1
|
Zhang Z, Tao J, Zhang L, Hu B, Liu M, Nie F, Lu H, Chen L, Wu Y, Chen D, Wang B, Che H. Influence of sources and atmospheric processes on metal solubility in PM 2.5 in urban Guangzhou, South China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175807. [PMID: 39197758 DOI: 10.1016/j.scitotenv.2024.175807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/14/2024] [Accepted: 08/24/2024] [Indexed: 09/01/2024]
Abstract
Water-soluble metals exert a significant influence on human and ecosystem health. In this study, a comprehensive investigation was undertaken to elucidate the solubilities of metals in PM2.5 and potential influencing factors during the dry season of 2019-2020 in urban Guangzhou, South China. The observed average solubility was <20 % for Al, Fe, Sn, and Ti; 20-40 % for V, Cr, Sb, Pb, and Ni; 40-60 % for Ba and Cu; and 60-80 % for Zn, As, Se, Cd, and Mn. Metals (Al, Ti, and Fe) originated from crustal sources (e.g., soil dust) have much lower solubilities than those (Mn, Zn, As, Se, Cd, and Ba) from fossil fuel combustion sources (e.g., traffic emission, coal combustion), suggesting the dominant role the metal sources played on solubility. Enhanced solubilities of Cu, As, Se, Cd, Sn, Sb, and Pb were associated with aerosol acidity, while those of V, Cr, Mn, Ni, Zn, and Ba were linked to organic acid complexation. For the three crustal metals, the solubilities of Al and Ti primarily depended on aerosol acidity, whereas the solubility of Fe depended on both aerosol acidity under pH < 2 conditions and organic acid complexation under pH > 2 conditions. These findings underscore the primary influence of inherent properties of the metals on their solubility and reveal the varying impacts of atmospheric physicochemical processes, with changes in their solubilities being <10 % for Cd, Sn, Sb, and Pb, 10-20 % for Cu, Cr, Mn, Ni, and Ba, and 20-30 % for As, Se, and Zn.
Collapse
Affiliation(s)
- Zhisheng Zhang
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, China
| | - Jun Tao
- College of Environment and Climate, Institute for Environmental and Climate Research, Jinan University, Guangzhou, China.
| | - Leiming Zhang
- Air Quality Research Division, Science and Technology Branch, Environment and Climate Change Canada, Toronto, Canada
| | - Bangkai Hu
- College of Environment and Climate, Institute for Environmental and Climate Research, Jinan University, Guangzhou, China
| | - Ming Liu
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, China
| | - Fuli Nie
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, China
| | - Haitao Lu
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, China
| | - Laiguo Chen
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, China
| | - Yunfei Wu
- Key Laboratory of Middle Atmosphere and Global Environment Observation, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China
| | - Duohong Chen
- Environmental Key Laboratory of Regional Air Quality Monitoring, Ministry of Ecology and Environment, Guangdong Ecological and Environmental Monitoring Center, Guangzhou, China
| | - Boguang Wang
- College of Environment and Climate, Institute for Environmental and Climate Research, Jinan University, Guangzhou, China
| | - Huizheng Che
- State Key Laboratory of Severe Weather & Key Laboratory of Atmospheric Chemistry of CMA, Chinese Academy of Meteorological Sciences, Beijing, China
| |
Collapse
|
2
|
Liu X, Zhang X, Wang T, Jin B, Wu L, Lara R, Monge M, Reche C, Jaffrezo JL, Uzu G, Dominutti P, Darfeuil S, Favez O, Conil S, Marchand N, Castillo S, de la Rosa JD, Stuart G, Eleftheriadis K, Diapouli E, Gini MI, Nava S, Alves C, Wang X, Xu Y, Green DC, Beddows DCS, Harrison RM, Alastuey A, Querol X. PM 10-bound trace elements in pan-European urban atmosphere. ENVIRONMENTAL RESEARCH 2024; 260:119630. [PMID: 39019137 DOI: 10.1016/j.envres.2024.119630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/08/2024] [Accepted: 07/15/2024] [Indexed: 07/19/2024]
Abstract
Although many studies have discussed the impact of Europe's air quality, very limited research focused on the detailed phenomenology of ambient trace elements (TEs) in PM10 in urban atmosphere. This study compiled long-term (2013-2022) measurements of speciation of ambient urban PM10 from 55 sites of 7 countries (Switzerland, Spain, France, Greece, Italy, Portugal, UK), aiming to elucidate the phenomenology of 20 TEs in PM10 in urban Europe. The monitoring sites comprised urban background (UB, n = 26), traffic (TR, n = 10), industrial (IN, n = 5), suburban background (SUB, n = 7), and rural background (RB, n = 7) types. The sampling campaigns were conducted using standardized protocols to ensure data comparability. In each country, PM10 samples were collected over a fixed period using high-volume air samplers. The analysis encompassed the spatio-temporal distribution of TEs, and relationships between TEs at each site. Results indicated an annual average for the sum of 20 TEs of 90 ± 65 ng/m3, with TR and IN sites exhibiting the highest concentrations (130 ± 66 and 131 ± 80 ng/m3, respectively). Seasonal variability in TEs concentrations, influenced by emission sources and meteorology, revealed significant differences (p < 0.05) across all monitoring sites. Estimation of TE concentrations highlighted distinct ratios between non-carcinogenic and carcinogenic metals, with Zn (40 ± 49 ng/m3), Ti (21 ± 29 ng/m3), and Cu (23 ± 35 ng/m3) dominating non-carcinogenic TEs, while Cr (5 ± 7 ng/m3), and Ni (2 ± 6 ng/m3) were prominent among carcinogenic ones. Correlations between TEs across diverse locations and seasons varied, in agreement with differences in emission sources and meteorological conditions. This study provides valuable insights into TEs in pan-European urban atmosphere, contributing to a comprehensive dataset for future environmental protection policies.
Collapse
Affiliation(s)
- Xiansheng Liu
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), 08034, Barcelona, Spain
| | - Xun Zhang
- Beijing Key Laboratory of Big Data Technology for Food Safety, School of Computer and Artificial Intelligence, Beijing Technology and Business University, Beijing, 100048, China; State Key Laboratory of Resources and Environmental Information System, Beijing, China.
| | - Tao Wang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science & Engineering, Fudan University, Shanghai, 200433, China.
| | - Bowen Jin
- Beijing Key Laboratory of Big Data Technology for Food Safety, School of Computer and Artificial Intelligence, Beijing Technology and Business University, Beijing, 100048, China
| | - Lijie Wu
- Beijing Key Laboratory of Big Data Technology for Food Safety, School of Computer and Artificial Intelligence, Beijing Technology and Business University, Beijing, 100048, China
| | - Rosa Lara
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), 08034, Barcelona, Spain
| | - Marta Monge
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), 08034, Barcelona, Spain
| | - Cristina Reche
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), 08034, Barcelona, Spain
| | - Jean-Luc Jaffrezo
- Univ. Grenoble Alpes, IRD, CNRS, INRAE, Grenoble INP, IGE, UMR 5001, 38000, Grenoble, France
| | - Gaelle Uzu
- Univ. Grenoble Alpes, IRD, CNRS, INRAE, Grenoble INP, IGE, UMR 5001, 38000, Grenoble, France
| | - Pamela Dominutti
- Univ. Grenoble Alpes, IRD, CNRS, INRAE, Grenoble INP, IGE, UMR 5001, 38000, Grenoble, France
| | - Sophie Darfeuil
- Univ. Grenoble Alpes, IRD, CNRS, INRAE, Grenoble INP, IGE, UMR 5001, 38000, Grenoble, France
| | - Olivier Favez
- INERIS, Parc Technologique Alata, BP 2, 60550, Verneuil-en-Halatte, France; Laboratoire central de surveillance de la qualité de l'air (LCSQA), 60550, Verneuil-en-Halatte, France
| | - Sébastien Conil
- ANDRA DISTEC/EES Observatoire Pérenne de l'Environnement, F-55290, Bure, France
| | | | - Sonia Castillo
- Department of Applied Physics, University of Granada, 18011, Granada, Spain; Andalusian Institute of Earth System Research, IISTA-CEAMA, University of Granada, 18006, Granada, Spain
| | - Jesús D de la Rosa
- Associate Unit CSIC-UHU Atmospheric Pollution, University of Huelva, 21071, Huelva, Spain
| | - Grange Stuart
- Swiss Federal Laboratories for Materials Science and Technology, Dübendorf, CH, Switzerland
| | - Konstantinos Eleftheriadis
- ENRACT, Institute of Nuclear and Radiological Science & Technology, Energy & Safety, NCSR Demokritos, 15310, Ag. Paraskevi, Athens, Greece
| | - Evangelia Diapouli
- ENRACT, Institute of Nuclear and Radiological Science & Technology, Energy & Safety, NCSR Demokritos, 15310, Ag. Paraskevi, Athens, Greece
| | - Maria I Gini
- ENRACT, Institute of Nuclear and Radiological Science & Technology, Energy & Safety, NCSR Demokritos, 15310, Ag. Paraskevi, Athens, Greece
| | - Silvia Nava
- INFN Division of Florence and Department of Physics and Astronomy, University of Florence, via G.Sansone 1, 50019, Sesto Fiorentino, Italy
| | - Célia Alves
- Department of Environment and Planning, Centre for Environmental and Marine Studies (CESAM), University of Aveiro, 3810-193, Aveiro, Portugal
| | - Xianxia Wang
- School of Management, Minzu University of China, Beijing, 100081, China
| | - Yiming Xu
- School of Grassland Science, Beijing Forestry University, Beijing, 100083, China
| | - David C Green
- MRC Centre for Environment and Health, Environmental Research Group, Imperial College London, United Kingdom
| | - David C S Beddows
- School of Geography Earth and Environmental Sciences, University of Birmingham, B15 2TT, Birmingham, United Kingdom
| | - Roy M Harrison
- School of Geography Earth and Environmental Sciences, University of Birmingham, B15 2TT, Birmingham, United Kingdom
| | - Andrés Alastuey
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), 08034, Barcelona, Spain
| | - Xavier Querol
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), 08034, Barcelona, Spain
| |
Collapse
|
3
|
Huang ZY, Yuan CS, Yen PH, Tu IC, Tseng YL. Temporal variations and chemical characteristics of marine PM 2.5 at Dongsha Islands, South China Sea: Three-year measurement. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 356:124378. [PMID: 38885829 DOI: 10.1016/j.envpol.2024.124378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 06/12/2024] [Accepted: 06/14/2024] [Indexed: 06/20/2024]
Abstract
The study of long-range transport effects on marine fine particles (PM2.5), particularly in remote sites such as the Dongsha Islands, is pivotal for advancing our understanding of air pollution dynamics on a regional scale and for formulating effective environmental policies. PM2.5 concentrations were examined over three consecutive years and grouped based on their transport routes. The backward trajectory simulation revealed that high PM2.5 concentrations were observed in the West Channel, originating from North and Central China, the Korean Peninsula, and the Japanese Islands, opposed to the East Channel. High PM2.5 concentrations, commonly observed in winter and spring, were mainly attributed to the Asian Northeastern Monsoons. Water-soluble inorganic ions constituted the major components, accounting for 37.8-48.7% of PM2.5, and followed by metal elements (15.5-20.0%), carbons (7.5-13.3%), levoglucosan (0.01-0.17%), and organic aerosols (0.2-2.2%). Secondary inorganic aerosols as the dominant source accounted for 8.3-24.7% of PM2.5, while sea salts were the secondary major contributor. High levoglucosan contribution (3.8-7.2%) in winter and spring was attributed to biomass burning, mainly from the Indochina Peninsula. Chemical mass balance receptor modeling resolved that major sources of PM2.5 were secondary sulfate, sea salts, fugitive dust, and industrial boilers. This study concluded that the long-range transport of PM2.5 gradually increased since fall, contributing 52.1-74.3%, highlighting its substantial impact on PM2.5 in all seasons except summer.
Collapse
Affiliation(s)
- Zi-You Huang
- Institute of Environmental Engineering, National Sun Yat-sen University, 70, Lian-Hai Road, Kaohsiung, 804, Taiwan
| | - Chung-Shin Yuan
- Institute of Environmental Engineering, National Sun Yat-sen University, 70, Lian-Hai Road, Kaohsiung, 804, Taiwan; Aerosol Science Research Center, National Sun Yat-sen University, 70, Lian-Hai Road, Kaohsiung, 804, Taiwan.
| | - Po-Hsuan Yen
- Institute of Environmental Engineering, National Sun Yat-sen University, 70, Lian-Hai Road, Kaohsiung, 804, Taiwan
| | - I-Chieh Tu
- Institute of Environmental Engineering, National Sun Yat-sen University, 70, Lian-Hai Road, Kaohsiung, 804, Taiwan
| | - Yu-Lun Tseng
- Institute of Environmental Engineering, National Sun Yat-sen University, 70, Lian-Hai Road, Kaohsiung, 804, Taiwan
| |
Collapse
|
4
|
Li X, Zhang Y, Tian Z, Wang J, Zhao J, Lyu Y, Ni Y, Guo Y, Cui Z, Zhang W, Li C. Lag effect of ambient temperature on respiratory emergency department visits in Beijing: a time series and pooled analysis. BMC Public Health 2024; 24:1363. [PMID: 38773497 PMCID: PMC11106889 DOI: 10.1186/s12889-024-18839-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 05/13/2024] [Indexed: 05/23/2024] Open
Abstract
BACKGROUND Although the association between ambient temperature and mortality of respiratory diseases was numerously documented, the association between various ambient temperature levels and respiratory emergency department (ED) visits has not been well studied. A recent investigation of the association between respiratory ED visits and various levels of ambient temperature was conducted in Beijing, China. METHODS Daily meteorological data, air pollution data, and respiratory ED visits data from 2017 to 2018 were collected in Beijing. The relationship between ambient temperature and respiratory ED visits was explored using a distributed lagged nonlinear model (DLNM). Then we performed subgroup analysis based on age and gender. Finally, meta-analysis was utilized to aggregate the total influence of ambient temperature on respiratory ED visits across China. RESULTS The single-day lag risk for extreme cold peaked at a relative risk (RR) of 1.048 [95% confidence interval (CI): 1.009, 1.088] at a lag of 21 days, with a long lag effect. As for the single-day lag risk for extreme hot, a short lag effect was shown at a lag of 7 days with an RR of 1.076 (95% CI: 1.038, 1.114). The cumulative lagged effects of both hot and cold effects peaked at lag 0-21 days, with a cumulative risk of the onset of 3.690 (95% CI: 2.133, 6.382) and 1.641 (95% CI: 1.284, 2.098), respectively, with stronger impact on the hot. Additionally, the elderly were more sensitive to ambient temperature. The males were more susceptible to hot weather than the females. A longer cold temperature lag effect was found in females. Compared with the meta-analysis, a pooled effect of ambient temperature was consistent in general. In the subgroup analysis, a significant difference was found by gender. CONCLUSIONS Temperature level, age-specific, and gender-specific effects between ambient temperature and the number of ED visits provide information on early warning measures for the prevention and control of respiratory diseases.
Collapse
Affiliation(s)
- Xuan Li
- Department of Epidemiology and Biostatistics, School of Public Health, Tianjin Medical University, Heping District, Tianjin, 300070, P.R. China
| | - Yongming Zhang
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, National Clinical Research Center for Respiratory Diseases, Beijing, China
| | - Zhenbiao Tian
- Beijing Red Cross Emergency Center, Beijing, 100085, China
| | - Jianping Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Tianjin Medical University, Heping District, Tianjin, 300070, P.R. China
| | - Jinhua Zhao
- Department of Epidemiology and Biostatistics, School of Public Health, Tianjin Medical University, Heping District, Tianjin, 300070, P.R. China
| | - Yuanjun Lyu
- Department of Endocrinology, Tianjin Hospital, Tianjin, China
| | - Ying Ni
- Department of Epidemiology and Biostatistics, School of Public Health, Tianjin Medical University, Heping District, Tianjin, 300070, P.R. China
| | - Yuming Guo
- Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Zhuang Cui
- Department of Epidemiology and Biostatistics, School of Public Health, Tianjin Medical University, Heping District, Tianjin, 300070, P.R. China
| | - Wenyi Zhang
- Chinese PLA Center for Disease Control and Prevention, 20 Dong-Da Street, Fengtai District, Beijing, 100071, People's Republic of China.
| | - Changping Li
- Department of Epidemiology and Biostatistics, School of Public Health, Tianjin Medical University, Heping District, Tianjin, 300070, P.R. China.
| |
Collapse
|
5
|
Li JM, Zhao SM, Wu SP, Jiang BQ, Liu YJ, Zhang J, Schwab JJ. Size-segregated characteristics of water-soluble oxidative potential in urban Xiamen: Potential driving factors and implications for human health. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168902. [PMID: 38029991 DOI: 10.1016/j.scitotenv.2023.168902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 11/08/2023] [Accepted: 11/24/2023] [Indexed: 12/01/2023]
Abstract
Oxidative potential (OP), defined as the ability of particulate matter (PM) to generate reactive oxygen species (ROS), has been considered as a potential health-related metric for PM. Particles with different sizes have different OP and deposition efficiencies in the respiratory tract and pose different health risks. In this study, size-segregated PM samples were collected at a coastal urban site in Xiamen, a port city in southeastern China, between August 2020 and September 2021. The water-soluble constituents, including inorganic ions, elements and organic carbon, were determined. Total volume-normalized OP based on the dithiothreitol assay was highest in spring (0.241 ± 0.033 nmol min-1 m-3) and lowest in summer (0.073 ± 0.006 nmol min-1 m-3). OP had a biomodal distribution with peaks at 0.25-0.44 μm and 1.0-1.4 μm in spring, summer, and winter and a unimodal pattern with peak at 0.25-0.44 μm in fall, which were different from the patterns of redox-active species. Variations in the seasonality of fine and coarse mode OP and their correlations with water-soluble constituents showed that the size distribution patterns of OP could be attributed to the combined effects of the size distributions of transition metals and redox-active organics and the interactions between them which varied with emissions, meteorological conditions and atmospheric processes. Respiratory tract deposition model indicated that the deposited OP and the toxic elements accounted for 47.9 % and 36.8 % of their measured concentrations, respectively. The highest OP doses and the excess lifetime carcinogenic risk (ELCR) were found in the head airway (>70 %). However, the size distributions of OP deposition and ELCR in the respiratory tract were different, with 63.9 % and 49.4 % of deposited ELCR and OP, respectively, coming from PM2.5. Therefore, attention must be paid to coarse particles from non-exhaust emissions and road dust resuspension.
Collapse
Affiliation(s)
- Jia-Min Li
- Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, Xiamen University, Xiamen 361102, China; Center for Marine Environmental Chemistry and Toxicology, College of Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Si-Min Zhao
- Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, Xiamen University, Xiamen 361102, China; Center for Marine Environmental Chemistry and Toxicology, College of Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Shui-Ping Wu
- Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, Xiamen University, Xiamen 361102, China; Center for Marine Environmental Chemistry and Toxicology, College of Environment and Ecology, Xiamen University, Xiamen 361102, China.
| | - Bing-Qi Jiang
- Fujian Provincial Academy of Environmental Science, Fuzhou 350013, China
| | - Yi-Jing Liu
- Fujian Provincial Academy of Environmental Science, Fuzhou 350013, China
| | - Jie Zhang
- Atmospheric Sciences Research Center, University at Albany, SUNY, Albany 12203, USA
| | - James J Schwab
- Atmospheric Sciences Research Center, University at Albany, SUNY, Albany 12203, USA
| |
Collapse
|
6
|
Mahdi Badami M, Tohidi R, Jalali Farahani V, Sioutas C. Size-segregated source identification of water-soluble and water-insoluble metals and trace elements of coarse and fine PM in central Los Angeles. ATMOSPHERIC ENVIRONMENT (OXFORD, ENGLAND : 1994) 2023; 310:119984. [PMID: 37637474 PMCID: PMC10455048 DOI: 10.1016/j.atmosenv.2023.119984] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/29/2023]
Abstract
In this study, the water-solubility and sources of metals and trace elements in both fine and coarse particulate matter (PM) were investigated in Central Los Angeles. Sampling was performed in the winter, spring, and summer of 2022 at the Particle Instrumentation Unit (PIU) of the University of Southern California located in the proximity of I-110 freeway. Both fine and coarse PM samples were collected using Personal Cascade Impactors (PCIS) and chemically analyzed to determine their water-soluble and water-insoluble metal content. Principal Component Analysis (PCA) and Multiple Linear Regression (MLR) were used to determine the sources of soluble and insoluble metals and obtain their contributions to total metal concentration. Our results indicate that the water-solubility of most of the metals is higher in the fine size fraction compared to the coarse fraction. Seasonal variations in the water solubility of selected metals for both coarse and fine fractions were observed, with higher water-soluble metal concentrations in summer for several species (e.g., Fe , S, Pb, Cu, La, Ni, and Al ), possibly due to higher photochemical processing, while in winter, almost all species exhibited higher insoluble fraction concentrations. The PCA and MLR analyses results showed that tire and brake wear was the most significant contributor to the total metals for both fine soluble and insoluble portions, accounting for 35% and 75% of the total metals, respectively. Combustion sources also contributed substantially to water-soluble metals for fine and coarse size ranges, representing 40% and 32% of the total metal mass, respectively. In addition, mineral dust and soil and re-suspended dust were identified as the highest contributors to coarse metals. The MLR analysis also revealed that secondary aerosols contributed 11% to the fine water-soluble metals. Our results suggest that non-tailpipe emissions significantly contribute to both coarse and fine PM metals in the Central Los Angeles region.
Collapse
Affiliation(s)
- Mohammad Mahdi Badami
- University of Southern California, Department of Civil and Environmental Engineering, Los Angeles, California, USA
| | - Ramin Tohidi
- University of Southern California, Department of Civil and Environmental Engineering, Los Angeles, California, USA
| | - Vahid Jalali Farahani
- University of Southern California, Department of Civil and Environmental Engineering, Los Angeles, California, USA
| | - Constantinos Sioutas
- University of Southern California, Department of Civil and Environmental Engineering, Los Angeles, California, USA
| |
Collapse
|
7
|
Amarandei C, Olariu RI, Arsene C. First insights into the molecular characteristics of atmospheric organic aerosols from Iasi, Romania: Behavior of biogenic versus anthropogenic contributions and potential implications. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 877:162830. [PMID: 36924952 DOI: 10.1016/j.scitotenv.2023.162830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/08/2023] [Accepted: 03/09/2023] [Indexed: 05/06/2023]
Abstract
The present study reports first data on the organic molecular composition and evolution of secondary organic aerosols (SOAs) markers in aerosol samples from an urban environment in Romania. Targeted and non-targeted approaches of liquid chromatography tandem with time-of-flight mass spectrometry (LC-ToF-MS) were used as powerful analytical approaches for aerosol characterization at the molecular level. Four distinct organic molecular groups (CHO, CHON, CHONS, and CHOS) were classified as relevant for both warm (with 847 assigned molecular formulae) and cold (with 432 assigned molecular formulae) periods. Different formation mechanisms, physico-chemical processing, meteorological conditions, and sources origin or strengths (biogenic versus anthropogenic), were identified as governing factors of the mass concentration size distribution for the first generation and second-generation oxidation products of α-/β-pinene and two nitroaromatics (i.e., 4-nitrophenol and 4-nitrocatechol). Aromaticity equivalent (XC), carbon oxidation state (OSC), H/C and O/C ratios, and van Krevelen diagrams, were used to discriminate between: i) the aliphatic or aromatic nature of the identified organic aerosol constituents, ii) the oxidation state of the aerosol samples (e.g., more oxidized molecular formulae during the highly insolated period, more intense photochemistry), and iii) sources role in controlling OAs constituents abundances and behavior (e.g., higher relative contributions of aliphatic CHO formulae with a wider range of carbon numbers and CHOS molecular group with higher contribution during the warm period due to increased biogenic emissions or secondary formation from the biogenic precursors). Since in the present study >88 % of the 4-nitrocatechol and 4-nitrophenol was determined in the aerosol size fraction below 1 μm, it is believed that determination of their abundances and size distribution in ambient aerosols might provide direction for future studies such as to enhance the knowledge on their toxic potential levels for the human health.
Collapse
Affiliation(s)
- Cornelia Amarandei
- "Alexandru Ioan Cuza" University of Iasi, Faculty of Chemistry, 11 Carol I, 700506, Iasi, Romania; "Alexandru Ioan Cuza" University of Iasi, Integrated Centre of Environmental Science Studies in the North Eastern Region (CERNESIM), 11 Carol I, 700506, Iasi, Romania; "Alexandru Ioan Cuza" University of Iasi, Research Center with Integrated Techniques for Atmospheric Aerosol Investigation in Romania (RECENT-AIR), 11 Carol I, 700506, Iasi, Romania
| | - Romeo Iulian Olariu
- "Alexandru Ioan Cuza" University of Iasi, Faculty of Chemistry, 11 Carol I, 700506, Iasi, Romania; "Alexandru Ioan Cuza" University of Iasi, Integrated Centre of Environmental Science Studies in the North Eastern Region (CERNESIM), 11 Carol I, 700506, Iasi, Romania; "Alexandru Ioan Cuza" University of Iasi, Research Center with Integrated Techniques for Atmospheric Aerosol Investigation in Romania (RECENT-AIR), 11 Carol I, 700506, Iasi, Romania
| | - Cecilia Arsene
- "Alexandru Ioan Cuza" University of Iasi, Faculty of Chemistry, 11 Carol I, 700506, Iasi, Romania; "Alexandru Ioan Cuza" University of Iasi, Integrated Centre of Environmental Science Studies in the North Eastern Region (CERNESIM), 11 Carol I, 700506, Iasi, Romania; "Alexandru Ioan Cuza" University of Iasi, Research Center with Integrated Techniques for Atmospheric Aerosol Investigation in Romania (RECENT-AIR), 11 Carol I, 700506, Iasi, Romania.
| |
Collapse
|
8
|
Fakhri N, Fadel M, Pikridas M, Sciare J, Hayes PL, Afif C. Source apportionment of PM 2.5 using organic/inorganic markers and emission inventory evaluation in the East Mediterranean-Middle East city of Beirut. ENVIRONMENTAL RESEARCH 2023; 223:115446. [PMID: 36758920 DOI: 10.1016/j.envres.2023.115446] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/21/2023] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
Source contributions to PM2.5 concentrations were evaluated in Greater Beirut (Lebanon), a typical East Mediterranean-Middle East (EMME) city, using Positive Matrix Factorization with two approaches. The first approach included only inorganic species (PMF-trad) and the other approach added organic markers (PMF-org). PMF-org identified 4 additional sources, and large discrepancies in contributions were observed for some major sources found in both approaches, highlighting the importance of including organic markers. The traffic factor was underestimated in PMF-trad by 2 to 7 folds. Moreover, results showed that this city is prone to high desert dust concentrations originating from uncontrollable dust storm events, like all cities in the Middle East. A PM2.5 mitigation plan taking into account the potency of the identified sources was developed. Sources like diesel generators or traffic presented smaller contributions in term of mass compared to desert dust, however the health impact of the latter is relatively small and actions should target sources with the highest potency. Local emission inventories in the EMME region are scarce and studies typically rely on global emission inventories for local air quality management plans, but these inventories significantly underestimate Beirut's road transport emissions by more than an order of magnitude.
Collapse
Affiliation(s)
- Nansi Fakhri
- EMMA Research Group, Centre d'Analyses et de Recherche, Faculty of Sciences, Université Saint-Joseph, Beirut, Lebanon; Department of Chemistry, Faculty of Arts and Sciences, Université de Montréal, Montréal, Québec, Canada
| | - Marc Fadel
- EMMA Research Group, Centre d'Analyses et de Recherche, Faculty of Sciences, Université Saint-Joseph, Beirut, Lebanon
| | - Michael Pikridas
- Climate and Atmosphere Research Center (CARE-C), The Cyprus Institute, Nicosia, Cyprus
| | - Jean Sciare
- Climate and Atmosphere Research Center (CARE-C), The Cyprus Institute, Nicosia, Cyprus
| | - Patrick L Hayes
- Department of Chemistry, Faculty of Arts and Sciences, Université de Montréal, Montréal, Québec, Canada.
| | - Charbel Afif
- EMMA Research Group, Centre d'Analyses et de Recherche, Faculty of Sciences, Université Saint-Joseph, Beirut, Lebanon; Climate and Atmosphere Research Center (CARE-C), The Cyprus Institute, Nicosia, Cyprus.
| |
Collapse
|
9
|
Jia SM, Wang DQ, Liu LY, Zhang ZF, Ma WL. Size-resolved environmentally persistent free radicals in cold region atmosphere: Implications for inhalation exposure risk. JOURNAL OF HAZARDOUS MATERIALS 2023; 443:130263. [PMID: 36332281 DOI: 10.1016/j.jhazmat.2022.130263] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/17/2022] [Accepted: 10/24/2022] [Indexed: 06/16/2023]
Abstract
Environmental persistent free radicals (EPFRs) have attracted more attentions recently due to their potential adverse effects to human. EPFRs in full-size range particles were comprehensively investigated in this study. The average EPFRs concentration during heating season was 3.01 × 1014 spins/m3, which was much higher than that in non-heating season (4.30 × 1013 spins/m3). The highest concentration of EPFRs presented in 0.56-1.0 µm particles during heating season, while it shifted to 5.6-10 µm particles during non-heating season. Besides, the contributions of EPFRs on PM>10 to the total concentration of EPFRs cannot be neglected, especially in the non-heating season. The International Commission on Radiological Protection model and the specific factors of the Chinese population were applied to evaluate the inhalation exposure risk of EPFRs. The results indicated that the exposure levels of EPFRs to the upper respiratory tract were much higher. The daily exposure dose of EPFRs suggested the inhalation exposure risk of 3-4 years old was higher than other age groups. In summary, these finding provided new insights for the full range particle size distribution and the inhalation exposure risk of EPFRs, which improved our understanding on the environmental fate and the health risk of EPFRs in atmosphere.
Collapse
Affiliation(s)
- Shi-Ming Jia
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), Harbin 150090, China
| | - De-Qi Wang
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), Harbin 150090, China
| | - Li-Yan Liu
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), Harbin 150090, China
| | - Zi-Feng Zhang
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), Harbin 150090, China
| | - Wan-Li Ma
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), Harbin 150090, China.
| |
Collapse
|
10
|
Wu SP, Li X, Xiao SH, Zhang J, Schwab JJ. Solubility of aerosol minor and trace elements in Xiamen Island, Southeast China: Size distribution, health risk and dry deposition. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 844:157100. [PMID: 35779725 DOI: 10.1016/j.scitotenv.2022.157100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/08/2022] [Accepted: 06/27/2022] [Indexed: 06/15/2023]
Abstract
Aerosol element solubility is essential to evaluate the damage to the environment and human health. In this work, the size distribution of total and soluble elements in eight particle size ranges with diameter <0.25, 0.25-0.44, 0.44-1.0, 1.0-1.4, 1.4-2.5, 2.5-10, 10-16 and >16 μm was investigated in Xiamen Island, southeast China from March 2018 to June 2020. The results showed that both total and soluble elements exhibited significant size dependence without obvious seasonal variations, and their relative contributions to PM1 mass were much lower than in particles larger than 1 μm. The correlations between some elements in soluble fraction were quite different from those in total fraction and the correlations also varied with particle size due to their different solubility. The solubility of Al, Fe, Ag and Cr was relatively low compared with other elements. Moreover, the solubility of Na, Mg, Ca, Mn and Ag was less dependent on particle size while Al, Fe and other trace elements exhibited the highest solubility in PM1 and the lowest in PM>10. Overall, the solubility of elements is primarily a function of aerosol origin and size. The carcinogenic risks of metal exposure via inhalation for children (3.31 × 10-6) and adults (4.42 × 10-6) were slightly higher than the guideline of cancer risk with >60 % from V. As for non-carcinogenic risk, the hazard index values for children and adults were 1.59 and 0.53, respectively, with Mn, V and Ni together accounting for >85 % of the risk. >85 % of the size-dependent dry deposition fluxes of the selected soluble elements over the Xiamen Bay were contributed by particles larger than 10 μm due to their high deposition velocities. The atmospheric inputs of bioavailable Fe and Cu to the sea exceeded the required amounts relative to inorganic nitrogen to meet the growth of phytoplankton.
Collapse
Affiliation(s)
- Shui-Ping Wu
- Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, Xiamen University, Xiamen 361102, China; Center for Marine Environmental Chemistry and Toxicology, College of Environment and Ecology, Xiamen University, Xiamen 361102, China.
| | - Xiang Li
- Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, Xiamen University, Xiamen 361102, China; Center for Marine Environmental Chemistry and Toxicology, College of Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Si-Han Xiao
- Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, Xiamen University, Xiamen 361102, China; Center for Marine Environmental Chemistry and Toxicology, College of Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Jie Zhang
- Atmospheric Sciences Research Center, University at Albany, SUNY, Albany 12203, USA
| | - James J Schwab
- Atmospheric Sciences Research Center, University at Albany, SUNY, Albany 12203, USA
| |
Collapse
|
11
|
Anand A, Yadav S, Phuleria HC. Chemical characteristics and oxidative potential of indoor and outdoor PM 2.5 in densely populated urban slums. ENVIRONMENTAL RESEARCH 2022; 212:113562. [PMID: 35623440 DOI: 10.1016/j.envres.2022.113562] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 05/16/2022] [Accepted: 05/20/2022] [Indexed: 06/15/2023]
Abstract
A significant proportion of population in metropolitan cities in India live in slums which are highly dense and crowded informal housing settlements with poor environmental conditions including high exposure to air pollution. Recent studies report that toxicity is induced by oxidative processes, mediated by the water-soluble PM chemical components leading to reactive oxygen species production thereby causing inflammatory disorders. Hence, for the first time, this study assessed the chemical characteristics and oxidative potential (OP) of indoor and outdoor PM2.5 in two slums in Mumbai, India. Daily gravimetric PM2.5 was measured in ∼40 homes each in a low- and a high-traffic slum and analysed for 18 water-soluble elements and organic carbon (WSOC). Subsequently, OP was assessed through the Dithiothreitol (DTT) assay. Average WSOC was similar in indoor and outdoor environments while the water-soluble concentrations of total elements ranged 4.5-6.5 μg/m3 indoors and 6.4-19.2 μg/m3 outdoors, with S, Ca, K, Na and Zn being the most abundant elements. Spatial distributions of indoor concentrations were influenced by outdoor sources such as local traffic emissions for Cd, Fe, Al and Zn. The influence of outdoor-origin particles was enhanced in homes reporting high air exchange rates. OP was higher outdoors than indoors in both low-traffic slum (0.04-0.51 nmol min-1m-3 outdoors and 0.02-0.38 nmol min-1m-3 indoors) and high-traffic slum (0.03-1.06 nmol min-1m-3 outdoors and 0.04-0.77 nmol min-1m-3 indoors). Outdoor and indoor OP was also more influenced by outdoor road dust showing significant correlation with tracer elements Cu and Al (r ≥ 0.45; p < 0.05). Similar to OP, the non-carcinogenic health risk associated with indoor PM2.5 were also higher in high-traffic slum (Hazard Index, HI = 1.60) than in low-traffic slum (HI = 0.43). Overall, this study shows that the indoor PM2.5 and its chemical constituents in Mumbai slums are primarily of outdoor origin with higher toxicity and non-carcinogenic health risk in high-traffic slums.
Collapse
Affiliation(s)
- Abhay Anand
- Environmental Science and Engineering Department, IIT Bombay, Mumbai, 400076, India
| | - Suman Yadav
- Environmental Science and Engineering Department, IIT Bombay, Mumbai, 400076, India
| | - Harish C Phuleria
- Environmental Science and Engineering Department, IIT Bombay, Mumbai, 400076, India; Interdisciplinary Programme in Climate Studies, IIT Bombay, Mumbai, 400076, India.
| |
Collapse
|
12
|
Li L, Qi H, Li X. Composition, Source Apportionment, and Health Risk of PM 2.5-Bound Metals during Winter Haze in Yuci College Town, Shanxi, China. TOXICS 2022; 10:467. [PMID: 36006145 PMCID: PMC9415865 DOI: 10.3390/toxics10080467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 07/28/2022] [Accepted: 08/08/2022] [Indexed: 06/15/2023]
Abstract
The composition, source, and health risks of PM2.5-bound metals were investigated during winter haze in Yuci College Town, Shanxi, China. The 24-h PM2.5 levels of 34 samples ranged from 17 to 174 μg·m−3, with a mean of 81 ± 35 μg·m−3. PM2.5-bound metals ranked in the following order: Zn > Cu > Pb > As > Ni > Cr (VI) > Cd > Co. The concentrations of 18% As and 100% Cr (VI) exceeded the corresponding standards of the Ambient Air Quality Standards set by China and the WHO. Subsequently, positive matrix factorization analyses revealed that the three major sources of metals were combustion (37.91%), traffic emissions (32.19%), and industry sources (29.9%). Finally, the non-carcinogenic risks for eight metals indicated that only 2.9% of the samples exceeded a threshold value of one, and As accounted for 45.31%. The total carcinogenic risk values for six metals (As, Cd, Co, Cr (VI), Ni, and Pb) were in the range from 10−6 to 10−4, with Cr (VI) and As accounting for 80.92% and 15.52%, respectively. In conclusion, winter haze in Yuci College Town was characterized by higher metal levels and health risks; among the metals, As and Cr (VI) were probably the main contributors.
Collapse
Affiliation(s)
| | - Hongxue Qi
- Correspondence: ; Tel.: +86-0351-3985772
| | | |
Collapse
|
13
|
Yin X, Franklin M, Fallah-Shorshani M, Shafer M, McConnell R, Fruin S. Exposure models for particulate matter elemental concentrations in Southern California. ENVIRONMENT INTERNATIONAL 2022; 165:107247. [PMID: 35716554 DOI: 10.1016/j.envint.2022.107247] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/18/2022] [Accepted: 04/12/2022] [Indexed: 06/15/2023]
Abstract
Due to a scarcity of routine monitoring of speciated particulate matter (PM), there has been limited capability to develop exposure models that robustly estimate component-specific concentrations. This paper presents the largest such study conducted in a single urban area. Using samples that were collected at 220 locations over two seasons, quasi-ultrafine (PM0.2), accumulation mode fine (PM0.2-2.5), and coarse (PM2.5-10) particulate matter concentrations were used to develop spatiotemporal regression, machine learning models that enabled predictions of 24 elemental components in eight Southern California communities. We used supervised variable selection of over 150 variables, largely from publicly available sources, including meteorological, roadway and traffic characteristics, land use, and dispersion model estimates of traffic emissions. PM components that have high oxidative potential (and potentially large health effects) or are otherwise important markers for major PM sources were the primary focus. We present results for copper, iron, and zinc (as non-tailpipe vehicle emissions); elemental carbon (diesel emissions); vanadium (ship emissions); calcium (soil dust); and sodium (sea salt). Spatiotemporal linear regression models with 17 to 36 predictor variables including meteorology; distance to different classifications of roads; intersections and off ramps within a given buffer distance; truck and vehicle traffic volumes; and near-roadway dispersion model estimates produced superior predictions over the machine learning approaches (cross validation R-squares ranged from 0.76 to 0.92). Our models are easily interpretable and appear to have more effectively captured spatial gradients in the metallic portion of PM than other comparably large studies, particularly near roadways for the non-tailpipe emissions. Furthermore, we demonstrated the importance of including spatiotemporally resolved meteorology in our models as it helped to provide key insights into spatial patterns and allowed us to make temporal predictions.
Collapse
Affiliation(s)
- Xiaozhe Yin
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90032, USA
| | - Meredith Franklin
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90032, USA; Department of Statistical Sciences and School of the Environment, University of Toronto, Toronto, Ontario, Canada.
| | - Masoud Fallah-Shorshani
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90032, USA
| | - Martin Shafer
- Wisconsin State Laboratory of Hygiene, University of Wisconsin-Madison, Madison, WI 53707, USA
| | - Rob McConnell
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90032, USA
| | - Scott Fruin
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90032, USA
| |
Collapse
|
14
|
Zhang P, Yang L, Ma W, Wang N, Wen F, Liu Q. Spatiotemporal estimation of the PM 2.5 concentration and human health risks combining the three-dimensional landscape pattern index and machine learning methods to optimize land use regression modeling in Shaanxi, China. ENVIRONMENTAL RESEARCH 2022; 208:112759. [PMID: 35077716 DOI: 10.1016/j.envres.2022.112759] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 01/05/2022] [Accepted: 01/16/2022] [Indexed: 06/14/2023]
Abstract
PM2.5 pollution endangers human health and urban sustainable development. Land use regression (LUR) is one of the most important methods to reveal the temporal and spatial heterogeneity of PM2.5, and the introduction of characteristic variables of geographical factors and the improvement of model construction methods are important research directions for its optimization. However, the complex non-linear correlation between PM2.5 and influencing indicators is always unrecognized by the traditional regression model. The two-dimensional landscape pattern index is difficult to reflect the real information of the surface, and the research accuracy cannot meet the requirements. As such, a novel integrated three-dimensional landscape pattern index (TDLPI) and machine learning extreme gradient boosting (XGBOOST) improved LUR model (LTX) are developed to estimate the spatiotemporal heterogeneity in the fine particle concentration in Shaanxi, China, and health risks of exposure and inhalation of PM2.5 were explored. The LTX model performed well with R2 = 0.88, RMSE of 8.73 μg/m3 and MAE of 5.85 μg/m3. Our findings suggest that integrated three-dimensional landscape pattern information and XGBOOST approaches can accurately estimate annual and seasonal variations of PM2.5 pollution The Guanzhong Plain and northern Shaanxi always feature high PM2.5 values, which exhibit similar distribution trends to those of the observed PM2.5 pollution. This study demonstrated the outstanding performance of the LTX model, which outperforms most models in past researches. On the whole, LTX approach is reliable and can improve the accuracy of pollutant concentration prediction. The health risks of human exposure to fine particles are relatively high in winter. Central part is a high health risk area, while northern area is low. Our study provides a new method for atmospheric pollutants assessing, which is important for LUR model optimization, high-precision PM2.5 pollution prediction and landscape pattern planning. These results can also contribute to human health exposure risks and future epidemiological studies of air pollution.
Collapse
Affiliation(s)
- Ping Zhang
- School of Environmental and Chemical Engineering, Xi'an Polytechnic University, Xi'an, 710048, China; Shaanxi Key Laboratory of Land Consolidation, Xi'an, 710075, China.
| | - Lianwei Yang
- School of Environmental and Chemical Engineering, Xi'an Polytechnic University, Xi'an, 710048, China
| | - Wenjie Ma
- School of Environmental and Chemical Engineering, Xi'an Polytechnic University, Xi'an, 710048, China
| | - Ning Wang
- School of Environmental and Chemical Engineering, Xi'an Polytechnic University, Xi'an, 710048, China
| | - Feng Wen
- School of Environmental and Chemical Engineering, Xi'an Polytechnic University, Xi'an, 710048, China.
| | - Qi Liu
- School of Environmental and Chemical Engineering, Xi'an Polytechnic University, Xi'an, 710048, China; The First Institute of Photogrammetry and Remote Sensing, MNR, Xi'an, 710054, China.
| |
Collapse
|
15
|
Assessment of the Anthropogenic Impact and Distribution of Potentially Toxic and Rare Earth Elements in Lake Sediments from North-Eastern Romania. TOXICS 2022; 10:toxics10050242. [PMID: 35622655 PMCID: PMC9145426 DOI: 10.3390/toxics10050242] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/05/2022] [Accepted: 05/07/2022] [Indexed: 01/27/2023]
Abstract
Chemical analysis was performed on sediment samples collected in two sampling sessions (July and October) from Podu Iloaiei Dam Lake, one of the most important water resources used for aquaculture in north-eastern Romania. The concentration of 15 trace elements (TEs), 8 refractory elements (REs), and 15 rare earth elements (REEs)—determined using inductively coupled plasma mass spectrometry—showed variability largely dependent of the sampling points and collection time. Manganese was the most abundant TE, V and Cr were the most abundant REs, while Ce was one of the most abundant REEs. The cerium negative anomaly and Gd positive anomaly were observed in the Chondrite-normalized distributions. In October, the Ce anomaly showed significant negative correlation with Mn, emphasizing the water body oxidation potential. The identified positive Gd anomaly was most likely associated with the use of Gd-chelating agents in magnetic resonance imaging in Iasi, the largest medical hub in north-eastern Romania. Principal component analysis extracted three factors explaining 96.0% of the observed variance, i.e., rock weathering, leaching from soil surface, contributions from urban stormwater and atmospheric deposition (50.9%), pedological contributions (23.7%), and mixed anthropogenic sources (e.g., traffic, waste discharge, agricultural activities; 21.4%). The evaluation of pollution indices highlighted low and moderate degrees of contamination for most of the elements and a considerable degree of contamination for Cd. Assigned Cd sources included fertilizers and pesticides used in the near agricultural areas or the high traffic road located near the lake. Since contamination of aquatic ecosystems with harmful elements is a human health concern, further monitoring of specific vectors in the food chain of the investigated dam lake will be of the utmost importance.
Collapse
|
16
|
Particle Retention Capacity, Efficiency, and Mechanism of Selected Plant Species: Implications for Urban Planting for Improving Urban Air Quality. PLANTS 2021; 10:plants10102109. [PMID: 34685918 PMCID: PMC8537189 DOI: 10.3390/plants10102109] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/18/2021] [Accepted: 09/28/2021] [Indexed: 11/17/2022]
Abstract
Atmospheric particulate matter (PM) has been of concern owing to its negative effects on human health and its role in environmental degradation. For mitigation purposes, it is important to select the most efficient plant species in urban greening. Here, a fast, cost-saving methodology was first added to the conventional method to investigate the size-resolved PM retention capacity and efficiency of twenty plant species. Surface PM (SPM), which can be removed by water and brushing, accounted for 44.9–66.9% of total PM, in which the water-soluble PM (DPM) accounted for 12.9–22.1% of total PM. A large mass proportion of in-wax PM (14.1–31.7%) was also observed. Platycladus orientalis, Eriobotrya japonica, Viburnum odoratissimum, Magnolia grandiflora had the highest AEleaf (retention efficiency on per unit leaf area) to retain SPM within different diameter classes (DPM, PM0.1–2.5, PM2.5–10, PM>10). AEplant (retention efficiency of individual tree) varied greatly among different plant species, mainly due to the dependence on the total area of a tree. AEland (retention efficiency on per unit green area) is a suitable index for PM retention ability and efficiency. In general, P. orientalis, V. odoratissimum, Pittosporum tobira, Photinia serrulate, M. grandiflora, E. japonica were the efficient species in retaining PM at different scales (i.e., leaf, individual tree, green area). The species like Trifolium repens, Phyllostachys viridis, were the least efficient plant species. The investigated species are all evergreen species, which will remove PM throughout the whole year, even in winter. So, we recommended that the plant species with the highest PM retention efficiency can be used in urban greening. Meanwhile, horticulture practices should also be considered to improve the leaf area index to improve their PM retention and air purification abilities.
Collapse
|
17
|
Wang Y, Liu B, Zhang Y, Dai Q, Song C, Duan L, Guo L, Zhao J, Xue Z, Bi X, Feng Y. Potential health risks of inhaled toxic elements and risk sources during different COVID-19 lockdown stages in Linfen, China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 284:117454. [PMID: 34062435 PMCID: PMC8164380 DOI: 10.1016/j.envpol.2021.117454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 05/19/2021] [Accepted: 05/21/2021] [Indexed: 05/09/2023]
Abstract
Levels of toxic elements in ambient PM2.5 were measured from 29 October 2019 to 30 March 2020 in Linfen, China, to assess the health risks they posed and to identify critical risk sources during different periods of the COVID-19 lockdown and haze episodes using positive matrix factorization (PMF) and a health-risk assessment model. The mean PM2.5 concentration during the study period was 145 μg/m3, and the 10 investigated toxic elements accounted for 0.31% of the PM2.5 mass. The total non-cancer risk (HI) and total cancer risk (TCR) of the selected toxic elements exceed the US EPA limits for children and adults. The HI for children was 2.3 times that for adults for all periods, which is likely due to the high inhalation rate per unit body weight for children. While the TCR for adults was 1.7 times that of children, which is mainly attributed to potential longer exposure duration for adults. The HI and TCR of the toxic elements during full lockdown were reduced by 66% and 58%, respectively, compared to their pre-lockdown levels. The HI and TCR were primarily attributable to Mn and As, respectively. Health risks during haze episodes were significantly higher than the average levels during COVID-19 lockdowns, though the HI and TCR of the selected toxic elements during full-lockdown haze episodes were 68% and 17% lower, respectively, than were the levels during pre-lockdown haze episodes. During the study period, fugitive dust and steel-related smelting were the highest contributors to HI and TCR, respectively, and decreased in these emission sources contributed the most to the lower health risks observed during the full lockdown. There, the control of these sources is critical to effectively reduce public health risks.
Collapse
Affiliation(s)
- Yanyang Wang
- State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control & Tianjin Key Laboratory of Urban Transport Emission Research, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Baoshuang Liu
- State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control & Tianjin Key Laboratory of Urban Transport Emission Research, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China.
| | - Yufen Zhang
- State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control & Tianjin Key Laboratory of Urban Transport Emission Research, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Qili Dai
- State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control & Tianjin Key Laboratory of Urban Transport Emission Research, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Congbo Song
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Liqin Duan
- Linfen Municipal Ecological and Environmental Monitoring Center of Shanxi Province, Linfen, 041000, China
| | - Lili Guo
- Linfen Municipal Ecological and Environmental Monitoring Center of Shanxi Province, Linfen, 041000, China
| | - Jing Zhao
- Linfen Municipal Ecological and Environmental Monitoring Center of Shanxi Province, Linfen, 041000, China
| | - Zhigang Xue
- Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Xiaohui Bi
- State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control & Tianjin Key Laboratory of Urban Transport Emission Research, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Yinchang Feng
- State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control & Tianjin Key Laboratory of Urban Transport Emission Research, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| |
Collapse
|
18
|
Fu S, Yue D, Lin W, Hu Q, Yuan L, Zhao Y, Zhai Y, Mai D, Zhang H, Wei Q, He L. Insights into the source-specific health risk of ambient particle-bound metals in the Pearl River Delta region, China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 224:112642. [PMID: 34399126 DOI: 10.1016/j.ecoenv.2021.112642] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 08/09/2021] [Accepted: 08/11/2021] [Indexed: 05/16/2023]
Abstract
Quantification of source-specific health risks of PM2.5 plays an essential role in health-oriented air pollution control. However, there is limited evidence supporting the source-based risk apportionment of particle-bound metals. In this study, source-specific cancer and non-cancer risk characterization of 12 particle-bound metals was performed in the Pearl River Delta (PRD) region, China. A combination of health risk assessment model and receptor-based source apportionment modeling with positive matrix factorization (PMF) was applied for characterizing the spatial-temporal patterns for inhalation health risks of particle-bound metals in three main city clusters, inland area and coastal area in the region from December 2014 through July 2016. Results showed that the carcinogenic risk of particle-bound metals for adults (4.13 × 10-5) was higher than that for children (9.53 × 10-6) in the PRD region. The highest and significant non-carcinogenic risk was found in the northwest city cluster. Industrial emission (63.3%) were the dominant contributors to the cancer risk, while the main contributors to the non-cancer risk were the vehicle emission source (33.2%) in the dry season and industrial emission (30.8%) in the wet season. Our results provide important evidence for spatial source-specific health risks with temporal characteristics of particle-bound metals in most densely populated areas in the southern China, and suggest that reduction of industrial and vehicle emissions could facilitate more cost-effective PM2.5 control measures to improve human health.
Collapse
Affiliation(s)
- Shaojie Fu
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China
| | - Dingli Yue
- Guangdong Ecological and Environmental Monitoring Center, State Environmental Protection Key Laboratory of Regional Air Quality Monitoring, Guangzhou 510308, China
| | - Weiwei Lin
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China.
| | - Qiansheng Hu
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China
| | - Luan Yuan
- Guangdong Ecological and Environmental Monitoring Center, State Environmental Protection Key Laboratory of Regional Air Quality Monitoring, Guangzhou 510308, China
| | - Yan Zhao
- Guangdong Ecological and Environmental Monitoring Center, State Environmental Protection Key Laboratory of Regional Air Quality Monitoring, Guangzhou 510308, China
| | - Yuhong Zhai
- Guangdong Ecological and Environmental Monitoring Center, State Environmental Protection Key Laboratory of Regional Air Quality Monitoring, Guangzhou 510308, China
| | - Dejian Mai
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China
| | - Hedi Zhang
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China
| | - Qing Wei
- Experimental Teaching Center, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China
| | - Lingyan He
- Key Laboratory for Urban Habitat Environmental Science and Technology, Shenzhen Graduate School of Peking University, Shenzhen 518055, China
| |
Collapse
|
19
|
Wu SP, Li X, Cai MJ, Gao Y, Xu C, Schwab JJ, Yuan CS. Size distributions and health risks of particle-bound toxic elements in the southeast coastland of China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:44565-44579. [PMID: 33852116 DOI: 10.1007/s11356-021-13896-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 04/07/2021] [Indexed: 05/17/2023]
Abstract
Size-fractionated samples were collected at five coastal urban sites in Fujian Province, southeast China, in 2016 and 2017 to determine the trace elements using ICP-MS. Ca, Fe, Al, Mg, and K were the most abundant elements among the studied elements in TSP, much higher than those of heavy metals. The annual mean concentrations of Pb, As, V, Ni, Cd, and Mn were within the acceptable limits of the World Health Organization and the Ministry of Ecology and Environment of China while Cr(VI) exceeded the limits. Most elements exhibited clear seasonal patterns with maxima over the cold season and minima over the warm season. The spatial variabilities in concentrations of the measured elements were not significant except Ni and V. However, the size distribution pattern of each element was quite similar across the region. Characteristic size distributions of elements allowed identification of three main groups: (a) unimodal distribution in the coarse fraction for Ca, Al, Mg, and Ba; (b) unimodal distribution in the fine fraction for Pb, Se, As, Ag, V, Ni, Zn, and Cd; and (c) bimodal or multimodal distribution for Fe, Mn, Cr, K, and Cu. The combination of the size-fractionated concentrations, enrichment factors, correlation coefficients, and factor analysis offered the identification of mixed sources such as vehicular exhaust and wear, heavy fuel oil combustion, and resuspension of road dust. Non-carcinogenic health risks associated with inhalable exposure to airborne metals were higher than the safety threshold (hazard index > 1) across the region, suggesting non-carcinogenic health risks via inhalation. Mn, V, and Ni contributed 74-83% of the total non-carcinogenic risk. The assessment investigation of carcinogenic health risks revealed V and Cr(VI) as elements with the largest carcinogenic risks, accounting for more than 95% of the overall inhalation risk. Nevertheless, the carcinogenic risks for children and adults were between 10-6 and 10-4, within the range considered acceptable by the US EPA. In terms of the size-fractionated risk, PM2.5 contributed 43-50% and 39-44% of the total non-carcinogenic and carcinogenic risks, respectively, indicating the potential health hazard of coarse particle-bound toxic metals was not negligible.
Collapse
Affiliation(s)
- Shui-Ping Wu
- Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, Xiamen University, Xiamen, 361102, China.
- Center for Marine Environmental Chemistry and Toxicology, College of Environment and Ecology, Xiamen University, Xiamen, 361102, China.
| | - Xiang Li
- Center for Marine Environmental Chemistry and Toxicology, College of Environment and Ecology, Xiamen University, Xiamen, 361102, China
| | - Mei-Jun Cai
- Center for Marine Environmental Chemistry and Toxicology, College of Environment and Ecology, Xiamen University, Xiamen, 361102, China
| | - Yang Gao
- Center for Marine Environmental Chemistry and Toxicology, College of Environment and Ecology, Xiamen University, Xiamen, 361102, China
| | - Chao Xu
- Center for Marine Environmental Chemistry and Toxicology, College of Environment and Ecology, Xiamen University, Xiamen, 361102, China
| | - James J Schwab
- Atmospheric Sciences Research Center, University at Albany, SUNY, Albany, NY, 12203, USA
| | - Chung-Shin Yuan
- Institute of Environmental Engineering, Sun Yat-Sen University, Kaohsiung, 80424, China
| |
Collapse
|
20
|
The Influence of Air Pollutants and Meteorological Conditions on the Hospitalization for Respiratory Diseases in Shenzhen City, China. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18105120. [PMID: 34065982 PMCID: PMC8151817 DOI: 10.3390/ijerph18105120] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/27/2021] [Accepted: 05/07/2021] [Indexed: 12/29/2022]
Abstract
Air pollutants have significant direct and indirect adverse effects on public health. To explore the relationship between air pollutants and meteorological conditions on the hospitalization for respiratory diseases, we collected a whole year of daily major air pollutants’ concentrations from Shenzhen city in 2013, including Particulate Matter (PM10, PM2.5), Nitrogen dioxide (NO2), Ozone (O3), Sulphur dioxide (SO2), and Carbon monoxide (CO). Meanwhile, we also gained meteorological data. This study collected 109,927 patients cases with diseases of the respiratory system from 98 hospitals. We investigated the influence of meteorological factors on air pollution by Spearman correlation analysis. Then, we tested the short-term correlation between significant air pollutants and respiratory diseases’ hospitalization by Distributed Lag Non-linear Model (DLNM). There was a significant negative correlation between the north wind and NO2 and a significant negative correlation between the south wind and six pollutants. Except for CO, other air pollutants were significantly correlated with the number of hospitalized patients during the lag period. Most of the pollutants reached maximum Relative Risk (RR) with a lag of five days. When the time lag was five days, the annual average of PM10, PM2.5, SO2, NO2, and O3 increased by 10%, and the risk of hospitalization for the respiratory system increased by 0.29%, 0.23%, 0.22%, 0.25%, and 0.22%, respectively. All the pollutants except CO impact the respiratory system’s hospitalization in a short period, and PM10 has the most significant impact. The results are helpful for pollution control from a public health perspective.
Collapse
|
21
|
Dahmardeh Behrooz R, Kaskaoutis DG, Grivas G, Mihalopoulos N. Human health risk assessment for toxic elements in the extreme ambient dust conditions observed in Sistan, Iran. CHEMOSPHERE 2021; 262:127835. [PMID: 32763581 DOI: 10.1016/j.chemosphere.2020.127835] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/03/2020] [Accepted: 07/26/2020] [Indexed: 05/25/2023]
Abstract
This study evaluates the bioaccessibility and health risks related to heavy metals (Cd, Cr, Co, Cu, Mn, Ni, Pb, Zn and metalloid As) in airborne dust samples (TSP and PM2.5) in Zabol, Iran during the summer dust period, when peak concentration levels of PM are typically observed. High bioaccessibilities of carcinogenic metals in PM2.5 (i.e. 53.3%, 48.6% and 47.6% for Ni, Cr and As, respectively) were calculated. The carcinogenic and non-carcinogenic health risks were assessed for three exposure pathways (inhalation, ingestion and dermal contact), separately for children and adults. Non-carcinogenic inhalation risks were very high (Hazard Index: HI > 1) both for children and adults, while the carcinogenic risks were above the upper acceptable threshold of 10-4 for adults and marginally close (5.0-8.4 × 10-5) for children. High carcinogenic risks (>10-4) were found for the ingestion pathway both for children and adults, while HI values > 1 (8.2) were estimated for children. Carcinogenic and non-carcinogenic risk estimates for dermal contact were also above the limits considered acceptable, except for the carcinogenic risk for children (7.6 × 10-5). Higher non-carcinogenic and carcinogenic risks (integrated for all elements) were associated with the inhalation pathway in adults and children with the exception of carcinogenic risk for children, where the ingestion route remains the most important, while As was linked with the highest risks for nearly all exposure pathways. A comparative evaluation shows that health risks related with toxic elements in airborne particles in Sistan are among the highest reported in the world.
Collapse
Affiliation(s)
- Reza Dahmardeh Behrooz
- Department of Environmental Science, Faculty of Natural Resources, University of Zabol, P.O. Box 98615-538, Zabol, Iran.
| | - D G Kaskaoutis
- Institute for Environmental Research and Sustainable Development, National Observatory of Athens, 15236, P. Penteli, Greece; Environmental Chemical Processes Laboratory, University of Crete, 71003, Crete, Greece
| | - G Grivas
- Institute for Environmental Research and Sustainable Development, National Observatory of Athens, 15236, P. Penteli, Greece
| | - N Mihalopoulos
- Institute for Environmental Research and Sustainable Development, National Observatory of Athens, 15236, P. Penteli, Greece; Environmental Chemical Processes Laboratory, University of Crete, 71003, Crete, Greece
| |
Collapse
|
22
|
Zhao C, Wang Y, Su Z, Pu W, Niu M, Song S, Wei L, Ding Y, Xu L, Tian M, Wang H. Respiratory exposure to PM2.5 soluble extract disrupts mucosal barrier function and promotes the development of experimental asthma. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 730:139145. [PMID: 32402975 DOI: 10.1016/j.scitotenv.2020.139145] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 04/27/2020] [Accepted: 04/29/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Air pollutants are important factors that contribute to the development and exacerbation of asthma, but experimental evidence still needs to be collected and the mechanisms still need to be addressed. In this study, we aimed to assess the association between PM2.5 exposure and asthma development. The effects of PM2.5 exposure on the barrier functions of airway epithelial cells were also determined. METHODS PM2.5 was collected from Nanjing, China, and its soluble extract was prepared. Human lung epithelial cells (BEAS-2B) were treated with different concentrations of soluble PM2.5 extract, and cell viability was detected by FACS using Annexin V-FITC staining. PM2.5-induced oxidative stress and inflammatory events were assessed by DCF-DA staining and qPCR. PM2.5-induced dysfunction of the airway epithelial barrier was assessed by measuring the expression of tight junction molecules. In vivo, BALB/c mice were treated with OVA in the presence or absence of PM2.5 solution, followed by exposure to OVA aerosols. Allergy-induced airway inflammation and lung injury were assessed by histopathological analyses. RESULTS Soluble PM2.5 extract exposure in vitro decreased the viability and increased apoptosis of airway epithelial cells. Soluble PM2.5 extract induced oxidative stress and enhanced pro-inflammatory factor expression by activating the NF-κB and MAPK signalling pathways, which were accompanied by reduced airway barrier function. The in vivo data demonstrated that PM2.5 exposure increased the effects of allergy sensitization after respiratory exposure to allergens, which led to the development of asthma. CONCLUSION This study suggests that exposure to soluble PM2.5 extract contributes to airway barrier dysfunction. The soluble mediators generated by airway epithelial cells in response to PM2.5 exposure orchestrate the breaking of inhalational tolerance and sensitization to allergic antigens, leading to the exacerbated development of asthma.
Collapse
Affiliation(s)
- Chen Zhao
- State Key Laboratory of Analytical Chemistry for Life Science & Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing 210093, PR China
| | - Ye Wang
- Department of Respiratory Medicine, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu 210008, P.R. China
| | - Zhonglan Su
- Department of Dermatology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, PR China
| | - Wenyuan Pu
- State Key Laboratory of Analytical Chemistry for Life Science & Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing 210093, PR China
| | - Mengyuan Niu
- State Key Laboratory of Analytical Chemistry for Life Science & Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing 210093, PR China
| | - Shiyu Song
- State Key Laboratory of Analytical Chemistry for Life Science & Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing 210093, PR China
| | - Lulu Wei
- State Key Laboratory of Analytical Chemistry for Life Science & Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing 210093, PR China
| | - Yibing Ding
- State Key Laboratory of Analytical Chemistry for Life Science & Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing 210093, PR China
| | - Lizhi Xu
- State Key Laboratory of Analytical Chemistry for Life Science & Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing 210093, PR China
| | - Man Tian
- Department of Respiratory Medicine, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu 210008, P.R. China.
| | - Hongwei Wang
- State Key Laboratory of Analytical Chemistry for Life Science & Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing 210093, PR China.
| |
Collapse
|
23
|
Taira M, Sakakibara K, Saeki K, Ohira SI, Toda K. Determination of oxoanions and water-soluble species of arsenic, selenium, antimony, vanadium, and chromium eluted in water from airborne fine particles (PM 2.5): effect of acid and transition metal content of particles on heavy metal elution. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2020; 22:1514-1524. [PMID: 32555872 DOI: 10.1039/d0em00135j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Heavy metals in particulate matter (PM) are of great concern, and their effects on the environment and human health depend on their solubilities and species present. In this study, the solubility of As, Se, Sb, V and Cr and their species eluted in water was investigated. As, Se, Sb, and V were present mostly in fine particles, and they were predominantly water-soluble in fine particles (<2.5 μm, PM2.5) but insoluble in coarse particles (>2.5 μm). Solubility of Cr was poor even in fine particles. It was found that for fine particles, solubilities of the heavy metals were related to the nitrate and sulfate contents. This suggests that the higher the acidity of the particles, the higher the solubility of the heavy metals. Oxoanions of the five kinds of heavy metals in water extracts of fine particles were determined by inductively coupled plasma mass spectrometry preceded by ion chromatography. The results suggested the presence of atmospheric oxidation during the aerosol transportation. Also, the As(iii)/As(v) (arsenite/arsenate) ratios for the fine particle extracts were related to the transition metal concentrations, which indicated that Fe, Cu, etc. in fine particles affected the As redox equilibrium. It was suggested that the heavy metals exist as complexes with iron hydroxide and dissolved organic matter in addition to the free oxoanions. These investigations were performed for PM samples collected in winter and summer in Kumamoto, west Japan, where the site is strongly exposed to westerly winds from continental East Asia. The obtained results improve our understanding of the behavior of the heavy metals in airborne PM after depositing on a wet environment and biota.
Collapse
Affiliation(s)
- Misaki Taira
- Department of Chemistry, Kumamoto University, 2-39-1 Kurokami, Kumamoto 860-8555, Japan.
| | | | | | | | | |
Collapse
|
24
|
Soluble Inorganic Arsenic Species in Atmospheric Submicron Particles in Two Polish Urban Background Sites. SUSTAINABILITY 2020. [DOI: 10.3390/su12030837] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
This paper presents results of the research on soluble inorganic As(III) and As(V) bound to submicron atmospheric particles (PM1) in two Polish urban background sites (Zabrze and Warsaw). The purpose of the research was to give some insight on the susceptibility to leaching of PM1-bound arsenic species from easily water-soluble compounds, i.e., considered potentially bioavailable based on its daily and seasonal changes. Quantitative analysis for 120 PM1 samples (collected from 24 June 2014 to 8 March 2015) was performed by using a high-performance liquid chromatography in combination with inductively coupled plasma mass spectrometry. The mean seasonal concentrations of dominant soluble As specie—As(V)—ranged from 0.27 ng/m3 in the summer season in Warsaw to 2.41 ng/m3 in the winter season in Zabrze. Its mean mass shares in total As were 44% in Warsaw and 75% in Zabrze in the winter and 18% and 48%, respectively, in the summer. Obtained results indicated fossil fuel combustion as the main source of PM1-bound As(V) and road traffic emission as its minor sources. In opposite to As(V), soluble As(III) was not clearly seasonally variable. In both seasons, its mean concentrations were higher in Zabrze than in Warsaw. As(III) concentrations were not preferentially shaped by an exact emission from road traffic in both cities.
Collapse
|