1
|
Krasnov H, Sachdev K, Knobel P, Colicino E, Yitshak-Sade M. The association between long-term exposure to PM 2.5 constituents and ischemic stroke in the New York City metropolitan area. CHEMOSPHERE 2025; 378:144390. [PMID: 40203750 DOI: 10.1016/j.chemosphere.2025.144390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 01/28/2025] [Accepted: 04/03/2025] [Indexed: 04/11/2025]
Abstract
Numerous studies linked fine particulate matter (PM2.5) to ischemic stroke. However, only a few investigated the differential associations with specific PM2.5 components and sources. We utilized electronic health records (EHR) from the Mount Sinai Health System in the New York City metropolitan area during 2011-2019 and assessed the associations of PM2.5 components and sources with ischemic stroke. We used mixed-effect Poisson survival regressions to assess the single-exposure associations with the chemical components. We used multivariable regression to assess the simultaneous associations with source-apportioned PM2.5 exposures estimated using non-negative matrix factorization. Then, we assessed the sensitivity of our results to different specifications of EHR data continuity: (1) using a less strict definition of censorship year, (2) adjusting the model for EHR data continuity index, a validated algorithm measuring EHR-data continuity based on indicators of primary care service utilization. We observed higher risks for ischemic stroke (Risk ratio [95 % confidence intervals] per interquartile range increase) associated with higher exposure to nickel (1.080 [1.045; 1.116]), vanadium (1.070 [1.033; 1.109]), zinc (1.076 [1.031; 1.122]), and nitrate (1.084 [1.039; 1.132]). In the multivariate models we found higher risk for ischemic stroke associated with exposure to oil combustion sourced PM2.5 (1.061 [1.012; 1.113]). The results remained consistent under different model specifications accounting for EHR data continuity. In conclusion, we found an increased risk of ischemic stroke associated with specific PM2.5 components and sources. These findings were robust to different specifications of EHR-data continuity. Our findings can inform policy and interventions aimed at reducing cardiovascular disease burden.
Collapse
Affiliation(s)
- Helena Krasnov
- Department of Environmental Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Kshitij Sachdev
- Graduate Program in Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Pablo Knobel
- Department of Environmental Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Elena Colicino
- Department of Environmental Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Maayan Yitshak-Sade
- Department of Environmental Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
2
|
Xu L, Sun Y, Zhang X, Hu J, Qiu J, Wu Y, Yang Z, Wang Y, Li Z, Zhang J, Cheng P, Xu D, Chen Z, Lin H, Shui L, Jiang Z, Tang M, Jin M, Wang X, Chen K, Wang J. Associations of long-term exposure to fine particle and its components with ischemic stroke: A cohort study in China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 299:118354. [PMID: 40398247 DOI: 10.1016/j.ecoenv.2025.118354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2025] [Revised: 05/06/2025] [Accepted: 05/17/2025] [Indexed: 05/23/2025]
Abstract
BACKGROUND Several studies have demonstrated that prolonged exposure to PM2.5 is associated with elevated risks of developing ischemic stroke (IS). However, evidence on the association of PM2.5 components with IS is still lacking. Thus, we aimed to estimate the association of 15 chemical components of PM2.5 with risk of IS in a cohort study. METHODS A community-based prospective cohort study comprising 29,926 participants was conducted in Yinzhou district, Ningbo, China. We utilized a land-use regression model to calculate the concentrations of PM2.5 and its 15 components. Adaptive elastic net (AENET) models were used to select important components from 135 predictors and environmental risk score (ERS) was calculated to quantify the multi-pollutant combined effect. Cox proportional hazard models and restricted cubic splines were used to estimate the associations of PM2.5 components with the occurrence of IS. RESULTS During 156,694 person-years of follow-up period, 770 new IS cases were identified. In single pollutant model, every IQR increased in PM2.5 (HR=1.240, 95 % CI: 1.098-1.401) and mercury (HR=1.441, 95 % CI: 1.240-1.675) was positively associated with risk of IS, whereas every IQR increased in cadmium (HR=0.935, 95 % CI: 0.900-0.971), antimony (HR=0.867, 95 % CI: 0.761-0.987), selenium (HR=0.700, 95 % CI: 0.611-0.802), and ammonium (HR=0.797, 95 % CI: 0.709-0.897) were inversely associated with IS. ERS was constructed by AENET according to 3 main effects (lead, selenium, and thallium), 3 square terms (beryllium, cadmium, and selenium), and 2 component-component interactions (beryllium × mercury and cadmium × selenium). A higher ERS was associated with a higher risk of IS (every IQR increased: HR=1.429, 95 % CI: 1.275-1.601). CONCLUSIONS Long-term exposure to PM2.5 and its constituents may increase the risk of IS. Three heavy metals in PM2.5 from soil dust and coal combustion (lead, selenium, and cadmium), as well as three from non-ferrous metallurgy (thallium, beryllium, and mercury), contributed the most.
Collapse
Affiliation(s)
- Lisha Xu
- Department of Public Health, And Department of National Clinical Research Center for Child Health, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Yexiang Sun
- Data Center, Yinzhou District Center for Disease Control and Prevention, Ningbo 315100, China
| | - Xinhan Zhang
- Department of Public Health, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Jingjing Hu
- Department of Public Health, And Department of National Clinical Research Center for Child Health, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Jie Qiu
- Department of Public Health, And Department of National Clinical Research Center for Child Health, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Yonghao Wu
- Department of Public Health, And Department of National Clinical Research Center for Child Health, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Zongming Yang
- Department of Public Health, And Department of National Clinical Research Center for Child Health, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Yixing Wang
- Department of Public Health, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Zihan Li
- Department of Public Health, And Department of National Clinical Research Center for Child Health, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Jiayun Zhang
- Department of Public Health, And Department of National Clinical Research Center for Child Health, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Ping Cheng
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China
| | - Dandan Xu
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China
| | - Zhijian Chen
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China
| | - Hongbo Lin
- Department of Chronic Disease and Health Promotion, Yinzhou District Center for Disease Control and Prevention, Ningbo 315100, China
| | - Liming Shui
- Yinzhou District Health Bureau of Ningbo, Ningbo 315040, China
| | - Zhiqin Jiang
- Department of Chronic Disease and Health Promotion, Yinzhou District Center for Disease Control and Prevention, Ningbo 315100, China
| | - Mengling Tang
- Department of Public Health, Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Mingjuan Jin
- Department of Public Health, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Xiaofeng Wang
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China.
| | - Kun Chen
- Department of Public Health, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China.
| | - Jianbing Wang
- Department of Public Health, And Department of National Clinical Research Center for Child Health, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China.
| |
Collapse
|
3
|
Duan M, Liu J, Cai Z, Chen L, Tian Y, Xu W, Zeng T, Gu T, Lu L. Multi-omics elucidates the kidney damage caused by aquatic Cu via the gut-kidney axis in ducks. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 291:117844. [PMID: 39914079 DOI: 10.1016/j.ecoenv.2025.117844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 02/01/2025] [Accepted: 02/01/2025] [Indexed: 03/03/2025]
Abstract
Copper (Cu) is an essential trace element for biological growth and development. Excessive intake of Cu exists harmful effects on organisms. However, whether excessive Cu intake induces kidney function damage by gut microbiota regulation remains unclear. Ducks are important species of waterfowl that are often exposed to Cu contamination in water sources. In this study, we aim to elucidate the effects of Cu exposure on renal inflammation through the gut-kidney axis in ducks. The ducks were gavaged with different doses of CuSO4 (0, 100, and 200 mg/kg body weight) for 4 weeks. Results indicate that Cu exposure causes pathological damage to the kidney, with a significant increase in the levels of TNFα, IL-6, and IL-1β in both serum and renal tissue. 16S rDNA analysis revealed that the relative abundances of Candidatus_Saccharimonas and Bacteroides were significantly reduced in the Cu-induced group. Transcriptomic analysis of kidney tissue reveals that following Cu exposure, 30 genes show significant differential expression. GO and KEGG enrichment analyses were most involved in Interleukin-1 Receptor Activity, Taurine and hypotaurine metabolism, Nitrogen metabolism, and Proximal tubule bicarbonate reclamation. Metabolomic analysis revealed that 28 metabolites are present in both kidney tissue and cecal contents. Correlation analysis revealed a strong correlation among 5 common metabolites: Aminoglutethimide, Boscalid, Dantrolene, Cer[ns] d34:1, and Stearidonic acid. In the cecum, these five metabolites are closely associated with 26 intestinal microorganisms, including Bacteroides, Candidatus_Saccharimonas, and Colidextribacter. In the kidney, apart from Stearidonic acid, the other four metabolites are closely correlated with genes such as FOS, and IL1RL1. Overall, our study indicates that excessive Cu induces significant kidney inflammation, the metabolites alteration and gut microbiota disorders. These findings shed light on the underlying mechanisms of Cu-induced kidney damage via the indirect pathway of the gut-kidney axis.
Collapse
Affiliation(s)
- Mingcai Duan
- Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs of China, Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; Hubei Hongshan Laboratory, National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jinyu Liu
- Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs of China, Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Zhaoxia Cai
- Hubei Hongshan Laboratory, National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Li Chen
- Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs of China, Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Yong Tian
- Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs of China, Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Wenwu Xu
- Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs of China, Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Tao Zeng
- Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs of China, Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Tiantian Gu
- Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs of China, Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| | - Lizhi Lu
- Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs of China, Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| |
Collapse
|
4
|
Jiang Y, Du C, Chen R, Hu J, Zhu X, Xue X, He Q, Lu J, Ge J, Huo Y, Kan H. Differential effects of fine particulate matter constituents on acute coronary syndrome onset. Nat Commun 2024; 15:10848. [PMID: 39737969 PMCID: PMC11686129 DOI: 10.1038/s41467-024-55080-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 11/27/2024] [Indexed: 01/01/2025] Open
Abstract
Fine particulate matter has been linked with acute coronary syndrome. Nevertheless, the key constituents remain unclear. Here, we conduct a nationwide case-crossover study in China during 2015-2021 to quantify the associations between fine particulate matter constituents (organic matter, black carbon, nitrate, sulfate, and ammonium) and acute coronary syndrome, and to identify the critical contributors. Our findings reveal all five constituents are significantly associated with acute coronary syndrome onset. The magnitude of associations peaks on the concurrent day, attenuates thereafter, and becomes null at lag 2 day. The largest effects are observed for organic matter and black carbon, with each interquartile range increase in their concentrations corresponding to 2.15% and 2.03% increases in acute coronary syndrome onset, respectively. These two components also contribute most to the joint effects, accounting for 31% and 22%, respectively. Our findings highlight tailored clinical management and targeted control of carbonaceous components to protect cardiovascular health.
Collapse
Affiliation(s)
- Yixuan Jiang
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education, Fudan University, Shanghai, China
| | - Chuyuan Du
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education, Fudan University, Shanghai, China
| | - Renjie Chen
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education, Fudan University, Shanghai, China
| | - Jialu Hu
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China
| | - Xinlei Zhu
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education, Fudan University, Shanghai, China
| | - Xiaowei Xue
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education, Fudan University, Shanghai, China
| | - Qinglin He
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education, Fudan University, Shanghai, China
| | - Jun Lu
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education, Fudan University, Shanghai, China
| | - Junbo Ge
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China.
| | - Yong Huo
- Department of Cardiology, Peking University First Hospital, Beijing, China.
| | - Haidong Kan
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education, Fudan University, Shanghai, China.
- Children's Hospital of Fudan University, National Center for Children's Health, Shanghai, China.
| |
Collapse
|
5
|
Zhou Y, Li X, Fouxi Zhao, Yao C, Wang Y, Tang E, Wang K, Yu L, Zhou Z, Wei J, Li D, Liu T, Cai T. Rural-urban difference in the association between particulate matters and stroke incidence: The evidence from a multi-city perspective cohort study. ENVIRONMENTAL RESEARCH 2024; 261:119695. [PMID: 39102936 DOI: 10.1016/j.envres.2024.119695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/15/2024] [Accepted: 07/26/2024] [Indexed: 08/07/2024]
Abstract
Available evidence suggests that air pollutants can cause stroke, but little research has investigated the confounding effects of urban-rural differences. Here, we investigated the urban-rural difference in the correlation between particulate matter (PM2.5 and PM10) exposure and stroke. This cohort study was based on a prospective multi-city community-based cohort (Guizhou Population Health Cohort Study (GPHCS)) in Guizhou Province, China. A total of 7988 eligible individuals (≥18 years) were enrolled with baseline assessments from November 2010 to December 2012, and follow-up was completed by June 2020. Two major particulate matters (PMs, including PM2.5 and PM10) were assessed monthly from 2000 by using satellite-based spatiotemporal models. The risk of stroke was estimated using a Cox proportional hazard regression model. The association between particulate matters' exposure and stroke in different areas (total, urban, and rural) and the potential modification effect of comorbidities (hypertension, diabetes, and dyslipidemia) and age (≤65/>65 years) were examined using stratified analyses. The risk of stroke increased for every 10 μg/m3 increase in mean PMs' concentrations during the previous 1 year at the residential address (HR: 1.26, 95%CI: 1.24, 1.29 (PM2.5); HR: 1.13, 95%CI: 1.11, 1.15 (PM10)). The presence of diabetes and dyslipidemia increased the risk of PM10-induced stroke in whole, urban, and rural areas. Specifically, people living in rural areas were more likely to experience the effects of PMs in causing a stroke. The risk of stroke due to PMs was statistically increased in the young and older populations living in rural areas. In conclusion, long-term exposure to PMs increased the risk of stroke and such association was more pronounced in people living in rural areas with lower income levels. Diabetes and dyslipidemia seemed to strengthen the association between PMs and stroke.
Collapse
Affiliation(s)
- Yumeng Zhou
- Department of Epidemiology, College of Preventive Medicine, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Xuejiao Li
- Guizhou Center for Disease Control and Prevention, Guiyang, Guizhou, 550004, China
| | - Fouxi Zhao
- Guizhou Center for Disease Control and Prevention, Guiyang, Guizhou, 550004, China
| | - Chunyan Yao
- Department of Epidemiology, College of Preventive Medicine, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Yiying Wang
- Guizhou Center for Disease Control and Prevention, Guiyang, Guizhou, 550004, China
| | - Enjie Tang
- Department of Epidemiology, College of Preventive Medicine, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Kexue Wang
- Department of Epidemiology, College of Preventive Medicine, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Lisha Yu
- Guizhou Center for Disease Control and Prevention, Guiyang, Guizhou, 550004, China
| | - Zhujuan Zhou
- Department of Neurology, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Jing Wei
- Department of Atmospheric and Oceanic Science, Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD, 20742, United States
| | - Dawei Li
- Department of Epidemiology, College of Preventive Medicine, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Tao Liu
- Guizhou Center for Disease Control and Prevention, Guiyang, Guizhou, 550004, China.
| | - Tongjian Cai
- Department of Epidemiology, College of Preventive Medicine, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University (Third Military Medical University), Chongqing, 400038, China.
| |
Collapse
|
6
|
Zhao K, He F, Zhang B, Liu C, Hu Y, Dong Y, Zhang P, Liu C, Wei J, Lu Z, Guo X, Huang Q, Jia X, Mi J. Short-term ozone exposure on stroke mortality and mitigation by greenness in rural and urban areas of Shandong Province, China. BMC Public Health 2024; 24:2955. [PMID: 39449115 PMCID: PMC11515287 DOI: 10.1186/s12889-024-20454-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 10/17/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND Short-term exposure to ozone (O3) has been associated with higher stroke mortality, but it is unclear whether this association differs between urban and rural areas. The study aimed to compare the association between short-term exposure to O3 and ischaemic and haemorrhagic stroke mortality across rural and urban areas and further investigate the potential impacts of modifiers, such as greenness, on this association. METHODS A multi-county time-series analysis was carried out in 19 counties of Shandong Province from 2013 to 2019. First, we employed generalized additive models (GAMs) to assess the effects of O3 on stroke mortality in each county. We performed random-effects meta-analyses to pool estimates to counties and compare differences in rural and urban areas. Furthermore, a meta-regression model was utilized to assess the moderating effects of county-level features. RESULTS Short-term O3 exposure was found to be associated with increased mortality for both stroke subtypes. For each 10-µg/m3 (lag0-3) rise in O3, ischaemic stroke mortality rose by 1.472% in rural areas and 1.279% in urban areas. For each 0.1-unit increase in the Enhanced Vegetation Index (EVI) per county, the ischaemic stroke mortality caused by a 10-µg/m3 rise in O3 decreased by 0.60% overall and 1.50% in urban areas. CONCLUSIONS Our findings add to the evidence that short-term O3 exposure increases ischaemic and haemorrhagic stroke mortality and has adverse effects in urban and rural areas. However, improving greenness levels may contribute to mitigating the detrimental effects of O3 on ischaemic stroke mortality.
Collapse
Affiliation(s)
- Ke Zhao
- Department of Epidemiology and Statistics, School of Public Health, Bengbu Medical College, No. 2600 Donghai Avenue, Longzihu District, Bengbu, 233000, China
| | - Fenfen He
- Department of Occupational and Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xian, China
| | - Bingyin Zhang
- Shandong Center for Disease Control and Prevention, Jinan, China
| | - Chengrong Liu
- Department of Epidemiology and Statistics, School of Public Health, Bengbu Medical College, No. 2600 Donghai Avenue, Longzihu District, Bengbu, 233000, China
| | - Yang Hu
- Department of Epidemiology and Statistics, School of Public Health, Bengbu Medical College, No. 2600 Donghai Avenue, Longzihu District, Bengbu, 233000, China
| | - Yilin Dong
- Liaocheng Centre for Disease Control and Prevention, Liaocheng, China
| | - Peiyao Zhang
- Department of Epidemiology and Statistics, School of Public Health, Bengbu Medical College, No. 2600 Donghai Avenue, Longzihu District, Bengbu, 233000, China
| | - Chao Liu
- Department of Epidemiology and Statistics, School of Public Health, Bengbu Medical College, No. 2600 Donghai Avenue, Longzihu District, Bengbu, 233000, China
| | - Jing Wei
- Department of Atmospheric and Oceanic Science, University of Maryland, College Park, MD, 20740, USA
| | - Zilong Lu
- Shandong Center for Disease Control and Prevention, Jinan, China
| | - Xiaolei Guo
- Shandong Center for Disease Control and Prevention, Jinan, China
| | - Qing Huang
- Department of Epidemiology and Statistics, School of Public Health, Bengbu Medical College, No. 2600 Donghai Avenue, Longzihu District, Bengbu, 233000, China
| | - Xianjie Jia
- Department of Epidemiology and Statistics, School of Public Health, Bengbu Medical College, No. 2600 Donghai Avenue, Longzihu District, Bengbu, 233000, China.
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China.
| | - Jing Mi
- Department of Epidemiology and Statistics, School of Public Health, Bengbu Medical College, No. 2600 Donghai Avenue, Longzihu District, Bengbu, 233000, China.
| |
Collapse
|
7
|
Sun Z, Chen L, Liu Z, Feng L, Cui Y, Zhang X, Wu Y, Zhang J. Modifying effects of green space on the relationships between air pollution and ischemic cerebrovascular event recurrence in Tianjin, China. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2024; 34:3648-3658. [PMID: 38357761 DOI: 10.1080/09603123.2024.2314636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 02/01/2024] [Indexed: 02/16/2024]
Abstract
This study aimed to explore how air pollution and green space influence ICE recurrence and whether they might interact with each other. A case-cross design was used in this study, which was carried out in Tianjin, China. A total of 8306 patients with recurrent ICE were collected from 2019 to 2020. The maximum effects of PM2.5, PM10, SO2, NO2, CO were 1.012 (95%CI: 1.004, 1.019), 1.010 (95%CI: 1.004, 1.016), 1.035 (95%CI: 0.982, 1.091), 1.067 (95%CI: 1.043, 1.091) and 1.012 (95%CI: 1.004, 1.021) , respectively, and the risk was higher in males and in the 50-60 age group. In the stratification of greening, it was found that air pollution except O3 had the highest risk of ICE recurrence for those with lower green space. Our study found that air pollution (except O3) can increase the risk of ICE recurrence, and this risk can be reduced by increasing green space.
Collapse
Affiliation(s)
- Zhiying Sun
- Environmental Health and School Health, Tianjin Centers for Disease Control and Prevention, Tianjin, China
| | - Lu Chen
- Environmental Health and School Health, Tianjin Centers for Disease Control and Prevention, Tianjin, China
| | - Zhonghui Liu
- Environmental Health and School Health, Tianjin Centers for Disease Control and Prevention, Tianjin, China
| | - Lihong Feng
- Environmental Health and School Health, Tianjin Centers for Disease Control and Prevention, Tianjin, China
| | - Yushan Cui
- Environmental Health and School Health, Tianjin Centers for Disease Control and Prevention, Tianjin, China
| | - Xianwei Zhang
- Environmental Health and School Health, Tianjin Centers for Disease Control and Prevention, Tianjin, China
| | - Yan Wu
- Environmental Health and School Health, Tianjin Centers for Disease Control and Prevention, Tianjin, China
| | - Jingwei Zhang
- Environmental Health and School Health, Tianjin Centers for Disease Control and Prevention, Tianjin, China
| |
Collapse
|
8
|
Gao Y, Wang Y, Lan X, Guo J, Ma N, Yuan Y, Zhang L, Peng X, Zheng B, Xie Y, Liu L, Wang L, Qiu Y, Zheng J, Qi Y. Association between mixed metal exposure and stroke risk in Shanxi Province: a case-control study. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 282:116765. [PMID: 39053047 DOI: 10.1016/j.ecoenv.2024.116765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 07/16/2024] [Accepted: 07/18/2024] [Indexed: 07/27/2024]
Abstract
BACKGROUND Stroke is the second leading cause of death for all human beings and poses a serious threat to human health. Environmental exposure to a mixture of metals may be associated with the occurrence and development of stroke, but the evidence in the Chinese population is not yet conclusive. OBJECTIVES This study evaluated the association between stroke risk and 13 metals METHODS: Metal concentrations in whole blood samples from 100 stroke cases and 100 controls were measured by ICP-MS. The cumulative impact of mixed metal on stroke risk was investigated by using three statistical models, BKMR, WQS and QGC. RESULTS The case group had higher concentrations of Mg, Mn, Zn, Se, Sn, and Pb than the control group (p<0.05). BKMR model indicated a correlation between the risk of stroke and exposure to mixed metals. WQS model showed that Mg (27.2 %), Se (25.1 %) and Sn (14.8 %) were positively correlated with stroke risk (OR=1.53; 95 %Cl: 1.03-2.37, p=0.013). The QGC model showed that Mg (49.2 %) was positively correlated with stroke risk, while Ti (31.7 %) was negatively correlated with stroke risk. CONCLUSIONS Mg may be the largest contributor to the cumulative effect of mixed metal exposure on stroke risk, and the interaction between metals requires more attention. These findings could provide scientific basis for effectively preventing stroke by managing metals in the environment.
Collapse
Affiliation(s)
- Yi Gao
- School of Public Health, Shanxi Medical University, Taiyuan, China.
| | - Ying Wang
- School of Public Health, Shanxi Medical University, Taiyuan, China
| | - Xiaodie Lan
- School of Public Health, Shanxi Medical University, Taiyuan, China
| | - Jian Guo
- Department of Cardiology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Nanxin Ma
- School of Public Health, Shanxi Medical University, Taiyuan, China
| | - Yuese Yuan
- School of Public Health, Shanxi Medical University, Taiyuan, China
| | - Li Zhang
- Department of Neurology, Shanxi Provincial People's Hospital, Taiyuan, China
| | - Xiaoxiao Peng
- School of Public Health, Shanxi Medical University, Taiyuan, China
| | - Bingxue Zheng
- School of Public Health, Shanxi Medical University, Taiyuan, China
| | - Yifan Xie
- School of Public Health, Shanxi Medical University, Taiyuan, China
| | - Liangpo Liu
- School of Public Health, Shanxi Medical University, Taiyuan, China
| | - Li Wang
- School of Public Health, Shanxi Medical University, Taiyuan, China
| | - Yulan Qiu
- School of Public Health, Shanxi Medical University, Taiyuan, China
| | - Jinping Zheng
- School of Public Health, Shanxi Medical University, Taiyuan, China
| | - Yan Qi
- Department of Neurology, The Second Affiliated Hospital of Shanxi Medical University, Taiyuan, China.
| |
Collapse
|
9
|
Song X, Meng J, Li J, Shen B, Li J, Xu M, Wang H, Gu L, Wei Y. Association of plasma metals with resting-state functional connectivity in ischemic stroke. Neurotoxicology 2024; 104:56-65. [PMID: 39059632 DOI: 10.1016/j.neuro.2024.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/21/2024] [Accepted: 07/23/2024] [Indexed: 07/28/2024]
Abstract
BACKGROUND Metal exposure has long been considered a significant risk factor for ischemic stroke. However, existing data on the effects of metal exposure on brain function in ischemic stroke are limited. Therefore, this study aimed to explore the correlation between exposure to various metals and changes in resting-state functional connectivity (rs-FC) in ischemic stroke patients. METHODS This study included 28 acute ischemic stroke patients with hemiplegia and 28 matched healthy controls (HCs). All participants underwent T1-weighted MRI and 3.0 T resting-state functional magnetic resonance imaging (fMRI). After MRI acquisition, the rs-FC between 137 cortical and subcortical regions was extracted and preprocessed. Plasma levels of 19 metals were measured using inductively coupled plasma mass spectrometry (ICP-MS). The Bayesian kernel machine regression (BKMR) model and the weighted quantile sum regression (WQS) model were used to assess the overall effect of metal mixture exposure. The severity of neurological deficits in each acute ischemic stroke patient was evaluated using the National Institutes of Health Stroke Scale (NIHSS). Additionally, the associations between exposure to various metals and modifications in brain functional connectivity were determined using Pearson or Spearman correlation analysis. RESULTS Bilateral brain connectivity was significantly decreased compared to controls and was associated with neurological impairment in ischemic stroke. In patients with ischemic stroke, the plasma concentrations of Cr (p < 0.001), Cu (p = 0.004), As (p = 0.010), Cs (p = 0.046), Rb (p = 0.041), and Sb (p = 0.001) were significantly higher than those in the HCs, whereas the plasma Tl concentrations (p = 0.022) were significantly lower. The results of the BKMR and WQS models showed that combined exposure to metal mixtures was linked to a higher risk of ischemic stroke. Cr was positively correlated with the rs-FC between the left Rolandic_Oper and the left Supp_Motor_Area (r = 0.414, p = 0.029), while negatively correlated with the rs-FC between the right Parietal_Inf and the left supramarginal (r = -0.398, p = 0.037). Cu was negatively correlated with the rs-FC between the left paracentral lobule and the left thalamus (r = -0.409, p = 0.031). Tl was positively correlated with the rs-FC between the right Parietal_Inf and the left supramarginal cortex (r = 0.590, p = 0.001). A negative correlation was observed between Cs and rs-FC between the right Cingulate_Mid and left Occipital_Sup (r = -0.429, p = 0.024). Sb was negatively correlated with the rs-FC between the left Parietal_Inf and the right SupraMarginal (r = -0.384, p = 0.044), the right Parietal_Inf and the left SupraMarginal (r = -0.583, p = 0.001), and the left SupraMarginal and the right SupraMarginal (r = -0.377, p = 0.048). CONCLUSION Plasma levels of Cr, Cu, Tl, Cs, and Sb were associated with altered rs-FC in brain regions related to motor control, sensory integration, executive function, language processing, and emotional regulation in ischemic stroke patients with basal ganglia infarction.
Collapse
Affiliation(s)
- Xiaoxiao Song
- Guangxi University of Chinese Medicine, 13 Wuhe Avenue, Nanning, Guangxi 530200, China
| | - Jianxing Meng
- Guangxi University of Chinese Medicine, 13 Wuhe Avenue, Nanning, Guangxi 530200, China; First Affiliated Hospital, Guangxi University of Chinese Medicine, 89-9 Dongge Road, Nanning, Guangxi 530022, China
| | - Jiale Li
- School of Public Health, Guangxi Medical University, 22 Shuangyong Road, Nanning, Guangxi 530021, China
| | - Bing Shen
- School of Public Health, Guangxi Medical University, 22 Shuangyong Road, Nanning, Guangxi 530021, China
| | - Jinling Li
- Guangxi University of Chinese Medicine, 13 Wuhe Avenue, Nanning, Guangxi 530200, China
| | - Miaomiao Xu
- Guangxi University of Chinese Medicine, 13 Wuhe Avenue, Nanning, Guangxi 530200, China
| | - Honghai Wang
- Guangxi University of Chinese Medicine, 13 Wuhe Avenue, Nanning, Guangxi 530200, China
| | - Lian Gu
- Guangxi University of Chinese Medicine, 13 Wuhe Avenue, Nanning, Guangxi 530200, China; First Affiliated Hospital, Guangxi University of Chinese Medicine, 89-9 Dongge Road, Nanning, Guangxi 530022, China.
| | - Yufei Wei
- Guangxi University of Chinese Medicine, 13 Wuhe Avenue, Nanning, Guangxi 530200, China; First Affiliated Hospital, Guangxi University of Chinese Medicine, 89-9 Dongge Road, Nanning, Guangxi 530022, China.
| |
Collapse
|
10
|
Wang Y, Zhu Y, Cui H, Deng H, Zuo Z, Fang J, Guo H. Effects of CuSO 4 on hepatic mitochondrial function, biogenesis and dynamics in mice. ENVIRONMENTAL TOXICOLOGY 2024; 39:2208-2217. [PMID: 38124272 DOI: 10.1002/tox.24085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/10/2023] [Accepted: 12/01/2023] [Indexed: 12/23/2023]
Abstract
Copper is an essential trace element for animal. Excessive intake of copper will cause a large accumulation of copper in the body, especially in the liver, and induce hepatotoxicity, however, there are few studies on the effects of copper on hepatic mitochondrial biogenesis and mitochondrial dynamics. In this study, mice were treated with different doses of CuSO4 (0, 10, 20, and 40 mg/kg) for 21 and 42 days by gavage. The results verified that CuSO4 decreased the content of mitochondrial respiratory chain complexes I-IV in mouse liver. CuSO4 treatment resulted the decrease in the protein and mRNA expression levels of PGC-1α, TFAM, and NRF1, which were the mitochondrial biogenesis regulator proteins. Meanwhile, the proteins involved in mitochondrial fusion were reduced by CuSO4 , such as Mfn1 and Mfn2, however, mitochondrial fission proteins Drip1 and Fis1 were significantly increased. Abovementioned results show that CuSO4 could induce mitochondria damage in the liver of mice, and mitochondrial biogenesis and mitochondrial dynamics are involved in the molecular mechanism of CuSO4 -induced hepatotoxicity.
Collapse
Affiliation(s)
- Yihan Wang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yanqiu Zhu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Hengmin Cui
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Chengdu, China
| | - Huidan Deng
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Chengdu, China
| | - Zhicai Zuo
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Chengdu, China
| | - Jing Fang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Chengdu, China
| | - Hongrui Guo
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Chengdu, China
| |
Collapse
|
11
|
Kobayashi S, Yoda Y, Takagi H, Ito T, Wakamatsu J, Nakatsubo R, Horie Y, Hiraki T, Shima M. Short-term effects of the chemical components of fine particulate matter on pulmonary function: A repeated panel study among adolescents. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 895:165195. [PMID: 37391138 DOI: 10.1016/j.scitotenv.2023.165195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/07/2023] [Accepted: 06/27/2023] [Indexed: 07/02/2023]
Abstract
The effects of the chemical components of fine particulate matter (PM2.5) have been drawing attention. However, information regarding the impact of low PM2.5 concentrations is limited. Hence, we aimed to investigate the short-term effects of the chemical components of PM2.5 on pulmonary function and their seasonal differences in healthy adolescents living on an isolated island without major artificial sources of air pollution. A panel study was repeatedly conducted twice a year for one month every spring and fall from October 2014 to November 2016 on an isolated island in the Seto Inland Sea, which has no major artificial sources of air pollution. Daily measurements of peak expiratory flow (PEF) and forced expiratory volume in 1 s (FEV1) were performed in 47 healthy college students, and the concentrations of 35 chemical components of PM2.5 were analyzed every 24 h. Using a mixed-effects model, the relationship between pulmonary function values and concentrations of PM2.5 components was analyzed. Significant associations were observed between several PM2.5 components and decreased pulmonary function. Among the ionic components, sulfate was strongly related to decreases in PEF and FEV1 (-4.20 L/min [95 % confidence interval (CI): -6.40 to -2.00] and - 0.04 L [95 % CI: -0.05 to -0.02] per interquartile range increase, respectively). Among the elemental components, potassium induced the greatest reduction in PEF and FEV1. Therefore, PEF and FEV1 were significantly reduced as the concentrations of several PM2.5 components increased during fall, with minimal changes observed during spring. Several chemical components of PM2.5 were significantly associated with decreased pulmonary function among healthy adolescents. The concentrations of PM2.5 chemical components differed by season, suggesting the occurrence of distinct effects on the respiratory system depending on the type of component.
Collapse
Affiliation(s)
- Satoru Kobayashi
- Department of Public Health, School of Medicine, Hyogo Medical University, Nishinomiya, Hyogo 663-8501, Japan
| | - Yoshiko Yoda
- Department of Public Health, School of Medicine, Hyogo Medical University, Nishinomiya, Hyogo 663-8501, Japan.
| | - Hiroshi Takagi
- National Institute of Technology, Yuge College, Kamijima, Ehime 794-2593, Japan
| | - Takeshi Ito
- National Institute of Technology, Yuge College, Kamijima, Ehime 794-2593, Japan
| | - Junko Wakamatsu
- National Institute of Technology, Yuge College, Kamijima, Ehime 794-2593, Japan
| | - Ryohei Nakatsubo
- Hyogo Prefectural Institute of Environmental Sciences, Kobe, Hyogo 654-0037, Japan
| | - Yosuke Horie
- Hyogo Prefectural Institute of Environmental Sciences, Kobe, Hyogo 654-0037, Japan
| | - Takatoshi Hiraki
- Hyogo Prefectural Institute of Environmental Sciences, Kobe, Hyogo 654-0037, Japan
| | - Masayuki Shima
- Department of Public Health, School of Medicine, Hyogo Medical University, Nishinomiya, Hyogo 663-8501, Japan
| |
Collapse
|
12
|
Li B, Ma Y, Zhou Y, Chai E. Research progress of different components of PM 2.5 and ischemic stroke. Sci Rep 2023; 13:15965. [PMID: 37749193 PMCID: PMC10519985 DOI: 10.1038/s41598-023-43119-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 09/20/2023] [Indexed: 09/27/2023] Open
Abstract
PM2.5 is a nonhomogeneous mixture of complex components produced from multiple sources, and different components of this mixture have different chemical and biological toxicities, which results in the fact that the toxicity and hazards of PM2.5 may vary even for the same mass of PM2.5. Previous studies on PM2.5 and ischemic stroke have reached different or even opposing conclusions, and considering the heterogeneity of PM2.5 has led researchers to focus on the health effects of specific PM2.5 components. However, due to the complexity of PM2.5 constituents, assessing the association between exposure to specific PM2.5 constituents and ischemic stroke presents significant challenges. Therefore, this paper reviews and analyzes studies related to PM2.5 and its different components and ischemic stroke, aiming to understand the composition of PM2.5 and identify its harmful components, elucidate their relationship with ischemic stroke, and thus provide some insights and considerations for studying the biological mechanisms by which they affect ischemic stroke and for the prevention and treatment of ischemic stroke associated with different components of PM2.5.
Collapse
Affiliation(s)
- Bin Li
- First Clinical Medicine College, Gansu University of Traditional Chinese Medicine, Lanzhou, 730000, China
| | - Yong Ma
- Ningxia Medical University, Yinchuan, 750000, China
| | - Yu Zhou
- Lanzhou University, Lanzhou, 730000, China
| | - Erqing Chai
- Key Laboratory of Cerebrovascular Diseases of Gansu Province, Cerebrovascular Disease Center, Gansu Provincial People's Hospital, Lanzhou, 730000, China.
| |
Collapse
|
13
|
Abstract
Despite recent advances in treatment and prevention, stroke remains a leading cause of morbidity and mortality. There is a critical need to identify novel modifiable risk factors for disease, including environmental agents. A body of evidence has accumulated suggesting that elevated levels of ambient air pollutants may not only trigger cerebrovascular events in susceptible people (short-term exposures) but also increase the risk of future events (long-term average exposures). This review assesses the updated evidence for both short and long-term exposure to ambient air pollution as a risk factor for stroke incidence and outcomes. It discusses the potential pathophysiologic mechanisms and makes recommendations to mitigate exposure on a personal and community level. The evidence indicates that reduction in air pollutant concentrations represent a significant population-level opportunity to reduce risk of cerebrovascular disease.
Collapse
Affiliation(s)
- Erin R Kulick
- Department of Epidemiology and Biostatistics, Temple University College of Public Health, Philadelphia, PA (E.R.K.)
| | - Joel D Kaufman
- Department of Medicine, University of Washington, Seattle (J.D.K., C.S.)
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle (J.D.K., C.S.)
- Department of Epidemiology, University of Washington, Seattle (J.D.K.)
| | - Coralynn Sack
- Department of Medicine, University of Washington, Seattle (J.D.K., C.S.)
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle (J.D.K., C.S.)
| |
Collapse
|
14
|
Wu M, Yu L, Li T, Lu J, Yang Z, Shen P, Tang M, Jin M, Lin H, Chen K, Wang J. Association between short-term exposure to air pollution and ischemic stroke: A case-crossover study in China. ATMOSPHERIC ENVIRONMENT 2022; 283:119173. [DOI: 10.1016/j.atmosenv.2022.119173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/01/2025]
|
15
|
Balogun AL, Tella A. Modelling and investigating the impacts of climatic variables on ozone concentration in Malaysia using correlation analysis with random forest, decision tree regression, linear regression, and support vector regression. CHEMOSPHERE 2022; 299:134250. [PMID: 35318016 DOI: 10.1016/j.chemosphere.2022.134250] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 12/01/2021] [Accepted: 03/05/2022] [Indexed: 06/14/2023]
Abstract
Climate change is generally known to impact ozone concentration globally. However, the intensity varies across regions and countries. Therefore, local studies are essential to accurately assess the correlation of climate change and ozone concentration in different countries. This study investigates the effects of climatic variables on ozone concentration in Malaysia in order to understand the nexus between climate change and ozone concentration. The selected data was obtained from ten (10) air monitoring stations strategically mounted in urban-industrial and residential areas with significant emissions of pollutants. Correlation analysis and four machine learning algorithms (random forest, decision tree regression, linear regression, and support vector regression) were used to analyze ozone and meteorological dataset in the study area. The analysis was carried out during the southwest monsoon due to the rise of ozone in the dry season. The results show a very strong correlation between temperature and ozone. Wind speed also exhibits a moderate to strong correlation with ozone, while relative humidity is negatively correlated. The highest correlation values were obtained at Bukit Rambai, Nilai, Jaya II Perai, Ipoh, Klang and Petaling Jaya. These locations have high industries and are well urbanized. The four machine learning algorithms exhibit high predictive performances, generally ascertaining the predictive accuracy of the climatic variables. The random forest outperformed other algorithms with a very high R2 of 0.970, low RMSE of 2.737 and MAE of 1.824, followed by linear regression, support vector regression and decision tree regression, respectively. This study's outcome indicates a linkage between temperature and wind speed with ozone concentration in the study area. An increase of these variables will likely increase the ozone concentration posing threats to lives and the environment. Therefore, this study provides data-driven insights for decision-makers and other stakeholders in ensuring good air quality for sustainable cities and communities. It also serves as a guide for the government for necessary climate actions to reduce the effect of climate change on air pollution and enabling sustainable cities in accordance with the UN's SDGs 13 and 11, respectively.
Collapse
Affiliation(s)
- Abdul-Lateef Balogun
- Professional Services Department (Resources), Esri Australia, 613 King Street, West Melbourne, VIC, 3003, Australia; Geospatial Analysis and Modelling (GAM) Research Laboratory, Department of Civil and Environmental Engineering, Universiti Teknologi PETRONAS (UTP), 32610, Seri Iskandar, Perak, Malaysia
| | - Abdulwaheed Tella
- Earth, Environment and Space Division, Foresight Institute of Research and Translation, Ibadan, Nigeria; Geospatial Analysis and Modelling (GAM) Research Laboratory, Department of Civil and Environmental Engineering, Universiti Teknologi PETRONAS (UTP), 32610, Seri Iskandar, Perak, Malaysia.
| |
Collapse
|
16
|
Zhao Z, Guo M, An J, Zhang L, Tan P, Tian X, Zhao Y, Liu L, Wang X, Liu X, Guo X, Luo Y. Acute effect of air pollutants' peak-hour concentrations on ischemic stroke hospital admissions among hypertension patients in Beijing, China, from 2014 to 2018. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:41617-41627. [PMID: 35094263 DOI: 10.1007/s11356-021-18208-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 12/14/2021] [Indexed: 06/14/2023]
Abstract
Air pollutants' effect on ischemic stroke (IS) has been widely reported. But the effect of high-level concentrations during people's outdoor periods among hypertension patients was unknown. Peak-hour concentrations were defined considering air pollutants' high concentrations as well as people's outdoor periods. We conducted a time-series study and used the generalized additive model to analyze peak-hour concentrations' acute effect. A total of 315,499 IS patients comorbid with hypertension were admitted to secondary and above hospitals in Beijing from 2014 to 2018. A 10 µg/m3 (CO: 1 mg/m3) increase of the peak-hour concentrations was positively associated with IS hospital admissions among hypertension patients. The maximum effect sizes were as follows: for PM2.5, 0.17% (95% confidence interval [CI]: 0.10-0.24%) at Lag0 and 0.22% (95% CI: 0.12-0.33%) at Lag0-5; for PM10, 0.09% (95% CI: 0.05-0.13%) at Lag5 and 0.17% (95% CI: 0.09-0.26%) at Lag0-5; for SO2, 0.87% (95% CI: 0.46-1.29%) at Lag5; for NO2, 0.83% (95% CI: 0.62-1.04%) at Lag0 and 0.86% (95% CI: 0.59-1.13%) at Lag0-1; for CO 1.23% (95% CI: 0.66-1.80%) at Lag0 and 1.33% (95% CI: 0.33-2.35%) at Lag0-5; for O3 0.23% (95% CI: 0.12-0.35%) at Lag0 and 0.20% (95% CI: 0.05-0.34%) at Lag0-1. The effect sizes of PM2.5, NO2, and O3 remained significant after adjusting daily mean. Larger effect sizes were observed for PM2.5 and PM10 in cool season and for O3 in warm season. As significant exposure indicators of air pollution, peak-hour concentrations exposure increased the risk of IS hospital admissions among hypertension patients and it is worthy of consideration in relative environmental standard. It is suggested for hypertension patients to avoid outdoor activity during peak hours. More relevant searches are required to further illustrate air pollutant's effect on chronic disease population.
Collapse
Affiliation(s)
- Zemeng Zhao
- School of Public Health, Capital Medical University, No.10 Xitoutiao, You'anmen Wai, Fengtai District, Beijing, 100069, China
- Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, Beijing, 100069, China
| | - Moning Guo
- Beijing Municipal Commission of Health and Family Planning Information Center, Beijing, 100034, China
| | - Ji An
- Department of Medical Engineering, Peking University Third Hospital, Beijing, 100191, China
| | - Licheng Zhang
- School of Public Health, Capital Medical University, No.10 Xitoutiao, You'anmen Wai, Fengtai District, Beijing, 100069, China
- Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, Beijing, 100069, China
- Beijing Cancer Hospital, Beijing, 100142, China
| | - Peng Tan
- Beijing Municipal Commission of Health and Family Planning Information Center, Beijing, 100034, China
| | - Xue Tian
- School of Public Health, Capital Medical University, No.10 Xitoutiao, You'anmen Wai, Fengtai District, Beijing, 100069, China
- Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, Beijing, 100069, China
| | - Yuhan Zhao
- School of Public Health, Capital Medical University, No.10 Xitoutiao, You'anmen Wai, Fengtai District, Beijing, 100069, China
- Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, Beijing, 100069, China
| | - Lulu Liu
- School of Public Health, Capital Medical University, No.10 Xitoutiao, You'anmen Wai, Fengtai District, Beijing, 100069, China
- Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, Beijing, 100069, China
| | - Xiaonan Wang
- School of Public Health, Capital Medical University, No.10 Xitoutiao, You'anmen Wai, Fengtai District, Beijing, 100069, China
- Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, Beijing, 100069, China
| | - Xiangtong Liu
- School of Public Health, Capital Medical University, No.10 Xitoutiao, You'anmen Wai, Fengtai District, Beijing, 100069, China
- Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, Beijing, 100069, China
| | - Xiuhua Guo
- School of Public Health, Capital Medical University, No.10 Xitoutiao, You'anmen Wai, Fengtai District, Beijing, 100069, China
- Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, Beijing, 100069, China
| | - Yanxia Luo
- School of Public Health, Capital Medical University, No.10 Xitoutiao, You'anmen Wai, Fengtai District, Beijing, 100069, China.
- Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
17
|
Wang X, Cao H, Fang Y, Bai H, Chen J, Xing C, Zhuang Y, Guo X, Hu G, Yang F. Activation of endoplasmic reticulum-mitochondria coupling drives copper-induced autophagy in duck renal tubular epithelial cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 235:113438. [PMID: 35339877 DOI: 10.1016/j.ecoenv.2022.113438] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 06/14/2023]
Abstract
Copper (Cu) as a transition metal can be toxic to public and ecosystem health at high level, but the specific mechanism of Cu-evoked nephrotoxicity remains elusive. Here, we first revealed the crosstalk between mitofusin2 (Mfn2)-dependent mitochondria-associated endoplasmic reticulum membrane (MAM) dynamics and autophagy in duck renal tubular epithelial cells under Cu exposure. Primary duck renal tubular epithelial cells were treated with 100 and 200 μM Cu sulfate for 12 h and exposed to lentivirus to deliver mitofusin2 (Mfn2). We found that excessive Cu disrupted MAM integrity, decreased the mitochondrial calcium level, co-localization of IP3R and VDAC1, the mRNA levels of PACS2, Mfn2, IP3R and MCU, and Mfn2 and VDAC1 protein levels, causing MAM dysfunction. Furthermore, Mfn2 overexpression ameliorated Cu-induced MAM dysfunction, and increased Cu-evoked autophagy in duck renal tubular epithelial cells accompanied with the elevation of autophagosomes number, ROS level, LC3 puncta, Atg5 and LC3B mRNA levels, and Beclin1, Atg14, LC3BII/LC3BI protein levels. Accordingly, our data proved that excessive Cu could trigger MAM dysfunction and autophagy in duck renal tubular epithelial cells, and Cu-induced autophagy could be activated through Mfn2-dependent MAM, providing evidence on the toxicological exploration mechanisms of Cu.
Collapse
Affiliation(s)
- Xiaoyu Wang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, Jiangxi, PR China
| | - Huabin Cao
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, Jiangxi, PR China
| | - Yukun Fang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, Jiangxi, PR China
| | - He Bai
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, Jiangxi, PR China
| | - Jing Chen
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, Jiangxi, PR China
| | - Chenghong Xing
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, Jiangxi, PR China
| | - Yu Zhuang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, Jiangxi, PR China
| | - Xiaoquan Guo
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, Jiangxi, PR China
| | - Guoliang Hu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, Jiangxi, PR China
| | - Fan Yang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, Jiangxi, PR China.
| |
Collapse
|
18
|
He Y, Jiang Y, Yang Y, Xu J, Zhang Y, Wang Q, Shen H, Zhang Y, Yan D, Peng Z, Liu C, Wang W, Schikowski T, Li H, Yan B, Ji JS, Chen A, van Donkelaar A, Martin R, Chen R, Kan H, Cai J, Ma X. Composition of fine particulate matter and risk of preterm birth: A nationwide birth cohort study in 336 Chinese cities. JOURNAL OF HAZARDOUS MATERIALS 2022; 425:127645. [PMID: 34920912 DOI: 10.1016/j.jhazmat.2021.127645] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 08/10/2021] [Accepted: 10/27/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND Potential hazards of fine particulate matter (PM2.5) constituents on preterm birth (PTB) have rarely been explored in China. OBJECTIVE To quantify the associations of PM2.5 constituents with PTB. METHODS This study was based on a nationwide cohort of 3,723,169 live singleton births delivered between January 2010 and December 2015 in China. We applied satellite-based estimates of 5 PM2.5 constituents (organic carbon; black carbon; sulfate; ammonium; and nitrate). We used Cox proportional hazards regression models adjusted for individual covariates, temperature, humidity, and seasonality to evaluate the associations. RESULTS During the entire pregnancy, each interquartile range (29 μg/m3) increase in PM2.5 concentrations was associated with a 7% increase in PTB risk [hazard ratio (HR): 1.07; 95% confidence interval (CI): 1.07-1.08). We observed the largest effect estimates on carbonaceous components (HR: 1.09; 95% CI: 1.08-1.10 for organic carbon and black carbon). Early pregnancy appeared to be the critical exposure window for most constituents. Women who were older, exposed to second-hand smoke, overweight or obese before pregnancy, conceived during winter, and living in northern China or rural areas were more susceptible. CONCLUSIONS Carbonaceous components of PM2.5 were associated with higher PTB risk. Findings on characteristics of vulnerability underlined targeted protections on susceptible subgroups.
Collapse
Affiliation(s)
- Yuan He
- National Research Institute for Health and Family Planning, Beijing, China; National Human Genetic Resources Center, Beijing, China
| | - Yixuan Jiang
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Ying Yang
- National Research Institute for Health and Family Planning, Beijing, China
| | - Jihong Xu
- National Research Institute for Health and Family Planning, Beijing, China
| | - Ya Zhang
- National Research Institute for Health and Family Planning, Beijing, China
| | - Qiaomei Wang
- Department of Maternal and Child Health, National Health Commission of the People's Republic of China, Beijing, China
| | - Haiping Shen
- National Research Institute for Health and Family Planning, Beijing, China
| | - Yiping Zhang
- Department of Maternal and Child Health, National Health Commission of the People's Republic of China, Beijing, China
| | - Donghai Yan
- Department of Maternal and Child Health, National Health Commission of the People's Republic of China, Beijing, China
| | - Zuoqi Peng
- National Research Institute for Health and Family Planning, Beijing, China
| | - Cong Liu
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Weidong Wang
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Tamara Schikowski
- Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| | - Huichu Li
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Beizhan Yan
- Division of Geochemistry, Lamont-Doherty Earth Observatory of Columbia University, Palisades, New York, USA
| | - John S Ji
- Vanke School of Public Health, Tsinghua University, Beijing, China
| | - Aimin Chen
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, 423 Guardian Drive, Philadelphia, PA, USA
| | - Aaron van Donkelaar
- Department of Physics and Atmospheric Science, Dalhousie University, Halifax, NS, Canada; Department of Energy, Environmental & Chemical Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Randall Martin
- Department of Physics and Atmospheric Science, Dalhousie University, Halifax, NS, Canada; Department of Energy, Environmental & Chemical Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Renjie Chen
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Haidong Kan
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China; Children's Hospital of Fudan University, National Center for Children's Health, Shanghai 201102, China
| | - Jing Cai
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China.
| | - Xu Ma
- National Research Institute for Health and Family Planning, Beijing, China; National Human Genetic Resources Center, Beijing, China.
| |
Collapse
|
19
|
Zhang Y, He Q, Zhang Y, Xue X, Kan H, Wang X. Differential associations of particle size ranges and constituents with stroke emergency-room visits in Shanghai, China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 232:113237. [PMID: 35104777 DOI: 10.1016/j.ecoenv.2022.113237] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 01/19/2022] [Accepted: 01/21/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND AND PURPOSE Fine particulate matter (PM2.5) has been associated with increased risks of stroke, but it remains unclear which specific size ranges and chemical constituents dominate the effects of PM2.5 on stroke. We aimed to evaluate the associations of size-segregated particles and various constituents of PM2.5 with daily emergency-room visits for stroke. METHODS We conducted a time-series study to investigate the associations of 5 particle size ranges from 0.01 to 2.5 µm and 35 constituents of PM2.5 with the daily emergency-room visits for stroke in Shanghai, from 2014 to 2019. Over-dispersed generalized additive models were used to estimate the associations. The robustness of these associations was evaluated by additionally controlling for PM2.5 mass. RESULTS For size ranges from 0.01 to 0.3 µm, there were significant positive associations between particle number concentrations and daily emergency-room visits for stroke with the strongest associations occurring for the size range 0.05-0.1 µm. The size-dependent pattern was not changed by adjusting for PM2.5 and gaseous pollutants. The associations of daily emergency-room visits for stroke also varied considerably by various PM2.5 constituents. After controlling for the simultaneous exposure to PM2.5 and gaseous pollutants in two-pollutant models, we identified 11 out of 35 constituents that had robust associations, these being organic carbon, elemental carbon, chlorine, magnesium, ammonium, nitrate, sulfate, copper, manganese, lead and zinc. CONCLUSION Ultra-fine particles and some PM2.5 constituents (i.e., carbonaceous fractions, inorganic ions and some elements) may be mainly responsible for the excess risk of stroke induced by PM2.5.
Collapse
Affiliation(s)
- Yuhao Zhang
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai 200032, China; National Clinical Research Center for Interventional Medicine, Shanghai 200032, China; Shanghai Clinical Research Center for Interventional Medicine, Shanghai 200032, China.
| | - Qinglin He
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Laboratory of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Yaping Zhang
- Department of Emergency, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Xiaowei Xue
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Laboratory of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Haidong Kan
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Laboratory of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Xin Wang
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai 200032, China; National Clinical Research Center for Interventional Medicine, Shanghai 200032, China; Shanghai Clinical Research Center for Interventional Medicine, Shanghai 200032, China.
| |
Collapse
|
20
|
Wei D, Li S, Zhang L, Liu P, Fan K, Nie L, Wang L, Liu X, Hou J, Yu S, Li L, Jing T, Li X, Li W, Guo Y, Wang C, Huo W, Mao Z. Long-term exposure to PM 1 and PM 2.5 is associated with serum cortisone level and meat intake plays a moderation role. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 215:112133. [PMID: 33740488 DOI: 10.1016/j.ecoenv.2021.112133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 03/01/2021] [Accepted: 03/05/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Although short-term exposure to particulate matter (PM) was associated with increased glucocorticoids (GCs) levels, available evidence on associations of long-term exposure to PM and GCs levels is still scant. Previous studies has showed that meat intake is associated with sex hormones levels, but it is unknown whether meat intake is associated with GCs levels. Furthermore, the role of meat intake in the associations between PM and GCs levels remains unclear. AIMS The aims of this study were to explore the associations of long-term exposure to PM and GCs levels among Chinese rural adults, and the role of meat intake in these associations. MATERIALS AND METHODS A total of 6223 subjects were recruited from the Henan Rural Cohort Study. Serum GCs levels were measured with liquid chromatography-tandem mass spectrometry. The concentrations of PM (PM1 and PM2.5) for each subject were assessed with machine learning algorithms. The food frequency questionnaire (FFQ) was used to obtain each participant' information on meat intake. The effects of PM and meat intake on GCs levels were assessed using generalized linear models. In addition, modification analyses were performed to identify the role of meat intake played in the associations of PM with serum GCs levels. RESULTS Per 1 μg/m3 increment in PM1 or PM2.5 concentration was associated with a 0.364 ng/ml (95% confidence interval (CI): 0.234, 0.494) or 0.227 ng/ml (95%CI: 0.110, 0.343) increase in serum cortisone, respectively. In addition, the moderation effects of total meat intake and red meat intake on the associations of long-term exposure to PM1 or PM2.5 with serum cortisone were observed (P < 0.05), indicating that individuals who had high levels of PM1 or PM2.5 and meat intake were more susceptible to have a higher state of serum cortisone. CONCLUSIONS Our findings suggested that long-term exposure to PM1 or PM2.5 was associated with serum cortisone. Moreover, meat intake was found to be a significant moderator in the association of PM1 or PM2.5 with serum cortisone levels.
Collapse
Affiliation(s)
- Dandan Wei
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Shanshan Li
- Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Li Zhang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Pengling Liu
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Keliang Fan
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Luting Nie
- Department of Occupational and Environmental Health Sciences, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Lulu Wang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Xiaotian Liu
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Jian Hou
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Songcheng Yu
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Linlin Li
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Tao Jing
- School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Xing Li
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Wenjie Li
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Yuming Guo
- Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Chongjian Wang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Wenqian Huo
- Department of Occupational and Environmental Health Sciences, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China.
| | - Zhenxing Mao
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China.
| |
Collapse
|
21
|
Yan Y, Chen X, Guo Y, Wu C, Zhao Y, Yang N, Dai J, Gong J, Xiang H. Ambient air pollution and cerebrovascular disease mortality: an ecological time-series study based on 7-year death records in central China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:27299-27307. [PMID: 33511535 DOI: 10.1007/s11356-021-12474-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 01/11/2021] [Indexed: 06/12/2023]
Abstract
Most studies of short-term exposure to ambient air pollution and cerebrovascular diseases focused on specific stroke-related outcomes, and results were inconsistent due to data unavailability and limited sample size. It is unclear yet how ambient air pollution contributes to the total cardiovascular mortality in central China. Daily deaths from cerebrovascular diseases were obtained from the Disease Surveillance Point System (DSPs) of Wuhan Center for Disease Control and Prevention during the period from 2013 to 2019. Air pollution data were obtained from Wuhan Ecology and Environment Institute from 10 national air quality monitoring stations, including average daily PM2.5, PM10, SO2, NO2, and O3. Average daily temperature and relative humidity were obtained from Wuhan Meteorological Bureau. We performed a Poisson regression in generalized additive models (GAM) to examine the association between ambient air pollution and cerebrovascular disease mortality. We observed a total of 84,811 deaths from cerebrovascular diseases from 1 January 2013 to 31 December 2019 in Wuhan. Short-term exposure to PM2.5, PM10, SO2, and NO2 was positively associated with daily deaths from cerebrovascular diseases, and no significant association was found for O3. The largest effect on cerebrovascular disease mortality was found at lag0 for PM2.5 (ERR: 0.927, 95% CI: 0.749-1.105 per 10 μg/m3) and lag1 for PM10 (ERR: 0.627, 95% CI: 0.493-0.761 per 10 μg/m3), SO2 (ERR: 2.518, 95% CI: 1.914, 3.122 per 10 μg/m3), and NO2 (ERR: 1.090, 95% CI: 0.822-1.358 per 10 μg/m3). The trends across lags were statistically significant. The stratified analysis demonstrated that females were more susceptible to SO2 and NO2, while elder individuals aged above 65 years old, compared with younger people, suffered more from air pollution, especially from SO2. Short-term exposure to PM2.5, PM10, SO2, and NO2 were significantly associated with a higher risk of cerebrovascular disease mortality, and elder females seemed to suffer more from air pollution. Further research is required to reveal the underlying mechanisms.
Collapse
Affiliation(s)
- Yaqiong Yan
- Wuhan Centers for Disease Control and Prevention, No.288 Machang Road, Wuhan, China
| | - Xi Chen
- Wuhan Centers for Disease Control and Prevention, No.288 Machang Road, Wuhan, China
- Department of Global Health, School of Health Sciences, Wuhan University, Wuhan, China
| | - Yan Guo
- Wuhan Centers for Disease Control and Prevention, No.288 Machang Road, Wuhan, China
| | - Chuangxin Wu
- Department of Global Health, School of Health Sciences, Wuhan University, Wuhan, China
| | - Yuanyuan Zhao
- Wuhan Centers for Disease Control and Prevention, No.288 Machang Road, Wuhan, China
| | - Niannian Yang
- Wuhan Centers for Disease Control and Prevention, No.288 Machang Road, Wuhan, China
| | - Juan Dai
- Wuhan Centers for Disease Control and Prevention, No.288 Machang Road, Wuhan, China
| | - Jie Gong
- Wuhan Centers for Disease Control and Prevention, No.288 Machang Road, Wuhan, China.
| | - Hao Xiang
- Department of Global Health, School of Health Sciences, Wuhan University, Wuhan, China.
| |
Collapse
|
22
|
Yang F, Liao J, Yu W, Qiao N, Guo J, Han Q, Li Y, Hu L, Pan J, Tang Z. Exposure to copper induces mitochondria-mediated apoptosis by inhibiting mitophagy and the PINK1/parkin pathway in chicken (Gallus gallus) livers. JOURNAL OF HAZARDOUS MATERIALS 2021; 408:124888. [PMID: 33360697 DOI: 10.1016/j.jhazmat.2020.124888] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/08/2020] [Accepted: 12/15/2020] [Indexed: 06/12/2023]
Abstract
Copper (Cu), a transition metal with essential cellular functions, exerts toxic effects when present in excess by inducing oxidative stress. However, the Cu-induced crosstalk between mitophagy and apoptosis and the underlying mechanisms are unknown. Here, the mechanism of Cu-induced hepatotoxicity mediated by mitophagy and apoptosis was explored in vivo and in vitro. In in vivo experiments, chickens were fed a diet with various levels of Cu (11, 110, 220, and 330 mg/kg) for 7 weeks, which led to ultrastructural damage, mitophagy, and apoptosis in liver tissue. In vitro experiments on primary chicken hepatocytes showed that Cu treatment for 24 h increased the numbers of mitophagosomes and upregulated PINK1, parkin, and p62 mRNA levels and parkin and p62 protein levels, inducing mitophagy. Moreover, treatment with 3- methyladenine (3-MA) aggravated Cu-induced S-phase arrest in cell cycle; increased the apoptotic rate; increased p53, Bak1, Bax, Cyt C, and Caspase3/cleaved-caspase3 mRNA and protein levels; and decreased Bcl2 mRNA and protein levels. However, rapamycin (Rapa) had the opposite effects on the above factors. In general, the results reveal that Cu exposure can cause mitophagy through the PINK1/Parkin pathway in chicken livers, and that mitophagy might attenuate Cu-induced mitochondrial apoptosis.
Collapse
Affiliation(s)
- Fan Yang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, PR China; Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, Jiangxi, PR China
| | - Jianzhao Liao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, PR China
| | - Wenlan Yu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, PR China
| | - Na Qiao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, PR China
| | - Jianying Guo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, PR China
| | - Qingyue Han
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, PR China
| | - Ying Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, PR China
| | - Lianmei Hu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, PR China
| | - Jiaqiang Pan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, PR China
| | - Zhaoxin Tang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, PR China.
| |
Collapse
|
23
|
Viteri G, Díaz de Mera Y, Rodríguez A, Rodríguez D, Tajuelo M, Escalona A, Aranda A. Impact of SARS-CoV-2 lockdown and de-escalation on air-quality parameters. CHEMOSPHERE 2021; 265:129027. [PMID: 33243576 PMCID: PMC7677078 DOI: 10.1016/j.chemosphere.2020.129027] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 11/12/2020] [Accepted: 11/16/2020] [Indexed: 06/02/2023]
Abstract
The SARS-CoV-2 health crisis has temporarily forced the lockdown of entire countries. This work reports the short-term effects on air quality of such unprecedented paralysis of industry and transport in different continental cities in Spain, one of the countries most affected by the virus and with the hardest confinement measures. The study takes into account sites with different sizes and diverse emission sources, such as traffic, residential or industrial emissions. This work reports new field measurement data for the studied pandemic period and assesses the air quality parameters within the historic trend of each pollutant and site. Thus, 2013-2020 data series from ground-air quality monitoring networks have been analysed to find out statistically significant changes in atmospheric pollutants during March-June 2020 due to this sudden paralysis of activity. The results show substantial concentration drops of primary pollutants, including NOx, CO, BTX, NMHC and NH3. Particulate matter changes were smaller due to the existence of other natural sources. During the lockdown the ozone patterns were different for each studied location, depending on the VOCs-NOx ratios, with concentration changes close to those expected from the historical series in each site and not statistically attributable to the health crisis effects. Finally, the gradual de-escalation and progressive increase of traffic density within cities reflects a slow recovery of primary pollutants. The results and conclusions for these cities, with different sizes and population, and specific emission sources, may serve as a behavioural model for other continental sites and help understand future crises.
Collapse
Affiliation(s)
- G Viteri
- Universidad de Castilla-La Mancha, Facultad de Ciencias y Tecnologías Químicas, Avenida Camilo José Cela S/n, 13071, Ciudad Real, Spain
| | - Y Díaz de Mera
- Universidad de Castilla-La Mancha, Facultad de Ciencias y Tecnologías Químicas, Avenida Camilo José Cela S/n, 13071, Ciudad Real, Spain.
| | - A Rodríguez
- Universidad de Castilla-La Mancha, Facultad de Ciencias Ambientales y Bioquímica, Avenida Carlos III S/n, 45071, Toledo, Spain
| | - D Rodríguez
- Universidad de Castilla-La Mancha, Facultad de Ciencias Ambientales y Bioquímica, Avenida Carlos III S/n, 45071, Toledo, Spain
| | - M Tajuelo
- Universidad de Castilla-La Mancha, Facultad de Ciencias Ambientales y Bioquímica, Avenida Carlos III S/n, 45071, Toledo, Spain
| | - A Escalona
- Universidad de Castilla-La Mancha, Facultad de Ciencias y Tecnologías Químicas, Avenida Camilo José Cela S/n, 13071, Ciudad Real, Spain
| | - A Aranda
- Universidad de Castilla-La Mancha, Facultad de Ciencias y Tecnologías Químicas, Avenida Camilo José Cela S/n, 13071, Ciudad Real, Spain.
| |
Collapse
|
24
|
Lin YK, Cheng CP, Kim H, Wang YC. Risk of ambulance services associated with ambient temperature, fine particulate and its constituents. Sci Rep 2021; 11:1651. [PMID: 33462328 PMCID: PMC7813819 DOI: 10.1038/s41598-021-81197-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 01/05/2021] [Indexed: 11/29/2022] Open
Abstract
Short-term adverse health effects of constituents of fine particles with aerodynamic diameters less than or equal to 2.5 μm (PM2.5) have been revealed. This study aimed to evaluate the real-time health outcome of ambulance services in association with ambient temperature and mass concentrations of total PM2.5 level and constituents in Kaohsiung City, an industrialized city with the worst air quality in Taiwan. Cumulative 6-day (lag0-5) relative risk (RR) and 95% confidence interval (CI) of daily ambulance services records of respiratory distress, coma and unconsciousness, chest pain, headaches/dizziness/vertigo/fainting/syncope, lying at public, and out-of-hospital cardiac arrest (OHCA) in association with ambient temperature and mass concentrations of total PM2.5 level and constituents (nitrate, sulfate, organic carbon (OC), and elemental carbon (EC)) from 2006 to 2010 were evaluated using a distributed lag non-linear model with quasi-Poisson function. Ambulance services of chest pain and OHCA were significantly associated with extreme high (30.8 °C) and low (18.2 °C) temperatures, with cumulative 6-day RRs ranging from 1.37 to 1.67 at the reference temperature of 24–25 °C. Daily total PM2.5 level had significant effects on ambulance services of lying at public and respiratory distress. After adjusting the cumulative 6-day effects of temperature and total PM2.5 level, RRs of ambulance services of lying at public associated with constituents at 90th percentile versus 25th percentile were 1.35 (95% CI: 1.08, 1.68) for sulfate and 1.20 (95% CI: 1.02, 1.41) for EC, while RR was 1.31 (95% CI: 1.09–1.58) for ambulance services of headache/dizziness/vertigo/fainting/syncope in association with OC at 90th percentile versus 25th percentile. Cause-specific ambulance services had various significant association with daily temperature, total PM2.5 level, and concentrations of constituents. Elemental carbon may have stronger associations with increased ambulance services than other constituents.
Collapse
Affiliation(s)
- Yu-Kai Lin
- Department of Health and Welfare, University of Taipei College of City Management, 101 Zhongcheng Road Sec. 2, Taipei, 111, Taiwan
| | - Chia-Pei Cheng
- Department of Environmental Engineering, College of Engineering, Chung Yuan Christian University, 200 Chung-Pei Road, Zhongli, 320, Taiwan
| | - Ho Kim
- Department of Epidemiology and Biostatistics, School of Public Health, Seoul National University, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Yu-Chun Wang
- Department of Environmental Engineering, College of Engineering, Chung Yuan Christian University, 200 Chung-Pei Road, Zhongli, 320, Taiwan. .,Research Center for Environmental Changes, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei, 11529, Taiwan.
| |
Collapse
|
25
|
Yang L, Zhang X, Xing W, Zhou Q, Zhang L, Wu Q, Zhou Z, Chen R, Toriba A, Hayakawa K, Tang N. Yearly variation in characteristics and health risk of polycyclic aromatic hydrocarbons and nitro-PAHs in urban shanghai from 2010-2018. J Environ Sci (China) 2021; 99:72-79. [PMID: 33183718 DOI: 10.1016/j.jes.2020.06.017] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 06/12/2020] [Accepted: 06/15/2020] [Indexed: 06/11/2023]
Abstract
This study encompassed the regular observation of nine polycyclic aromatic hydrocarbons (PAHs) and three nitro-PAHs (NPAHs) in particulate matter (PM) in Shanghai in summer and winter from 2010 to 2018. The results showed that the mean concentrations of ƩPAHs in summer decreased by 24.7% in 2013 and 18.1% in 2017 but increased by 10.2% in 2015 compared to the data in 2010. However, the mean concentrations of ƩPAHs in winter decreased by 39.7% from 2010 (12.8 ± 4.55 ng/m3) to 2018 (7.72 ± 3.33 ng/m3), and the mean concentrations of 1-nitropyrene in winter decreased by 79.0% from 2010 (42.3 ± 16.1 pg/m3) to 2018 (8.90 ± 2.09 pg/m3). Correlation analysis with meteorological conditions revealed that the PAH and NPAH concentrations were both influenced by ambient temperature. The diagnostic ratios of PAHs and factor analysis showed that they were mainly affected by traffic emissions with some coal and/or biomass combustion. The ratio of 2-nitrofluoranthene to 2-nitropyrene was near 10, which indicated that the OH radical-initiated reaction was the main pathway leading to their secondary formation. Moreover, backward trajectories revealed different air mass routes in each sampling period, indicating a high possibility of source effects from the northern area in winter in addition to local and surrounding influences. Meanwhile, the mean total benzo[a]pyrene-equivalent concentrations in Shanghai in winter decreased by 50.8% from 2010 (1860 ± 645 pg/m3) to 2018 (916 ± 363 pg/m3). These results indicated the positive effects of the various policies and regulations issued by Chinese authorities.
Collapse
Affiliation(s)
- Lu Yang
- Graduate School of Medical Sciences, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Xuan Zhang
- Graduate School of Medical Sciences, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Wanli Xing
- Graduate School of Medical Sciences, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Quanyu Zhou
- Graduate School of Medical Sciences, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Lulu Zhang
- Graduate School of Medical Sciences, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Qing Wu
- School of Public Health, Fudan University, Shanghai 200032, China
| | - Zhijun Zhou
- School of Public Health, Fudan University, Shanghai 200032, China
| | - Renjie Chen
- School of Public Health, Fudan University, Shanghai 200032, China
| | - Akira Toriba
- Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Kazuichi Hayakawa
- Institute of Nature and Environmental Technology, Kanazawa University, Kakuma-machi, 920-1192, Kanazawa, Japan
| | - Ning Tang
- Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan; Institute of Nature and Environmental Technology, Kanazawa University, Kakuma-machi, 920-1192, Kanazawa, Japan.
| |
Collapse
|
26
|
Hu J, Fan H, Li Y, Li H, Tang M, Wen J, Huang C, Wang C, Gao Y, Kan H, Lin J, Chen R. Fine particulate matter constituents and heart rate variability: A panel study in Shanghai, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 747:141199. [PMID: 32771785 DOI: 10.1016/j.scitotenv.2020.141199] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/19/2020] [Accepted: 07/21/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Short-term exposure to fine particulate matter (PM2.5) has been associated with reduced heart rate variability (HRV), an established indicator of cardiac autonomic function, but it remains uncertain which specific constituents of PM2.5 had key impacts. OBJECTIVE To examine the short-term associations between various PM2.5 constituents and HRV measures. METHODS We conducted a retrospective panel study among 78 participants who received repeated 24-h electrocardiogram testing in Shanghai, China from 2015 to 2019. We obtained daily concentrations of 14 main chemical constituents of PM2.5 from a fixed-site monitor. During 3 or 4 rounds of follow-ups, we measured 6 HRV parameters, including 3 frequency-domain parameters (power in very low frequency, low frequency and high frequency) and 3 time-domain parameters (standard deviation of normal-to-normal intervals, root mean square successive difference and percent of adjacent normal R-R intervals with a difference ≥50 msec). We used linear mixed-effects models to analyze the data after controlling for time trends, environmental and individual risk factors. RESULTS The average daily PM2.5 exposure was 45.8 μg/m3 during the study period. The present-day exposure to PM2.5 had the strongest negative influences on various HRV indicators. These associations attenuated greatly on lag 1 d or lag 2 d. Elemental carbon, organic carbon, nitrate, sulfate, arsenic, cadmium, chromium and nickel were consistently associated with reduced HRV parameters in both single-constituent models and constituent-PM2.5 models. CONCLUSION Our study highlighted the key roles of traffic-related components of PM2.5 in inhibiting cardiac autonomic function.
Collapse
Affiliation(s)
- Jialu Hu
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Hao Fan
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and Key Lab of Health Technology Assessment of the Ministry of Health, Fudan University, Shanghai 200032, China
| | - Yinliang Li
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Huichu Li
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Minna Tang
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Jianfen Wen
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Chang Huang
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and Key Lab of Health Technology Assessment of the Ministry of Health, Fudan University, Shanghai 200032, China
| | - Cuiping Wang
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and Key Lab of Health Technology Assessment of the Ministry of Health, Fudan University, Shanghai 200032, China
| | - Ya Gao
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and Key Lab of Health Technology Assessment of the Ministry of Health, Fudan University, Shanghai 200032, China
| | - Haidong Kan
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and Key Lab of Health Technology Assessment of the Ministry of Health, Fudan University, Shanghai 200032, China
| | - Jingyu Lin
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China.
| | - Renjie Chen
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and Key Lab of Health Technology Assessment of the Ministry of Health, Fudan University, Shanghai 200032, China; Shanghai Typhoon Institute/CMA, Shanghai Key Laboratory of Meteorology and Health, Shanghai 200030, China.
| |
Collapse
|
27
|
Ruan Z, Qi J, Yin P, Qian Z(M, Liu J, Liu Y, Yang Y, Li H, Zhang S, Howard SW, Lin H, Wang L. Prolonged Life Expectancy for Those Dying of Stroke by Achieving the Daily PM 2.5 Targets. GLOBAL CHALLENGES (HOBOKEN, NJ) 2020; 4:2000048. [PMID: 33304609 PMCID: PMC7713556 DOI: 10.1002/gch2.202000048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Indexed: 05/11/2023]
Abstract
This time-series study collects data on stroke-related mortality, years of life lost (YLL), air pollution, and meteorological conditions in 96 Chinese cities from 2013 to 2016 and proposes a three-stage strategy to generate the national and regional estimations of avoidable YLL, gains in life expectancy and stroke-related population attributable fraction by postulating that the daily fine particulate matter (PM2.5) has been kept under certain standards. A total of 1 318 911 stroke deaths are analyzed. Each 10 µg m-3 increment in PM2.5 at lag03 is associated with a city-mean increase of 0.31 (95% CI: 0.19, 0.44) years of life lost from stroke. A number of 914.11 (95% CI: 538.28, 1288.94) years of city-mean life lost from stoke could be avoided by attaining the WHO's Air Quality Guidelines (AQG) (25 µg m-3). Moreover, by applying the AQG standard, 0.11 (0.08, 0.15) years of life lost might be prevented for each death, and about 0.91% (95% CI: 0.62%, 1.19%) of the total years of life lost from stroke might be explained by the daily excess PM2.5 exposure. This study indicates that stroke patients can have a longer life expectancy if stricter PM2.5 standards are put in place, especially ischemic stroke patients.
Collapse
Affiliation(s)
- Zengliang Ruan
- Department of EpidemiologySchool of Public HealthSun Yat‐Sen UniversityGuangzhou510080China
| | - Jinlei Qi
- National Center for Chronic and Noncommunicable Disease Control and PreventionChinese Center for Disease Control and PreventionBeijing100050China
| | - Peng Yin
- National Center for Chronic and Noncommunicable Disease Control and PreventionChinese Center for Disease Control and PreventionBeijing100050China
| | - Zhengmin (Min) Qian
- Department of Epidemiology and BiostatisticsCollege for Public Health & Social JusticeSaint Louis UniversitySaint LouisMO63104USA
| | - Jiangmei Liu
- National Center for Chronic and Noncommunicable Disease Control and PreventionChinese Center for Disease Control and PreventionBeijing100050China
| | - Yunning Liu
- National Center for Chronic and Noncommunicable Disease Control and PreventionChinese Center for Disease Control and PreventionBeijing100050China
| | - Yin Yang
- Department of EpidemiologySchool of Public HealthSun Yat‐Sen UniversityGuangzhou510080China
| | - Huan Li
- Department of EpidemiologySchool of Public HealthSun Yat‐Sen UniversityGuangzhou510080China
| | - Shiyu Zhang
- Department of EpidemiologySchool of Public HealthSun Yat‐Sen UniversityGuangzhou510080China
| | - Steven W. Howard
- Department of Health Management & PolicyCollege for Public Health & Social JusticeSaint Louis UniversitySaint LouisMO63104USA
| | - Hualiang Lin
- Department of EpidemiologySchool of Public HealthSun Yat‐Sen UniversityGuangzhou510080China
| | - Lijun Wang
- National Center for Chronic and Noncommunicable Disease Control and PreventionChinese Center for Disease Control and PreventionBeijing100050China
| |
Collapse
|
28
|
Medina-Estévez F, Zumbado M, Luzardo OP, Rodríguez-Hernández Á, Boada LD, Fernández-Fuertes F, Santandreu-Jimenez ME, Henríquez-Hernández LA. Association between Heavy Metals and Rare Earth Elements with Acute Ischemic Stroke: A Case-Control Study Conducted in the Canary Islands (Spain). TOXICS 2020; 8:toxics8030066. [PMID: 32887274 PMCID: PMC7560340 DOI: 10.3390/toxics8030066] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 08/27/2020] [Accepted: 08/31/2020] [Indexed: 12/26/2022]
Abstract
The role of inorganic elements as risk factors for stroke has been suggested. We designed a case-control study to explore the role of 45 inorganic elements as factors associated with stroke in 92 patients and 83 controls. Nineteen elements were detected in >80% of patients and 21 were detected in >80% of controls. Blood level of lead was significantly higher among patients (11.2 vs. 9.03 ng/mL) while gold and cerium were significantly higher among controls (0.013 vs. 0.007 ng/mL; and 18.0 vs. 15.0 ng/mL). Lead was associated with stroke in univariate and multivariate analysis (OR = 1.65 (95% CI, 1.09–2.50) and OR = 1.91 (95% CI, 1.20–3.04), respectively). Gold and cerium showed an inverse association with stroke in multivariate analysis (OR = 0.81 (95% CI, 0.69–0.95) and OR = 0.50 (95% CI, 0.31–0.78)). Future studies are needed to elucidate the potential sources of exposure and disclose the mechanisms of action.
Collapse
Affiliation(s)
- Florián Medina-Estévez
- Rehabilitation Service, Complejo Hospitalario Insular-Materno Infantil (CHUIMI), Avenida Marítima del Sur, 35016 Las Palmas de Gran Canaria, Spain; (F.M.-E.); (F.F.-F.); (M.E.S.-J.)
| | - Manuel Zumbado
- Toxicology Unit, Research Institute of Biomedical and Health Sciences (IUIBS), Department of Clinical Sciences, Universidad de Las Palmas de Gran Canaria (ULPGC), Paseo Blas Cabrera Felipe s/n, 35016 Las Palmas de Gran Canaria, Spain; (M.Z.); (O.P.L.); (Á.R.-H.); (L.D.B.)
| | - Octavio P. Luzardo
- Toxicology Unit, Research Institute of Biomedical and Health Sciences (IUIBS), Department of Clinical Sciences, Universidad de Las Palmas de Gran Canaria (ULPGC), Paseo Blas Cabrera Felipe s/n, 35016 Las Palmas de Gran Canaria, Spain; (M.Z.); (O.P.L.); (Á.R.-H.); (L.D.B.)
| | - Ángel Rodríguez-Hernández
- Toxicology Unit, Research Institute of Biomedical and Health Sciences (IUIBS), Department of Clinical Sciences, Universidad de Las Palmas de Gran Canaria (ULPGC), Paseo Blas Cabrera Felipe s/n, 35016 Las Palmas de Gran Canaria, Spain; (M.Z.); (O.P.L.); (Á.R.-H.); (L.D.B.)
| | - Luis D. Boada
- Toxicology Unit, Research Institute of Biomedical and Health Sciences (IUIBS), Department of Clinical Sciences, Universidad de Las Palmas de Gran Canaria (ULPGC), Paseo Blas Cabrera Felipe s/n, 35016 Las Palmas de Gran Canaria, Spain; (M.Z.); (O.P.L.); (Á.R.-H.); (L.D.B.)
| | - Fernando Fernández-Fuertes
- Rehabilitation Service, Complejo Hospitalario Insular-Materno Infantil (CHUIMI), Avenida Marítima del Sur, 35016 Las Palmas de Gran Canaria, Spain; (F.M.-E.); (F.F.-F.); (M.E.S.-J.)
| | - María Elvira Santandreu-Jimenez
- Rehabilitation Service, Complejo Hospitalario Insular-Materno Infantil (CHUIMI), Avenida Marítima del Sur, 35016 Las Palmas de Gran Canaria, Spain; (F.M.-E.); (F.F.-F.); (M.E.S.-J.)
| | - Luis Alberto Henríquez-Hernández
- Toxicology Unit, Research Institute of Biomedical and Health Sciences (IUIBS), Department of Clinical Sciences, Universidad de Las Palmas de Gran Canaria (ULPGC), Paseo Blas Cabrera Felipe s/n, 35016 Las Palmas de Gran Canaria, Spain; (M.Z.); (O.P.L.); (Á.R.-H.); (L.D.B.)
- Correspondence:
| |
Collapse
|
29
|
Gu J, Shi Y, Chen N, Wang H, Chen T. Ambient fine particulate matter and hospital admissions for ischemic and hemorrhagic strokes and transient ischemic attack in 248 Chinese cities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 715:136896. [PMID: 32007884 DOI: 10.1016/j.scitotenv.2020.136896] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 01/11/2020] [Accepted: 01/22/2020] [Indexed: 05/18/2023]
Abstract
Few studies have investigated the acute effects of fine particulate matter (PM2.5) on the risk of stroke subtypes and transient ischemic attack (TIA) in low- and middle-income countries. The primary aim of this study was to assess the associations between short-term exposure to PM2.5 and daily hospital admissions for total cerebrovascular disease, ischemic and hemorrhagic strokes, and TIA in China. A total of 8,359,162 hospital admissions in 248 Chinese cities from 2013 to 2017 were identified from the Hospital Quality Monitoring System of China. Generalized additive models with quasi-Poisson regression were used to estimate the associations in each city, and random-effect meta-analyses were conducted to combine the city-specific estimates. We found that a 10 μg/m3 increase in PM2.5 concentration was significantly associated with a 0.19% (95% CI, 0.13% to 0.25%), 0.26% (95% CI, 0.17% to 0.35%), and 0.26% (95% CI, 0.13% to 0.38%) increase in same-day hospital admissions for total cerebrovascular disease, ischemic stroke, and TIA, respectively. In contrast, a non-significant negative association with PM2.5 was observed for hemorrhagic stroke in the main analyses (lag 0 day), which became statistically significant when using other single-day exposures (lag 1 or 2 days) or moving average exposures (lag 0-1, 0-2, or 0-3 days) as exposure metric. These associations were robust to adjustment for other criteria air pollutants in two-pollutant models. For ischemic stroke, the effect estimates were significantly larger in people aged 65-74 years, in cool season, and in cities with lower annual average PM2.5 concentrations. The exposure-response curves were nonlinear with a leveling off at high concentrations. These results contribute to the relatively limited literature on the PM2.5-related risks of cerebrovascular events in low- and middle-income countries.
Collapse
Affiliation(s)
- Jiangshao Gu
- Center for Big Data Research in Health and Medicine, Institute for Data Sciences, Tsinghua University, Beijing 100084, China; Tsinghua-Fuzhou Institute of Digital Technology, Beijing National Research Center for Information Science and Technology, Tsinghua University, Beijing 100084, China; Institute for Artificial Intelligence, State Key Lab of Intelligent Technology and Systems, Department of Computer Science and Technology, Tsinghua University, Beijing 100084, China
| | - Ying Shi
- China Standard Medical Information Research Center, Shenzhen 518054, China
| | - Ning Chen
- Center for Big Data Research in Health and Medicine, Institute for Data Sciences, Tsinghua University, Beijing 100084, China; Tsinghua-Fuzhou Institute of Digital Technology, Beijing National Research Center for Information Science and Technology, Tsinghua University, Beijing 100084, China; Institute for Artificial Intelligence, State Key Lab of Intelligent Technology and Systems, Department of Computer Science and Technology, Tsinghua University, Beijing 100084, China
| | - Haibo Wang
- China Standard Medical Information Research Center, Shenzhen 518054, China; Clinical Trial Unit, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, China
| | - Ting Chen
- Center for Big Data Research in Health and Medicine, Institute for Data Sciences, Tsinghua University, Beijing 100084, China; Tsinghua-Fuzhou Institute of Digital Technology, Beijing National Research Center for Information Science and Technology, Tsinghua University, Beijing 100084, China; Institute for Artificial Intelligence, State Key Lab of Intelligent Technology and Systems, Department of Computer Science and Technology, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
30
|
Barkhordari S, Mirmosayyeb O, Mansourian M, Hosseininasab F, Ramezani S, Barzegar M, Amin MM, Poursafa P, Esmaeil N, Kelishadi R. Omega 3 Supplementation Can Regulate Inflammatory States in Gas Station Workers: A Double-Blind Placebo-Controlled Clinical Trial. J Interferon Cytokine Res 2020; 40:262-267. [PMID: 32176565 DOI: 10.1089/jir.2019.0220] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Environmental exposure to diesel particulate matter and commercial gasoline in gas station workers might induce oxidative stress and changes in the balance of the immune system. In this study, the immunomodulatory impacts of omega 3 fatty acid (ω3FA) supplement were assessed on inflammatory and anti-inflammatory markers in gas station workers in a double-blind placebo-controlled clinical trial. Fifty-three men working in gas stations were treated with ω3FA (n = 29) or placebo (n = 24) for 60 days. C-reactive protein, interleukin-12 (IL-12), transforming growth factor β (TGF-β), interferon γ (IFN-γ), tumor necrosis factor α, IL-10, and IL-17 levels were measured by enzyme-linked immunosorbent assay method before and after the completion of the trial. The concentrations of IFN-γ and IL-17 were significantly decreased in ω3FA group compared with the placebo group (P < 0.001). Moreover, the levels of inhibitory cytokines including TGF-β and IL-10 significantly were increased in ω3FA group (P < 0.001). Overall, ω3FA nutritional supplementation can be useful in reducing inflammatory immune responses and maintaining immune tolerance in people with high exposure to inflammation-inducing factors. [Figure: see text].
Collapse
Affiliation(s)
- Shoresh Barkhordari
- Student Research Committee, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.,Environment Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Omid Mirmosayyeb
- Isfahan Neurosciences Research Center, Alzahra Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran.,Universal Council of Epidemiology (UCE), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Marjan Mansourian
- Department of Epidemiology and Biostatistics, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Fahimeh Hosseininasab
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Saba Ramezani
- Student Research Committee, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mahdi Barzegar
- Student Research Committee, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Mehdi Amin
- Environment Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Parinaz Poursafa
- Environment Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Nafiseh Esmaeil
- Environment Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran.,Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Roya Kelishadi
- Child Growth and Development Research Center, Research Institute for Primordial Prevention of Non-communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
31
|
Rovira J, Domingo JL, Schuhmacher M. Air quality, health impacts and burden of disease due to air pollution (PM 10, PM 2.5, NO 2 and O 3): Application of AirQ+ model to the Camp de Tarragona County (Catalonia, Spain). THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 703:135538. [PMID: 31759725 DOI: 10.1016/j.scitotenv.2019.135538] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 11/13/2019] [Accepted: 11/13/2019] [Indexed: 05/20/2023]
Abstract
The purpose of this study was to assess the impact to human health of air pollutants, through the integration of different technics: data statistics (spatial and temporal trends), population attributable fraction using AIRQ+ model developed by the WHO, and burden of disease using Disability-Adjusted Life Years (DALYs). The levels of SO2, NO, NO2, O3, H2S, benzene, PM10, PM2.5, CO, benzo(a)pyrene and metals, obtained between 2005 and 2017 from the air quality monitoring network across Camp de Tarragona County, were temporally and spatially determined. Health impacts were evaluated using the AIRQ+ model. Finally, the burden of disease was assessed through the calculation of Years of Lost life (YLL) and Years Lost due to Disability (YLD). In general terms, air quality was good according to European quality standards, but it did not fulfil the WHO guidelines, especially for O3, PM10 and PM2.5. Several decreasing (NO, NO2, SO2, PM10 and benzene) and an increasing (O3) temporal trend were found. Correlation between unemployment rate and air pollutant levels was found, pointing that the economic crisis (2008-2014) was a factor influencing the air pollutant levels. Reduction of air pollutant levels (PM2.5) to WHO guidelines in the Camp de Tarragona County would decrease the adult mortality between 23 and 297 cases per year, which means between 0.5 and 7% of all mortality in the area. In this County, for lung cancer, ischemic heart disease, stroke, and chronic obstructive pulmonary disease due to levels of PM2.5 above the WHO threshold limits, DAYLs were 240 years. This means around 80 DALYs for 100,000 persons every year -between 2005 and 2017. Population attributable fraction (PAF) and burden of disease (DALYs) methodologies are suitable tools for regional and national policymakers, who must take decisions to prevent and to control air pollution and to analyse the cost-effectiveness of interventions.
Collapse
Affiliation(s)
- Joaquim Rovira
- Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Universitat Rovira i Virgili, Sant Llorenç 21, 43201 Reus, Catalonia, Spain; Environmental Engineering Laboratory, Departament d'Enginyeria Quimica, Universitat Rovira i Virgili, Av. Països Catalans 26, 43007 Tarragona, Catalonia, Spain
| | - José L Domingo
- Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Universitat Rovira i Virgili, Sant Llorenç 21, 43201 Reus, Catalonia, Spain
| | - Marta Schuhmacher
- Environmental Engineering Laboratory, Departament d'Enginyeria Quimica, Universitat Rovira i Virgili, Av. Països Catalans 26, 43007 Tarragona, Catalonia, Spain.
| |
Collapse
|
32
|
Tian Y, Liu H, Wu Y, Si Y, Song J, Cao Y, Li M, Wu Y, Wang X, Chen L, Wei C, Gao P, Hu Y. Association between ambient fine particulate pollution and hospital admissions for cause specific cardiovascular disease: time series study in 184 major Chinese cities. BMJ 2019; 367:l6572. [PMID: 31888884 PMCID: PMC7190041 DOI: 10.1136/bmj.l6572] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
OBJECTIVE To estimate the risks of daily hospital admissions for cause specific major cardiovascular diseases associated with short term exposure to ambient fine particulate matter (aerodynamic diameter ≤2.5 μm; PM2.5) pollution in China. DESIGN National time series study. SETTING 184 major cities in China. POPULATION 8 834 533 hospital admissions for cardiovascular causes in 184 Chinese cities recorded by the national database of Urban Employee Basic Medical Insurance from 1 January 2014 to 31 December 2017. MAIN OUTCOME MEASURES Daily counts of city specific hospital admissions for primary diagnoses of ischaemic heart disease, heart failure, heart rhythm disturbances, ischaemic stroke, and haemorrhagic stroke among different demographic groups were used to estimate the associations between PM2.5 and morbidity. An overdispersed generalised additive model was used to estimate city specific associations between PM2.5 and cardiovascular admissions, and random effects meta-analysis used to combine the city specific estimates. RESULTS Over the study period, a mean of 47 hospital admissions per day (standard deviation 74) occurred for cardiovascular disease, 26 (53) for ischaemic heart disease, one (five) for heart failure, two (four) for heart rhythm disturbances, 14 (28) for ischaemic stroke, and two (four) for haemorrhagic stroke. At the national average level, an increase of 10 μg/m3 in PM2.5 was associated with a 0.26% (95% confidence interval 0.17% to 0.35%) increase in hospital admissions on the same day for cardiovascular disease, 0.31% (0.22% to 0.40%) for ischaemic heart disease, 0.27% (0.04% to 0.51%) for heart failure, 0.29% (0.12% to 0.46%) for heart rhythm disturbances, and 0.29% (0.18% to 0.40%) for ischaemic stroke, but not with haemorrhagic stroke (-0.02% (-0.23% to 0.19%)). The national average association of PM2.5 with cardiovascular disease was slightly non-linear, with a sharp slope at PM2.5 levels below 50 μg/m3, a moderate slope at 50-250 μg/m3, and a plateau at concentrations higher than 250 μg/m3. Compared with days with PM2.5 up to 15 μg/m3, days with PM2.5 of 15-25, 25-35, 35-75, and 75 μg/m3 or more were significantly associated with increases in cardiovascular admissions of 1.1% (0 to 2.2%), 1.9% (0.6% to 3.2%), 2.6% (1.3% to 3.9%), and 3.8% (2.1% to 5.5%), respectively.According to projections, achieving the Chinese grade 2 (35 μg/m3), Chinese grade 1 (15 μg/m3), and World Health Organization (10 μg/m3) regulatory limits for annual mean PM2.5 concentrations would reduce the annual number of admissions for cardiovascular disease in China. Assuming causality, which should be done with caution, this reduction would translate into an estimated 36 448 (95% confidence interval 24 441 to 48 471), 85 270 (57 129 to 113 494), and 97 516 (65 320 to 129 820), respectively. CONCLUSIONS These data suggest that in China, short term exposure to PM2.5 is associated with increased hospital admissions for all major cardiovascular diseases except for haemorrhagic stroke, even for exposure levels not exceeding the current regulatory limits.
Collapse
Affiliation(s)
- Yaohua Tian
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, 38 Xueyuan Road, 100191 Beijing, China
| | - Hui Liu
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, 38 Xueyuan Road, 100191 Beijing, China
- Medical Informatics Centre, Peking University, Beijing, China
| | - Yiqun Wu
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, 38 Xueyuan Road, 100191 Beijing, China
| | - Yaqin Si
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, 38 Xueyuan Road, 100191 Beijing, China
- Beijing HealthCom Data Technology, Beijing, China
| | - Jing Song
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, 38 Xueyuan Road, 100191 Beijing, China
| | - Yaying Cao
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, 38 Xueyuan Road, 100191 Beijing, China
| | - Man Li
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, 38 Xueyuan Road, 100191 Beijing, China
| | - Yao Wu
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, 38 Xueyuan Road, 100191 Beijing, China
| | - Xiaowen Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, 38 Xueyuan Road, 100191 Beijing, China
| | - Libo Chen
- Beijing HealthCom Data Technology, Beijing, China
| | - Chen Wei
- Beijing HealthCom Data Technology, Beijing, China
| | - Pei Gao
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, 38 Xueyuan Road, 100191 Beijing, China
- Key Laboratory of Molecular Cardiovascular (Peking University), Ministry of Education, Beijing, China
| | - Yonghua Hu
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, 38 Xueyuan Road, 100191 Beijing, China
- Medical Informatics Centre, Peking University, Beijing, China
| |
Collapse
|