1
|
Alinasab M, Navidjouy N, Alizadeh S, Rahimnejad M. Bio-electro-fenton system assisted with metal-organic framework for degradation of bis-phenol S in wastewater as an emerging contaminant. Sci Rep 2025; 15:6475. [PMID: 39987225 PMCID: PMC11846976 DOI: 10.1038/s41598-025-90969-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Accepted: 02/17/2025] [Indexed: 02/24/2025] Open
Abstract
The bio-electro-fenton (BEF) system is a novel technology that can be utilized to degrade both emerging and persistent pollutants while producing clean, green, and sustainable energy. Various catalysts that have a high active surface area are employed in these systems to enhance the oxygen reduction reaction (ORR) efficiency. In this study, the Nickel/Cobalt metal-organic framework (Ni/Co BTC-MOF) as heterogeneous catalyst was synthesized and deposited by the cathodic electrochemical deposition method on the carbon felt (CF) and graphite plate (GP) electrodes. The results of FT-IR, Field Emission Scanning Electron Microscopy (FE-SEM), X-ray Diffraction (XRD), and Energy Dispersive X-ray spectroscopy (EDS) analysis proved that the synthesis of Ni/Co-BTC MOF successfully carried out. The performance and positive effect of the modified electrodes in ORR were investigated and compared in electrical energy generation. Finally, bio-electro-degradation of bisphenol-S (BPS) as one of the endocrine-disrupting compounds (EDCs) was studied by the optimal modified electrode. According to the results of electrochemical experiments, the highest maximum power density is equal to 133.6 mW/m2, which is related to Ni/Co-BTC@CF, and the highest production voltage is related to Ni/Co-BTC@CF, Ni/Co-BTC@GP, CF, and GP, respectively. The removal efficiency levels of bisphenol S in this system at different concentrations of 1.0, 5.0, and 10.0 mg/l after 24 h were 98.0%, 84.0%, and 41.0%, respectively. Based on the obtained results, the improved BEF system with Ni/Co-BTC@CF catalyst can be a suitable technology to achieve more electricity flow and at the same time have a positive effect on the decomposition of bisphenol S pollutant.
Collapse
Affiliation(s)
- Maryam Alinasab
- Department of Environmental Health Engineering, School of Public Health, Urmia University of Medical Sciences, Urmia, Iran
| | - Nahid Navidjouy
- Department of Environmental Health Engineering, School of Public Health, Urmia University of Medical Sciences, Urmia, Iran.
| | - Saber Alizadeh
- Faculty of Chemistry, Bu-Ali Sina University, Hamedan, 65174-38683, Iran
| | - Mostafa Rahimnejad
- Department of Chemical Engineering, Biofuel and Renewable Energy Research Center, Babol Noshirvani University of Technology, Babol, Iran
| |
Collapse
|
2
|
Wu M, Ailijiang N, Li N, Zaimire A, Chen H, He C, Zhang Y. Performance of pharmaceutical products removal in a bioelectrochemical system at low temperatures and changes in microbial communities and antibiotic resistance genes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:64493-64508. [PMID: 39102148 DOI: 10.1007/s11356-024-34577-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 07/26/2024] [Indexed: 08/06/2024]
Abstract
Biological methods do not effectively remove pharmaceutical products (PPs) and antibiotic resistance genes (ARGs) from wastewater at low temperatures, leading to environmental pollution. Therefore, anaerobic-aerobic-coupled upflow bioelectrochemical reactors (AO-UBERs) were designed to improve the removal of PPs at low temperatures (10 ± 2 °C). The result shows that diclofenac (DIC) and ibuprofen (IBU) removals in the system with aerobic anodic and anaerobic cathodic chambers were 91.7% and 94.7%, higher than that in the control system (12.2 ± 1.5%, 36.5 ± 5.9%), and aerobic zone favors DIC and IBU removal; fluoroquinolone antibiotics (FQs) removals in the system with aerobic cathodic and anaerobic anodic chambers were 17.5-22.4% higher than that in the control system (9.1-22.4%), and anaerobic zone favors FQs removal. Analysis of microbial community structure and ARGs showed that different electrotrophic microbes (Flavobacterium, Acinetobacter, and Delftia) with cold-resistant ability to degrade PPs were enriched in different electrode combinations, and the aerobic cathodic chambers could remove certain ARGs. These results showed that AO-UBERs under intermittent electrical stimulation mode are an alternative method for the effective removal of PPs and ARGs at low temperatures.
Collapse
Affiliation(s)
- Mei Wu
- Key Laboratory of Oasis Ecology of Education Ministry, College of Ecology and Environment, Xinjiang University, Urumqi, 830017, People's Republic of China
- Xinjiang Jinghe Observation and Research Station of Temperate Desert Ecosystem, Ministry of Education, Urumqi, 830017, People's Republic of China
| | - Nuerla Ailijiang
- Key Laboratory of Oasis Ecology of Education Ministry, College of Ecology and Environment, Xinjiang University, Urumqi, 830017, People's Republic of China.
- Xinjiang Jinghe Observation and Research Station of Temperate Desert Ecosystem, Ministry of Education, Urumqi, 830017, People's Republic of China.
| | - Na Li
- Key Laboratory of Oasis Ecology of Education Ministry, College of Ecology and Environment, Xinjiang University, Urumqi, 830017, People's Republic of China
- Xinjiang Jinghe Observation and Research Station of Temperate Desert Ecosystem, Ministry of Education, Urumqi, 830017, People's Republic of China
| | - Abudoushalamu Zaimire
- Key Laboratory of Oasis Ecology of Education Ministry, College of Ecology and Environment, Xinjiang University, Urumqi, 830017, People's Republic of China
- Xinjiang Jinghe Observation and Research Station of Temperate Desert Ecosystem, Ministry of Education, Urumqi, 830017, People's Republic of China
| | - Hailiang Chen
- Key Laboratory of Oasis Ecology of Education Ministry, College of Ecology and Environment, Xinjiang University, Urumqi, 830017, People's Republic of China
- Xinjiang Jinghe Observation and Research Station of Temperate Desert Ecosystem, Ministry of Education, Urumqi, 830017, People's Republic of China
| | - Chaoyue He
- Key Laboratory of Oasis Ecology of Education Ministry, College of Ecology and Environment, Xinjiang University, Urumqi, 830017, People's Republic of China
- Xinjiang Jinghe Observation and Research Station of Temperate Desert Ecosystem, Ministry of Education, Urumqi, 830017, People's Republic of China
| | - Yiming Zhang
- Key Laboratory of Oasis Ecology of Education Ministry, College of Ecology and Environment, Xinjiang University, Urumqi, 830017, People's Republic of China
- Xinjiang Jinghe Observation and Research Station of Temperate Desert Ecosystem, Ministry of Education, Urumqi, 830017, People's Republic of China
| |
Collapse
|
3
|
Huang W, Liu S, Zhang T, Wu H, Pu S. Bibliometric analysis and systematic review of electrochemical methods for environmental remediation. J Environ Sci (China) 2024; 144:113-136. [PMID: 38802224 DOI: 10.1016/j.jes.2023.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 08/08/2023] [Accepted: 08/08/2023] [Indexed: 05/29/2024]
Abstract
Electrochemical methods are increasingly favored for remediating polluted environments due to their environmental compatibility and reagent-saving features. However, a comprehensive understanding of recent progress, mechanisms, and trends in these methods is currently lacking. Web of Science (WoS) databases were utilized for searching the primary data to understand the knowledge structure and research trends of publications on electrochemical methods and to unveil certain hotspots and future trends of electrochemical methods research. The original data were sampled from 9080 publications in those databases with the search deadline of June 1st, 2022. CiteSpace and VOSviewer software facilitated data visualization and analysis of document quantities, source journals, institutions, authors, and keywords. We discussed principles, influencing factors, and progress related to seven major electrochemical methods. Notably, publications on this subject have experienced significant growth since 2007. The most frequently-investigated areas in electrochemical methods included novel materials development, heavy metal remediation, organic pollutant degradation, and removal mechanism identification. "Advanced oxidation process" and "Nanocomposite" are currently trending topics. The major remediation mechanisms are adsorption, oxidation, and reduction. The efficiency of electrochemical systems is influenced by material properties, system configuration, electron transfer efficiency, and power density. Electro-Fenton exhibits significant advantages in achieving synergistic effects of anodic oxidation and electro-adsorption among the seven techniques. Future research should prioritize the improvement of electron transfer efficiency, the optimization of electrode materials, the exploration of emerging technology coupling, and the reduction in system operation and maintenance costs.
Collapse
Affiliation(s)
- Wenbin Huang
- College of Earth Sciences, Chengdu University of Technology, Chengdu 610059, China
| | - Shibin Liu
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection (Chengdu University of Technology), Chengdu 610059, China; College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, China; Key Laboratory of Biodiversity Formation Mechanism and Comprehensive Utilization of the Qinghai-Tibet Plateau in Qinghai Province, Qinghai Normal University, Xining 810008, China.
| | - Tao Zhang
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection (Chengdu University of Technology), Chengdu 610059, China
| | - Hao Wu
- Scientific Research Academy of Guangxi Environmental Protection, Nanning 530022, China.
| | - Shengyan Pu
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection (Chengdu University of Technology), Chengdu 610059, China; College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, China.
| |
Collapse
|
4
|
Liu Y, Zhang J, Cheng D, Guo W, Liu X, Chen Z, Zhang Z, Ngo HH. Fate and mitigation of antibiotics and antibiotic resistance genes in microbial fuel cell and coupled systems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 938:173530. [PMID: 38815818 DOI: 10.1016/j.scitotenv.2024.173530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/24/2024] [Accepted: 05/24/2024] [Indexed: 06/01/2024]
Abstract
Microbial fuel cells (MFCs), known for their low energy consumption, high efficiency, and environmental friendliness, have been widely utilized for removing antibiotics from wastewater. Compared to conventional wastewater treatment methods, MFCs produce less sludge while exhibiting superior antibiotic removal capacity, effectively reducing the spread of antibiotic resistance genes (ARGs). This study investigates 1) the mechanisms of ARGs generation and proliferation in MFCs; 2) the influencing factors on the fate and removal of antibiotics and ARGs; and 3) the fate and mitigation of ARGs in MFC and MFC-coupled systems. It is indicated that high removal efficiency of antibiotics and minimal amount of sludge production contribute the mitigation of ARGs in MFCs. Influencing factors, such as cathode potential, electrode materials, salinity, initial antibiotic concentration, and additional additives, can lead to the selection of tolerant microbial communities, thereby affecting the abundance of ARGs carried by various microbial hosts. Integrating MFCs with other wastewater treatment systems can synergistically enhance their performance, thereby improving the overall removal efficiency of ARGs. Moreover, challenges and future directions for mitigating the spread of ARGs using MFCs are suggested.
Collapse
Affiliation(s)
- Yufei Liu
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China; Institute of Yellow River Delta Earth Surface Processes and Ecological Integrity, Shandong University of Science and Technology, Qingdao 266590, China
| | - Jian Zhang
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China; Institute of Yellow River Delta Earth Surface Processes and Ecological Integrity, Shandong University of Science and Technology, Qingdao 266590, China
| | - Dongle Cheng
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China; Institute of Yellow River Delta Earth Surface Processes and Ecological Integrity, Shandong University of Science and Technology, Qingdao 266590, China.
| | - Wenshan Guo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NWS 2007, Australia
| | - Xiaoqing Liu
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NWS 2007, Australia
| | - Zhijie Chen
- UNSW Water Research Centre, School of Civil and Environmental Engineering, The University New South Wales, Sydney, NSW 2052, Australia
| | - Zehao Zhang
- National Engineering Laboratory of Urban Sewage Advanced Treatment and Resource Utilization Technology, The College of Architecture and Civil Engineering, Beijing University of Technology, Beijing 100124, China
| | - Huu Hao Ngo
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China; Institute of Yellow River Delta Earth Surface Processes and Ecological Integrity, Shandong University of Science and Technology, Qingdao 266590, China; Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NWS 2007, Australia.
| |
Collapse
|
5
|
Lv J, Zhao Q, Wang K, Jiang J, Ding J, Wei L. A critical review of approaches to enhance the performance of bio-electro-Fenton and photo-bio-electro-Fenton systems. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 365:121633. [PMID: 38955044 DOI: 10.1016/j.jenvman.2024.121633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/12/2024] [Accepted: 06/26/2024] [Indexed: 07/04/2024]
Abstract
The development of sustainable advanced energy conversion technologies and efficient pollutant treatment processes is a viable solution to the two global crises of the lack of non-renewable energy resources and environmental harm. In recent years, the interaction of biological and chemical oxidation units to utilize biomass has been extensively studied. Among these systems, bio-electro-Fenton (BEF) and photo-bio-electro-Fenton (PBEF) systems have shown prospects for application due to making rational and practical conversion and use of energy. This review compared and analyzed the electron transfer mechanisms in BEF and PBEF systems, and systematically summarized the techniques for enhancing system performance based on the generation, transfer, and utilization of electrons, including increasing the anode electron recovery efficiency, enhancing the generation of reactive oxygen species, and optimizing operational modes. This review compared the effects of different methods on the electron flow process and fully evaluated the benefits and drawbacks. This review may provide straightforward suggestions and methods to enhance the performance of BEF and PBEF systems and inspire the reader to explore the generation and utilization of sustainable energy more deeply.
Collapse
Affiliation(s)
- Jiaqi Lv
- State Key Laboratory of Urban Water Resources and Environments (SKLURE), School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Qingliang Zhao
- State Key Laboratory of Urban Water Resources and Environments (SKLURE), School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Kun Wang
- State Key Laboratory of Urban Water Resources and Environments (SKLURE), School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Junqiu Jiang
- State Key Laboratory of Urban Water Resources and Environments (SKLURE), School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Jing Ding
- State Key Laboratory of Urban Water Resources and Environments (SKLURE), School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Liangliang Wei
- State Key Laboratory of Urban Water Resources and Environments (SKLURE), School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
6
|
Lv J, Zhao Q, Jiang J, Ding J, Wei L. Sludge dewaterability improvement with microbial fuel cell powered electro-Fenton system (MFCⓅEFs): Performance and mechanisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 923:171422. [PMID: 38432365 DOI: 10.1016/j.scitotenv.2024.171422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/15/2024] [Accepted: 02/29/2024] [Indexed: 03/05/2024]
Abstract
Throughout the entire process of sludge treatment and disposal, it is crucial to explore stable and efficient techniques to improve sludge dewaterability, which can facilitate subsequent resource utilization and space and cost savings. Traditional Fenton oxidation has been widely researched to enhance the performance of sludge dewaterability, which was limited by the additional energy input and the instabilities of Fe2+ and H2O2. To reduce the consumption of energy and chemicals and further break the rate-limiting step of the iron cycle, a novel and feasible method that constructed microbial fuel cell powered electro-Fenton systems (MFCⓅEFs) with ferrite and biochar electrode (MgFe2O4@BC/CF) was successfully demonstrated. The MFCⓅEFs with MgFe2O4@BC/CF electrode achieved specific resistance filtration and sludge cake water content of 2.52 × 1012 m/kg and 66.54 %. Cellular structure and extracellular polymeric substances (EPS) were disrupted, releasing partially bound water and destroying hydrophilic structures to facilitate sludge flocs aggregation, which was attributed to the oxidation of hydroxyl radicals. The consistent electron supply supplied by MFCⓅEFs and catalytically active sites on the surface of the multifunctional functional group electrode was responsible for producing more hydroxyl radicals and possessing a better oxidizing ability. The study provided an innovative process for sludge dewaterability improvement with high efficiency and low energy consumption, which presented new insights into the green treatment of sludge.
Collapse
Affiliation(s)
- Jiaqi Lv
- State Key Laboratory of Urban Water Resources and Environments (SKLURE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Qingliang Zhao
- State Key Laboratory of Urban Water Resources and Environments (SKLURE), School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Junqiu Jiang
- State Key Laboratory of Urban Water Resources and Environments (SKLURE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jing Ding
- State Key Laboratory of Urban Water Resources and Environments (SKLURE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Liangliang Wei
- State Key Laboratory of Urban Water Resources and Environments (SKLURE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
7
|
Brillas E, Peralta-Hernández JM. Antibiotic removal from synthetic and real aqueous matrices by peroxymonosulfate-based advanced oxidation processes. A review of recent development. CHEMOSPHERE 2024; 351:141153. [PMID: 38219991 DOI: 10.1016/j.chemosphere.2024.141153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/27/2023] [Accepted: 01/06/2024] [Indexed: 01/16/2024]
Abstract
The widespread use of antibiotics for the treatment of bacteriological diseases causes their accumulation at low concentrations in natural waters. This gives health risks to animals and humans since it can increase the damage of the beneficial bacteria, the control of infectious diseases, and the resistance to bacterial infection. Potent oxidation methods are required to remove these pollutants from water because of their inefficient abatement in municipal wastewater treatment plants. Over the last three years in the period 2021-September 2023, powerful peroxymonosulfate (PMS)-based advanced oxidation processes (AOPs) have been developed to guaranty the effective removal of antibiotics in synthetic and real waters and wastewater. This review presents a comprehensive analysis of the different procedures proposed to activate PMS-producing strong oxidizing agents like sulfate radical (SO4•-), hydroxyl radical (•OH, radical superoxide ion (O2•-), and non-radical singlet oxygen (1O2) at different proportions depending on the experimental conditions. Iron, non-iron transition metals, biochar, and carbonaceous materials catalytic, UVC, photocatalytic, thermal, electrochemical, and other processes for PMS activation are summarized. The fundamentals and characteristics of these procedures are detailed remarking on their oxidation power to remove antibiotics, the influence of operating variables, the production and detection of radical and non-radical oxidizing agents, the effect of added inorganic anions, natural organic matter, and aqueous matrix, and the identification of by-products formed. Finally, the theoretical and experimental analysis of the change of solution toxicity during the PMS-based AOPs are described.
Collapse
Affiliation(s)
- Enric Brillas
- Laboratori d'Electroquímica dels Materials i del Medi Ambient, Departament de Ciència de Materials i Química Física, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, 08028, Barcelona, Spain.
| | - Juan M Peralta-Hernández
- Departamento de Química, DCNE, Universidad de Guanajuato, Cerro de La Venada s/n, Pueblito, United States.
| |
Collapse
|
8
|
Yang K, Han P, Liu Y, Lv H, Chen X, Lei Y, Yu L, Ma L, Duan P. Boosted Electrocatalytic Degradation of Levofloxacin by Chloride Ions: Performances Evaluation and Mechanism Insight with Different Anodes. Molecules 2024; 29:662. [PMID: 38338406 PMCID: PMC11487383 DOI: 10.3390/molecules29030662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 01/26/2024] [Accepted: 01/27/2024] [Indexed: 02/12/2024] Open
Abstract
As chloride (Cl-) is a commonly found anion in natural water, it has a significant impact on electrocatalytic oxidation processes; yet, the mechanism of radical transformation on different types of anodes remains unexplored. Therefore, this study aims to investigate the influence of chlorine-containing environments on the electrocatalytic degradation performance of levofloxacin using BDD, Ti4O7, and Ru-Ti electrodes. The comparative analysis of the electrode performance demonstrated that the presence of Cl- improved the removal and mineralization efficiency of levofloxacin on all the electrodes. The enhancement was the most pronounced on the Ti4O7 electrode and the least significant on the Ru-Ti electrode. The evaluation experiments and EPR characterization revealed that the increased generation of hydroxyl radicals and active chlorine played a major role in the degradation process, particularly on the Ti4O7 anode. The electrochemical performance tests indicated that the concentration of Cl- affected the oxygen evolution potentials of the electrode and consequently influenced the formation of hydroxyl radicals. This study elucidates the mechanism of Cl- participation in the electrocatalytic degradation of chlorine-containing organic wastewater. Therefore, the highly chlorine-resistant electrocatalytic anode materials hold great potential for the promotion of the practical application of the electrocatalytic treatment of antibiotic wastewater.
Collapse
Affiliation(s)
- Keda Yang
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310015, China;
| | - Peiwei Han
- Beijing Key Laboratory of Fuels Cleaning and Advanced Catalytic Emission Reduction Technology, College of New Materials and Chemical Engineering, Beijing Institute of Petrochemical Technology, Beijing 102617, China; (P.H.); (Y.L.); (H.L.)
| | - Yinan Liu
- Beijing Key Laboratory of Fuels Cleaning and Advanced Catalytic Emission Reduction Technology, College of New Materials and Chemical Engineering, Beijing Institute of Petrochemical Technology, Beijing 102617, China; (P.H.); (Y.L.); (H.L.)
| | - Hongxia Lv
- Beijing Key Laboratory of Fuels Cleaning and Advanced Catalytic Emission Reduction Technology, College of New Materials and Chemical Engineering, Beijing Institute of Petrochemical Technology, Beijing 102617, China; (P.H.); (Y.L.); (H.L.)
| | - Xiaofei Chen
- Chen Ping Laboratory of TIANS Engineering Technology Group Co., Ltd., Shijiazhuang 050000, China; (X.C.); (Y.L.)
| | - Yihan Lei
- Chen Ping Laboratory of TIANS Engineering Technology Group Co., Ltd., Shijiazhuang 050000, China; (X.C.); (Y.L.)
| | - Lian Yu
- Department of Environmental Engineering, Beijing Institute of Petrochemical Technology, Beijing 102617, China;
| | - Lei Ma
- Beijing Key Laboratory of Fuels Cleaning and Advanced Catalytic Emission Reduction Technology, College of New Materials and Chemical Engineering, Beijing Institute of Petrochemical Technology, Beijing 102617, China; (P.H.); (Y.L.); (H.L.)
| | - Pingzhou Duan
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| |
Collapse
|
9
|
Felisardo RJA, Brillas E, Romanholo Ferreira LF, Cavalcanti EB, Garcia-Segura S. Degradation of the antibiotic ciprofloxacin in urine by electrochemical oxidation with a DSA anode. CHEMOSPHERE 2023; 344:140407. [PMID: 37838029 DOI: 10.1016/j.chemosphere.2023.140407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/08/2023] [Accepted: 10/09/2023] [Indexed: 10/16/2023]
Abstract
Ciprofloxacin (CIP) is a commonly prescribed fluoroquinolone antibiotic that, even after uptake, remains unmetabolized to a significant extent-over 70%. Unmetabolized CIP is excreted through both urine and feces. This persistent compound manages to evade removal in municipal wastewater facilities, leading to its substantial accumulation in aquatic environments. This accumulation raises concerns about potential risks to the health of various living organisms. Herein, we present a study on the remediation of CIP in synthetic urine by electrochemical oxidation in an undivided cell with a DSA (Ti/IrO2) anode and a stainless-steel cathode. Physisorbed hydroxyl radical formed at the anode surface from water discharge and free chlorine generated from Cl- oxidation were the main oxidizing agents. The effect of pH and current density (j) on CIP degradation was examined, and its total removal was easily achieved at pH ≥ 7.0 and j ≥ 60 mA cm-2 due to the action of free chlorine. The CIP decay always followed a pseudo-first-order kinetics. The components of the synthetic urine were also oxidized. The main nitrogenated species released was NH3. A very small concentration of free chlorine was quantified at the end of the treatment, thus demonstrating the good performance of electrochemical oxidation and its effectiveness to destroy all the organic pollutants. The present study demonstrates the simultaneous oxidation of the organic components of urine during CIP degradation, thus showing a unique perspective for its electrochemical oxidation that enhances the environmental remediation strategies.
Collapse
Affiliation(s)
- Raul José Alves Felisardo
- Graduate Program in Process Engineering, Tiradentes University, 300 Murilo Dantas Avenue, 49032-490, Aracaju, SE, Brazil; Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ, 85287, USA
| | - Enric Brillas
- Laboratori d'Electroquímica dels Materials i del Medi Ambient, Secció de Química Física, Facultat de Química, Universitat de Barcelona, Martí i Franqus 1-11, 08028, Barcelona, Spain
| | | | - Eliane Bezerra Cavalcanti
- Graduate Program in Process Engineering, Tiradentes University, 300 Murilo Dantas Avenue, 49032-490, Aracaju, SE, Brazil; Institute of Technology and Research, 300 Murilo Dantas Avenue, 49032-490, Aracaju, SE, Brazil
| | - Sergi Garcia-Segura
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ, 85287, USA.
| |
Collapse
|
10
|
Gizewski J, V D Sande L, Holtmann D. Contribution of electrobiotechnology to sustainable development goals. Trends Biotechnol 2023; 41:1106-1108. [PMID: 36959083 DOI: 10.1016/j.tibtech.2023.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/17/2023] [Accepted: 02/27/2023] [Indexed: 03/25/2023]
Abstract
The UN Sustainable Development Goals (SDGs) are 17 interlinked goals designed to be a 'shared blueprint for peace and prosperity for people and the planet, now and into the future'. Therefore, global efforts should focus on achieving these. Herein, we discuss the contribution of electrobiotechnology to the realization of the SDGs.
Collapse
Affiliation(s)
- Jakub Gizewski
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen, Wiesenstrasse 14, 35390 Giessen, Germany
| | - Lisa V D Sande
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen, Wiesenstrasse 14, 35390 Giessen, Germany
| | - Dirk Holtmann
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen, Wiesenstrasse 14, 35390 Giessen, Germany.
| |
Collapse
|
11
|
Bao H, Wang J, Chen Z, Wen Q, Wu Y, Fu Q. Simultaneous passivation of heavy metals and removal of antibiotic resistance genes by calcium peroxide addition during sewage sludge composting. BIORESOURCE TECHNOLOGY 2023:129267. [PMID: 37271461 DOI: 10.1016/j.biortech.2023.129267] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/27/2023] [Accepted: 05/30/2023] [Indexed: 06/06/2023]
Abstract
This research evaluated the effects of calcium peroxide (CP) at 0% (CK, w/w), 5% (T1, w/w), and 10% (T2, w/w), on heavy metals (HMs) mobility and prevalence of antibiotic resistance genes (ARGs) during sludge composting. T1 and T2 significantly reduced (p < 0.05) the mobility of Cu (29.34%, and 32.94%, respectively), Ni (24.07%, and 31.48%, respectively) and Zn (33.28%, and 54.11%, respectively) compared to CK after the composting. CP addition resulted in a decrease in mobile genetic elements (MGEs) and ARGs during composting. Together with structural equation model and random forest analysis depicted MGEs had a primary association with total ARGs variations during composting. Microbial analysis indicated CP downregulated the expression of the genes associated with two-component and type IV secretion system, thus reducing the prevalence of ARGs. This study demonstrates that application of CP is a feasible strategy to mitigate both ARGs and HMs hazards during composting.
Collapse
Affiliation(s)
- Huanyu Bao
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (SKLUWRE, HIT), Harbin 150090, PR China; School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Jiuhua Wang
- School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Zhiqiang Chen
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (SKLUWRE, HIT), Harbin 150090, PR China; School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Qinxue Wen
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (SKLUWRE, HIT), Harbin 150090, PR China; School of Environment, Harbin Institute of Technology, Harbin 150090, PR China.
| | - Yiqi Wu
- Research Institute of Standards and Norms, Ministry of Housing and Urban-Rural Development, Beijing 100835, PR China
| | - Qiqi Fu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (SKLUWRE, HIT), Harbin 150090, PR China; School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| |
Collapse
|
12
|
Li S, Ondon BS, Ho SH, Li F. Emerging soil contamination of antibiotics resistance bacteria (ARB) carrying genes (ARGs): New challenges for soil remediation and conservation. ENVIRONMENTAL RESEARCH 2023; 219:115132. [PMID: 36563979 DOI: 10.1016/j.envres.2022.115132] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/04/2022] [Accepted: 12/18/2022] [Indexed: 06/17/2023]
Abstract
Soil plays a vital role as a nutrient source for microflora and plants in ecosystems. The accumulation and proliferation of antibiotics resistance bacteria (ARB) and antibiotics resistance genes (ARGs) causes emerging soil contamination and pollution, posing new challenges for soil remediation, recovery, and conservation. Fertilizer application in agriculture is one of the most important sources of ARB and ARGs contamination in soils. The recent existing techniques for the remediation of soil polluted with ARB and ARGs are very limited in terms of ARB and ARGs removal in soil. Bioelectrochemical remediation using bioelectrochemical systems such as microbial fuel cells and microbial electrolysis cells are promising technologies for the removal of ARB and ARGs in soil. Herein, diverse sources of ARB and ARGs in soil have been reviewed, their effects on soil microbial diversity have been analyzed, and the causes of ARB and ARGs rapid proliferation in soil are explained. Bioelectrochemical systems used for the remediation of soil contaminated with ARB and ARGs is still in its infancy stage and presents serious disadvantage and limits, therefore it needs to be well understood and implemented. In general, merging soil contamination of ARB and ARGs is an increasing concern threatening the soil ecosystem while the remediation technologies are still challenging. Efforts need to be made to develop new, effective, and efficient technologies for soil remediation and conservation to tackle the spread of ARB and ARGs and overcome the new challenges posed by ARB and ARGs contamination in soil.
Collapse
Affiliation(s)
- Shengnan Li
- Key Laboratory of Pollution Processes and Environmental Criteria at the Ministry of Education, Tianjin, China; Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province, 150090, China
| | - Brim Stevy Ondon
- Key Laboratory of Pollution Processes and Environmental Criteria at the Ministry of Education, Tianjin, China; Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Shih-Hsin Ho
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province, 150090, China
| | - Fengxiang Li
- Key Laboratory of Pollution Processes and Environmental Criteria at the Ministry of Education, Tianjin, China; Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China.
| |
Collapse
|
13
|
Wang K, Li H, Yang Y, Wang P, Zheng Y, Song L. Making cathode composites more efficient for electro-fenton and bio-electro-fenton systems: A review. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2022.122302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
14
|
Li S, Gao M, Dong H, Jiang Y, Liang W, Jiang J, Ho SH, Li F. Deciphering the fate of antibiotic resistance genes in norfloxacin wastewater treated by a bio-electro-Fenton system. BIORESOURCE TECHNOLOGY 2022; 364:128110. [PMID: 36252757 DOI: 10.1016/j.biortech.2022.128110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/04/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
The misuse of antibiotics has increased the prevalence of antibiotic resistance genes (ARGs), considered a class of critical environmental contaminants due to their ubiquitous and persistent nature. Previous studies reported the potentiality of bio-electro-Fenton processes for antibiotic removal and ARGs control. However, the production and fate of ARGs in bio-electro-Fenton processes triggered by microbial fuel cells are rare. In this study, the norfloxacin (NFLX) average residual concentrations within two days were 2.02, 6.07 and 14.84 mg/L, and the average removal efficiency of NFLX was 79.8 %, 69.6 % and 62.9 % at the initial antibiotic concentrations of 10, 20 and 40 mg/L, respectively. The most prevalent resistance gene type in all processes was the fluoroquinolone antibiotic gene. Furthermore, Proteobacteria was the dominant ARG-carrying bacteria. Overall, this study can provide theoretical support for the efficient treatment of high antibiotics-contained wastewater by bio-electro-Fenton systems to better control ARGs from the perspective of ecological security.
Collapse
Affiliation(s)
- Shengnan Li
- College of Environmental Science and Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, China; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China
| | - Mingsi Gao
- College of Environmental Science and Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Heng Dong
- College of Environmental Science and Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Yuxin Jiang
- College of Environmental Science and Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Wanting Liang
- College of Environmental Science and Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Jiwei Jiang
- College of Environmental Science and Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Shih-Hsin Ho
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China
| | - Fengxiang Li
- College of Environmental Science and Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, China.
| |
Collapse
|
15
|
Manoharan RK, Ishaque F, Ahn YH. Fate of antibiotic resistant genes in wastewater environments and treatment strategies - A review. CHEMOSPHERE 2022; 298:134671. [PMID: 35460672 DOI: 10.1016/j.chemosphere.2022.134671] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 03/29/2022] [Accepted: 04/18/2022] [Indexed: 06/14/2023]
Abstract
Antibiotic-resistant bacteria (ARB) and antibiotic-resistant genes (ARGs) have emerged in aquatic environments through the discharge of large amounts of antibiotics into wastewater. Well-designed wastewater treatment plants (WWTPs) with effective treatment processes are essential to prevent the release of ARGs directly into the environment. Although some systematic sequential treatment methods are used to remove ARGs, considerable gaps in removal mechanisms will be discussed. Therefore, deep analysis and discussion of various treatment methods are required to understand the ARGs removal mechanisms. In this manuscript, the role of antibiotics and the resistance mechanism of ARB are discussed in depth. In addition, the fate of ARGs in an aquatic environment and detection methods are compared comprehensively and discussed. In particular, the advantages and disadvantages of various methods are summarized and reviewed critically. Finally, combined technologies, such as advanced oxidation process (AOP) with biochemical systems, membrane separation with electrochemical AOP, ultrafiltration (UF) membrane coupled with photocatalytic treatment, and UF membrane separation coupled with sonication, are introduced. Overall, low-energy anaerobic treatment reactors with any of the above combined treatments might reduce the discharge of large quantities of ARGs into the environment. Finally, this review provides valuable insights for better ARG removal technologies by introducing combined effective treatment strategies used in real WWTPs.
Collapse
Affiliation(s)
| | - Fahmida Ishaque
- Department of Civil Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - Young-Ho Ahn
- Department of Civil Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea.
| |
Collapse
|
16
|
Fang H, Liu Y, Qiu P, Song HL, Liu T, Guo J, Zhang S. Simultaneous removal of antibiotic resistant bacteria and antibiotic resistance genes by molybdenum carbide assisted electrochemical disinfection. JOURNAL OF HAZARDOUS MATERIALS 2022; 432:128733. [PMID: 35334270 DOI: 10.1016/j.jhazmat.2022.128733] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/10/2022] [Accepted: 03/15/2022] [Indexed: 06/14/2023]
Abstract
Considering conventional disinfection methods are not effective in simultaneously removing ARB and ARGs, a novel electrochemical disinfection (ED) process assisted by molybdenum carbide (Mo2C) electrodes was developed in this study. The established ED process was proved to effectively inactivate multi-resistant ARB (i.e. Escherichia coli K-12 LE392 with resistance to kanamycin, ampicillin, and tetracycline) and to degrade ARGs (including tetA and blaTEM in the form of both intracellular (iARGs) and extracellular ARGs (eARGs)). Specifically, within 15 min treatment by the Mo2C-assisted ED under 2.0 V, a 5-log ARB removal was realized, without any ARB regrowth observed, indicating a permanent inactivation of ARB by the process. Moreover, degradation of the iARGs (0.4-log reduction of the blaTEM and 3.1-log reduction of the tetA) and the eARGs (4.2-log reduction of the blaTEM and 1.1-log reduction of the tetA) were achieved within 60 min, further underpinning the viability of the Mo2C-based ED. While e-, H2O2, and •O2- played leading roles in the entire process of ED, H+ and •OH contributed to bacterial inactivation in the early and late stages of ED, respectively. The reactive species induced by electrolysis posed pressure to the ARB strains, which enhanced oxidative stress response, triggered higher reactive oxygen species generation, induced membrane damage and changed cellular structure. Collectively, the Mo2C-assisted ED demonstrated in the present study represents an attractive alternative to the traditional disinfection methods in combating the spread of antibiotic resistance.
Collapse
Affiliation(s)
- Hao Fang
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CIC-AEET), Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Yinghan Liu
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CIC-AEET), Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Pengxiang Qiu
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CIC-AEET), Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Hai-Liang Song
- School of Environment, Nanjing Normal University, Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Jiangsu Engineering Lab of Water and Soil Eco-remediation, Nanjing 210023, China.
| | - Tao Liu
- Australian Centre for Water and Environmental Biotechnology (ACWEB, formerly AWMC), The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Jianhua Guo
- Australian Centre for Water and Environmental Biotechnology (ACWEB, formerly AWMC), The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Shuai Zhang
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CIC-AEET), Nanjing University of Information Science & Technology, Nanjing 210044, China.
| |
Collapse
|
17
|
Rafaqat S, Ali N, Torres C, Rittmann B. Recent progress in treatment of dyes wastewater using microbial-electro-Fenton technology. RSC Adv 2022; 12:17104-17137. [PMID: 35755587 PMCID: PMC9178700 DOI: 10.1039/d2ra01831d] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 05/02/2022] [Indexed: 01/24/2023] Open
Abstract
Globally, textile dyeing and manufacturing are one of the largest industrial units releasing huge amount of wastewater (WW) with refractory compounds such as dyes and pigments. Currently, wastewater treatment has been viewed as an industrial opportunity for rejuvenating fresh water resources and it is highly required in water stressed countries. This comprehensive review highlights an overall concept and in-depth knowledge on integrated, cost-effective cross-disciplinary solutions for domestic and industrial (textile dyes) WW and for harnessing renewable energy. This basic concept entails parallel or sequential modes of treating two chemically different WW i.e., domestic and industrial in the same system. In this case, contemporary advancement in MFC/MEC (METs) based systems towards Microbial-Electro-Fenton Technology (MEFT) revealed a substantial emerging scope and opportunity. Principally the said technology is based upon previously established anaerobic digestion and electro-chemical (photo/UV/Fenton) processes in the disciplines of microbial biotechnology and electro-chemistry. It holds an added advantage to all previously establish technologies in terms of treatment and energy efficiency, minimal toxicity and sludge waste, and environmental sustainable. This review typically described different dyes and their ultimate fate in environment and recently developed hierarchy of MEFS. It revealed detail mechanisms and degradation rate of dyes typically in cathodic Fenton system under batch and continuous modes of different MEF reactors. Moreover, it described cost-effectiveness of the said technology in terms of energy budget (production and consumption), and the limitations related to reactor fabrication cost and design for future upgradation to large scale application.
Collapse
Affiliation(s)
- Shumaila Rafaqat
- Department of Microbiology, Quaid-i-Azam University Islamabad Pakistan
| | - Naeem Ali
- Department of Microbiology, Faculty of Biological Sciences, Quaid-i-Azam University Islamabad Pakistan
| | - Cesar Torres
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University USA
| | - Bruce Rittmann
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University USA
| |
Collapse
|
18
|
Brillas E. Progress of homogeneous and heterogeneous electro-Fenton treatments of antibiotics in synthetic and real wastewaters. A critical review on the period 2017-2021. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 819:153102. [PMID: 35041950 DOI: 10.1016/j.scitotenv.2022.153102] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/09/2022] [Accepted: 01/10/2022] [Indexed: 06/14/2023]
Abstract
Antibiotics are widely supplied over all the world to animals and humans to fight and heal bacteriological diseases. The uptake of antibiotics has largely increased the average-life expectancy of living beings. However, these recalcitrant products have been detected at low concentrations in natural waters, with potential health risks due to alterations in food chains and an increase in the resistance to bacterial infection, control of infectious diseases, and damage of the beneficial bacteria. The high stability of antibiotics at mild conditions prevents their effective removal in conventional wastewater treatment plants. A powerful advanced oxidation processes such as the electro-Fenton (EF) process is being developed as a guarantee for their destruction by •OH generated as strong oxidant. This review presents a critical, exhaustive, and detailed analysis on the application of EF to remediate synthetic and real wastewaters contaminated with common antibiotics, covering the period 2017-2021. Homogeneous EF and heterogeneous EF involving iron solid catalysts or iron functionalized cathodes, as well as their hybrid and sequential treatments, are exhaustively examined. Their fundamentals and characteristics are detailed, and the main results obtained for the removal of the most used antibiotic families are carefully described and discussed. The role of generated oxidizing agents is explained, and the by-products generated, and reaction sequences proposed are detailed.
Collapse
Affiliation(s)
- Enric Brillas
- Laboratori d'Electroquímica dels Materials i del Medi Ambient, Secció de Química Física, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain.
| |
Collapse
|
19
|
A Review of Stand-Alone and Hybrid Microbial Electrochemical Systems for Antibiotics Removal from Wastewater. Processes (Basel) 2022. [DOI: 10.3390/pr10040714] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The growing concern about residual antibiotics in the water environment pushes for innovative and cost-effective technologies for antibiotics removal from wastewater. In this context, various microbial electrochemical systems have been investigated as an alternative to conventional wastewater technologies that are usually ineffective for the adequate removal of antibiotics. This review article details the development of stand-alone and hybrid or integrated microbial electrochemical systems for antibiotics removal from wastewater. First, technical features, antibiotics removal efficiencies, process optimization, and technological bottlenecks of these systems are discussed. Second, a comparative summary based on the existing reports was established to provide insights into the selection between stand-alone and hybrid systems. Finally, research gaps, the relevance of recent progress in complementary areas, and future research needs have been discussed.
Collapse
|
20
|
Soltani F, Navidjouy N, Rahimnejad M. A review on bio-electro-Fenton systems as environmentally friendly methods for degradation of environmental organic pollutants in wastewater. RSC Adv 2022; 12:5184-5213. [PMID: 35425537 PMCID: PMC8982105 DOI: 10.1039/d1ra08825d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 01/31/2022] [Indexed: 11/21/2022] Open
Abstract
Bio-electro-Fenton (BEF) systems have been potentially studied as a promising technology to achieve environmental organic pollutants degradation and bioelectricity generation. The BEF systems are interesting and constantly expanding fields of science and technology. These emerging technologies, coupled with anodic microbial metabolisms and electrochemical Fenton's reactions, are considered suitable alternatives. Recently, great attention has been paid to BEFs due to special features such as hydrogen peroxide generation, energy saving, high efficiency and energy production, that these features make BEFs outstanding compared with the existing technologies. Despite the advantages of this technology, there are still problems to consider including low production of current density, chemical requirement for pH adjustment, iron sludge formation due to the addition of iron catalysts and costly materials used. This review has described the general features of BEF system, and introduced some operational parameters affecting the performance of BEF system. In addition, the results of published researches about the degradation of persistent organic pollutants and real wastewaters treatment in BEF system are presented. Some challenges and possible future prospects such as suitable methods for improving current generation, selection of electrode materials, and methods for reducing iron residues and application over a wide pH range are also given. Thus, the present review mainly revealed that BEF system is an environmental friendly technology for integrated wastewater treatment and clean energy production.
Collapse
Affiliation(s)
- Fatemeh Soltani
- Student Research Committee, Urmia University of Medical Sciences Urmia Iran
| | - Nahid Navidjouy
- Department of Environmental Health Engineering, Urmia University of Medical Sciences Urmia Iran +98 9143489617
| | - Mostafa Rahimnejad
- Biofuel and Renewable Energy Research Center, Department of Chemical Engineering, Babol Noshirvani University of Technology Babol Iran
| |
Collapse
|
21
|
Lv H, Han P, Li X, Mu Z, Zuo Y, Wang X, Tan Y, He G, Jin H, Sun C, Wei H, Ma L. Electrocatalytic Degradation of Levofloxacin, a Typical Antibiotic in Hospital Wastewater. MATERIALS 2021; 14:ma14226814. [PMID: 34832216 PMCID: PMC8621070 DOI: 10.3390/ma14226814] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/29/2021] [Accepted: 11/05/2021] [Indexed: 11/16/2022]
Abstract
Presently, in the context of the novel coronavirus pneumonia epidemic, several antibiotics are overused in hospitals, causing heavy pressure on the hospital’s wastewater treatment process. Therefore, developing stable, safe, and efficient hospital wastewater treatment equipment is crucial. Herein, a bench-scale electrooxidation equipment for hospital wastewater was used to evaluate the removal effect of the main antibiotic levofloxacin (LVX) in hospital wastewater using response surface methodology (RSM). During the degradation process, the influence of the following five factors on total organic carbon (TOC) removal was discussed and the best reaction condition was obtained: current density, initial pH, flow rate, chloride ion concentration, and reaction time of 39.6 A/m2, 6.5, 50 mL/min, 4‰, and 120 min, respectively. The TOC removal could reach 41% after a reaction time of 120 min, which was consistent with the result predicted by the response surface (40.48%). Moreover, the morphology and properties of the electrode were analyzed. The degradation pathway of LVX was analyzed using high-performance liquid chromatography–mass spectrometry (LC–MS). Subsequently, the bench-scale electrooxidation equipment was changed into onboard-scale electrooxidation equipment, and the onboard-scale equipment was promoted to several hospitals in Dalian.
Collapse
Affiliation(s)
- Hongxia Lv
- Beijing Key Laboratory of Fuels Cleaning and Advanced Catalytic Emission Reduction Technology, College of New Materials and Chemical Engineering, Beijing Institute of Petrochemical Technology, Beijing 102617, China; (H.L.); (X.L.); (Y.Z.); (X.W.); (G.H.); (H.J.)
| | - Peiwei Han
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, School of Energy Science and Engineering, University of Science and Technology of China, Guangzhou 510640, China;
| | - Xiaogang Li
- Beijing Key Laboratory of Fuels Cleaning and Advanced Catalytic Emission Reduction Technology, College of New Materials and Chemical Engineering, Beijing Institute of Petrochemical Technology, Beijing 102617, China; (H.L.); (X.L.); (Y.Z.); (X.W.); (G.H.); (H.J.)
| | - Zhao Mu
- Institute of Applied Chemical Technology for Oilfield, College of New Materials and Chemical Engineering, Beijing Institute of Petrochemical Technology, Beijing 102617, China;
| | - Yuan Zuo
- Beijing Key Laboratory of Fuels Cleaning and Advanced Catalytic Emission Reduction Technology, College of New Materials and Chemical Engineering, Beijing Institute of Petrochemical Technology, Beijing 102617, China; (H.L.); (X.L.); (Y.Z.); (X.W.); (G.H.); (H.J.)
| | - Xu Wang
- Beijing Key Laboratory of Fuels Cleaning and Advanced Catalytic Emission Reduction Technology, College of New Materials and Chemical Engineering, Beijing Institute of Petrochemical Technology, Beijing 102617, China; (H.L.); (X.L.); (Y.Z.); (X.W.); (G.H.); (H.J.)
| | - Yannan Tan
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; (Y.T.); (C.S.)
| | - Guangxiang He
- Beijing Key Laboratory of Fuels Cleaning and Advanced Catalytic Emission Reduction Technology, College of New Materials and Chemical Engineering, Beijing Institute of Petrochemical Technology, Beijing 102617, China; (H.L.); (X.L.); (Y.Z.); (X.W.); (G.H.); (H.J.)
| | - Haibo Jin
- Beijing Key Laboratory of Fuels Cleaning and Advanced Catalytic Emission Reduction Technology, College of New Materials and Chemical Engineering, Beijing Institute of Petrochemical Technology, Beijing 102617, China; (H.L.); (X.L.); (Y.Z.); (X.W.); (G.H.); (H.J.)
| | - Chenglin Sun
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; (Y.T.); (C.S.)
| | - Huangzhao Wei
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; (Y.T.); (C.S.)
- Correspondence: (H.W.); (L.M.)
| | - Lei Ma
- Beijing Key Laboratory of Fuels Cleaning and Advanced Catalytic Emission Reduction Technology, College of New Materials and Chemical Engineering, Beijing Institute of Petrochemical Technology, Beijing 102617, China; (H.L.); (X.L.); (Y.Z.); (X.W.); (G.H.); (H.J.)
- Correspondence: (H.W.); (L.M.)
| |
Collapse
|
22
|
Chen P, Guo X, Li S, Li F. A review of the bioelectrochemical system as an emerging versatile technology for reduction of antibiotic resistance genes. ENVIRONMENT INTERNATIONAL 2021; 156:106689. [PMID: 34175779 DOI: 10.1016/j.envint.2021.106689] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 05/31/2021] [Accepted: 06/02/2021] [Indexed: 06/13/2023]
Abstract
Antibiotic contamination and the resulting resistance genes have attracted worldwide attention because of the extensive overuse and abuse of antibiotics, which seriously affects the environment as well as human health. Bioelectrochemical system (BES), a potential avenue to be explored, can alleviate antibiotic pollution and reduce antibiotic resistance genes (ARGs). This review mainly focuses on analyzing the possible reasons for the good performance of ARG reduction by BESs and potential ways to improve its performance on the basis of revealing the generation and transmission of ARGs in BES. This system reduces ARGs through two pathways: (1) the contribution of BES to the low selection pressure of ARGs caused by the efficient removal of antibiotics, and (2) inhibition of ARG transmission caused by low sludge yield. To promote the reduction of ARGs, incorporating additives, improving the removal rate of antibiotics by adjusting the environmental conditions, and controlling the microbial community in BES are proposed. Furthermore, this review also provides an overview of bioelectrochemical coupling systems including the BES coupled with the Fenton system, BES coupled with constructed wetland, and BES coupled with photocatalysis, which demonstrates that this method is applicable in different situations and conditions and provides inspiration to improve these systems to control ARGs. Finally, the challenges and outlooks are addressed, which is constructive for the development of technologies for antibiotic and ARG contamination remediation and blocking risk migration.
Collapse
Affiliation(s)
- Ping Chen
- Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin 300350, China
| | - Xiaoyan Guo
- Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin 300350, China
| | - Shengnan Li
- Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin 300350, China; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China
| | - Fengxiang Li
- Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin 300350, China.
| |
Collapse
|
23
|
Mier AA, Olvera-Vargas H, Mejía-López M, Longoria A, Verea L, Sebastian PJ, Arias DM. A review of recent advances in electrode materials for emerging bioelectrochemical systems: From biofilm-bearing anodes to specialized cathodes. CHEMOSPHERE 2021; 283:131138. [PMID: 34146871 DOI: 10.1016/j.chemosphere.2021.131138] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 05/27/2021] [Accepted: 06/04/2021] [Indexed: 06/12/2023]
Abstract
Bioelectrochemical systems (BES), mainly microbial fuel cells (MEC) and microbial electrolysis cells (MFC), are unique biosystems that use electroactive bacteria (EAB) to produce electrons in the form of electric energy for different applications. BES have attracted increasing attention as a sustainable, low-cost, and neutral-carbon option for energy production, wastewater treatment, and biosynthesis. Complex interactions between EAB and the electrode materials play a crucial role in system performance and scalability. The electron transfer processes from the EAB to the anode surface or from the cathode surface to the EAB have been the object of numerous investigations in BES, and the development of new materials to maximize energy production and overall performance has been a hot topic in the last years. The present review paper discusses the advances on innovative electrode materials for emerging BES, which include MEC coupled to anaerobic digestion (MEC-AD), Microbial Desalination Cells (MDC), plant-MFC (P-MFC), constructed wetlands-MFC (CW-MFC), and microbial electro-Fenton (BEF). Detailed insights on innovative electrode modification strategies to improve the electrode transfer kinetics on each emerging BES are provided. The effect of materials on microbial population is also discussed in this review. Furthermore, the challenges and opportunities for materials scientists and engineers working in BES are presented at the end of this work aiming at scaling up and industrialization of such versatile systems.
Collapse
Affiliation(s)
- Alicia A Mier
- Bioenergy Lab, Instituto de Energías Renovables, Universidad Nacional Autónoma de México, Priv. Xochicalco S/n, Col. Centro, Temixco, Morelos, CP 62580, Mexico
| | - Hugo Olvera-Vargas
- Bioenergy Lab, Instituto de Energías Renovables, Universidad Nacional Autónoma de México, Priv. Xochicalco S/n, Col. Centro, Temixco, Morelos, CP 62580, Mexico
| | - M Mejía-López
- Bioenergy Lab, Instituto de Energías Renovables, Universidad Nacional Autónoma de México, Priv. Xochicalco S/n, Col. Centro, Temixco, Morelos, CP 62580, Mexico
| | - Adriana Longoria
- Bioenergy Lab, Instituto de Energías Renovables, Universidad Nacional Autónoma de México, Priv. Xochicalco S/n, Col. Centro, Temixco, Morelos, CP 62580, Mexico
| | - Laura Verea
- Instituto de Investigación e Innovación en Energías Renovables, Universidad de Ciencias y Artes de Chiapas, Libramiento Norte Poniente 1150, 29039, Tuxtla Gutiérrez, Chiapas, Mexico
| | - P J Sebastian
- Bioenergy Lab, Instituto de Energías Renovables, Universidad Nacional Autónoma de México, Priv. Xochicalco S/n, Col. Centro, Temixco, Morelos, CP 62580, Mexico
| | - Dulce María Arias
- Bioenergy Lab, Instituto de Energías Renovables, Universidad Nacional Autónoma de México, Priv. Xochicalco S/n, Col. Centro, Temixco, Morelos, CP 62580, Mexico.
| |
Collapse
|
24
|
Soltani F, Navidjouy N, Khorsandi H, Rahimnejad M, Alizadeh S. A novel bio-electro-Fenton system with dual application for the catalytic degradation of tetracycline antibiotic in wastewater and bioelectricity generation. RSC Adv 2021; 11:27160-27173. [PMID: 35480664 PMCID: PMC9037666 DOI: 10.1039/d1ra04584a] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 07/22/2021] [Indexed: 12/20/2022] Open
Abstract
In this new insight, the potential application of the eco-friendly Bio-Electro-Fenton (BEF) system was surveyed with the aim of simultaneous degradation of tetracycline and in situ generation of renewable bioenergy without the need for an external electricity source. To shed light on this issue, catalytic degradation of tetracycline was directly accrued via in situ generated hydroxyl free radicals from Fenton's reaction in the cathode chamber. Simultaneously, the in situ electricity generation as renewable bioenergy was carried out through microbial activities. The effects of operating parameters, such as electrical circuit conditions (in the absence and presence of external resistor load), substrate concentration (1000, 2000, 5000, and 10 000 mg L−1), catholyte pH (3, 5, and 7), and FeSO4 concentration (2, 5, and 10 mg L−1) were investigated in detail. The obtained results indicated that the tetracycline degradation was up to 99.04 ± 0.91% after 24 h under the optimal conditions (short-circuit, pH 3, FeSO4 concentration of 5 mg L−1, and substrate concentration of 2000 mg L−1). Also, the maximum removal efficiency of anodic COD (85.71 ± 1.81%) was achieved by increasing the substrate concentration up to 2000 mg L−1. However, the removal efficiencies decreased to 78.29 ± 2.68% with increasing substrate concentration up to 10 000 mg L−1. Meanwhile, the obtained maximum voltage, current density, and power density were 322 mV, 1195 mA m−2, and 141.60 mW m−2, respectively, at the substrate concentration of 10 000 mg L−1. Present results suggested that the BEF system could be employed as an energy-saving and promising technology for antibiotic-containing wastewater treatment and simultaneous sustainable bioelectricity generation. In this new insight, the potential application of the Bio-Electro-Fenton system was surveyed with the aim of simultaneous degradation of tetracycline and in situ generation of renewable bioenergy without the need for an external electricity source.![]()
Collapse
Affiliation(s)
- Fatemeh Soltani
- Department of Environmental Health Engineering, School of Public Health, Urmia University of Medical Sciences Urmia Iran +98 9143489617
| | - Nahid Navidjouy
- Department of Environmental Health Engineering, School of Public Health, Urmia University of Medical Sciences Urmia Iran +98 9143489617
| | - Hassan Khorsandi
- Department of Environmental Health Engineering, School of Public Health, Urmia University of Medical Sciences Urmia Iran +98 9143489617
| | - Mostafa Rahimnejad
- Biofuel and Renewable Energy Research Center, Department of Chemical Engineering, Babol Noshirvani University of Technology Babol Iran
| | - Saber Alizadeh
- Faculty of Chemistry, Bu-Ali-Sina University Hamedan Iran
| |
Collapse
|
25
|
Li S, Zhang C, Li F, Hua T, Zhou Q, Ho SH. Technologies towards antibiotic resistance genes (ARGs) removal from aquatic environment: A critical review. JOURNAL OF HAZARDOUS MATERIALS 2021; 411:125148. [PMID: 33486226 DOI: 10.1016/j.jhazmat.2021.125148] [Citation(s) in RCA: 113] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/13/2020] [Accepted: 01/04/2021] [Indexed: 06/12/2023]
Abstract
Antibiotic resistance genes (ARGs) have been recognized as emerging pollutants that are widely distributed and accumulated in most of aquatic environment. Although many ARGs-removal technologies are employed, a corresponding discussion of merits and limitations of known technologies is still currently lacking. More importantly, the removal mechanisms of ARGs remain unclear, hindering their ecological feasibility. Thus, further in-depth studies are highly required. In this review, the occurrence and risk of ARGs in aquatic environment are introduced, and the main routes and potential impacts of ARGs dissemination are enumerated. In addition, several novel ARGs detection methods are critically reviewed. Notably, to ensure greater applicability of these technologies, systematic information on how recent technologies impact the ARGs removal and control are comprehensively compared and summarized. Finally, future research directions to alleviate the risk of ARGs in aquatic environment are briefly introduced. Taken together, this review provides useful information to facilitate the development of innovative and feasible ARGs removal technologies and increase their economic viability and ecological sustainability.
Collapse
Affiliation(s)
- Shengnan Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China; College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Remediation and Pollution Control for Urban Ecological Environmental, Nankai University, Tianjin 300350 China
| | - Chaofan Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China
| | - Fengxiang Li
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Remediation and Pollution Control for Urban Ecological Environmental, Nankai University, Tianjin 300350 China
| | - Tao Hua
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Remediation and Pollution Control for Urban Ecological Environmental, Nankai University, Tianjin 300350 China
| | - Qixing Zhou
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Remediation and Pollution Control for Urban Ecological Environmental, Nankai University, Tianjin 300350 China
| | - Shih-Hsin Ho
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China.
| |
Collapse
|
26
|
Li S, Zhu X, Yu H, Wang X, Liu X, Yang H, Li F, Zhou Q. Simultaneous sulfamethoxazole degradation with electricity generation by microbial fuel cells using Ni-MOF-74 as cathode catalysts and quantification of antibiotic resistance genes. ENVIRONMENTAL RESEARCH 2021; 197:111054. [PMID: 33775682 DOI: 10.1016/j.envres.2021.111054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/25/2021] [Accepted: 03/17/2021] [Indexed: 06/12/2023]
Abstract
Antibiotic wastewater presents serious challenges in water treatment. Metal-organic frameworks (MOFs) have received significant attention as promising precursors and sacrificial templates in the preparation of porous carbon-supported catalysts. Herein, we investigated the sulfamethoxazole (SMX) degradation and electrochemical performance of microbial fuel cells (MFCs) that applied as-prepared Ni-MOF-74 and Ni-N-C (Ni-MOF-74 underwent pyrolysis treatment at different temperatures) as air-cathode catalyst. Firstly, the electrocatalytic activity towards oxygen reduction reaction (ORR) of the catalyst was investigated by rotating disk electrode. The results showed that electron transfer number for Ni-MOF-74 was 2.12, while that of 800Ni-N-C was 3.44, which was close to four-electron reduction. Applying Ni-MOF-74 in MFCs, a maximum power density of 446 mW/m2 was obtained, which was close to that of 800Ni-N-C. Besides, using Ni-MOF-74 as cathode catalyst, a chemical oxygen demand removal rate of about 84% was obtained, and the degradation rate of 10 mg/L SMX was 61%. The degradation rate decreased with increasing antibiotic concentration, but the average degradation efficiency increased stepwise. Additionally, the relative abundance of resistant gene sul1 in the reactors of the new catalytic material was about 62% lower than that of sul1 in the control (Pt/C) reactors, and the relative abundance of sul2 was about 73% lower. Moreover, cost assessments related to the catalyst performance are presented. The findings of this study demonstrated that Ni-MOF-74 could be considered as a two-electron transfer ORR catalyst, and offers a promising technique for preparation of Ni-N-C for use as four-electron transfer ORR catalysts. In comparison, Ni-MOF-74 could be a promising ORR catalyst of MFCs for antibiotic degradation.
Collapse
Affiliation(s)
- Shengnan Li
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Remediation and Pollution Control for Urban Ecological Environmental, Nankai University, Tianjin, 300350 China; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province, 150090, China
| | - Xuya Zhu
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Remediation and Pollution Control for Urban Ecological Environmental, Nankai University, Tianjin, 300350 China
| | - Hang Yu
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Remediation and Pollution Control for Urban Ecological Environmental, Nankai University, Tianjin, 300350 China
| | - Xizi Wang
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Remediation and Pollution Control for Urban Ecological Environmental, Nankai University, Tianjin, 300350 China
| | - Xiaqing Liu
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Remediation and Pollution Control for Urban Ecological Environmental, Nankai University, Tianjin, 300350 China
| | - Hui Yang
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Remediation and Pollution Control for Urban Ecological Environmental, Nankai University, Tianjin, 300350 China
| | - Fengxiang Li
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Remediation and Pollution Control for Urban Ecological Environmental, Nankai University, Tianjin, 300350 China.
| | - Qixing Zhou
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Remediation and Pollution Control for Urban Ecological Environmental, Nankai University, Tianjin, 300350 China
| |
Collapse
|
27
|
Antibiotic resistance and drug modification: Synthesis, characterization and bioactivity of newly modified potent ciprofloxacin derivatives. Bioorg Chem 2021; 108:104658. [PMID: 33517003 DOI: 10.1016/j.bioorg.2021.104658] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 01/08/2021] [Accepted: 01/12/2021] [Indexed: 11/23/2022]
Abstract
Development of new derivatives of commercial antibiotics using different organic reagents and testing these derivatives against different microorganisms are the main goals of this article. Thus, the antibiotic ciprofloxacin, CF, was acylated via reaction with ethyl cyanoacetate and ethyl acetoacetate in basic medium to give the cyanoacetylpiprazinyl dihydroquinoline derivative 3, and oxobutanoylpiprazinyl dihydroquinoline derivative 5, respectively. On the other hand, N-alkylated derivatives 8-10, were prepared through the reaction of CF with chloroacetonitrile, chloroacetyl acetone and chloroacetone in the presence of carbonate salt. In basic medium, both 3 and 10 were coupled with benzenediazonium chloride to afford hydrazono derivatives, which were then cyclized to give 4-(dihydropyridazinecarbonyl)piperazinyl-1,4-dihydroquinoline. Furthermore, compounds 3 and 10 were reacted with benylidenemalononitrile to produce 4H-pyan and pyrido[1,2-a]pyrazine derivatives, respectively. Both 3 and 10 were reacted with DMFDMA to give enaminone derivatives. These enaminones were cyclized to aminopyrimidine derivatives by reacting with urea or thiourea. X-ray, elemental analysis and spectral data were used to illustrate and confirm the structures of the isolated compounds. The bioactivities of the novel compounds were investigated against different gram-positive and gram-negative bacteria. In addition, these novel antibiotic derivatives were tested against ciprofloxacin-resistant bacteria isolated from patients aged 65-74 years. This study reveals that most of the modified drugs show high to moderate antibacterial activity. Additionally, these drugs show good effects against ciprofloxacin-resistant bacteria.
Collapse
|