1
|
Cimprich A, Parker G, Miller FA, Young SB. Leveraging stringency and lifecycle thinking to advance environmental sustainability in health technology regulation. HEALTH AFFAIRS SCHOLAR 2025; 3:qxaf017. [PMID: 39916971 PMCID: PMC11797384 DOI: 10.1093/haschl/qxaf017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/22/2025] [Accepted: 01/29/2025] [Indexed: 02/09/2025]
Abstract
Regulatory actors, particularly market authorization agencies, health technology assessment agencies, and health care procurement agencies, exert a powerful influence on the adoption and use of health technologies (eg, medicines and medical devices). With health care being responsible, directly and indirectly, for an estimated 4.6% of global greenhouse gas emissions, alongside other environmental harms, these actors have recognized the need to address the environmental impacts of health technologies. In this commentary, we utilize concepts of regulatory stringency and lifecycle thinking, considering scope, prescriptiveness, and performance requirements, to analyze recent efforts to incorporate environmental sustainability into the regulation of medicines and medical devices. While we acknowledge recent progress, we argue that there is significant, untapped potential for developing more fulsome and effective regulatory mechanisms to improve the environmental sustainability of health technologies.
Collapse
Affiliation(s)
- Alexander Cimprich
- School of Environment, Enterprise and Development, University of Waterloo, Ontario, Canada, N2L 3G1
| | - Gillian Parker
- Institute of Health Policy, Management and Evaluation, Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada, M5T 3M7
- Collaborative Centre for Climate, Health and Sustainable Care, University of Toronto, Toronto, Ontario, Canada, M5G 1V7
| | - Fiona A Miller
- Institute of Health Policy, Management and Evaluation, Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada, M5T 3M7
- Collaborative Centre for Climate, Health and Sustainable Care, University of Toronto, Toronto, Ontario, Canada, M5G 1V7
| | - Steven B Young
- School of Environment, Enterprise and Development, University of Waterloo, Ontario, Canada, N2L 3G1
| |
Collapse
|
2
|
Cardoso-Vera JD, Islas-Flores H, Pérez-Alvarez I, Díaz-Camal N. Evidence of Oxidative Stress as a Mechanism of Pharmaceutical-Induced Toxicity in Amphibians. Antioxidants (Basel) 2024; 13:1399. [PMID: 39594540 PMCID: PMC11590872 DOI: 10.3390/antiox13111399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/04/2024] [Accepted: 11/12/2024] [Indexed: 11/28/2024] Open
Abstract
Amphibians, which are essential components of ecosystems, are susceptible to pharmaceutical contamination, a phenomenon of increasing concern owing to the widespread consumption and detection of pharmaceutical compounds in environmental matrices. This review investigates oxidative stress (OS) as the primary mechanism of drug toxicity in these organisms. The evidence gathered reveals that various pharmaceuticals, from antibiotics to anesthetics, induce OS by altering biomarkers of oxidative damage and antioxidant defense. These findings underscore the deleterious effects of pharmaceuticals on amphibian health and development and emphasize the necessity of incorporating OS biomarkers into ecotoxicological risk assessments. Although further studies on diverse amphibian species, drug mixtures, and field studies are required, OS biomarkers offer valuable tools for identifying sublethal risks. Furthermore, the development of more refined OS biomarkers will facilitate the early detection of adverse effects, which are crucial for protecting amphibians and their ecosystems. Ultimately, this review calls for continued research and mitigation strategies to safeguard biodiversity from pharmaceutical contamination.
Collapse
Affiliation(s)
- Jesús Daniel Cardoso-Vera
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México. Paseo Colón Intersección Paseo Tollocan, Colonia Residencial Colón, Toluca 50120, Estado de México, Mexico; (I.P.-A.); (N.D.-C.)
| | - Hariz Islas-Flores
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México. Paseo Colón Intersección Paseo Tollocan, Colonia Residencial Colón, Toluca 50120, Estado de México, Mexico; (I.P.-A.); (N.D.-C.)
| | | | | |
Collapse
|
3
|
Durdov T, Perišin AŠ, Škaro N, Bukić J, Leskur D, Modun D, Božić J, Grgas M, Rušić D. Future Healthcare Workers and Ecopharmacovigilance: Where Do We Stand? PHARMACY 2024; 12:146. [PMID: 39452802 PMCID: PMC11511310 DOI: 10.3390/pharmacy12050146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/22/2024] [Accepted: 09/24/2024] [Indexed: 10/26/2024] Open
Abstract
With the rapid development of the pharmaceutical industry and constant growth of drug usage, ecopharmacovigilance (EPV) has emerged as a way of coping with and minimizing the effects that drugs have on the environment. EPV concerns and describes unwanted effects that the use of a specific drug could have on the environment. The US, EU and Cananda are the improving position of EPV, both in legislation and practice. EPV requires further development as previous studies have shown that neither the general population nor healthcare professionals have enough knowledge about the subject. Improving awareness and knowledge about this topic is a key task for the future of EPV. The main objective was to determine students' level of knowledge about ecopharmacovigilance and to examine ways of storing and disposing of unused and expired drugs. Students' knowledge and habits were examined by a previously published survey. The survey contains twenty questions divided into three parts and the possibility of writing an additional note. There was no difference in the level of knowledge between the students of different studies. Also, students who had a family member working as healthcare professional did not show a higher level of knowledge compared to the others. Pharmacy students had a greater intention to educate their environment about EPV when compared to students of the other studies. This is in the line with a previous study which showed that the general public expects that pharmacists and physicians educate them about EPV. Medicine and dental medicine students will become prescribers after finishing their studies, and as such, they should be informed about eco-directed sustainable prescribing (EDSP) as part of an EPV strategy. More than half of the participants reported good adherence to prescribers' instruction, which decreased the amount of unused drugs. Most of the students found that the drug expiration date was legible, but they did not check it often. In comparison with similar studies, Croatian students had more knowledge and better practices concerning EPV and drug disposal. Structured learning strategies and curriculum implementation for EPV are much needed for further raising awareness about the subject among healthcare professionals and the public.
Collapse
Affiliation(s)
- Toni Durdov
- Department of Pharmacy, University of Split School of Medicine, Soltanska 2A, 21000 Split, Croatia (N.Š.); (J.B.); (D.L.); (D.M.); (M.G.); (D.R.)
| | - Ana Šešelja Perišin
- Department of Pharmacy, University of Split School of Medicine, Soltanska 2A, 21000 Split, Croatia (N.Š.); (J.B.); (D.L.); (D.M.); (M.G.); (D.R.)
| | - Nikolina Škaro
- Department of Pharmacy, University of Split School of Medicine, Soltanska 2A, 21000 Split, Croatia (N.Š.); (J.B.); (D.L.); (D.M.); (M.G.); (D.R.)
| | - Josipa Bukić
- Department of Pharmacy, University of Split School of Medicine, Soltanska 2A, 21000 Split, Croatia (N.Š.); (J.B.); (D.L.); (D.M.); (M.G.); (D.R.)
- Department of Laboratory Medicine and Pharmacy, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Josipa Huttlera 4, 31000 Osijek, Croatia
| | - Dario Leskur
- Department of Pharmacy, University of Split School of Medicine, Soltanska 2A, 21000 Split, Croatia (N.Š.); (J.B.); (D.L.); (D.M.); (M.G.); (D.R.)
| | - Darko Modun
- Department of Pharmacy, University of Split School of Medicine, Soltanska 2A, 21000 Split, Croatia (N.Š.); (J.B.); (D.L.); (D.M.); (M.G.); (D.R.)
| | - Joško Božić
- Department of Pathophysiology, University of Split School of Medicine, Soltanska 2A, 21000 Split, Croatia;
| | - Marjeta Grgas
- Department of Pharmacy, University of Split School of Medicine, Soltanska 2A, 21000 Split, Croatia (N.Š.); (J.B.); (D.L.); (D.M.); (M.G.); (D.R.)
| | - Doris Rušić
- Department of Pharmacy, University of Split School of Medicine, Soltanska 2A, 21000 Split, Croatia (N.Š.); (J.B.); (D.L.); (D.M.); (M.G.); (D.R.)
| |
Collapse
|
4
|
Rajaram S, Prakash A, Medhi B. Symphony of planetary health and prescription medicine for a sustainable future. Indian J Pharmacol 2024; 56:309-311. [PMID: 39687952 PMCID: PMC11698298 DOI: 10.4103/ijp.ijp_896_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/24/2024] [Accepted: 11/27/2024] [Indexed: 12/18/2024] Open
Affiliation(s)
| | - Ajay Prakash
- Department of Pharmacology, PGIMER, Chandigarh, India
| | - Bikash Medhi
- Department of Pharmacology, PGIMER, Chandigarh, India
| |
Collapse
|
5
|
Zhao J, Gao J, Ma S, Chen X, Wang J. Predicting the potential risks posed by antidepressants as emerging contaminants in fish based on network pharmacological analysis. Toxicol In Vitro 2024; 99:105872. [PMID: 38851602 DOI: 10.1016/j.tiv.2024.105872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 05/23/2024] [Accepted: 06/05/2024] [Indexed: 06/10/2024]
Abstract
This study conducted a network pharmacology-based analysis to simultaneously discern a broad spectrum of potential environmental risks and health effects of antidepressants, a common class of pharmaceutical emerging contaminants (PECs) possessing a complex pharmacological profile, and in silico predict the adverse phenotypes potentially occurring in fish associated with exposure to antidepressants and their mixtures under realistic exposure scenarios. Results showed that 24 of the included 39 antidepressants had been detected worldwide in water environment across 50 countries. Using the environmentally realistic exposure scenario for China as an example, the predicted blood concentrations of antidepressant residues that were generated based on the Fish Plasma Model ranged from 37.89 (Alprazolam) to 16,772.05 (Sertraline) ng/L in exposed fish. Hazard-based bioactivity network without regard to concentration data was composed of 148 potential targets and 701 antidepressant-target interactions. After filtering each antidepressant-target interaction node using the predicted drug concentrations in the blood of fish under realistic exposure scenarios in China, an environmental risk-based network was refined and showed that 11 targets, including muscarinic acetylcholine receptor M1, alpha-2B adrenergic receptor, serotonin 2 A receptor, etc. might be modulated by antidepressants at concentrations equal to or below the environmental exposure levels and their mixtures in fish. Environmentally relevant concentrations of antidepressants in water samples from China might perturb the behavior, stress response, phototaxis, and development in exposed fish.
Collapse
Affiliation(s)
- Jinru Zhao
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Medical College, Wuhan University of Science and Technology, Wuhan, China
| | - Jian Gao
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Medical College, Wuhan University of Science and Technology, Wuhan, China
| | - Sijia Ma
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Medical College, Wuhan University of Science and Technology, Wuhan, China
| | - Xintong Chen
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Medical College, Wuhan University of Science and Technology, Wuhan, China
| | - Jun Wang
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Medical College, Wuhan University of Science and Technology, Wuhan, China.
| |
Collapse
|
6
|
Blanco G, Carrete M, Navas I, García-Fernández AJ. Age and sex differences in pharmaceutical contamination in a keystone scavenger. ENVIRONMENTAL RESEARCH 2024; 251:118592. [PMID: 38442815 DOI: 10.1016/j.envres.2024.118592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 03/07/2024]
Abstract
Pharmaceutical contaminants have a recognized negative impact on wildlife health. However, there are still many knowledge gaps on the factors influencing exposure and metabolic processing of compound mixtures as a function of season and individual characteristics such as age and sex. We evaluated age and sex differences in a set of seventeen compounds, including eleven antibiotics, five NSAIDs and caffeine, evaluated by HPLC-MS-TOF analysis in griffon vultures (Gyps fulvus) from central Spain. Pharmaceutical cocktails (up to 10 compounds simultaneously) were found in all individuals. Lincomycin was detected in all individuals, and fluoroquinolones were found at high frequencies, while NSAIDs were at low frequencies and concentrations, including flumixin meglumine, which can be lethal to vultures. A higher total number of compounds and sum of concentrations, as well as prevalence and concentration of several of the pharmaceuticals tested was found in females than in males for both nestlings and adults. This is the first study to present evidence of sex differences in the pharmacokinetics of dietary drug contaminants in a vulture species. Chronic exposure to "medications" in entire populations can potentially have sub-lethal health effects that affect fitness differently according to age and sex, with demographic implications for population viability. Specifically, if females have higher mortality after fledging due to high pharmaceutical contamination, this should be considered when modelling the population dynamic of this species for conservation purposes.
Collapse
Affiliation(s)
- Guillermo Blanco
- Department of Evolutionary Ecology, Museo Nacional de Ciencias Naturales, CSIC, José Gutiérrez Abascal 2, 28006, Madrid, Spain.
| | - Martina Carrete
- Department of Physical, Chemical and Natural Systems, Universidad Pablo de Olavide, Carretera de Utrera, km. 1, 41013, Sevilla, Spain
| | - Isabel Navas
- Toxicology and Forensic Veterinary Service, Department of Socio-Health Sciences, Faculty of Veterinary, University of Murcia, Campus de Espinardo, 30100, Murcia, Spain; Toxicology and Risk Assessment Group, Biomedical Research Institute of Murcia (IMIB-Pascual Parrilla), University of Murcia, Campus de Espinardo, 30100, Murcia, Spain
| | - Antonio J García-Fernández
- Toxicology and Forensic Veterinary Service, Department of Socio-Health Sciences, Faculty of Veterinary, University of Murcia, Campus de Espinardo, 30100, Murcia, Spain; Toxicology and Risk Assessment Group, Biomedical Research Institute of Murcia (IMIB-Pascual Parrilla), University of Murcia, Campus de Espinardo, 30100, Murcia, Spain
| |
Collapse
|
7
|
Li X, Shen X, Jiang W, Xi Y, Li S. Comprehensive review of emerging contaminants: Detection technologies, environmental impact, and management strategies. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 278:116420. [PMID: 38701654 DOI: 10.1016/j.ecoenv.2024.116420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/20/2024] [Accepted: 04/29/2024] [Indexed: 05/05/2024]
Abstract
Emerging contaminants (ECs) are a diverse group of unregulated pollutants increasingly present in the environment. These contaminants, including pharmaceuticals, personal care products, endocrine disruptors, and industrial chemicals, can enter the environment through various pathways and persist, accumulating in the food chain and posing risks to ecosystems and human health. This comprehensive review examines the chemical characteristics, sources, and varieties of ECs. It critically evaluates the current understanding of their environmental and health impacts, highlighting recent advancements and challenges in detection and analysis. The review also assesses existing regulations and policies, identifying shortcomings and proposing potential enhancements. ECs pose significant risks to wildlife and ecosystems by disrupting animal hormones, causing genetic alterations that diminish diversity and resilience, and altering soil nutrient dynamics and the physical environment. Furthermore, ECs present increasing risks to human health, including hormonal disruptions, antibiotic resistance, endocrine disruption, neurological effects, carcinogenic effects, and other long-term impacts. To address these critical issues, the review offers recommendations for future research, emphasizing areas requiring further investigation to comprehend the full implications of these contaminants. It also suggests increased funding and support for research, development of advanced detection technologies, establishment of standardized methods, adoption of precautionary regulations, enhanced public awareness and education, cross-sectoral collaboration, and integration of scientific research into policy-making. By implementing these solutions, we can improve our ability to detect, monitor, and manage ECs, reducing environmental and public health risks.
Collapse
Affiliation(s)
- Xingyu Li
- College of Science, Yunnan Agricultural University, Kunming 650201, China; Key Laboratory of Agricultural Emerging Contaminants Prevention and Control, Yunnan Agricultural University, Kunming 650201, China.
| | - Xiaojing Shen
- College of Science, Yunnan Agricultural University, Kunming 650201, China; Key Laboratory of Agricultural Emerging Contaminants Prevention and Control, Yunnan Agricultural University, Kunming 650201, China
| | - Weiwei Jiang
- College of Science, Yunnan Agricultural University, Kunming 650201, China; Key Laboratory of Agricultural Emerging Contaminants Prevention and Control, Yunnan Agricultural University, Kunming 650201, China
| | - Yongkai Xi
- College of Science, Yunnan Agricultural University, Kunming 650201, China; Key Laboratory of Agricultural Emerging Contaminants Prevention and Control, Yunnan Agricultural University, Kunming 650201, China
| | - Song Li
- College of Science, Yunnan Agricultural University, Kunming 650201, China; Key Laboratory of Agricultural Emerging Contaminants Prevention and Control, Yunnan Agricultural University, Kunming 650201, China.
| |
Collapse
|
8
|
Oldenkamp R, Hamers T, Wilkinson J, Slootweg J, Posthuma L. Regulatory Risk Assessment of Pharmaceuticals in the Environment: Current Practice and Future Priorities. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2024; 43:611-622. [PMID: 36484757 DOI: 10.1002/etc.5535] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/25/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
How can data on the occurrence of pharmaceuticals and personal care products (PPCPs) in the environment and the quality of ecosystems exposed to PPCPs be used to determine whether current regulatory risk assessment schemes are effective? This is one of 20 "big questions" concerning PPCPs in the environment posed in a landmark review paper in 2012. Ten years later, we review the developments around this question, focusing on the first P in PPCPs, that is, pharmaceuticals, or more specifically the active ingredients included in them (active pharmaceutical ingredients, APIs). We illustrate how extensive data on both the occurrence of APIs and the ecotoxicological sensitivity of aquatic species to them can be used in a retrospective risk assessment. In the Netherlands, current regulatory risk assessment schemes offer insufficient protection against direct ecotoxicological effects from APIs: the toxic pressure exerted by the 39 APIs included in our study exceeds the policy-related protective threshold of 0.05 (the "95%-protection level") in at least 13% of sampled surface waters. In general, anti-inflammatory and antirheumatic products (e.g., diclofenac, ibuprofen) contributed most to the overall toxic pressure, followed by sex hormones and modulators of the genital system (e.g., ethinylestradiol) and psychoanaleptics (e.g., caffeine). We formulated three open questions for future research. The first relates to improving the availability and accessibility of good-quality ecotoxicity data on pharmaceuticals for the global scientific, regulatory, and general public. The second relates to the adaptation of regulatory risk assessment frameworks for developing regions of the world. The third relates to the integration of effect-based and ecological approaches into regulatory risk assessment practice. Environ Toxicol Chem 2024;43:611-622. © 2022 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Rik Oldenkamp
- Amsterdam Institute for Life and Environment, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Institute for Global Health and Development, University of Amsterdam, Amsterdam, The Netherlands
| | - Timo Hamers
- Amsterdam Institute for Life and Environment, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - John Wilkinson
- Environment and Geography Department, University of York, York, UK
| | - Jaap Slootweg
- RIVM, Centre for Sustainability, Environment and Health, Bilthoven, The Netherlands
| | - Leo Posthuma
- RIVM, Centre for Sustainability, Environment and Health, Bilthoven, The Netherlands
- Department of Environmental Science, Radboud University Nijmegen, Nijmegen, The Netherlands
| |
Collapse
|
9
|
Gao J, Zhao J, Chen X, Wang J. A review on in silico prediction of the environmental risks posed by pharmaceutical emerging contaminants. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:1535. [PMID: 38008816 DOI: 10.1007/s10661-023-12159-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 11/18/2023] [Indexed: 11/28/2023]
Abstract
Computer-aided (in silico) prediction has shown good potential to support the environmental risk assessment (ERA) of pharmaceutical emerging contaminants (PECs), allowing low-cost, animal-free, high-throughput screening of multiple potential risks posed by a wide variety of pharmaceuticals in the environment based on insufficient toxicity data. This review provided recent insights regarding the application of in silico approaches in prediction for environmental risks of PECs. Based on the review of 20 included articles from 8 countries published since 2018, we found that the researchers' interest and concern in this research topic were sharply aroused since 2021. Recently, in silico approaches have been widely used for the prediction of bioaccumulation and biodegradability, lethal endpoints, developmental toxicity, mutagenicity, other eco-toxicological effects such as ototoxicity and hematological toxicity, and human health hazards of exposure to PECs. Particular attention has been given to the simultaneous discernment of multiple environmental risks and health effects of PECs based on mechanistic data of pharmaceuticals using advanced bioinformatic methods such as transcriptomic analysis and network pharmacology prediction. In silico software platforms and databases used in the included studies were diversified, and there is currently no standardized and accepted in silico model for ERA of PECs. Date suggested that in silico prediction of the environmental risks posed by PECs is still in its infancy. Considerable critical challenges need to be addressed, including consideration of environmental exposure concentration for PECs, interactions among mixtures of PECs and other contaminants coexisting in environments, and development of in silico models specific to ERA of PECs.
Collapse
Affiliation(s)
- Jian Gao
- Institute of Pharmaceutical Innovation, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Jinru Zhao
- Institute of Pharmaceutical Innovation, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Xintong Chen
- Institute of Pharmaceutical Innovation, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Jun Wang
- Institute of Pharmaceutical Innovation, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan, 430065, China.
| |
Collapse
|
10
|
Liao M, Wei S, Zhao J, Wang J, Fan G. Risks of benzalkonium chlorides as emerging contaminants in the environment and possible control strategies from the perspective of ecopharmacovigilance. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 266:115613. [PMID: 37862750 DOI: 10.1016/j.ecoenv.2023.115613] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 10/13/2023] [Accepted: 10/16/2023] [Indexed: 10/22/2023]
Abstract
An unprecedented increase in the use of disinfection products triggered by the coronavirus disease 2019 (COVID-19) pandemic is resulting in aggravating environmental loads of disinfectants as emerging contaminants, which has been considered a cause for worldwide secondary disasters. This review analyzed the literature published in the last decade about occurrence, bioaccumulation, and possible environmental risks of benzalkonium chlorides (BKCs) as emerging contaminants. Results indicated that BKCs globally occurred in municipal wastewater, surface water, groundwater, reclaimed water, sludge, sediment, soil, roof runoff, and residential dust samples across 13 countries. The maximum residual levels of 30 mg/L and 421 μg/g were reported in water and solid environmental samples, respectively. Emerging evidences suggested possible bioaccumulation of BKCs in plants, even perhaps humans. Environmentally relevant concentrations of BKCs exert potential adverse impacts on aquatic and terrestrial species, including genotoxicity, respiratory toxicity, behavioural effects and neurotoxicity, endocrine disruption and reproductive impairment, phytotoxicity, etc. Given the intrinsic biocidal and preservative properties of disinfectants, the inductive effects of residual BKCs in environment in terms of resistance and imbalance of microorganisms have been paid special attention. Considering the similarities of disinfectants to pharmaceuticals, from the perspective of ecopharmacovigilance (EPV), a well-established strategy for pharmaceutical emerging contaminants, we use the control of BKC pollution as a case, and provide some recommendations for employing the EPV measures to manage environmental risks posed by disinfectant emerging contaminants.
Collapse
Affiliation(s)
- Mengfan Liao
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Songyi Wei
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Jinru Zhao
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Jun Wang
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan 430065, China.
| | - Guangquan Fan
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan 430065, China
| |
Collapse
|
11
|
Tyumina E, Subbotina M, Polygalov M, Tyan S, Ivshina I. Ketoprofen as an emerging contaminant: occurrence, ecotoxicity and (bio)removal. Front Microbiol 2023; 14:1200108. [PMID: 37608946 PMCID: PMC10441242 DOI: 10.3389/fmicb.2023.1200108] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 07/25/2023] [Indexed: 08/24/2023] Open
Abstract
Ketoprofen, a bicyclic non-steroidal anti-inflammatory drug commonly used in human and veterinary medicine, has recently been cited as an environmental contaminant that raises concerns for ecological well-being. It poses a growing threat due to its racemic mixture, enantiomers, and transformation products, which have ecotoxicological effects on various organisms, including invertebrates, vertebrates, plants, and microorganisms. Furthermore, ketoprofen is bioaccumulated and biomagnified throughout the food chain, threatening the ecosystem function. Surprisingly, despite these concerns, ketoprofen is not currently considered a priority substance. While targeted eco-pharmacovigilance for ketoprofen has been proposed, data on ketoprofen as a pharmaceutical contaminant are limited and incomplete. This review aims to provide a comprehensive summary of the most recent findings (from 2017 to March 2023) regarding the global distribution of ketoprofen in the environment, its ecotoxicity towards aquatic animals and plants, and available removal methods. Special emphasis is placed on understanding how ketoprofen affects microorganisms that play a pivotal role in Earth's ecosystems. The review broadly covers various approaches to ketoprofen biodegradation, including whole-cell fungal and bacterial systems as well as enzyme biocatalysts. Additionally, it explores the potential of adsorption by algae and phytoremediation for removing ketoprofen. This review will be of interest to a wide range of readers, including ecologists, microbiologists, policymakers, and those concerned about pharmaceutical pollution.
Collapse
Affiliation(s)
- Elena Tyumina
- Perm Federal Research Center of the Ural Branch of the Russian Academy of Sciences, Perm, Russia
- Microbiology and Immunology Department, Perm State University, Perm, Russia
| | - Maria Subbotina
- Perm Federal Research Center of the Ural Branch of the Russian Academy of Sciences, Perm, Russia
- Microbiology and Immunology Department, Perm State University, Perm, Russia
| | - Maxim Polygalov
- Perm Federal Research Center of the Ural Branch of the Russian Academy of Sciences, Perm, Russia
- Microbiology and Immunology Department, Perm State University, Perm, Russia
| | - Semyon Tyan
- Perm Federal Research Center of the Ural Branch of the Russian Academy of Sciences, Perm, Russia
- Microbiology and Immunology Department, Perm State University, Perm, Russia
| | - Irina Ivshina
- Perm Federal Research Center of the Ural Branch of the Russian Academy of Sciences, Perm, Russia
- Microbiology and Immunology Department, Perm State University, Perm, Russia
| |
Collapse
|
12
|
Alharbi OA, Jarvis E, Galani A, Thomaidis NS, Nika MC, Chapman DV. Assessment of selected pharmaceuticals in Riyadh wastewater treatment plants, Saudi Arabia: Mass loadings, seasonal variations, removal efficiency and environmental risk. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 882:163284. [PMID: 37031940 DOI: 10.1016/j.scitotenv.2023.163284] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 03/30/2023] [Accepted: 03/31/2023] [Indexed: 06/01/2023]
Abstract
Despite increasing interest in pharmaceutical emissions worldwide, studies of environmental contamination with pharmaceuticals arising from wastewater discharges in Saudi Arabia are scarce. Therefore, this study examined occurrence, mass loads and removal efficiency for 15 pharmaceuticals and one metabolite (oxypurinol) from different therapeutic classes in three wastewater treatment plants (WWTPs), in Riyadh city in Saudi Arabia. A total of 144 samples were collected from the influents and effluents between March 2018 and July 2019 and analyzed using Solid Phase Extraction followed by triple quadrupole LC-MS/MS. The average concentrations in the influents and effluents were generally higher than their corresponding concentrations found either in previous Saudi Arabian or global studies. The four most dominant compounds in the influent were acetaminophen, ciprofloxacin, caffeine, and diclofenac, with caffeine and acetaminophen having the highest concentrations ranging between 943 and 2282 μg/L. Metformin and ciprofloxacin were the most frequently detected compounds in the effluents at concentrations as high as 33.2 μg/L. Ciprofloxacin had the highest mass load in the effluents of all three WWTPs, ranging between 0.20 and 20.7 mg/day/1000 inhabitants for different WWTPs. The overall average removal efficiency was estimated high (≥80), with no significant different (p > 0.05) between the treatment technology applied. Acetaminophen and caffeine were almost completely eliminated in all three WWTPs. The samples collected in the cold season generally had higher levels of detected compounds than those from the warm seasons, particularly for NSAID and antibiotic compounds. The estimated environmental risk from pharmaceutical compounds in the studied effluents was mostly low, except for antibiotic compounds. Thus, antibiotics should be considered for future monitoring programmes of the aquatic environment in Saudi Arabia.
Collapse
Affiliation(s)
- Obaid A Alharbi
- Water Management & Treatment Technologies Institute, Sustainability and Environment Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh 12354, Saudi Arabia; School of Biological, Earth and Environmental Sciences, University College Cork, T23 N73K, Ireland.
| | - Edward Jarvis
- School of Biological, Earth and Environmental Sciences, University College Cork, T23 N73K, Ireland
| | - Aikaterini Galani
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, University Campus, Zografou, 15771, Athens, Greece
| | - Nikolaos S Thomaidis
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, University Campus, Zografou, 15771, Athens, Greece
| | - Maria-Christina Nika
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, University Campus, Zografou, 15771, Athens, Greece
| | - Deborah V Chapman
- School of Biological, Earth and Environmental Sciences, University College Cork, T23 N73K, Ireland; Environmental Research Institute, University College Cork, T23 XE10, Ireland
| |
Collapse
|
13
|
khalidi-idrissi A, Madinzi A, Anouzla A, Pala A, Mouhir L, Kadmi Y, Souabi S. Recent advances in the biological treatment of wastewater rich in emerging pollutants produced by pharmaceutical industrial discharges. INTERNATIONAL JOURNAL OF ENVIRONMENTAL SCIENCE AND TECHNOLOGY : IJEST 2023; 20:1-22. [PMID: 37360558 PMCID: PMC10019435 DOI: 10.1007/s13762-023-04867-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 12/19/2022] [Accepted: 02/22/2023] [Indexed: 06/28/2023]
Abstract
Pharmaceuticals and personal care products present potential risks to human health and the environment. In particular, wastewater treatment plants often detect emerging pollutants that disrupt biological treatment. The activated sludge process is a traditional biological method with a lower capital cost and limited operating requirements than more advanced treatment methods. In addition, the membrane bioreactor combines a membrane module and a bioreactor, widely used as an advanced method for treating pharmaceutical wastewater with good pollution performance. Indeed, the fouling of the membrane remains a major problem in this process. In addition, anaerobic membrane bioreactors can treat complex pharmaceutical waste while recovering energy and producing nutrient-rich wastewater for irrigation. Wastewater characterizations have shown that wastewater's high organic matter content facilitates the selection of low-cost, low-nutrient, low-surface-area, and effective anaerobic methods for drug degradation and reduces pollution. However, to improve the biological treatment, researchers have turned to hybrid processes in which all physical, chemical, and biological treatment methods are integrated to remove various emerging contaminants effectively. Hybrid systems can generate bioenergy, which helps reduce the operating costs of the pharmaceutical waste treatment system. To find the most effective treatment technique for our research, this work lists the different biological treatment techniques cited in the literature, such as activated sludge, membrane bioreactor, anaerobic treatment, and hybrid treatment, combining physicochemical and biological techniques.
Collapse
Affiliation(s)
- A. khalidi-idrissi
- Laboratory of Process Engineering and Environment, Faculty of Science and Technology, Mohammedia, University Hassan II of Casablanca, BP. 146, Mohammedia, Morocco
| | - A. Madinzi
- Laboratory of Process Engineering and Environment, Faculty of Science and Technology, Mohammedia, University Hassan II of Casablanca, BP. 146, Mohammedia, Morocco
| | - A. Anouzla
- Laboratory of Process Engineering and Environment, Faculty of Science and Technology, Mohammedia, University Hassan II of Casablanca, BP. 146, Mohammedia, Morocco
| | - A. Pala
- Environmental Research and Development Center (CEVMER), Dokuz Eylul University, Izmir, Turkey
| | - L. Mouhir
- Laboratory of Process Engineering and Environment, Faculty of Science and Technology, Mohammedia, University Hassan II of Casablanca, BP. 146, Mohammedia, Morocco
| | - Y. Kadmi
- CNRS, UMR 8516 - LASIR, University Lille, 59000 Lille, France
| | - S. Souabi
- Laboratory of Process Engineering and Environment, Faculty of Science and Technology, Mohammedia, University Hassan II of Casablanca, BP. 146, Mohammedia, Morocco
| |
Collapse
|
14
|
Temitope Bankole D, Peter Oluyori A, Abosede Inyinbor A. The removal of pharmaceutical pollutants from aqueous solution by Agro-waste. ARAB J CHEM 2023. [DOI: 10.1016/j.arabjc.2023.104699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023] Open
|
15
|
Wang J, Gao J, Liao M, Liu J, Hu X, He B. Attitudes and opinions about ecopharmacovigilance from multi-disciplinary perspectives: a cross-sectional survey among academic researchers in China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:2273-2282. [PMID: 35931847 DOI: 10.1007/s11356-022-22406-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 08/01/2022] [Indexed: 06/15/2023]
Abstract
As a promising upstream strategy to reduce the environmental loads of pharmaceutical emerging contaminants (PECs) through source control, ecopharmacovigilance (EPV) is concerned with the set of activities to identify, evaluate, understand, and prevent against diverse PEC-related problems, and has been accepted as a multi-disciplinary and multi-stakeholder system. This cross-sectional observational survey aimed to assess the attitudes and opinions about EPV from multi-disciplinary perspectives among Chinese academic professors from four main EPV-related disciplines including pharmacy, management, clinical medicine, and environmental and ecological science based on a self-developed questionnaire. Forty-two usable survey instruments were acquired. Results showed that the responding Chinese academic researchers from different disciplines expressed consistently positive attitudes and strong intentions for EPV, in spite of several disparities existing among disciplinary groups showing that pharmacy and medical researchers felt more certain of the environmental adverse effects of PECs, and researchers in pharmacy and environmental and ecological science were more interested in EPV. A multi-disciplinary consensus was achieved in regard to the types of key stakeholders in EPV practices including the pharmaceutical manufacturers, the public, the drug safety authority, hospitals, and the environmental protection agency. The main roles and responsibilities of each stakeholder identity in EPV practices were summarized based on the expert opinions.
Collapse
Affiliation(s)
- Jun Wang
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, China
| | - Jian Gao
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, China
| | - Mengfan Liao
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, China
| | - Juan Liu
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, China
| | - Xianmin Hu
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, China
| | - Bingshu He
- Hubei Province Woman and Child Hospital, Wuhan, China.
| |
Collapse
|
16
|
Mumtaz N, Javaid A, Imran M, Latif S, Hussain N, Nawaz S, Bilal M. Nanoengineered metal-organic framework for adsorptive and photocatalytic mitigation of pharmaceuticals and pesticide from wastewater. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 308:119690. [PMID: 35772620 DOI: 10.1016/j.envpol.2022.119690] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 06/22/2022] [Accepted: 06/25/2022] [Indexed: 06/15/2023]
Abstract
Rapidly expanding water pollution has transformed into significant dangers around the world. In recent years, the pharmaceutical and agriculture field attained enormous progress to meet the necessities of health and life; however, discharge of trace amounts of pharmaceuticals and pesticides into water significantly have a negative influence on human health and the environment. Contamination with these pollutants also constitutes a great threat to the aquatic ecosystem. To deal with the harmful impacts of such pollutants, their expulsion has attracted researchers' interest a lot, and it became essential to figure out techniques suitable for the removal of these pollutants. Thus, many researchers have devoted their efforts to improving the existing technology or providing an alternative strategy to solve this environmental problem. One of the attractive materials for this purpose is metal-organic frameworks (MOFs) due to their superior high surface area, high porosity, and the tunable features of their structures and function. Among various techniques of wastewater treatment, such as biological treatment, advanced oxidation process and membrane technologies, etc., metal-organic frameworks (MOFs) materials are tailorable porous architectures and are viably used as adsorbents or photocatalysts for wastewater treatment due to their porosity, tunable internal structure, and large surface area. MOFs are synthesized by various methods such as solvo/hydrothermal, sonochemical, microwave and mechanochemical methods. Most common method used for the synthesis of MOFs is solvothermal/hydrothermal methods. Herein, this review aims at providing a comprehensive overview of the latest advances in MOFs and their derivatives, focusing on the following aspects: synthesis and applications. This review comprehensively highlights the application of MOFs and nano-MOFs to remove pharmaceuticals and pesticides from wastewater. For the past years, transition metal-based MOFs have been concentrated as photocatalyst/adsorbents in treating contaminated water. However, work on main group metal-based MOFs is not so abundant. Hence, the foremost objective of this review is to present the latest material and references concerning main group element-based MOFs and nanoscale materials derived from them towards wastewater treatment. It summarizes the possible research challenges and directions for MOFs and their derivatives as catalysts applied to wastewater treatment in the future. With the context of recent pioneering studies on main group elements-based MOFs and their derivatives; we hope to stimulate some possibilities for further development, challenges and future perspectives in this field have been highlighted.
Collapse
Affiliation(s)
- Nazish Mumtaz
- Centre for Inorganic Chemistry, School of Chemistry, University of the Punjab, Lahore, 54000, Pakistan
| | - Ayesha Javaid
- Centre for Inorganic Chemistry, School of Chemistry, University of the Punjab, Lahore, 54000, Pakistan
| | - Muhammad Imran
- Centre for Inorganic Chemistry, School of Chemistry, University of the Punjab, Lahore, 54000, Pakistan
| | - Shoomaila Latif
- School of Physical Sciences, University of the Punjab, Lahore, 54000, Pakistan
| | - Nazim Hussain
- Center for Applied Molecular Biology (CAMB), University of the Punjab, Lahore, 54000, Pakistan
| | - Shahid Nawaz
- Department of Chemistry, The University of Lahore, Lahore, Pakistan
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China.
| |
Collapse
|
17
|
Determination and degradation of carbamazepine using g-C3N4@CuS nanocomposite as sensitive fluorescence sensor and efficient photocatalyst. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109512] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
18
|
Plaza PI, Wiemeyer GM, Lambertucci SA. Veterinary pharmaceuticals as a threat to endangered taxa: Mitigation action for vulture conservation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 817:152884. [PMID: 35016927 DOI: 10.1016/j.scitotenv.2021.152884] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/29/2021] [Accepted: 12/30/2021] [Indexed: 06/14/2023]
Abstract
Overuse and misapplication of veterinary pharmaceuticals affect the ecosystem, even at low concentrations. Vultures are mainly exposed to these compounds when feeding on improperly disposed carcasses from animals treated before death. This produces diverse negative impacts on vulture health and populations, even leading to death. Using the available bibliography we determined which veterinary pharmaceuticals vultures are exposed to worldwide and assessed the potential consequences for these species. Based on the responsibilities of the different stakeholders, we also propose action to mitigate this problem. Of 104 articles addressing vulture exposure to veterinary pharmaceuticals, most came from Asia, Europe and Africa; almost no information was available on the Americas. Vultures were reported as being exposed to non-steroidal anti-inflammatory drugs (NSAIDs), antibiotics, anti-parasitic and euthanizing agents. Most available information is related to the catastrophic effect of the NSAID diclofenac in South Asia. Vultures are particularly exposed to veterinary drugs when ingesting carcasses from intensive livestock production, but other potential pathways (e.g., discards from salmon farms or fisheries) have not yet been properly evaluated. It is essential to improve scientific information on this topic - increasing the range of drugs and geographical areas studied - in order to implement sustainable conservation action for these birds. A combination of strategies could prove effective in reducing the impact of pharmaceuticals on the environment and non-target species. To mitigate this conservation problem, a set of multilateral actions should therefore be implemented, involving diverse stakeholders such as government representatives, pharmaceutical companies, veterinary practitioners, scientists and conservation agents, and local communities.
Collapse
Affiliation(s)
- Pablo I Plaza
- Grupo de Investigaciones en Biología de la Conservación, INIBIOMA- CONICET, Universidad Nacional del Comahue, Quintral 1250 (R8400FRF), San Carlos de Bariloche, Argentina.
| | - Guillermo M Wiemeyer
- Grupo de Investigaciones en Biología de la Conservación, INIBIOMA- CONICET, Universidad Nacional del Comahue, Quintral 1250 (R8400FRF), San Carlos de Bariloche, Argentina
| | - Sergio A Lambertucci
- Grupo de Investigaciones en Biología de la Conservación, INIBIOMA- CONICET, Universidad Nacional del Comahue, Quintral 1250 (R8400FRF), San Carlos de Bariloche, Argentina
| |
Collapse
|
19
|
Mezzelani M, Regoli F. The Biological Effects of Pharmaceuticals in the Marine Environment. ANNUAL REVIEW OF MARINE SCIENCE 2022; 14:105-128. [PMID: 34425054 DOI: 10.1146/annurev-marine-040821-075606] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Environmental pharmaceuticals represent a threat of emerging concern for marine ecosystems. Widely distributed and bioaccumulated, these contaminants could provoke adverse effects on aquatic organisms through modes of action like those reported for target species. In contrast to pharmacological uses, organisms in field conditions are exposed to complex mixtures of compounds with similar, different, or even opposing therapeutic effects. This review summarizes current knowledge of the main cellular pathways modulated by the most common classes of environmental pharmaceuticals occurring in marine ecosystems and accumulated by nontarget species-including nonsteroidal anti-inflammatory drugs, psychiatric drugs, cardiovascular and lipid regulator agents, steroidal hormones, and antibiotics-and describes an intricate network of possible interactions with both synergistic and antagonistic effects on the same cellular targets and metabolic pathways. This complexity reveals the intrinsic limits of the single-chemical approach to predict the long-term consequences and future impact of pharmaceuticals at organismal, population, and community levels.
Collapse
Affiliation(s)
- Marica Mezzelani
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, 60131 Ancona, Italy; ,
| | - Francesco Regoli
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, 60131 Ancona, Italy; ,
- Fano Marine Center, 61032 Fano, Italy
| |
Collapse
|
20
|
Domingo-Echaburu S, Dávalos LM, Orive G, Lertxundi U. Drug pollution & Sustainable Development Goals. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 800:149412. [PMID: 34391154 DOI: 10.1016/j.scitotenv.2021.149412] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 06/13/2023]
Abstract
The United Nations set "The 2030 Agenda for Sustainable Development," which includes the Sustainable Development Goals (SDGs), a collection of 17 global goals designed to be a "blueprint to achieve a better and more sustainable future for all". Although only mentioned in one of the seventeen goals (goal 3), we argue that drugs in general, and growing drug pollution in particular, affects the SDGs in deeper, not readily apparent ways. So far, the emerging problem of drug pollution has not been sufficiently addressed. Here, we outline and discuss how drug pollution can affect SDGs and even threaten their achievement.
Collapse
Affiliation(s)
- S Domingo-Echaburu
- Pharmacy Service, Alto Deba-Integrated Health Care Organization, Arrasate, Gipuzkoa, Spain
| | - L M Dávalos
- Department of Ecology and Evolution, Stony Brook University, 626 Life Sciences Building, Stony Brook, NY 11794, USA; Consortium for Inter-Disciplinary Environmental Research, School of Marine and Atmospheric Sciences, Stony Brook University, 129 Dana Hall, Stony Brook, NY 11794, USA
| | - G Orive
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country UPV/EHU, Paseo de la Universidad 7, Vitoria-Gasteiz 01006, Spain; Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain; University Institute for Regenerative Medicine and Oral Implantology - UIRMI (UPV/EHU-Fundación Eduardo Anitua), Vitoria, Spain; Singapore Eye Research Institute, The Academia, 20 College Road, Discovery Tower, Singapore; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain
| | - U Lertxundi
- Bioaraba Health Research Institute, Osakidetza Basque Health Service, Araba Mental Health Network, Araba Psychiatric Hospital, Pharmacy Service, c/Alava 43, 01006 Vitoria-Gasteiz, Alava, Spain.
| |
Collapse
|
21
|
Argaluza J, Domingo-Echaburu S, Orive G, Medrano J, Hernandez R, Lertxundi U. Environmental pollution with psychiatric drugs. World J Psychiatry 2021; 11:791-804. [PMID: 34733642 PMCID: PMC8546762 DOI: 10.5498/wjp.v11.i10.791] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 06/25/2021] [Accepted: 08/31/2021] [Indexed: 02/06/2023] Open
Abstract
Among all contaminants of emerging interest, drugs are the ones that give rise to the greatest concern. Any of the multiple stages of the drug's life cycle (production, consumption and waste management) is a possible entry point to the different environmental matrices. Psychiatric drugs have received special attention because of two reasons. First, their use is increasing. Second, many of them act on phylogenetically highly conserved neuroendocrine systems, so they have the potential to affect many non-target organisms. Currently, wastewater is considered the most important source of drugs to the environment. Furthermore, the currently available wastewater treatment plants are not specifically prepared to remove drugs, so they reach practically all environmental matrices, even tap water. As drugs are designed to produce pharmacological effects at low concentrations, they are capable of producing ecotoxicological effects on microorganisms, flora and fauna, even on human health. It has also been observed that certain antidepressants and antipsychotics can bioaccumulate along the food chain. Drug pollution is a complicated and diffuse problem characterized by scientific uncertainties, a large number of stakeholders with different values and interests, and enormous complexity. Possible solutions consist on acting at source, using medicines more rationally, eco-prescribing or prescribing greener drugs, designing pharmaceuticals that are more readily biodegraded, educating both health professionals and citizens, and improving coordination and collaboration between environmental and healthcare sciences. Besides, end of pipe measures like improving or developing new purification systems (biological, physical, chemical, combination) that eliminate these residues efficiently and at a sustainable cost should be a priority. Here, we describe and discuss the main aspects of drug pollution, highlighting the specific issues of psychiatric drugs.
Collapse
Affiliation(s)
- Julene Argaluza
- Department of Epidemiology and Public Health, Bioaraba Health Research Institute, Vitoria-Gasteiz 01002, Spain
| | - Saioa Domingo-Echaburu
- Department of Pharmacy, Alto Deba Integrated Health Care Organization, Arrasate 20500, Spain
| | - Gorka Orive
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country UPV/EHU, Paseo de la Universidad 7, Vitoria-Gasteiz 01006, Spain
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz 01006, Spain
- Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz 01006, Spain
- Singapore Eye Research Institute, Discovery Tower, Singapore 168751, Singapore
| | - Juan Medrano
- Department of Psychiatry, Biocruces Bizkaia Health Research Institute, Mental Health Network Research Group, Osakidetza, Portugalete 48920, Spain
| | - Rafael Hernandez
- Department of Internal Medicine, Araba Mental Health Network, Vitoria-Gasteiz 01006, Spain
| | - Unax Lertxundi
- Bioaraba Health Research Institute; Osakidetza Basque Health Service, Araba Mental Health Network, Araba Psychiatric Hospital, Pharmacy Service, Vitoria-Gasteiz 01006, Alava, Spain
| |
Collapse
|
22
|
Neha R, Adithya S, Jayaraman RS, Gopinath KP, M P, L P, Arun J. Nano-adsorbents an effective candidate for removal of toxic pharmaceutical compounds from aqueous environment: A critical review on emerging trends. CHEMOSPHERE 2021; 272:129852. [PMID: 33581563 DOI: 10.1016/j.chemosphere.2021.129852] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 01/25/2021] [Accepted: 01/30/2021] [Indexed: 05/12/2023]
Abstract
Advancements in medical research has resulted in the modernization of healthcare facilities, subsequently leading to a higher level of production and usage of pharmaceuticals to sustain better quality of life. Pharmaceutical active compounds (PhACs) possess high genotoxicity and eco-toxicity thus presenting numerous side effects to living beings on long-term exposure. The fate and toxicity of PhACs were explored in detail, aiming to elucidate their occurrence and transmission in wastewater treatment systems (WWTPs). Adsorption of pharmaceutical compounds using Nano-adsorbents has gained momentum in recent years owing to their low-cost, high surface area and effectiveness. This review has been conducted in order to widen the utilization of Nano adsorbents in the adsorption of pharmaceutical compounds with a focus on the aqueous environment. The synthesis routes and properties of Nano-adsorbents for removal of PhACs were assessed in a comprehensive way. The recovery and reuse ability of nano-adsorbents also forms an integral part of its application in the removal of PhACs and has hence been delineated.
Collapse
Affiliation(s)
- Rajendran Neha
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, Chennai, 603110, Tamil Nadu, India
| | - Srikanth Adithya
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, Chennai, 603110, Tamil Nadu, India
| | - Ramesh Sai Jayaraman
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, Chennai, 603110, Tamil Nadu, India
| | - Kannappan Panchamoorthy Gopinath
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, Chennai, 603110, Tamil Nadu, India
| | - Pandimadevi M
- Department of Biotechnology, School of Bioengineering, SRM-Institute of Science and Technology, Kattankulathur, 603 203, Tamil Nadu, India
| | - Praburaman L
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan, China
| | - Jayaseelan Arun
- Centre for Waste Management, International Research Centre, Sathyabama Institute of Science and Technology, Jeppiaar Nagar (OMR), Chennai, 600119, Tamil Nadu, India.
| |
Collapse
|
23
|
Zini LB, Gutterres M. Chemical contaminants in Brazilian drinking water: a systematic review. JOURNAL OF WATER AND HEALTH 2021; 19:351-369. [PMID: 34152292 DOI: 10.2166/wh.2021.264] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The goals of this research are to evaluate which chemical contaminations were detected in Brazil's drinking water reported in papers published from 2012 to 2019, to propose guideline values for emerging contaminants and assess which are the priority parameters from a health risk perspective. The methodology used was a systematic review. The chemical contaminants quantified were evaluated according to Brazilian drinking-water standards, and Guideline Values were proposed for emerging pollutants using conservative endpoints from NOAEL and LOAEL available in literature. From 1351 articles evaluated, 15 reached the research goal. Seventy-seven parameters were quantified in Brazilian drinking water from underground, surface and rainwater sources. Soil composition, mining, sewage and agricultural activities were the main sources for the seven classes framed: pesticides, metals, organic, endocrine disruptors, drugs, personal care products and illicit drugs. Twenty-two parameters are listed in the current Brazilian drinking water quality standard and 54 are not. Water was not considered appropriate to drink due to cadmium, aluminum, iron, nickel, mercury, atrazine, propionaldehyde, beryllium, acetone and 17 α-ethinyl estradiol (carcinogenic). Measures to reduce chemical contamination in drinking water need to be taken such as the expansion of sewage treatment and upgrading to tertiary treatment, and controlling and reducing the application of pesticides.
Collapse
Affiliation(s)
- Luciano Barros Zini
- Chemical Engineering Department, Federal University of Rio Grande do Sul, Luiz Englert s/n°, downtown, 90040-040, Porto Alegre-RS, Brazil E-mail: ; Health State Secretary of Rio Grande do Sul, Environmental Vigilance, Av. Ipiranga, 5400, 90610-000, Porto Alegre-RS, Brazil
| | - Mariliz Gutterres
- Chemical Engineering Department, Federal University of Rio Grande do Sul, Luiz Englert s/n°, downtown, 90040-040, Porto Alegre-RS, Brazil E-mail:
| |
Collapse
|
24
|
Checa Artos M, Sosa del Castillo D, Ruiz Barzola O, Barcos-Arias M. Presencia de productos farmacéuticos en el agua y su impacto en el ambiente. BIONATURA 2021. [DOI: 10.21931/rb/2021.06.01.27] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Los productos farmacéuticos (PFs) constituyen un grupo importante de los contaminantes emergentes (CE), debido a su potencial para inducir efectos fisiológicos adversos a bajas concentraciones en humanos y animales. Muchos estudios alrededor del mundo han reportado la presencia de un sin número de estos compuestos en diferentes medios acuáticos, lo que genera preocupación por los posibles efectos negativos que se producen en el agua, en la salud humana y la vida silvestre. En este contexto, este artículo tiene por objetivo presentar una revisión de los aspectos más relevantes sobre la presencia de PFs en el agua en un ámbito global desde el año 2010 hasta el 2019. El mayor número de estudios reportan presencia de contaminantes emergentes incluyendo fármacos de diferentes tipos en aguas superficiales, aguas subterráneas, aguas residuales y agua potable. Las principales fuentes de ingreso de fármacos en los sistemas acuáticos provienen de las aguas residuales que recogen aguas domésticas, efluentes hospitalarios y efluentes de fábricas sin tratamiento o inadecuadamente tratadas antes de ser liberadas a ríos y mares. La presencia de PFs en el ambiente acuático preocupa por su persistencia, la bioacumulación, la toxicidad y la generación de resistencia a antibióticos de muchos microorganismos, entre otras consecuencias aún no estudiadas en el ambiente.
Collapse
Affiliation(s)
- Miriam Checa Artos
- Escuela Superior Politécnica del Litoral, ESPOL, Facultad de Ciencias de la Vida, FCV, Centro de Investigaciones Biotecnológicas del Ecuador, CIBE, Campus Gustavo Galindo Km 30.5 Vía Perimetral, ESPOL, Apartado Postal: 09-01-5863, Guayaquil, Ecuador
| | - Daynet Sosa del Castillo
- Escuela Superior Politécnica del Litoral, ESPOL, Facultad de Ciencias de la Vida, FCV, Centro de Investigaciones Biotecnológicas del Ecuador, CIBE, Campus Gustavo Galindo Km 30.5 Vía Perimetral, ESPOL, Apartado Postal: 09-01-5863, Guayaquil, Ecuador
| | - Omar Ruiz Barzola
- Escuela Superior Politécnica del Litoral, ESPOL, Facultad de Ciencias de la Vida, FCV, Centro de Investigaciones Biotecnológicas del Ecuador, CIBE, Campus Gustavo Galindo Km 30.5 Vía Perimetral, ESPOL, Apartado Postal: 09-01-5863, Guayaquil, Ecuador
| | - Milton Barcos-Arias
- Escuela Superior Politécnica del Litoral, ESPOL, Facultad de Ciencias de la Vida, FCV, Centro de Investigaciones Biotecnológicas del Ecuador, CIBE, Campus Gustavo Galindo Km 30.5 Vía Perimetral, ESPOL, Apartado Postal: 09-01-5863, Guayaquil, Ecuador
| |
Collapse
|
25
|
Wang J, Li S, Zhu Y, Guo J, Liu J, He B. Targeted eco-pharmacovigilance as an optimized management strategy for adverse effects of pharmaceuticals in the environment. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2021; 82:103565. [PMID: 33321209 DOI: 10.1016/j.etap.2020.103565] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 11/25/2020] [Accepted: 12/09/2020] [Indexed: 05/21/2023]
Abstract
From a perspective of drug administration, eco-pharmacovigilance (EPV) has been proposed as a new approach to prevent the environmental risks posed by pharmaceutical emerging contaminants. However, it is impracticable to practice unitary and rigor EPV process for all the pharmaceutical substances with complex and diversified chemical, biological or toxicological properties. We proposed the "targeted EPV" that is the science and activities associated with the targeted detection, evaluation, understanding, and prevention of adverse effects of high-priority hazardous pharmaceuticals in the environment, especially focusing on the control of main anthropogenic sources of pharmaceutical emission among key stakeholders in high-risk areas could be used as an optimized management strategy for pharmaceutical pollution. "Targeted EPV" implementation should focus on the targeted monitoring of the occurrence of high-priority pharmaceuticals in environmental samples, the targeted reporting of over-standard discharge, the targeted management for main emission sources, the targeted legislation and researches on high-priority pharmaceutical pollutants, as well as the targeted educational strategies for specific key populations.
Collapse
Affiliation(s)
- Jun Wang
- Department of Pharmacology, College of Medicine, Wuhan University of Science and Technology, Wuhan, China
| | - Shulan Li
- Department of Pharmacology, College of Medicine, Wuhan University of Science and Technology, Wuhan, China
| | - Yujie Zhu
- Department of Pharmacology, College of Medicine, Wuhan University of Science and Technology, Wuhan, China
| | - Jie Guo
- Department of Pharmacology, College of Medicine, Wuhan University of Science and Technology, Wuhan, China
| | - Juan Liu
- Department of Pharmacology, College of Medicine, Wuhan University of Science and Technology, Wuhan, China
| | - Bingshu He
- Hubei Province Women and Children Hospital, Wuhan, China.
| |
Collapse
|
26
|
Dogan A, Kempińska-Kupczyk D, Kubica P, Kot-Wasik A. Analysis of chiral pharmaceutical residues in influent and effluent samples at racemic and enantiomeric level using liquid chromatography-tandem mass spectrometry. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105517] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
27
|
Advanced Wastewater Treatment to Eliminate Organic Micropollutants in Wastewater Treatment Plants in Combination with Energy-Efficient Electrolysis at WWTP Mainz. ENERGIES 2020. [DOI: 10.3390/en13143599] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
To achieve the Paris climate protection goals there is an urgent need for action in the energy sector. Innovative concepts in the fields of short-term flexibility, long-term energy storage and energy conversion are required to defossilize all sectors by 2040. Water management is already involved in this field with biogas production and power generation and partly with using flexibility options. However, further steps are possible. Additionally, from a water management perspective, the elimination of organic micropollutants (OMP) is increasingly important. In this feasibility study a concept is presented, reacting to energy surplus and deficits from the energy grid and thus providing the needed long-term storage in combination with the elimination of OMP in municipal wastewater treatment plants (WWTPs). The concept is based on the operation of an electrolyzer, driven by local power production on the plant (photovoltaic (PV), combined heat and power plant (CHP)-units) as well as renewable energy from the grid (to offer system service: automatic frequency restoration reserve (aFRR)), to produce hydrogen and oxygen. Hydrogen is fed into the local gas grid and oxygen used for micropollutant removal via upgrading it to ozone. The feasibility of such a concept was examined for the WWTP in Mainz (Germany). It has been shown that despite partially unfavorable boundary conditions concerning renewable surplus energy in the grid, implementing electrolysis operated with regenerative energy in combination with micropollutant removal using ozonation and activated carbon filter is a reasonable and sustainable option for both, the climate and water protection.
Collapse
|