address the low VFA yield in standalone anaerobic fermentation of WAS. When the initial pH was not controlled, 1.00 g/g TSS D-limonene resulted in a VFA accumulation of 1175.45 ± 101.36 mg/L (174.45 ± 8.13 mgCOD/gVS). When the initial pH was controlled at 10 and the D-limonene concentration was 0.50 g/g TSS, the VFA accumulation reached 2707.44 ± 183.65 mg/L (445.51 ± 17.10 mgCOD/gVS). The pH-regulated D-limonene treatment enhanced solubilization and acidification, slightly inhibited hydrolysis, and significantly suppressed methanogenesis. D-limonene under alkaline conditions can increase the relative abundance of Clostridium_sensu_stricto, significantly enhancing acidification. Moreover, it markedly inhibited methanogenesis by particularly reducing the relative abundance of Methanothrix that was responsible for acetate consumption, thus favoring the accumulation of VFA. The research reveals the potential mechanism of pH regulation and D-limonene on anaerobic fermentation acid production, providing a theoretical basis for improving the acid production performance of the anaerobic fermentation of WAS.
Collapse
Affiliation(s)
- Xinyun Wang
- Jiangxi Province Key Laboratory of Water Ecological Conservation in Headwater Regions (2023SSY02031), Jiangxi University of Science and Technology, Ganzhou, 341000, China
| | - Shifa Huang
- Jiangxi Province Key Laboratory of Water Ecological Conservation in Headwater Regions (2023SSY02031), Jiangxi University of Science and Technology, Ganzhou, 341000, China
| | - Shihao Wang
- Jiangxi Province Key Laboratory of Water Ecological Conservation in Headwater Regions (2023SSY02031), Jiangxi University of Science and Technology, Ganzhou, 341000, China
| | - Siyuan Chen
- Jiangxi Province Key Laboratory of Water Ecological Conservation in Headwater Regions (2023SSY02031), Jiangxi University of Science and Technology, Ganzhou, 341000, China
| | - Shanyan Dong
- Jiangxi Province Key Laboratory of Water Ecological Conservation in Headwater Regions (2023SSY02031), Jiangxi University of Science and Technology, Ganzhou, 341000, China; Jiangxi Province Ganzhou key laboratory of Basin pollution simulation and control, Ganzhou, 341000, China.
| | - Yichun Zhu
- Jiangxi Province Key Laboratory of Water Ecological Conservation in Headwater Regions (2023SSY02031), Jiangxi University of Science and Technology, Ganzhou, 341000, China; Jiangxi Province Ganzhou key laboratory of Basin pollution simulation and control, Ganzhou, 341000, China
| |
Collapse
|
10
|
Zhang T, Zhang Y, Wang X, Zhang G, Zhao Z, Zhang Y. Enhancing short-chain fatty acids production from waste activated sludge anaerobic fermentation with addition of red mud: Performance and mechanisms. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122771. [PMID: 39362157 DOI: 10.1016/j.jenvman.2024.122771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/28/2024] [Accepted: 09/29/2024] [Indexed: 10/05/2024]
Abstract
Red mud (RM) as hazardous waste produced from aluminum refining industry has threatened the environment and human health. In this study, RM was added into the fermenter to promote short chain fatty acids (SCFAs) production from waste activated sludge (WAS) anaerobic fermentation. Results showed that the addition of RM could effectively improve the SCFAs production, especially, acetic acid. In particular, the production of total SCFAs and acetic acid in 20 g/L RM added fermenter were 1108.1 mg COD/L and 415.5 mg COD/L, which were 116.0% and 1308.0% higher than that in control fermenter. Batch experiment revealed that RM could enhance the hydrolysis and acidification process. Further study indicated that the activity of enzyme related to hydrolysis-acidification, abundance of fermentative bacteria for SCFAs production and functional metabolism genome were all improved with the addition of RM. The potential mechanism maybe that the RM promoted the hydrolysis-acidification process with the contained varies Fe(Ⅲ) oxides as electron acceptor, and the produced Fe2+ could serve as necessary trace elements to synthesize enzyme and then stimulate the expression of enzyme genes.
Collapse
Affiliation(s)
- Tingting Zhang
- School of Ecology and Environment, Zhengzhou University, Kexue Road 100, Zhengzhou, 450001, China
| | - Yuhan Zhang
- School of Ecology and Environment, Zhengzhou University, Kexue Road 100, Zhengzhou, 450001, China
| | - Xiaowei Wang
- School of Ecology and Environment, Zhengzhou University, Kexue Road 100, Zhengzhou, 450001, China
| | - Guangyi Zhang
- School of Water Conservancy and Transportation, Zhengzhou University, Kexue Road 100, Zhengzhou, 450001, China
| | - Zisheng Zhao
- School of Ecology and Environment, Zhengzhou University, Kexue Road 100, Zhengzhou, 450001, China.
| | - Yaobin Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| |
Collapse
|
11
|
Ma T, Liu N, Li Y, Ye Z, Chen Z, Cheng S, Campos LC, Li Z. Effects of Polyethylene Terephthalate Microplastics on Anaerobic Mono-Digestion and Co-Digestion of Fecal Sludge from Septic Tank. Molecules 2024; 29:4692. [PMID: 39407619 PMCID: PMC11478245 DOI: 10.3390/molecules29194692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/22/2024] [Accepted: 09/30/2024] [Indexed: 10/20/2024] Open
Abstract
Anaerobic digestion (AD) is one of the most significant processes for treating fecal sludge. However, a substantial amount of microplastics (MPs) have been identified in septic tanks, and it remains unclear whether they impact the resource treatment of feces. To investigate this, polyethylene terephthalate (PET) was used as an indicator of MPs to study their effect on the anaerobic digestion of fecal sludge (FS). Two digestion systems were developed: FS mono-digestion and FS co-digestion with anaerobic granular sludge. The results indicated that the effects of PET varied between the two systems. PET inhibited volatile fatty acid synthesis in both systems, but the inhibition period differed. During mono-digestion, PET slightly increased gas and methane production, in contrast to the co-digestion system, where PET reduced methane production by 75.18%. Furthermore, in the mono-digestion system, PET increased soluble chemical oxygen demand and ammonia nitrogen concentrations while blocking phosphorus release, whereas the co-digestion system showed the opposite effects. Ultimately, the choice of digestion method is crucial for the resource utilization of septic tank sludge, and the impact of MPs on AD cannot be ignored.
Collapse
Affiliation(s)
- Tingting Ma
- Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Xueyuan Road No. 30, Beijing 100083, China; (T.M.); (Z.Y.); (Z.C.); (Z.L.)
| | - Nana Liu
- Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Xueyuan Road No. 30, Beijing 100083, China; (T.M.); (Z.Y.); (Z.C.); (Z.L.)
| | - Yuxuan Li
- Department of Civil, Environmental & Geomatic Engineering, University College London, London WC1E 6BT, UK; (Y.L.); (L.C.C.)
| | - Ziwang Ye
- Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Xueyuan Road No. 30, Beijing 100083, China; (T.M.); (Z.Y.); (Z.C.); (Z.L.)
| | - Zhengxian Chen
- Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Xueyuan Road No. 30, Beijing 100083, China; (T.M.); (Z.Y.); (Z.C.); (Z.L.)
| | - Shikun Cheng
- Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Xueyuan Road No. 30, Beijing 100083, China; (T.M.); (Z.Y.); (Z.C.); (Z.L.)
| | - Luiza C. Campos
- Department of Civil, Environmental & Geomatic Engineering, University College London, London WC1E 6BT, UK; (Y.L.); (L.C.C.)
| | - Zifu Li
- Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Xueyuan Road No. 30, Beijing 100083, China; (T.M.); (Z.Y.); (Z.C.); (Z.L.)
| |
Collapse
|
12
|
Zhang S, Huang X, Dong W, Li Z, Gao J, Zhou G, Teng X, Cao K, Zheng Z. Unraveling the effects and mechanisms of microplastics on anaerobic fermentation: Exploring microbial communities and metabolic pathways. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 939:173518. [PMID: 38815824 DOI: 10.1016/j.scitotenv.2024.173518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/20/2024] [Accepted: 05/24/2024] [Indexed: 06/01/2024]
Abstract
To investigate the effects of microplastics (MPs) on hydrolysis, acidification and microbial characteristics during waste activated sludge (WAS) anaerobic fermentation process, five different kinds of MPs were added into the WAS fermentation system and results indicated that, compared to the control group, the addition of polyvinyl chloride (PVC)-MPs exhibited the least inhibition on volatile fatty acids (VFAs), reducing them by 13.49 %. Conversely, polyethylene (PE)-MPs resulted in the greatest inhibition, with a reduction of 29.57 %. MPs, while accelerated the dissolution of WAS that evidenced by an increase of lactate dehydrogenase (LDH) release, concurrently inhibited the activities of relevant hydrolytic enzymes (α-Glucosidase, protease). For microbial mechanisms, MPs addition affected the proliferation of key microorganisms (norank_f_Bacteroidetes_vadinHA17, Ottowia, and Propioniclava) and reduced the abundance of genes associated with hydrolysis and acidification (pfkb, gpmI, ilvE, and aces). Additionally, MPs decreased the levels of key hydrolytic and acidogenic enzymes to inhibit hydrolysis and acidification processes. This research provides a basis for understanding and unveils impact mechanisms of the impact of MPs on sludge anaerobic fermentation.
Collapse
Affiliation(s)
- Shuai Zhang
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Xiao Huang
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China; Shenzhen Key Laboratory of Water Resource Utilization and Environmental Pollution Control, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China.
| | - Wenyi Dong
- Shenzhen Key Laboratory of Water Resource Utilization and Environmental Pollution Control, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Zhiying Li
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - JingSi Gao
- Shenzhen Polytechnic, Shenzhen 518055, China.
| | - Guorun Zhou
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Xindong Teng
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Kai Cao
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Zhihao Zheng
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China
| |
Collapse
|
13
|
Elsayad RM, Sharshir SW, Khalil A, Basha AM. Recent advancements in wastewater treatment via anaerobic fermentation process: A systematic review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 366:121724. [PMID: 38971071 DOI: 10.1016/j.jenvman.2024.121724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/20/2024] [Accepted: 07/02/2024] [Indexed: 07/08/2024]
Abstract
This manuscript delves into the realm of wastewater treatment, with a particular emphasis on anaerobic fermentation processes, especially dark, photo, and dark-photo fermentation processes, which have not been covered and overviewed previously in the literature regarding the treatment of wastewater. Moreover, the study conducts a bibliometric analysis for the first time to elucidate the research landscape of anaerobic fermentation utilization in wastewater purification. Furthermore, microorganisms, ranging from microalgae to bacteria and fungi, emphasizing the integration of these agents for enhanced efficiency, are all discussed and compared. Various bioreactors, such as dark and photo fermentation bioreactors, including tubular photo bioreactors, are scrutinized for their design and operational intricacies. The results illustrated that using clostridium pasteurianum CH4 and Rhodopseudomonas palustris WP3-5 in a combined dark-photo fermentation process can treat wastewater to a pH of nearly 7 with over 90% COD removal. Also, integrating Chlorella sp and Activated sludge can potentially treat synthetic wastewater to COD, P, and N percentage removal rates of 99%,86%, and 79%, respectively. Finally, the paper extends to discuss the limitations and future prospects of dark-photo fermentation processes, offering insights into the road ahead for researchers and scientists.
Collapse
Affiliation(s)
- Rahma M Elsayad
- Civil Engineering Department, Faculty of Engineering, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt; Higher Institute of Engineering and Technology, Kafrelsheikh, KFS-HIET, Kafrelsheikh, 33516, Egypt
| | - Swellam W Sharshir
- Mechanical Engineering Department, Faculty of Engineering, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt.
| | - Ahmed Khalil
- Civil Engineering Department, Faculty of Engineering, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt.
| | - Ali M Basha
- Civil Engineering Department, Faculty of Engineering, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt.
| |
Collapse
|
14
|
Li M, Chen H. Enhanced short-chain fatty acid production from sludge anaerobic fermentation by combined pretreatment with sodium pyrophosphate and thermal hydrolysis. BIORESOURCE TECHNOLOGY 2024; 406:131067. [PMID: 38971390 DOI: 10.1016/j.biortech.2024.131067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 07/02/2024] [Accepted: 07/02/2024] [Indexed: 07/08/2024]
Abstract
The slow breakdown of sludge is the primary obstacle hindering the conversion of waste-activated sludge to short-chain fatty acids (SCFAs) by anaerobic fermentation. This study proposed a novel method incorporating sodium pyrophosphate and thermal hydrolysis (SP-TH) for sludge pretreatment and evaluated its effectiveness regarding SCFA production. The combined pretreatment of SP at 0.4 g/g of total suspended solids and TH at 140 °C enhanced SCFA production from 2,169 ± 208 to 4,388 ± 184 mg chemical oxygen demand/L. SP strips extracellular polymeric substances, and the subsequent TH decomposes cells in the sludge, thus promoting sludge hydrolysis. SP-TH pretreatment promoted SCFA accumulation by enhancing enzyme activity and enriching acidifying bacteria. This study demonstrated that SP-TH pretreatment can effectively promote acid production from sludge, providing a new avenue for organic matter recovery through sludge anaerobic fermentation pretreatment.
Collapse
Affiliation(s)
- Mengjie Li
- College of Environment and Resources, Xiangtan University, Xiangtan 411105, PR China
| | - Hongbo Chen
- College of Environment and Resources, Xiangtan University, Xiangtan 411105, PR China.
| |
Collapse
|
15
|
Hou R, Liu J, Yang P, Liu H, Yuan R, Ji Y, Zhao H, Chen Z, Zhou B, Chen H. Metabolomic reveals the responses of sludge properties and microbial communities to high nitrite stress in denitrifying phosphorus removal systems. ENVIRONMENTAL RESEARCH 2024; 252:118924. [PMID: 38631473 DOI: 10.1016/j.envres.2024.118924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/28/2024] [Accepted: 04/10/2024] [Indexed: 04/19/2024]
Abstract
Nitrite, as an electron acceptor, plays a good role in denitrifying phosphorus removal (DPR); however, high nitrite concentration has adverse affects on sludge performance. We investigated the precise mechanisms of responses of sludge to high nitrite stress, including surface characteristics, intracellular and extracellular components, microbial and metabolic responses. When the nitrite stress reached 90 mg/L, the sludge settling performance was improved, but the activated sludge was aging. FTIR and XPS analysis revealed a significant increase in the hydrophobicity of the sludge, resulting in improve settling performance. However, the intracellular carbon sources synthesis was inhibited. In addition, the components in the tightly bound extracellular polymeric substances (TB-EPS) of sludge were significantly reduced and indicated the disturb of metabolism. Notably, Exiguobacterium emerged as a new genus when face high nitrite stress that could maintaining survival in hostile environments. Moreover, metabolomic analysis demonstrated strong biological response to nitrite stress further supported above results that include the inhibited of carbohydrate and amino acid metabolism. More importantly, some lipids (PS, PA, LysoPA, LysoPC and LysoPE) were significantly upregulated that related enhanced membrane lipid remodeling. The comprehensive analyses provide novel insights into the high nitrite stress responses mechanisms in activated sludge systems.
Collapse
Affiliation(s)
- Rongrong Hou
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing, 100083, China
| | - Jiandong Liu
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing, 100083, China
| | - Peng Yang
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing, 100083, China
| | - Haijun Liu
- School of Resources and Environment, Anqing Normal University, Anqing, China.
| | - Rongfang Yuan
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing, 100083, China.
| | - Ying Ji
- Bureau of Ecology and Environment of Beijing Miyun, Miyun, 101599, China
| | - Hongfei Zhao
- Bureau of Ecology and Environment of Beijing Miyun, Miyun, 101599, China
| | - Zhongbing Chen
- Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, Praha Suchdol, 16500, Czech Republic
| | - Beihai Zhou
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing, 100083, China
| | - Huilun Chen
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing, 100083, China.
| |
Collapse
|
16
|
Chen H, Wu Y, Zou Z, Yang X, Tsang YF. Thermal hydrolysis alleviates polyethylene microplastic-induced stress in anaerobic digestion of waste activated sludge. JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134124. [PMID: 38565020 DOI: 10.1016/j.jhazmat.2024.134124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 03/19/2024] [Accepted: 03/23/2024] [Indexed: 04/04/2024]
Abstract
Microplastics are known to negatively affect anaerobic digestion (AD) of waste activated sludge. However, whether thermal hydrolysis (TH) pretreatment alters the impact of microplastics on sludge AD remains unknown. Herein, the effect of TH on the impact of polyethylene (PE) microplastics in sludge AD was investigated. The results showed that the inhibition of methane production by PE at 100 particles/g total solids (TS) was reduced by 31.4% from 12.1% to 8.3% after TH at 170 °C for 30 min. Mechanism analysis indicated TH reduced the potential for reactive oxygen species production induced by PE, resulting in a 29.1 ± 5.5% reduction in cell viability loss. In addition, additive leaching increased as a result of rapid aging of PE microplastics by TH. Acetyl tri-n-butyl citrate (ATBC) release from PE with 10 and 100 particles/g TS increased 11.5-fold and 8.6-fold after TH to 68.2 ± 5.5 μg/L and 124.0 ± 5.1 μg/L, respectively. ATBC at 124.0 μg/L increased methane production by 21.4%. The released ATBC enriched SBR1031 and Euryarchaeota, which facilitate the degradation of proteins and promote methane production. This study reveals the overestimated impact of PE microplastics in sludge AD and provides new insights into the PE microplastics-induced impact in practical sludge treatment and anaerobic biological processes.
Collapse
Affiliation(s)
- Hongbo Chen
- College of Environment and Resources, Xiangtan University, Xiangtan 411105, China.
| | - Yi Wu
- College of Environment and Resources, Xiangtan University, Xiangtan 411105, China
| | - Zhiming Zou
- College of Environment and Resources, Xiangtan University, Xiangtan 411105, China
| | - Xiao Yang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China.
| | - Yiu Fai Tsang
- Department of Science and Environmental Studies, The Education University of Hong Kong, Tai Po, New Territories 999077, Hong Kong, China
| |
Collapse
|
17
|
Yang L, Chen K, Chen L, Zhai S, Li Z, Zhu H. Separation of nutrients from SCFAs with a dynamic membrane in a sludge anaerobic fermenter. CHEMOSPHERE 2024; 355:141824. [PMID: 38548082 DOI: 10.1016/j.chemosphere.2024.141824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/25/2024] [Accepted: 03/26/2024] [Indexed: 04/01/2024]
Abstract
The complexity and high cost to separate and recover short chain fatty acids (SCFAs), ammonium ions, and phosphates in the sludge fermentation liquid hinder the application of sludge anaerobic fermentation. In this study, an interesting phenomenon was found in a sludge anaerobic fermenter with a dynamic membrane (DM) which could not only enhance SCFAs production but also retain most SCFAs in fermenter. The separation factor of DM for NH3-N/SCFAs and PO43-/SCFAs throughout the DM development were about 40 and 80, respectively. Analysis reveals that rejection of SCFAs by DM could not be simply correlated to molecular weight or membrane pore size. The rejection mechanisms might be dominated by Donnan rejection. In addition, biodegradation in the DM may also have contribution. Findings of this study suggest the potential of DM as an economical technology for nutrients and SCFAs recover.
Collapse
Affiliation(s)
- Lisha Yang
- Beijing Key Lab for Source Control Technology of Water Pollution, Beijing Forestry University, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-Remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Kai Chen
- Beijing Key Lab for Source Control Technology of Water Pollution, Beijing Forestry University, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-Remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Long Chen
- Beijing Key Lab for Source Control Technology of Water Pollution, Beijing Forestry University, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-Remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Shixin Zhai
- Beijing Key Lab for Source Control Technology of Water Pollution, Beijing Forestry University, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-Remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Zhuo Li
- Beijing Key Lab for Source Control Technology of Water Pollution, Beijing Forestry University, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-Remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Hongtao Zhu
- Beijing Key Lab for Source Control Technology of Water Pollution, Beijing Forestry University, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-Remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
18
|
Ling Y, Li L, Zhou C, Li Z, Xu J, Shan Q, Hei D, Shi C, Zhang J, Jia W. Mechanism of improving anaerobic fermentation performance of kitchen waste pretreated by ionizing irradiation-part 1: rice. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:25287-25298. [PMID: 38468001 DOI: 10.1007/s11356-024-32731-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 02/27/2024] [Indexed: 03/13/2024]
Abstract
Ionizing irradiation, as a new pretreatment method for the anaerobic fermentation of organic pollutants, is featured with fast reaction speed, good treatment effect, no need to add any chemical reagents, and no secondary pollution. This study explores the mechanism of improving anaerobic fermentation performance of rice samples pretreated by cobalt-60 gamma irradiation through the influence on fermentation substrate, acidogenic phase and methanogenic phase. The results reveal that the soluble chemical oxygen demand of the irradiated rice sample at an absorbed dose of 9.6 kGy increases by 12.4 times due to the dissolution of small molecules of fat-soluble organic matter. The yield of biogas in the acidogenic phase increases by 22.2% with a slight increase in hydrogen gas content. The yield of biogas and methane gas content in the methanogenic phase increases by 27.3% and 15%, respectively. Microbial genome analysis, performed with MiSeq high-throughput sequencing and metagenomic methods, suggests the microbial abundance and metabolic functions in the anaerobic fermentation process change significantly as a result of the pretreatment by gamma irradiation.
Collapse
Affiliation(s)
- Yongsheng Ling
- Department of Nuclear Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, China
- Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, 215021, China
| | - Lingxi Li
- Department of Nuclear Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, China
| | - Chao Zhou
- Department of Nuclear Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, China
| | - Zhen Li
- Department of Nuclear Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, China
| | - Jiahao Xu
- Department of Nuclear Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, China
| | - Qing Shan
- Department of Nuclear Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, China
| | - Daqian Hei
- School of Nuclear Science and Technology, Lanzhou University, Lanzhou, 730000, China
| | - Chao Shi
- Department of Nuclear Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, China
| | - Jiandong Zhang
- Department of Nuclear Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, China
| | - Wenbao Jia
- Department of Nuclear Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, China.
- Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, 215021, China.
| |
Collapse
|
19
|
Liu Y, Duan Y, Chen L, Yang Z, Yang X, Liu S, Song G. Research on the Resource Recovery of Medium-Chain Fatty Acids from Municipal Sludge: Current State and Future Prospects. Microorganisms 2024; 12:680. [PMID: 38674623 PMCID: PMC11051992 DOI: 10.3390/microorganisms12040680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 03/26/2024] [Accepted: 03/27/2024] [Indexed: 04/28/2024] Open
Abstract
The production of municipal sludge is steadily increasing in line with the production of sewage. A wealth of organic contaminants, including nutrients and energy, are present in municipal sludge. Anaerobic fermentation can be used to extract useful resources from sludge, producing hydrogen, methane, short-chain fatty acids, and, via further chain elongation, medium-chain fatty acids. By comparing the economic and use values of these retrieved resources, it is concluded that a high-value resource transformation of municipal sludge can be achieved via the production of medium-chain fatty acids using anaerobic fermentation, which is a hotspot for future research. In this study, the selection of the pretreatment method, the method of producing medium-chain fatty acids, the influence of the electron donor, and the technique used to enhance product synthesis in the anaerobic fermentation process are introduced in detail. The study outlines potential future research directions for medium-chain fatty acid production using municipal sludge. These acids could serve as a starting point for investigating other uses for municipal sludge.
Collapse
Affiliation(s)
- Yuhao Liu
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450046, China; (Y.D.); (L.C.); (Z.Y.); (X.Y.); (S.L.); (G.S.)
| | | | | | | | | | | | | |
Collapse
|
20
|
Gao X, Zhang L, Liu J, Zhang Y, Peng Y. First application of the novel anaerobic/aerobic/anoxic (AOA) process for advanced nutrient removal in a wastewater treatment plant. WATER RESEARCH 2024; 252:121234. [PMID: 38310803 DOI: 10.1016/j.watres.2024.121234] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/18/2023] [Accepted: 01/28/2024] [Indexed: 02/06/2024]
Abstract
The stringent effluent quality standards in wastewater treatment plants (WWTPs) can effectively mitigate environmental issues such as eutrophication by reducing the discharge of nutrients into water environments. However, the current wastewater treatment process often struggles to achieve advanced nutrient removal while also saving energy and reducing carbon consumption. The first full-scale anaerobic/aerobic/anoxic (AOA) system was established with a wastewater treatment scale of 40,000 m3/d. Over one year of operation, the average TN and TP concentration in the effluent of 7.53 ± 0.81 and 0.37 ± 0.05 mg/L was achieved in low TN/COD (C/N) ratio (average 5) wastewater treatment. The post-anoxic zones fully utilized the internal carbon source stored in pre-anaerobic zones, removing 41.29 % of TN and 36.25 % of TP. Intracellular glycogen (Gly) and proteins in extracellular polymeric substances (EPS) served as potential drivers for post-anoxic denitrification and phosphorus uptake. The sludge fermentation process was enhanced by the long anoxic hydraulic retention time (HRT) of the AOA system. The relative abundance of fermentative bacteria was 31.66 - 55.83 %, and their fermentation metabolites can provide additional substrates and energy for nutrient removal. The development and utilization of internal carbon sources in the AOA system benefited from reducing excess sludge production, energy conservation, and advanced nutrient removal under carbon-limited. The successful full-scale validation of the AOA process provided a potentially transformative technology with wide applicability to WWTPs.
Collapse
Affiliation(s)
- Xinjie Gao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Liang Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Jinjin Liu
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Yong Zhang
- Beijing Belant Environmental Technology Co., Ltd., Beijing 100071, PR China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China.
| |
Collapse
|
21
|
Wang N, Gao M, Liu S, Zhu W, Zhang Y, Wang X, Sun H, Guo Y, Wang Q. Electrochemical promotion of organic waste fermentation: Research advances and prospects. ENVIRONMENTAL RESEARCH 2024; 244:117422. [PMID: 37866529 DOI: 10.1016/j.envres.2023.117422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 10/13/2023] [Accepted: 10/15/2023] [Indexed: 10/24/2023]
Abstract
The current methods of treating organic waste suffer from limited resource usage and low product value. Research and development of value-added products emerges as an unavoidable trend for future growth. Electro-fermentation (EF) is a technique employed to stimulate cell proliferation, expedite microbial metabolism, and enhance the production of value-added products by administering minute voltages or currents in the fermentation system. This method represents a novel research direction lying at the crossroads of electrochemistry and biology. This article documents the current progress of EF for a range of value-added products, including gaseous fuels, organic acids, and other organics. It also presents novel value-added products, such as 1,3-propanediol, 3-hydroxypropionic acid, succinic acid, acrylic acid, and lysine. The latest research trends suggest a focus on EF for cogeneration of value-added products, studying microbial community structure and electroactive bacteria, exploring electron transfer mechanisms in EF systems, developing effective methods for nutrient recovery of nitrogen and phosphorus, optimizing EF conditions, and utilizing biosensors and artificial neural networks in this area. In this paper, an analysis is conducted on the challenges that currently exist regarding the selection of conductive materials, optimization of electrode materials, and development of bioelectrochemical system (BES) coupling processes in EF systems. The aim is to provide a reference for the development of more efficient, advanced, and value-added EF technologies. Overall, this paper aims to provide references and ideas for the development of more efficient and advanced EF technology.
Collapse
Affiliation(s)
- Nuohan Wang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Ming Gao
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Shuo Liu
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Wenbin Zhu
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Yuanchun Zhang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Xiaona Wang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Haishu Sun
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Yan Guo
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Qunhui Wang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China; Tianjin College, University of Science and Technology Beijing, Tianjin, 301811, China.
| |
Collapse
|
22
|
Ding W, Fan X, Zhou X, Liu R, Chen C, Jin W, Sun J, Li X, Jiang G, Liu H. Performance and mechanisms of zero valent iron enhancing short-chain fatty acids production during thermophilic anaerobic fermentation of waste activated sludge. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169025. [PMID: 38056647 DOI: 10.1016/j.scitotenv.2023.169025] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 12/08/2023]
Abstract
This work first explored the feasibility and possible mechanisms of zero valent iron (ZVI) pretreatment on the generation of short-chain fatty acids (SCFAs) during thermophilic anaerobic fermentation of waste activated sludge (WAS). Results showed that ZVI enhanced the quantity of SCFAs. On Day 6, the SCFAs production reached 455.84 ± 47.88 mg COD/g VSS at 5 g/L of ZVI addition, which increased by 63.80 % relative to control. The presence of ZVI can effectively promote butyric-based fermentation. ZVI accelerated the destruction of extracellular polymeric substances (EPS) and interior sludge cells, as well as improved biodegradation of soluble organics. Also, ZVI enhanced key enzyme activities (i.e., BK and CoA-), thus promoting degradation rates of acidogenesis (6.30 ± 0.84 mg/(gVSS·h) in glucose) and acetogenesis (74.63 ± 0.29 mg/(gVSS·h) in butyrate). Compared to Fe(III), the contribution of Fe(II) was higher among the decomposition products of ZVI. Besides, ZVI favored Proteobacteria and Actinobacteria, which enhanced acetate formation and organic compounds disassimilation of the process, respectively. The abundance of Tepidiphilus, Thermobrachium and Tepidimicrobium was increased, indicating promoting the system stability of SCFAs production in thermophilic anaerobic fermentation.
Collapse
Affiliation(s)
- Wanqing Ding
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, China
| | - Xiumin Fan
- Shenzhen Ecological and Environmental Intelligent Management and Control Center, Shenzhen 518034, China
| | - Xu Zhou
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, China.
| | - Ruining Liu
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, China
| | - Chuan Chen
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China
| | - Wenbiao Jin
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, China
| | - Jing Sun
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze River Water Environment, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Xuan Li
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Guangming Jiang
- School of Civil, Mining and Environmental Engineering, University of Wollongong, NSW 2522, Wollongong, Australia
| | - Huan Liu
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia
| |
Collapse
|
23
|
Wei Y, Jiao Y, Chen H. Polydimethyldiallylammonium chloride inhibits dark fermentative hydrogen production from waste activated sludge. BIORESOURCE TECHNOLOGY 2024; 393:130003. [PMID: 37977493 DOI: 10.1016/j.biortech.2023.130003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 11/08/2023] [Accepted: 11/09/2023] [Indexed: 11/19/2023]
Abstract
Polydimethyldiallylammonium chloride (PDDA) is an excellent flocculant for wastewater purification and sludge dewatering, but whether it poses a threat to hydrogen production from waste activated sludge is not known. In this study, the effect and underlying mechanism of PDDA on the dark fermentation of sludge was investigated. The results showed that PDDA reduced cumulative hydrogen production from 3.8±0.1 to 2.4±0.1 mL/g volatile suspended solids at 40 g/kg total suspended solids. PDDA impeded the dark fermentation process by inhibiting the activity of key enzymes, presenting a stronger inhibitory effect on the hydrogen production process than the hydrogen consumption process. Additionally, PDDA inhibited Firmicutes by enriching other microorganisms, thereby impeding hydrogen production via the acetate pathway. This study deepens the understanding of the potential effects of PDDA on sludge treatment and provides a theoretical basis for alleviating the negative effects of quaternary ammonium-based cationic flocculants.
Collapse
Affiliation(s)
- Yafei Wei
- College of Environment and Resources, Xiangtan University, Xiangtan 411105, China
| | - Yimeng Jiao
- College of Environment and Resources, Xiangtan University, Xiangtan 411105, China
| | - Hongbo Chen
- College of Environment and Resources, Xiangtan University, Xiangtan 411105, China.
| |
Collapse
|
24
|
Mallick SP, Patel HV, Gawande S, Wadee A, Chen H, McKenna AM, Brazil B, Yu W, Zhao R. Using landfill leachate to indicate the chemical and biochemical activities in elevated temperature landfills. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 351:119719. [PMID: 38043306 DOI: 10.1016/j.jenvman.2023.119719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 11/05/2023] [Accepted: 11/23/2023] [Indexed: 12/05/2023]
Abstract
Landfill leachate properties contain important information and can be a unique indicator for the chemical and biochemical activities in landfills. In the recent decade, more landfills are experiencing elevated temperature, causing an imbalance in the decomposition of solid waste and affecting the properties of the landfill leachate. This study analyzes the properties of leachate from two landfills that were experiencing elevated temperature (ETLFs), samples were collected from both elevated temperature impacted and non-impacted areas in each landfill. The accumulation of volatile fatty acids (VFA) in leachates from elevated temperature impacted areas of both landfill sites revealed that methanogenesis was inhibited by the elevated temperature, which was further confirmed by the more acidic pH, higher H/C elemental ratio, and lower degree of aromaticity of the elevated temperature impacted leachates. Also, carbohydrates depletion indicated possible enhancement of hydrolysis and acidogenesis by elevated temperature, which was supported by compositional comparison of isolated acidic species by negative-ion electrospray ionization (ESI) Fourier transform ion cyclotron resonance mass spectrometry (FT-ICRMS) at 21 T derived from both elevated temperature impacted and non-impacted areas in the same landfill site. Furthermore, leachate organics fractionation showed that leachates not impacted by elevated temperature contain less hydrophilic fraction and more humic fraction than elevated temperature-impacted leachates for both ETLFs.
Collapse
Affiliation(s)
| | - Harsh V Patel
- Department of Civil, Architectural and Environmental Engineering, North Carolina A&T State University, Greensboro, NC, 27411, USA
| | - Sailee Gawande
- Texas Commission on Environmental Quality (TCEQ), Fort Worth, TX, 76118, USA
| | | | - Huan Chen
- National High Magnetic Field Laboratory, 1800 East Paul Dirac Drive, Tallahassee, FL, 32310-4205, USA
| | - Amy M McKenna
- National High Magnetic Field Laboratory, 1800 East Paul Dirac Drive, Tallahassee, FL, 32310-4205, USA; Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO, USA
| | - Brian Brazil
- Waste Management Inc. Gaithersburg, MD, 20878, USA
| | - Wenzheng Yu
- State Key Laboratory of Environmental Aquatic Chemistry, Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Renzun Zhao
- Department of Civil, Architectural and Environmental Engineering, North Carolina A&T State University, Greensboro, NC, 27411, USA.
| |
Collapse
|
25
|
Pang H, Wang Y, Xu Y, He J, Wang L. Innovative cation exchange-driven carbon migration and recovery patterns in anaerobic fermentation of waste activated sludge. BIORESOURCE TECHNOLOGY 2024; 394:130168. [PMID: 38072075 DOI: 10.1016/j.biortech.2023.130168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/05/2023] [Accepted: 12/05/2023] [Indexed: 02/04/2024]
Abstract
Despite numerous treatments have been developed to enhance anaerobic fermentation of waste activated sludge, the innovative cation exchange (CE) approach has been rarely reported, little attempt was conducted to revealcarbon source fate. The interphase carbon balance was illustrated to clarify endogenous carbon dissolution, biotransformation,and recovery patterns. By CE-mediated divalent cation removal, almost 34.72 % of particulate carbon sources were dissolved in 2-day treatment, corresponding to soluble carbon content of 1165.58 mg C/L. Most of the originally dissolved carbon sources (58.01-66.81 %) were bio-transformed to volatile fatty acids with high bioavailability, while the further transformation to biogas was inhibited, contributing to recoverable carbon source accumulation. Overall, 21.38 % of total solid carbon sources were recovered through 8-day fermentation, the carbon extraction was implemented by solid-liquid separation with carbon loss of 14.21-22.91 %, manifesting the valid carbon recovery of 85.05-87.96 mg C/g VSS. Such CE-driven carbon recovery provided negentropy benefits in sustainable cycle economy.
Collapse
Affiliation(s)
- Heliang Pang
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Yan Wang
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Yumeng Xu
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Junguo He
- School of Civil Engineering, Guangzhou University, Guangzhou 510006, China
| | - Ling Wang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266000, China.
| |
Collapse
|
26
|
Ma K, Han X, Li Q, Kong Y, Liu Q, Yan X, Luo Y, Li X, Wen H, Cao Z. Improved anaerobic sludge fermentation mediated by a tryptophan-degrading consortium: Effectiveness assessment and mechanism deciphering. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 350:119623. [PMID: 38029496 DOI: 10.1016/j.jenvman.2023.119623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/28/2023] [Accepted: 11/15/2023] [Indexed: 12/01/2023]
Abstract
The hydrolysis of extracellular polymeric substances (EPS) represents a critical bottleneck in the anaerobic fermentation of waste activated sludge (WAS), while tryptophan is identified as an underestimated constituent of EPS. Herein, we harnessed a tryptophan-degrading microbial consortium (TDC) to enhance the hydrolysis efficiency of WAS. At TDC dosages of 5%, 10%, and 20%, a notable increase in SCOD was observed by factors of 1.13, 1.39, and 1.88, respectively. The introduction of TDC improved both the yield and quality of short chain fatty acids (SCFAs), the maximum SCFA yield increased from 590.6 to 1820.2, 1957.9 and 2194.9 mg COD/L, whilst the acetate ratio within SCFAs was raised from 34.1% to 61.2-70.9%. Furthermore, as TDC dosage increased, the relative activity of protease exhibited significant increments, reaching 116.3%, 168.0%, and 266.1%, respectively. This enhancement facilitated WAS solubilization and the release of organic substances from bound EPS into soluble EPS. Microbial analysis identified Tetrasphaera and Soehngenia as key participants in WAS solubilization and the breakdown of protein fraction. Metabolic analysis revealed that TDC triggered the secretion of enzymes associated with amino acid metabolism and fatty acid biosynthesis, thereby fostering the decomposition of proteins and production of SCFAs.
Collapse
Affiliation(s)
- Kaili Ma
- School of Environment, Henan Normal University, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Xinxiang, 453000, China.
| | - Xinxin Han
- School of Environment, Henan Normal University, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Xinxiang, 453000, China
| | - Qiujuan Li
- School of Environment, Henan Normal University, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Xinxiang, 453000, China
| | - Yu Kong
- School of Environment, Henan Normal University, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Xinxiang, 453000, China
| | - Qiaoli Liu
- School of Environment, Henan Normal University, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Xinxiang, 453000, China
| | - Xu Yan
- School of Environment, Henan Normal University, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Xinxiang, 453000, China
| | - Yahong Luo
- School of Environment, Henan Normal University, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Xinxiang, 453000, China
| | - Xiaopin Li
- School of Environment, Henan Normal University, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Xinxiang, 453000, China
| | - Huiyang Wen
- School of Environment, Henan Normal University, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Xinxiang, 453000, China
| | - Zhiguo Cao
- School of Environment, Henan Normal University, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Xinxiang, 453000, China
| |
Collapse
|
27
|
Quan C, Chen C, Li X, Gao N. Performance of volatile fatty acids production from food waste at the presence of alkyl ethoxy polyglycosides and sodium dodecyl sulfate. CHEMOSPHERE 2023; 343:140215. [PMID: 37734502 DOI: 10.1016/j.chemosphere.2023.140215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/31/2023] [Accepted: 09/18/2023] [Indexed: 09/23/2023]
Abstract
In the current context of technological and industrial development, strategies for sustainable development and resource utilization have become increasingly important. FW anaerobic fermentation (Fermentation of Wastes) is a process that utilizes organic waste for biotransformation and is widely used for the production of volatile fatty acids (VFAs). Volatile fatty acids (VFAs) are a kind of high value-added product generated from anaerobic fermentation process, and has extensive applications in chemical synthesis and electricity generation. This study investigated the performance of VFAs production from food waste at the presence of alkyl ethoxy polyglycosides (AEG) and sodium dodecyl sulfate (SDS). The highest yield of VFAs was obtained at 0.1 g AEG/g TS (14.53 g COD/L), which increased by 25.80% than the Blank. But inhibited phenomenon was observed at other reactors with relatively low yield and delayed fermentation time. The inhibition of lactate's production and bioconversion delayed the fermentation time, and SDS has changed the acidogenic fermentation type from lactate-butyrate fermentation to acetate fermentation. In addition, more organic matter dissolved in the fermentation liquor with the addition of AEG and SDS, but the hydrolysis and acidification of polysaccharide were inhibited to some extent. Microbial community analysis showed that the abundance of key bacteria Clostridium has significantly decreased from 82.71% (Blank) to 33.54% (AEG) and 23.72% (SDS), leading to low VFAs production performance.
Collapse
Affiliation(s)
- Cui Quan
- School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Changxiang Chen
- School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Xinggang Li
- Xi'an Aerospace Chemical Propulsion Co., Ltd, Xi'an, 710049, China
| | - Ningbo Gao
- School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, 710049, China.
| |
Collapse
|
28
|
Gao P, Ming X, Wang X, Chen Z, Liu Y, Li X, Zhang D. Effects of ozone on activated sludge: performance of anaerobic digestion and structure of the microbial community. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2023; 88:2826-2836. [PMID: 38096071 PMCID: wst_2023_378 DOI: 10.2166/wst.2023.378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
The treatment and disposal of activated sludge are currently challenging tasks in the world. As a common biological engineering technology, biological fermentation exists with disadvantages such as low efficiency and complex process. Ozone pretreatments are commonly applied to improve this problem due to their high efficiency and low cost. In this study, the significant function of ozone in anaerobic fermentation gas production was verified with excess sludge. Compared with other untreated sludge, ozone pretreatment can effectively degrade activated sludge. After ozone treatment and mixing with primary sludge, the methane production of excess sludge increased by 49.30 and 50.78%, and the methanogenic activity increased by 69.99 and 73.83%, respectively. The results indicated that the mixing of primary sludge with excess sludge possessed synergistic effects, which contributed to the anaerobic fermentation of excess sludge. The results of microbial community structure exhibited that methanogenic processes mainly involve hydrogenogens, acidogens and methanogens. The relative abundance of both bacteria and microorganisms changed significantly in the early stage of hydraulic retention time, which coincided exactly with the gas production stage. This study provided a feasible pretreatment strategy to improve sludge biodegradability and revealed the role of microorganisms during anaerobic digestion.
Collapse
Affiliation(s)
- Pei Gao
- P.G. and X.M. contributed equally to this work. E-mail:
| | - Xujia Ming
- P.G. and X.M. contributed equally to this work
| | | | | | | | | | | |
Collapse
|
29
|
Pang H, Xu Y, Zhang Y, Wei Q, Xu D, Liu J, Lu J. Endogenous biopolymer hydrolysis for enhancing short-chain fatty acids recovery from excess sludge: Combination of lysozyme-catalyzing and cation exchange resin-mediated metal regulation. CHEMOSPHERE 2023; 341:140102. [PMID: 37683954 DOI: 10.1016/j.chemosphere.2023.140102] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/04/2023] [Accepted: 09/05/2023] [Indexed: 09/10/2023]
Abstract
In decades, anaerobic fermentation with short-chain fatty acids (SCFAs) recovery from excess sludge have attained rising attention. However, rigid particulate organic matter (POMs) structure with slow hydrolysis limited anaerobic fermentation performance of excess sludge. Remarkable sludge hydrolysis performance was supposed to be achievable by the synchronous EPS repture and microbial cell lysis. This study clarified the improvement of overall anaerobic fermentation performance by combination treatment of lysozyme (Lyso) catalysis and metal regulation (MR). The Lyso + MR treatment triggered EPS rupture by protein structure deflocculation while catalyzing microbial cell lysis, which promoted massive extracellular and intracellular POMs hydrolysis. As a result, a significant amount of SCOD (5646.67 mg/L) was produced. Such endogenous organic matters hydrolysis led to considerable SCFAs accumulation (3651.14 mg COD/L) through 48-h anaerobic fermentation at 1.75 g/g SS cation-exchange resin and Lyso dosage of 10% (w/w), which was 5.945 times higher than that in the control. Additionally, it suggested that most of the recovered SCFAs remained in fermentative liquid after chemical conditioning and mechanical dewatering towards solid-liquid separation, which provided considerable economic benefit of 363.6-1059.1 CNY/ton SS.
Collapse
Affiliation(s)
- Heliang Pang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, College of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310012, China.
| | - Yumeng Xu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Yuyao Zhang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Qiao Wei
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Dong Xu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Jinxuan Liu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Jinsuo Lu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
| |
Collapse
|
30
|
Liu F, Cheng W, Xu J, Wang M, Wan T, Ren J, Li D, Xie Q. Promoting short-chain fatty acids production from sewage sludge via acidogenic fermentation: Optimized operation factors and iron-based persulfate activation system. CHEMOSPHERE 2023; 342:140148. [PMID: 37714473 DOI: 10.1016/j.chemosphere.2023.140148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 08/10/2023] [Accepted: 09/10/2023] [Indexed: 09/17/2023]
Abstract
Promoting short-chain fatty acids (SCFAs) production and ensuring the stability of SCFAs-producing process are becoming the two major issues for popularizing the acidogenic fermentation (AF). The key controlling operating and influencing factors during anaerobic fermentation process were thoroughly reviewed to facilitate better process performance prediction and to optimize the process control of SCFAs promotion. The wide utilization of iron salt flocculants during wastewater treatment could result in iron accumulating in sewage sludge which influenced AF performance. Additionally, appropriate ferric chloride (FC) could promote the SCFAs accumulation, while poly ferric sulfate (PFS) inhibited the bioprocess. Iron/persulfate (PS) system was proved to effectively enhance the SCFAs production while mechanism analysis revealed that the strong oxidizing radicals remarkably enhanced the solubilization and hydrolysis. Moreover, the changes of oxidation-reduction potential (ORP) and pH caused by iron/PS system exhibited more negative effects on the methanogens, comparing to the acidogenic bacteria. Furthermore, performance and mechanisms of different iron species-activating PS, organic chelating agents and iron-rich biochar derived from sewage sludge were also elucidated to extend and strengthen understanding of the iron/PS system for enhancing SCFAs production. Considering the large amount of generated Fe-sludge and the multiple benefits of iron activating PS system, carbon neutral wastewater treatment plants (WWTPs) were proposed with Fe-sludge as a promising recycling composite to improve AF performance. It is expected that this review can deepen the knowledge of optimizing AF process and improving the iron/PS system for enhancing SCFAs production and provide useful insights to researchers in this field.
Collapse
Affiliation(s)
- Faxin Liu
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi'an University of Technology, NO.5, South Jinhua Road, Xi'an, Shaanxi, 710048, China
| | - Wen Cheng
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi'an University of Technology, NO.5, South Jinhua Road, Xi'an, Shaanxi, 710048, China.
| | - Jianping Xu
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi'an University of Technology, NO.5, South Jinhua Road, Xi'an, Shaanxi, 710048, China
| | - Min Wang
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi'an University of Technology, NO.5, South Jinhua Road, Xi'an, Shaanxi, 710048, China
| | - Tian Wan
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi'an University of Technology, NO.5, South Jinhua Road, Xi'an, Shaanxi, 710048, China
| | - Jiehui Ren
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi'an University of Technology, NO.5, South Jinhua Road, Xi'an, Shaanxi, 710048, China
| | - Dong Li
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi'an University of Technology, NO.5, South Jinhua Road, Xi'an, Shaanxi, 710048, China
| | - Qiqi Xie
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi'an University of Technology, NO.5, South Jinhua Road, Xi'an, Shaanxi, 710048, China
| |
Collapse
|
31
|
Liu L, Pan Y, Zhi X, Chen L, Zhu H. Bacterial antioxidant mechanism in calcium peroxide aided sludge anaerobic fermentation. BIORESOURCE TECHNOLOGY 2023; 384:129327. [PMID: 37328013 DOI: 10.1016/j.biortech.2023.129327] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/13/2023] [Accepted: 06/11/2023] [Indexed: 06/18/2023]
Abstract
Although calcium peroxide (CaO2) can enhance the short-chain fatty acids (SCFAs) production in sludge anaerobic fermentation, the microbiological mechanisms underlying this process remain unclear. In this study, it is aimed to elucidate the bacterial protective mechanisms in response to the oxidative stress induced by CaO2. Results show that extracellular polymeric substance (EPS) and anti-oxidant enzymes play vital roles in protecting bacterial cells from CaO2. The addition of CaO2 resulted in increased relative abundances of genes exoP and SRP54, which are associated with EPS secretion and transportation. Superoxide dismutase (SOD) played a crucial in alleviating oxidative stress. The dosage of CaO2 significantly influences the succession of the bacterial community in the anaerobic fermentation system. With 0.3 g CaO2/g VSS, the net income was approximately 4 USD/ton of sludge treated. The CaO2-assisted anaerobic fermentation process has the potential to recover more resources from sludge and thus, benefit the environment.
Collapse
Affiliation(s)
- Li Liu
- Beijing Key Lab for Source Control Technology of Water Pollution, Beijing Forestry University, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Yu Pan
- Beijing Key Lab for Source Control Technology of Water Pollution, Beijing Forestry University, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Xiaohan Zhi
- Beijing Key Lab for Source Control Technology of Water Pollution, Beijing Forestry University, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Long Chen
- Beijing Key Lab for Source Control Technology of Water Pollution, Beijing Forestry University, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Hongtao Zhu
- Beijing Key Lab for Source Control Technology of Water Pollution, Beijing Forestry University, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
32
|
Kwon Y, Park J, Kim GB, Jo Y, Park S, Kim SH. High-rate anaerobic digestion of sewage sludge using anaerobic dynamic membrane bioreactor under various sludge composition and organic loading rates. BIORESOURCE TECHNOLOGY 2023:129275. [PMID: 37290708 DOI: 10.1016/j.biortech.2023.129275] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/13/2023] [Accepted: 06/01/2023] [Indexed: 06/10/2023]
Abstract
This study investigates the effects of sludge compositions and organic loading rates (OLRs) on stable biomethane production during sludge digestion. Batch digestion experiments evaluate the effects of alkaline-thermal pretreatment and waste activated sludge (WAS) fractions on the biochemical methane potential (BMP) of sludge. A lab-scale anaerobic dynamic membrane bioreactor (AnDMBR) is fed with a mixture of primary sludge and pretreated WAS. Monitoring of volatile fatty acid to total alkalinity (FOS/TAC) helps maintain operational stability. The highest average biomethane production rate of 0.7 L/L·d is achieved when the OLR, hydraulic retention time, WAS volume fraction, and FOS/TAC ratio are 5.0 g COD/L·d, 12 days, 0.75, and 0.32, respectively. This study finds functional redundancy in two pathways: hydrogenotrophic and acetolactic. An increase in OLR promotes bacterial and archaeal abundance and specific methanogenic activity. These results can be applied to the design and operation of sludge digestion for stable, high-rate biomethane recovery.
Collapse
Affiliation(s)
- Yeelyung Kwon
- Department of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Jungsu Park
- Department of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Gi-Beom Kim
- Department of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Yura Jo
- Department of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Soyoung Park
- Department of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Sang-Hyoun Kim
- Department of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea.
| |
Collapse
|
33
|
Huang J, Wang C, Zhang S, Han X, Feng R, Li Y, Huang X, Wang J. Optimizing nitrogenous organic wastewater treatment through integration of organic capture, anaerobic digestion, and anammox technologies: sustainability and challenges. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27410-6. [PMID: 37261686 DOI: 10.1007/s11356-023-27410-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 04/30/2023] [Indexed: 06/02/2023]
Abstract
With China's recent commitment to reducing carbon emissions and achieving carbon neutrality, anaerobic digestion and anaerobic ammonium oxidation (anammox) have emerged as promising technologies for treating nitrogenous organic wastewater. Anaerobic digestion can convert organic matter into volatile fatty acids (VFAs), methane, and other chemicals, while anammox can efficiently remove nitrogen with minimal energy consumption. This study evaluates the principles and characteristics of enhanced chemical flocculation and bioflocculation, as well as membrane separation, for capturing organic matter. Additionally, the paper evaluates the production of acids and methane from anaerobic digestion, exploring the influence of various factors and the need for control strategies. The features, challenges, and concerns of partial nitrification-anammox (PN/A) and partial denitrification-anammox (PD/A) are also outlined. Finally, an integrated system that combined organic capture, anaerobic digestion, and anammox is proposed as a sustainable and effective solution for treating nitrogenous organic wastewater and recovering energy and resources.
Collapse
Affiliation(s)
- Jianming Huang
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Ding 11#, Xueyuan Road, Haidian District, Beijing, 100083, People's Republic of China
| | - Chunrong Wang
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Ding 11#, Xueyuan Road, Haidian District, Beijing, 100083, People's Republic of China.
| | - Shujun Zhang
- Beijing Drainage Group Co. Ltd (BDG), Beijing, 100022, China
| | - Xiaoyu Han
- Beijing Drainage Group Co. Ltd (BDG), Beijing, 100022, China
| | - Rongfei Feng
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Ding 11#, Xueyuan Road, Haidian District, Beijing, 100083, People's Republic of China
| | - Yang Li
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Ding 11#, Xueyuan Road, Haidian District, Beijing, 100083, People's Republic of China
| | - Xiaoyan Huang
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Ding 11#, Xueyuan Road, Haidian District, Beijing, 100083, People's Republic of China
| | - Jianbing Wang
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Ding 11#, Xueyuan Road, Haidian District, Beijing, 100083, People's Republic of China
| |
Collapse
|
34
|
Wang S, Jiang T, Chen X, Xiong K, Wang Y. Enhanced volatile fatty acid production from waste activated sludge by urea hydrogen peroxide: performance and mechanisms. RSC Adv 2023; 13:15714-15722. [PMID: 37235110 PMCID: PMC10206479 DOI: 10.1039/d3ra02538a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
Anaerobic acidogenesis of waste activated sludge (WAS) presents significant potential for resource recovery and waste treatment. However, the slow hydrolysis of WAS limits the efficiency of this approach. In this study, we applied urea hydrogen peroxide (UHP) pretreatment to enhance WAS hydrolysis and investigated the effects of operating parameters on volatile fatty acid (VFA) production and the associated mechanisms. Results demonstrated that UHP significantly improved WAS hydrolysis and VFA production, with a three-fold increase in soluble chemical oxygen demand (SCOD) compared to the control group. UHP dosage emerged as the most critical factor for VFA production, with the maximum VFA concentration increasing from 1127.6 to 8800.9 mg COD per L as UHP dosage ranged from 0 to 6 mmol g-1 VSS (Volatile suspended solids). At an optimal UHP dosage of 4 mmol g-1 VSS, both the unit oxidant promotion efficiency (ΔVFAs/ΔUHP) and the maximum VFA concentration reached relatively high levels, at 35.3 mg COD per mmol and 7527.3 mg COD per L, respectively. UHP pretreatment generated alkaline conditions, H2O2, ·OH and free ammonia, which collectively disrupted the extracellular polymeric substances (EPS) structure, transforming unextractable EPS into extractable forms and promoting the release of organic matter during both the pretreatment and fermentation stages. Excitation-emission matrix (EEM) analysis revealed that UHP increased the concentration of easily utilizable organic matter, providing more substrates for acidogenic bacteria and enhancing VFA production. Furthermore, weak alkaline conditions and high free ammonia concentrations in the UHP group facilitated VFA accumulation by preventing rapid acidification and suppressing methanogen activity. This study offers valuable insights into the potential of UHP pretreatment for enhancing WAS hydrolysis and VFA production, with promising applications in wastewater treatment and resource recovery.
Collapse
Affiliation(s)
- Siyi Wang
- School of Resources and Environmental Engineering, Wuhan University of Technology Wuhan 430070 China
| | - Tianbing Jiang
- School of Resources and Environmental Engineering, Wuhan University of Technology Wuhan 430070 China
| | - Xiaoguo Chen
- School of Resources and Environmental Engineering, Wuhan University of Technology Wuhan 430070 China
- Hubei Key Laboratory of Mineral Resources Processing and Environment Wuhan 430070 China
| | - Kai Xiong
- School of Resources and Environmental Engineering, Wuhan University of Technology Wuhan 430070 China
| | - Yanzhe Wang
- School of Resources and Environmental Engineering, Wuhan University of Technology Wuhan 430070 China
| |
Collapse
|
35
|
Wang Q, Xin W, Shao Z, Usman M, Li J, Shang P, Kou Y, El-Din MG, Chen C. Role of pretreatment type and microbial mechanisms on enhancing volatile fatty acids production during anaerobic fermentation of refinery waste activated sludge. BIORESOURCE TECHNOLOGY 2023; 381:129122. [PMID: 37141997 DOI: 10.1016/j.biortech.2023.129122] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 04/24/2023] [Accepted: 04/27/2023] [Indexed: 05/06/2023]
Abstract
This study compared the effects of alkaline, thermal, thermal-peroxymonosulfate (PMS), and alkyl polyglucose (APG) pretreatments on volatile fatty acids (VFAs) production from refinery waste activated sludge (RWAS), including VFAs yield, composition, organics components, microbial communities, and the potential improvement of mechanisms. All pretreatments effectively enhanced the bioconversion of RWAS and consequently promoted the hydrolysis process, which inhibited the methanogenesis process. However, the release of lignin/carboxyl-rich alicyclic molecules (CRAM)-like compounds and tannin substances in thermal-PMS and APG groups significantly influenced the acidogenesis and acetogenesis processes. Among all pretreatments, alkaline pretreatment showed the highest VFAs yield of 95.06 mg/g volatile solids (VS) and VS removal of 17%. This result could be associated with the enrichment of functional hydrolytic-acidification bacteria, such as Planococcus and Soehngenia, and increased metabolism of amino acids, carbohydrates, and nucleotides. By considering an economical and efficient perspective, this study recommended the alkaline pretreatment for the anaerobic fermentation of RWAS.
Collapse
Affiliation(s)
- Qinghong Wang
- State Key Laboratory of Petroleum Pollution Control, Beijing Key Laboratory of Oil and Gas Pollution Control, China University of Petroleum-Beijing, Beijing 102249, China
| | - Wenzhuo Xin
- State Key Laboratory of Petroleum Pollution Control, Beijing Key Laboratory of Oil and Gas Pollution Control, China University of Petroleum-Beijing, Beijing 102249, China
| | - Zhiguo Shao
- State Key Laboratory of Petroleum Pollution Control, CNPC Research Institute of Safety and Environmental Technology, Beijing 102200, China
| | - Muhammad Usman
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada
| | - Jin Li
- State Key Laboratory of Petroleum Pollution Control, Beijing Key Laboratory of Oil and Gas Pollution Control, China University of Petroleum-Beijing, Beijing 102249, China
| | - Pengyin Shang
- State Key Laboratory of Petroleum Pollution Control, Beijing Key Laboratory of Oil and Gas Pollution Control, China University of Petroleum-Beijing, Beijing 102249, China
| | - Yue Kou
- State Key Laboratory of Petroleum Pollution Control, Beijing Key Laboratory of Oil and Gas Pollution Control, China University of Petroleum-Beijing, Beijing 102249, China
| | - Mohamed Gamal El-Din
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada
| | - Chunmao Chen
- State Key Laboratory of Petroleum Pollution Control, Beijing Key Laboratory of Oil and Gas Pollution Control, China University of Petroleum-Beijing, Beijing 102249, China.
| |
Collapse
|
36
|
Castro-Fernandez A, Taboada-Santos A, Balboa S, Lema JM. Thermal hydrolysis pre-treatment has no positive influence on volatile fatty acids production from sewage sludge. BIORESOURCE TECHNOLOGY 2023; 376:128839. [PMID: 36906240 DOI: 10.1016/j.biortech.2023.128839] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/28/2023] [Accepted: 03/04/2023] [Indexed: 06/18/2023]
Abstract
The study compares the potential to produce volatile fatty acids (VFA) from sewage sludge, both raw and thermally pre-treated in two modes of operation. In batch mode, raw sludge at pH 8 obtained the highest maximum VFA yield (0.41 g COD-VFA/g CODfed) whereas pre-treated sludge achieved a lower value (0.27 g COD-VFA/g CODfed). The operation of 5-L continuous reactors showed that thermal hydrolysis pre-treatment (THP) did not have any significant influence on VFA yields, averaging 15.1 % g COD-VFA/g COD with raw sludge and 16.6 % g COD-VFA/g COD with pre-treated one. Microbial community analysis showed that phylum Firmicutes was predominant in both reactors and that the enzymatic profiles involved in VFA production were very similar regardless of the substrate fed.
Collapse
Affiliation(s)
- Ander Castro-Fernandez
- CETAQUA, Water Technology Centre, A Vila da Auga, José Villar Granjel 33, E-15890, Santiago de Compostela, Spain; CRETUS Institute, Department of Chemical Engineering, School of Engineering, Universidade de Santiago de Compostela, E-15782, Santiago de Compostela, Spain.
| | - Anton Taboada-Santos
- CETAQUA, Water Technology Centre, A Vila da Auga, José Villar Granjel 33, E-15890, Santiago de Compostela, Spain
| | - Sabela Balboa
- CRETUS Institute, Department of Chemical Engineering, School of Engineering, Universidade de Santiago de Compostela, E-15782, Santiago de Compostela, Spain
| | - Juan M Lema
- CRETUS Institute, Department of Chemical Engineering, School of Engineering, Universidade de Santiago de Compostela, E-15782, Santiago de Compostela, Spain
| |
Collapse
|
37
|
Kang D, Zhao X, Wang N, Suo Y, Yuan J, Peng Y. Redirecting carbon to recover VFA to facilitate biological short-cut nitrogen removal in wastewater treatment: A critical review. WATER RESEARCH 2023; 238:120015. [PMID: 37146394 DOI: 10.1016/j.watres.2023.120015] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 04/24/2023] [Accepted: 04/27/2023] [Indexed: 05/07/2023]
Abstract
Wastewater treatment plants (WWTPs) are facing a great challenge to transition from energy-intensive to carbon-neutral and energy-efficient systems. Biological nutrient removal (BNR) can be severely impacted by carbon limitation, particularly for wastewater with a low carbon-to-nitrogen (C/N) ratio, which can significantly increase the operational costs. Waste activated sludge (WAS) is a valuable byproduct of WWTPs, as it contains high levels of organic matter that can be utilized to improve BNR management by recovering and reusing the fermentative volatile fatty acids (VFAs). This review provides a comprehensive examination of the recovery and reuse of VFAs in wastewater management, with a particular focus on advancing the preferable biological short-cut nitrogen removal process for carbon-insufficient municipal wastewaters. First, the method of carbon redirection for recovering VFAs was reviewed. Carbon could be captured through the two-stage A/B process or via sludge fermentation with different sludge pretreatment and process control strategies to accelerate sludge hydrolysis and inhibit methanogens to enhance VFA production. Second, VFAs can support the metabolism of autotrophic N-cycling microorganisms involved in wastewater treatment, such as AOB, NOB, anammox, and comammox bacteria. However, VFAs can also cause inhibition at high concentrations, leading to the partition of AOB and NOB; and can promote partial denitrification as an efficient carbon source for heterotrophic denitrifiers. Third, the lab- and pilot-scale engineering practices with different configurations (i.e., A2O, SBR, UASB) were summarized that have shown the feasibility of utilizing the fermentate to achieve superior nitrogen removal performance without the need for external carbon addition. Lastly, the future perspectives on leveraging the relationships between mainstream and sidestream, nitrogen and phosphorus, autotrophs and heterotrophs were given for sustainable and efficient BNR management.
Collapse
Affiliation(s)
- Da Kang
- Department of Environmental Engineering, National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, China
| | - Xuwei Zhao
- Department of Environmental Engineering, National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, China
| | - Nan Wang
- Department of Environmental Engineering, National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, China
| | - Yirui Suo
- Department of Environmental Engineering, National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, China
| | - Jiawei Yuan
- Department of Environmental Engineering, National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, China
| | - Yongzhen Peng
- Department of Environmental Engineering, National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, China.
| |
Collapse
|
38
|
Randazzo A, Zorzi F, Venturi S, Bicocchi G, Viti G, Tatàno F, Tassi F. Degradation of biogas in a simulated landfill cover soil at laboratory scale: Compositional changes of main components and volatile organic compounds. WASTE MANAGEMENT (NEW YORK, N.Y.) 2023; 157:229-241. [PMID: 36577274 DOI: 10.1016/j.wasman.2022.12.027] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 12/18/2022] [Accepted: 12/20/2022] [Indexed: 06/17/2023]
Abstract
A laboratory experiment lasting 28 days was run to simulate a typical landfill system and to investigate the compositional changes affecting the main components (CH4, CO2, and H2) and nonmethane volatile organic compounds from biogas generated by anaerobic digestion of food waste and passing through a soil column. Gas samples were periodically collected from both the digester headspace and the soil column at increasing distances from the biogas source. CH4 and H2 were efficiently degraded along the soil column. The isotopic values of δ13C measured in CH4 and CO2 from the soil column were relatively enriched in 13C compared to the biogas. Aromatics and alkanes were the most abundant groups in the biogas samples. Among these compounds, alkylated benzenes and long-chain C3+ alkanes were significantly degraded within the soil column, whereas benzene and short-chain alkanes were recalcitrant. Terpene and O-substituted compounds were relatively stable under oxidising conditions. Cyclic, alkene, S-substituted, and halogenated compounds, which exhibited minor amounts in the digester headspace, were virtually absent in the soil column. These results pointed out how many recalcitrant potentially toxic and polluting compounds tend to be relatively enriched along the soil column, claiming action to minimise diffuse landfill gas (LFG) emissions. The proposed experimental approach represents a reliable tool for investigating the attenuation capacities of landfill cover soils for LFG components and developing optimised covers by adopting proper soil treatments and operating conditions to improve their degradation efficiencies.
Collapse
Affiliation(s)
- Antonio Randazzo
- Department of Earth Sciences, University of Florence, Via G. La Pira 4, 50121 Firenze, Italy; IGG - Institute of Geosciences and Earth Resources, CNR - National Research Council of Italy, Via G. La Pira 4, 50121 Firenze, Italy.
| | - Francesca Zorzi
- Department of Earth Sciences, University of Florence, Via G. La Pira 4, 50121 Firenze, Italy
| | - Stefania Venturi
- Department of Earth Sciences, University of Florence, Via G. La Pira 4, 50121 Firenze, Italy; IGG - Institute of Geosciences and Earth Resources, CNR - National Research Council of Italy, Via G. La Pira 4, 50121 Firenze, Italy
| | - Gabriele Bicocchi
- Department of Earth Sciences, University of Florence, Via G. La Pira 4, 50121 Firenze, Italy
| | - Gregorio Viti
- Department of Earth Sciences, University of Florence, Via G. La Pira 4, 50121 Firenze, Italy
| | - Fabio Tatàno
- DiSPeA - Department of Pure and Applied Sciences, Section ChEM - Chemistry, Environment, and Materials, University of Urbino "Carlo Bo", Campus Scientifico "E. Mattei", 61029 Urbino, Italy
| | - Franco Tassi
- Department of Earth Sciences, University of Florence, Via G. La Pira 4, 50121 Firenze, Italy; IGG - Institute of Geosciences and Earth Resources, CNR - National Research Council of Italy, Via G. La Pira 4, 50121 Firenze, Italy
| |
Collapse
|
39
|
Fan Y, Yin M, Chen H. Insights into the role of chitosan in hydrogen production by dark fermentation of waste activated sludge. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 859:160401. [PMID: 36414059 DOI: 10.1016/j.scitotenv.2022.160401] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/16/2022] [Accepted: 11/17/2022] [Indexed: 06/16/2023]
Abstract
Chitosan is widely used as a dewatering flocculant, but whether it affects hydrogen production from sludge anaerobic fermentation is unclear. This study aimed to elucidate the role of chitosan in the dark fermentation of waste activated sludge for hydrogen production. The results showed that chitosan had a negative effect on hydrogen production from sludge. Chitosan at 30 g/kg total suspended solids reduced hydrogen accumulation by 56.70 ± 1.22 % from 3.94 ± 0.12 to 1.71 ± 0.10 mL/g volatile suspended solids. Chitosan hindered the solubilization of sludge by flocculation, which reduced the available substrate for anaerobic fermentation. In addition, chitosan interfered with the electron transport system by reducing cytochrome C and caused lipid peroxidation by inducing reactive oxygen species, thereby inhibiting the activity of enzymes involved in anaerobic fermentation. Hydrogen production was reduced because hydrogen-producing processes (i.e., hydrolysis, acidification, and acetification) were inhibited more strongly than hydrogen-consuming processes (i.e., methanogenesis, sulfate reduction, and homoacetogenesis). Furthermore, chitosan enriched the abundance of Spirochaetaceae sp. and Holophagaceae sp., which occupied the survival space of hydrogen-producing microorganisms. This study reveals the potential impact of chitosan on hydrogen production in dark fermentation of sludge and provide direct evidence that chitosan triggers oxidative stress in anaerobic fermentation.
Collapse
Affiliation(s)
- Yanchen Fan
- College of Environment and Resources, Xiangtan University, Xiangtan 411105, China
| | - Mengyu Yin
- College of Environment and Resources, Xiangtan University, Xiangtan 411105, China
| | - Hongbo Chen
- College of Environment and Resources, Xiangtan University, Xiangtan 411105, China.
| |
Collapse
|
40
|
Chen H, Zou Z, Tang M, Yang X, Tsang YF. Polycarbonate microplastics induce oxidative stress in anaerobic digestion of waste activated sludge by leaching bisphenol A. JOURNAL OF HAZARDOUS MATERIALS 2023; 443:130158. [PMID: 36257110 DOI: 10.1016/j.jhazmat.2022.130158] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/24/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
Polycarbonate (PC) microplastics are frequently detected in waste activated sludge. However, understanding the potential impact of PC microplastics on biological sludge treatment remains challenging. By tracking the changes in methane production under different concentrations of PC microplastics, a dose-dependent effect of PC microplastics on anaerobic digestion of sludge was observed. PC microplastics at 10-60 particles/g total solids (TS) improved methane production by up to 24.7 ± 0.1 % (at 30 particles/g TS), while 200 particles/g TS PC microplastics reduced methane production by 8.09 ± 0.1 %. Bisphenol A (BPA) leached from 30 particles/g TS PC microplastics (1.26 ± 0.18 mg/L) down-regulated intracellular reactive oxygen species (ROS) production, thereby enhancing enzyme activity, biomass viability, and abundance of methanogenic (Methanobacterium sp. and Methanosarcina sp.), ultimately boosting methane production. Conversely, BPA leached from 200 particles/g TS PC microplastics (4.02 ± 0.15 mg/L) stimulated ROS production, resulting in decreased biomass viability and even apoptosis. Modulation of oxidative stress by leaching monomeric BPA is an underappreciated transformative mechanism for improving the mastery of the potential behavior of microplastics in biological sludge treatment.
Collapse
Affiliation(s)
- Hongbo Chen
- College of Environment and Resources, Xiangtan University, Xiangtan 411105, China.
| | - Zhiming Zou
- College of Environment and Resources, Xiangtan University, Xiangtan 411105, China
| | - Mengge Tang
- College of Environment and Resources, Xiangtan University, Xiangtan 411105, China
| | - Xiao Yang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China.
| | - Yiu Fai Tsang
- Department of Science and Environmental Studies, The Education University of Hong Kong, Tai Po, New Territories 999077, Hong Kong, China
| |
Collapse
|
41
|
Pang H, Zhang Y, Wei Q, Jiao Q, Pan X, He J, Tian Y. Enhancing volatile fatty acids accumulation through anaerobic co-fermentation of excess sludge and sodium citrate: Divalent cation chelation and carbon source supplement. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
42
|
Gao J, Li Z, Chen H. Untangling the effect of solids content on thermal-alkali pre-treatment and anaerobic digestion of sludge. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 855:158720. [PMID: 36113808 DOI: 10.1016/j.scitotenv.2022.158720] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/05/2022] [Accepted: 09/09/2022] [Indexed: 06/15/2023]
Abstract
Total solids (TS) content is critical for thermal hydrolysis and anaerobic digestion (AD) performance, but its role in thermal-alkaline pre-treatment (TAP) is unclear. Therefore, this study aimed to reveal the key role of TS content in TAP and AD of waste activated sludge. The results showed that the optimum TS content of TAP (at 90 °C for 1 h, pH = 10) was 8 %. Sludge disintegration and methane production increased from 19.7 ± 2.2 % to 34.3 ± 2.9 % and from 167.4 ± 4.2 to 246.0 ± 6.2 mL/g volatile solids, respectively, when TS content were increased from 2 % to 8 %. A high TS content will likely promote sludge disintegration since it will reduce heat loss and improve heating efficiency. Additionally, increasing TS content from 2 % to 10 % minimized the production of intracellular reactive oxygen species by 30.4 ± 0.7 % and increased cell viability by 11.5 ± 2.6 %. In contrast, excessive TS content (i.e., ≥10 %) deteriorated the fluidity of sludge, which prevents it from disintegration. Once TS reached 10 %, the accumulation of ammonia nitrogen and volatile fatty acids reached 812.7 ± 27.4 and 1932.0 ± 5.3 mg/L, respectively, which reduced the activity of acidulase and coenzyme F420 and shifted the archaeal community from acetylotrophic to hydrogenotrophic methanogens. This article provides new insights into the TS content in TAP and AD technology.
Collapse
Affiliation(s)
- Jiaxin Gao
- College of Environment and Resources, Xiangtan University, Xiangtan 411105, China
| | - Zeyu Li
- College of Environment and Resources, Xiangtan University, Xiangtan 411105, China
| | - Hongbo Chen
- College of Environment and Resources, Xiangtan University, Xiangtan 411105, China.
| |
Collapse
|
43
|
Chen Y, Chen T, Yin J. Impact of N-butyryl-l-homoserine lactone-mediated quorum sensing on acidogenic fermentation under saline conditions: Insights into volatile fatty acids production and microbial community. BIORESOURCE TECHNOLOGY 2023; 368:128354. [PMID: 36410593 DOI: 10.1016/j.biortech.2022.128354] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/12/2022] [Accepted: 11/15/2022] [Indexed: 06/16/2023]
Abstract
Anaerobic fermentation is often inhibited under high salinity conditions. This study discovered a strong, positive association between N-butyryl-l-homoserine lactone (C4-HSL)-mediated quorum sensing (QS) and the production of volatile fatty acids (VFAs) under saline conditions. N-acyl-homoserine lactones were identified during acidogenic fermentation for VFA production. Only C4-HSL was detected at all salt concentrations, and a maximum C4-HSL concentration of 0.49 μg/L was observed at a salt concentration of 15 g/L. C4-HSL secretion was closely related to salinity, and a strong correlation was observed between C4-HSL and VFAs (p < 0.01), especially butyrate. Further experiments with C4-HSL addition indicated that exogenous C4-HSL promoted substrate hydrolysis and increased butyrate production by 1.5 times at 15 g/L NaCl. Microbial community analysis indicated that unclassified_f__Enterobacteriaceae and Clostridium_sensu_stricto_1, associated with QS genes and butyrate production, were positively associated with C4-HSL. This study demonstrates the positive effect of C4-HSL-mediated QS on acidogenic fermentation.
Collapse
Affiliation(s)
- Yaqin Chen
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, PR China; Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Hangzhou 310012, PR China
| | - Ting Chen
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, PR China; Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Hangzhou 310012, PR China
| | - Jun Yin
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, PR China; Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Hangzhou 310012, PR China.
| |
Collapse
|
44
|
Xi S, Dong X, Lin Q, Li X, Ma J, Zan F, Biswal BK, Awasthi MK, Wang Z, Chen G, Guo G. Enhancing anaerobic fermentation of waste activated sludge by investigating multiple electrochemical pretreatment conditions: Performance, modeling and microbial dynamics. BIORESOURCE TECHNOLOGY 2023; 368:128364. [PMID: 36423770 DOI: 10.1016/j.biortech.2022.128364] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 06/16/2023]
Abstract
Electrochemical pretreatment (EPT) is an efficient technology to improve volatile fatty acids (VFAs) production during anaerobic fermentation of waste activated sludge (WAS). This study investigated the co-effects of different current intensities, electrolyte NaCl dosage and pretreatment time for promoting VFAs production. The results showed that it was considerably enhanced by 51.6 % when EPT was performed at 1.0 A, 1.0 g/L and 60 min, and response surface methodology strategy adjusted the optimal EPT conditions to 1.0 A, 1.2 g/L and 66 min. The potential mechanisms were proposed that EPT at optimal conditions greatly enhanced solubilization and hydrolysis of WAS and selectively inactivated methanogens, causing the enrichment of acidogenic bacteria (i.e., Lactobacillus, Saccharimonadales, Tetrasphaera and Prevotella) due to generated reactive chlorine species. Finally, the economic analysis indicated the promising application potential with the profit of EPT at optimal conditions increasing by 36.0 %.
Collapse
Affiliation(s)
- Shihao Xi
- School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), Key Laboratory of Water and Wastewater Treatment (HUST), MOHURD, Wuhan 430074, China
| | - Xinlei Dong
- School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), Key Laboratory of Water and Wastewater Treatment (HUST), MOHURD, Wuhan 430074, China
| | - Qingshan Lin
- School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), Key Laboratory of Water and Wastewater Treatment (HUST), MOHURD, Wuhan 430074, China
| | - Xiang Li
- School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), Key Laboratory of Water and Wastewater Treatment (HUST), MOHURD, Wuhan 430074, China
| | - Jie Ma
- School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), Key Laboratory of Water and Wastewater Treatment (HUST), MOHURD, Wuhan 430074, China; Faculty of Resources and Environmental Science, Hubei University, Wuhan 430062, China
| | - Feixiang Zan
- School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), Key Laboratory of Water and Wastewater Treatment (HUST), MOHURD, Wuhan 430074, China
| | - Basanta Kumar Biswal
- Department of Civil & Environmental Engineering, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Zongping Wang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), Key Laboratory of Water and Wastewater Treatment (HUST), MOHURD, Wuhan 430074, China
| | - Guanghao Chen
- Department of Civil & Environmental Engineering, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Gang Guo
- School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), Key Laboratory of Water and Wastewater Treatment (HUST), MOHURD, Wuhan 430074, China.
| |
Collapse
|
45
|
Castro-Ramos JJ, Solís-Oba A, Solís-Oba M, Calderón-Vázquez CL, Higuera-Rubio JM, Castro-Rivera R. Effect of the initial pH on the anaerobic digestion process of dairy cattle manure. AMB Express 2022; 12:162. [PMID: 36576594 PMCID: PMC9797631 DOI: 10.1186/s13568-022-01486-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 11/01/2022] [Indexed: 12/29/2022] Open
Abstract
Anaerobic digestion (AD) has recently been studied to obtain products of greater interest than biogas, such as volatile fatty acids (VFAs) and phytoregulators. The effect of the initial pH of cow manure and the fermentation time of the AD on the microbial composition, VFAs, indole-3-acetic acid (IAA) and gibberellic acid (GA3) production was evaluated. The cow manure (7% solids) was adjusted to initial pH values of 5.5, 6.5, 7.5, and 8.5, and the AD products were analyzed every four days until day 20. The initial pH and the fermentation time had an important effect on the production of metabolites. During AD, only the hydrolytic and acidogenic stages were identified, and the bacteria found were from the phyla Firmicutes, Bacteroidetes, Actinobacteria, and Spirochaetes. The most abundant genera produced in the four AD were Caproiciproducens, Clostridium sensu stricto 1, Romboutsia, Paeniclostridium, Turicibacter, Peptostreptococcaceae, Ruminococcaceae and Fonticella. The highest amount of VFAs was obtained at pH 8.5, and the production of the acids was butyric > acetic > propionic. The maximum production of GA3 and IAA was at an initial pH of 6.5 on day 20 and a pH of 5.5 on day 4, respectively. There was a strong correlation (> 0.8) between the most abundant microorganisms and the production of VFAs and GA3. The anaerobic digestion of cow manure is a good alternative for the production of VFAs, GA3 and IAA.
Collapse
Affiliation(s)
- Job Jonathan Castro-Ramos
- grid.418275.d0000 0001 2165 8782Instituto Politécnico Nacional, Centro de Investigación en Biotecnologia Aplicada, 90700 Tepetitla de Lardizábal, Tlaxcala Mexico
| | - Aida Solís-Oba
- grid.7220.70000 0001 2157 0393Universidad Autónoma Metropolitana, Unidad Xochimilco, Ciudad de Mexico, Mexico
| | - Myrna Solís-Oba
- grid.418275.d0000 0001 2165 8782Instituto Politécnico Nacional, Centro de Investigación en Biotecnologia Aplicada, 90700 Tepetitla de Lardizábal, Tlaxcala Mexico
| | - Carlos Ligne Calderón-Vázquez
- grid.418275.d0000 0001 2165 8782Instituto Politécnico Nacional, CIIDIR Unidad Sinaloa, 81100 Guasave, Sinaloa Mexico
| | - Jesús Mireya Higuera-Rubio
- grid.418275.d0000 0001 2165 8782Instituto Politécnico Nacional, CIIDIR Unidad Sinaloa, 81100 Guasave, Sinaloa Mexico
| | - Rigoberto Castro-Rivera
- grid.418275.d0000 0001 2165 8782Instituto Politécnico Nacional, Centro de Investigación en Biotecnologia Aplicada, 90700 Tepetitla de Lardizábal, Tlaxcala Mexico
| |
Collapse
|
46
|
Li J, Xin W, Liang J, Shang P, Song Y, Wang Q, Gamal El-Din M, Arslan M, Guo S, Chen C. Alkaline fermentation of refinery waste activated sludge mediated by refinery spent caustic for volatile fatty acids production. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 324:116317. [PMID: 36182845 DOI: 10.1016/j.jenvman.2022.116317] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 09/05/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
Volatile fatty acids (VFA), produced from waste activated sludge (WAS), provide unique opportunities for resource recovery in wastewater treatment plants. This study investigates the potential of refinery spent caustic (RSC) on VFA production during refinery WAS (RWAS) alkaline fermentation. The highest VFA yield was 196.3 mg/g-VS at a sludge retention time of 6 days. Amplicon sequencing revealed the enrichment of Soehngenia (20.21%), Bacilli (11.86%), and Brassicibacter (4.17%), which was associated with improved activities of protease (626%) and α-glucosidase (715%). Function prediction analysis confirmed that acetyl-CoA production and fatty acid biosynthesis were enhanced, while fatty acid degradation was inhibited. Accordingly, hydrolysis, acidogenesis, and acetogenesis were improved by 6.87%, 10.67%, and 28.50%, respectively; whereas methanogenesis was inhibited by 28.87%. The sulfate and free ammonia in RSC likely contributed to increased acetic acid production. This study showcases that RWAS alkaline fermentation mediated by RSC for VFA production is the practicable approach.
Collapse
Affiliation(s)
- Jin Li
- State Key Laboratory of Petroleum Pollution Control, Beijing Key Laboratory of Oil and Gas Pollution Control, China University of Petroleum-Beijing, Beijing, 102249, China
| | - Wenzhuo Xin
- State Key Laboratory of Petroleum Pollution Control, Beijing Key Laboratory of Oil and Gas Pollution Control, China University of Petroleum-Beijing, Beijing, 102249, China
| | - Jiahao Liang
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Process and Control, Key Laboratory of Petrochemical Pollution Control of Guangdong Higher Education Institutes, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong, 525000, China
| | - Pengyin Shang
- State Key Laboratory of Petroleum Pollution Control, Beijing Key Laboratory of Oil and Gas Pollution Control, China University of Petroleum-Beijing, Beijing, 102249, China
| | - Yanke Song
- State Key Laboratory of Petroleum Pollution Control, Beijing Key Laboratory of Oil and Gas Pollution Control, China University of Petroleum-Beijing, Beijing, 102249, China
| | - Qinghong Wang
- State Key Laboratory of Petroleum Pollution Control, Beijing Key Laboratory of Oil and Gas Pollution Control, China University of Petroleum-Beijing, Beijing, 102249, China.
| | - Mohamed Gamal El-Din
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada
| | - Muhammad Arslan
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada
| | - Shaohui Guo
- State Key Laboratory of Petroleum Pollution Control, Beijing Key Laboratory of Oil and Gas Pollution Control, China University of Petroleum-Beijing, Beijing, 102249, China
| | - Chunmao Chen
- State Key Laboratory of Petroleum Pollution Control, Beijing Key Laboratory of Oil and Gas Pollution Control, China University of Petroleum-Beijing, Beijing, 102249, China
| |
Collapse
|
47
|
Wang Y, Huang Z, Zhao M, Miao H, Shi W, Ruan W. Enhanced chloride-free snow-melting agent generation from organic wastewater by integrating bioconversion and synthesis. BIORESOURCE TECHNOLOGY 2022; 366:128200. [PMID: 36309178 DOI: 10.1016/j.biortech.2022.128200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/17/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
In this study, a new process for producing chloride-free snow-melting agents (CSAs) was proposed. Organic wastewater was converted to total volatile fatty acids (TVFA) by anaerobic acidogenic fermentation. The experiments for acid generation showed that the maximum TVFA concentration of 45.9 g/L was obtained at an organic loading rate of 5 g chemical oxygen demand /(L·d), and the proportion of acetic acid reached 78.8 %. Forward osmosis was used for concentrating the TVFA solution. The obtained CSAs, after evaporation and crystallization, had a better ice-melting capacity and less corrosion on metal and concrete than NaCl and CaCl2. Additionally, the damage caused by CSAs to the germination of plant seeds was significantly lesser than that caused by chloride salts. This study proposed a feasible method for the high-value conversion of organic wastewater, providing a new direction for the reuse of organic wastewater.
Collapse
Affiliation(s)
- Yijie Wang
- School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi 214122, China
| | - Zhenxing Huang
- School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi 214122, China
| | - Mingxing Zhao
- School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi 214122, China.
| | - Hengfeng Miao
- School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Collaborative Innovation Center of Water Treatment Technology & Material, Suzhou 215009, China
| | - Wansheng Shi
- School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Collaborative Innovation Center of Water Treatment Technology & Material, Suzhou 215009, China
| | - Wenquan Ruan
- School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Collaborative Innovation Center of Water Treatment Technology & Material, Suzhou 215009, China
| |
Collapse
|
48
|
Rajesh Banu J, Gunasekaran M, Kumar V, Bhatia SK, Kumar G. Enhanced biohydrogen generation through calcium peroxide engendered efficient ultrasonic disintegration of waste activated sludge in low temperature environment. BIORESOURCE TECHNOLOGY 2022; 365:128164. [PMID: 36283675 DOI: 10.1016/j.biortech.2022.128164] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 10/14/2022] [Accepted: 10/15/2022] [Indexed: 06/16/2023]
Abstract
Waste activated sludge is a renewable source for biohydrogen production, whereas the presence of complex biopolymers limits the hydrolysis step during this process, and thus pretreatment is required to disintegrate the sludge biomass. In this study, the feasibility of utilizing waste activated sludge to produce biohydrogen by improving the solubilization by means of thermo CaO2 engendered sonication disintegration (TCP-US) was studied. The optimized condition for extracellular polymeric substance (EPS) dissociation was obtained at the CaO2 dosage of 0.05 g/g SS at 70 °C. The maximum disintegration after EPS removal was achieved at the sonic specific energy input of 1612.8 kJ/kg TS with the maximum solubilization and SS reduction of 23.7% and 18.14%, respectively, which was higher than the US alone pretreatment. Thus, this solubilization yields higher biohydrogen production of 114.3 mLH2/gCOD in TCP-US sample.
Collapse
Affiliation(s)
- J Rajesh Banu
- Department of Biotechnology, Central University of Tamil Nadu, Neelakudi, Thiruvarur, Tamil Nadu 610005, India
| | - M Gunasekaran
- Department of Physics, Anna University Regional Campus Tirunelveli, Tamilnadu 627007 India
| | - Vinod Kumar
- School of Water, Energy and Environment, Cranfield University, Cranfield MK43 0AL, United Kingdom
| | - Shashi Kant Bhatia
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Gopalakrishnan Kumar
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea.
| |
Collapse
|
49
|
Shi S, Fan X, He X, He L, Cao M, Wang H, Zhou J. Enhanced nitritation/denitritation and potential mechanism in an electrochemically assisted sequencing batch biofilm reactor treating sludge digester liquor with extremely low C/N ratios. BIORESOURCE TECHNOLOGY 2022; 363:127936. [PMID: 36096324 DOI: 10.1016/j.biortech.2022.127936] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/04/2022] [Accepted: 09/06/2022] [Indexed: 06/15/2023]
Abstract
Nitritation/denitritation is a promising strategy to treat sludge digester liquor but would be unstable and inefficient at extremely low C/N ratios. Here, a novel electrochemically assisted sequencing batch biofilm reactor (E-SBBR) was established to treat synthetic/real sludge digester liquor with decreasing C/N ratios. The results showed that the E-SBBR achieved stable nitritation and appreciable TN removal (>70 %) even at C/N < 0.5. The high-strength free ammonium (FA) (91.1-132.8 mg NH3-N/L) and long inhibition time (>9h) magnified by electrolysis promoted the robustness of nitritation through efficient nitrite-oxidizing bacteria elimination. Meanwhile, mass balance denoted that heterotrophic denitritation dominated in the enhanced TN removal and relied on carbon supplementation from cell apoptosis/lysis stimulated by electrolysis and high-strength FA, further supported by the recovery of heterotrophic denitrifiers, fermentation bacteria, and relevant functional genes at extremely low C/N ratios. This study provides a novel nitrogen removal approach for the sludge digester liquor treatment.
Collapse
Affiliation(s)
- Shuohui Shi
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Xing Fan
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Xuejie He
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Lei He
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Meng Cao
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Hai Wang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Jian Zhou
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China.
| |
Collapse
|
50
|
Su K, Li X, Lu T, Mou Y, Liu N, Song M, Yu Z. Screening of the heterotrophic microalgae strain for the reclamation of acid producing wastewater. CHEMOSPHERE 2022; 307:136047. [PMID: 35977579 DOI: 10.1016/j.chemosphere.2022.136047] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 08/01/2022] [Accepted: 08/08/2022] [Indexed: 06/15/2023]
Abstract
For the sustainable development of the environment, to reduce the high cost and low productivity of microalgae biofuel, nine microalgae strains were screened to study the growh and nutrient removal properties under heterotrophic culture by using the waste carbon source of volatile fatty acids (VFAs). Chlorella sorokiniana (C.sorokiniana) was selected as the best strain with the highest biomass concentration of 0.77 g L-1, specific growth rate of 0.25 d-1, biomass productivity of 91.43 mg L-1 d-1, total nitrogen removal efficiency of 95.96% and total phosphorus removal efficiency of 93.42%. To study the utilization potential of acid-producing wastewater by heterotrophic microalgae, actual acid-producing wastewater was recycled three times for the utilization of C.sorokiniana. After the three utilization cultivation, the removal rates of COD, total nitrogen, ammonia nitrogen, and total phosphorus were 74.44%, 88.05%, 79.08%, and 82.69%, respectively. The total utilization rates of acetic acid, propionic acid, and butyric acid were 58.99%, 70.54%, and 81.52%, respectively. In addition, the highest lipid content of 39.15% and protein content of 42.43% achieved at the third cultivation. After the first cultivation, the composition and diversity of the microbial community structure changed dramatically, with Protebacteria, Bacteroidota, Hydrogenophaga, and Algoriphagus becoming enriched. These results showed a promising way of coupling wastewater treatment with biomass production for long-term sustainability of microalgae lipid production.
Collapse
Affiliation(s)
- Kunyang Su
- School of Environmental Science & Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, 250353, PR China
| | - Xue Li
- School of Environmental Science & Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, 250353, PR China
| | - Tianxiang Lu
- School of Environmental Science & Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, 250353, PR China
| | - Yiwen Mou
- School of Environmental Science & Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, 250353, PR China
| | - Na Liu
- School of Environmental Science & Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, 250353, PR China
| | - Mingming Song
- School of Environmental Science & Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, 250353, PR China.
| | - Ze Yu
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China.
| |
Collapse
|