1
|
Wu G, Cai Z, Li G, Tai G, Huang X, Zhu L, Zhao Z, Pan Y, Xing W. In Situ Construction of the van Der Waals Heterojunction Based on Co 3O 4/g-C 3N 4 for the Highly Efficient Degradation of Tetracycline under Visible Light. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025. [PMID: 40350760 DOI: 10.1021/acs.langmuir.5c00892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2025]
Abstract
Advanced oxidation processes have been increasingly applied to degrade organic pollutants through the generation of strong oxidizing radicals by catalyst activation reactions. In this study, the Co3O4/g-C3N4 van der Waals heterojunction (CCN) was successfully prepared by calcining a mixture of Co3O4 and g-C3N4 (BCN) in order to improve the performance and elucidate the mechanism of the CCN-activated peroxymonosulfate (PMS) catalytic degradation of tetracycline (TC) under visible light. This unique nanostructure possesses an abundance of active sites, thus significantly facilitating the transport of charge. The TC removal rate of the optimized heterojunction reaches 300.1 × 10-3 min-1 within 10 min under visible light, nearly 46.2 times that of BCN. The degradation of TC was dominated by h+ and 1O2. The degradation pathways of TC were analyzed in detail. The reduced toxicity of the intermediates reveals the potential risk to the environment posed by the CCN-3/PMS system. Finally, a preliminary economic analysis of this process was carried out. The study provides a simple and promising route for the efficient activation of PMS by CCN for photocatalytic remediation of water pollution.
Collapse
Affiliation(s)
- Guangyu Wu
- College of Ecology and Environment, Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
- National Positioning Observation Station of Hung-tse Lake Wetland Ecosystem in Jiangsu Province, Hongze 223100, China
| | - Zhuoyu Cai
- College of Ecology and Environment, Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Geng Li
- College of Ecology and Environment, Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Guoyu Tai
- College of Ecology and Environment, Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Xinlin Huang
- College of Ecology and Environment, Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Linsheng Zhu
- College of Ecology and Environment, Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Zhenyu Zhao
- College of Ecology and Environment, Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Yuwei Pan
- College of Ecology and Environment, Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Weinan Xing
- College of Ecology and Environment, Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
- National Positioning Observation Station of Hung-tse Lake Wetland Ecosystem in Jiangsu Province, Hongze 223100, China
| |
Collapse
|
2
|
Guo Y, Huang Y, Li Y, Luo Y, Xuan K, Guo Y, Jiang H, Fang R. Sulfur-doped activated carbon for the efficient degradation of tetracycline with persulfate: Insight into the effect of pore structure on catalytic performance. RSC Adv 2024; 14:11470-11481. [PMID: 38601703 PMCID: PMC11005904 DOI: 10.1039/d3ra08958d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 03/26/2024] [Indexed: 04/12/2024] Open
Abstract
Sulfur-doped activated carbon has proved to be a promising metal-free catalyst for persulfate (PDS) catalytic activation for the oxidation of aqueous refractory organics. Herein, sulfur-doped porous carbon (ACS) catalysts with different pore structures and doped-S contents were prepared via a template method using d(+)-glucose as the carbon source, sulfur as the sulfur source, and nano-MgO with different particle sizes as templates. Characterization results showed that the particle size of MgO significantly affects the pore structure and doped-S content of ACSs catalysts: a sample synthesized with 20 nm MgO as template (ACS-20) presented the highest content of doped-S and a mesoporous structure, which endowed it with superior adsorption and catalytic performance toward tetracycline (TC) removal. The effect of catalyst dosage, TC concentration, PDS concentration and solution pH on TC removal efficiency were evaluated. The reaction mechanism, investigated by combination of EPR, quenching experiments and LC-MS, indicated that the reactive species included HO·, SO4˙-, and 1O2, but that 1O2 played the dominant role in TC oxidation through a non-radical oxidation pathway. In addition, the reusability and regeneration properties of the ACS-20 catalyst were also studied. This work provides a promising strategy and some theoretical basis for the design and preparation of activated carbon catalysts for advanced oxidation reactions from the viewpoint of pore structure design and S-doping.
Collapse
Affiliation(s)
- Yaoping Guo
- School of Water Resources Environmental Engineering, East China University of Technology Nanchang 330013 China +86 18734907983
| | - Yaxiong Huang
- School of Water Resources Environmental Engineering, East China University of Technology Nanchang 330013 China +86 18734907983
| | - Yifan Li
- School of Water Resources Environmental Engineering, East China University of Technology Nanchang 330013 China +86 18734907983
| | - Yan Luo
- School of Surveying and Mapping and Spatial Information Engineering, East China University of Technology Nanchang 330013 China
| | - Keng Xuan
- School of Water Resources Environmental Engineering, East China University of Technology Nanchang 330013 China +86 18734907983
- Jiangxi Engineering Province Engineering Research Center of New Energy Technology and Equipment, East China University of Technology Nanchang 330013 China
| | - Yadan Guo
- School of Water Resources Environmental Engineering, East China University of Technology Nanchang 330013 China +86 18734907983
| | - Hao Jiang
- School of Water Resources Environmental Engineering, East China University of Technology Nanchang 330013 China +86 18734907983
| | - Rui Fang
- School of Water Resources Environmental Engineering, East China University of Technology Nanchang 330013 China +86 18734907983
| |
Collapse
|
3
|
Yan C, Yu C, Ti X, Bao K, Wan J. Preparation of Mn-doped sludge biochar and its catalytic activity to persulfate for phenol removal. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:18737-18749. [PMID: 38347365 DOI: 10.1007/s11356-024-32232-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 01/24/2024] [Indexed: 03/09/2024]
Abstract
In recent years, the increasing prevalence of phenolic pollutants emitted into the environment has posed severe hazards to ecosystems and living organisms. Consequently, there is an urgent need for a green and efficient method to address environmental pollution. This study utilized waste sludge as a precursor and employed a hydrothermal-calcination co-pyrolysis method to prepare manganese (Mn)-doped biochar composite material (Mn@SBC-HP). The material was used to activate peroxydisulfate (PDS) for the removal of phenol. The study investigated various factors (such as the type and amount of doping metal, pyrolysis temperature, catalyst dosage, PDS dosage, pH value, initial phenol concentration, inorganic anions, and salinity) affecting phenol removal and the mechanisms within the Mn@SBC-HP/PDS system. Results indicated that under optimal conditions, the Mn@SBC-HP/PDS system achieved 100% removal of 100 mg/L phenol within 180 min, with a TOC removal efficiency of 82.7%. Additionally, the phenol removal efficiency of the Mn@SBC-HP/PDS system remained above 90% over a wide pH range (3-9). Free radical quenching experiments and electron spin resonance (ESR) results suggested that hydroxyl radicals (·OH) and sulfate radicals (SO4-) yed a role in the removal of phenol through radical pathways, with singlet oxygen (1O2) being the dominant non-radical pathway. The phenol removal efficiency remained above 90%, demonstrating the excellent adaptability of the Mn@SBC-HP/PDS system under the interference of coexisting inorganic anions or increased salinity. This study proposes an innovative method for the resource utilization of waste, creating metal-biochar composite catalysts for the remediation of water environments. It provides a new approach for the efficiency of organic pollutants in water environments.
Collapse
Affiliation(s)
- Chongchong Yan
- School of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Chao Yu
- School of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Xueyi Ti
- School of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Kai Bao
- School of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Jun Wan
- School of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China.
| |
Collapse
|
4
|
Cui ML, Lin ZX, Xie QF, Zhang XY, Wang BQ, Huang ML, Yang DP. Recent advances in luminescence and aptamer sensors based analytical determination, adsorptive removal, degradation of the tetracycline antibiotics, an overview and outlook. Food Chem 2023; 412:135554. [PMID: 36708671 DOI: 10.1016/j.foodchem.2023.135554] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/20/2022] [Accepted: 01/21/2023] [Indexed: 01/26/2023]
Abstract
Tetracycline antibiotics (TCs), one of the important antibiotic groups, have been widely used in human and veterinary medicines. Their residues in foodstuff, soil and sewage have caused serious threats to food safety, ecological environment and human health. Here, we reviewed the potential harms of TCs residues to foodstuff, environment and human beings, discussed the luminescence and aptamer sensors based analytical determination, adsorptive removal, and degradation strategies of TCs residues from a recent 5-year period. The advantages and intrinsic limitations of these strategies have been compared and discussed, the potential challenges and opportunities in TCs residues degradation have also been deliberated and explored.
Collapse
Affiliation(s)
- Ma-Lin Cui
- College of Chemical Engineering and Materials Science, Quanzhou Normal University, Quanzhou 362000, China.
| | - Zi-Xuan Lin
- College of Chemical Engineering and Materials Science, Quanzhou Normal University, Quanzhou 362000, China
| | - Qing-Fan Xie
- College of Chemical Engineering and Materials Science, Quanzhou Normal University, Quanzhou 362000, China
| | - Xiao-Yan Zhang
- College of Chemical Engineering and Materials Science, Quanzhou Normal University, Quanzhou 362000, China
| | - Bing-Qing Wang
- College of Chemical Engineering and Materials Science, Quanzhou Normal University, Quanzhou 362000, China
| | - Miao-Ling Huang
- College of Chemical Engineering and Materials Science, Quanzhou Normal University, Quanzhou 362000, China
| | - Da-Peng Yang
- College of Chemical Engineering and Materials Science, Quanzhou Normal University, Quanzhou 362000, China.
| |
Collapse
|
5
|
Photocatalytic Degradation of Tetracycline by Supramolecular Materials Constructed with Organic Cations and Silver Iodide. Catalysts 2022. [DOI: 10.3390/catal12121581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Photocatalytic degradation, as a very significant advanced oxidation technology in the field of environmental purification, has attracted extensive attention in recent years. The design and synthesis of catalysts with high-intensity photocatalytic properties have been the focus of many researchers in recent years. In this contribution, two new supramolecular materials {[(L1)·(Ag4I7)]CH3CN} (1), {[(L2)·(Ag4I7)]CH3CN} (2) were synthesized by solution volatilization reaction of two cationic templates 1,3,5-Tris(4-aminopyridinylmethyl)-2,4,6-Trimethylphenyl bromide (L1) and 1,3,5-Tris(4-methyl pyridinyl methyl)-2,4,6-trimethylphenyl bromide (L2) with metal salt AgI at room temperature, respectively. The degradation effect of 1 and 2 as catalyst on tetracycline (TC) under visible light irradiation was studied. The results showed that the degradation of TC by 1 was better than that by 2 and both of them had good stability and cyclability. The effects of pH value, catalyst dosage, and anion in water on the photocatalytic performance were also investigated. The adsorption kinetics fit the quasi-first-order model best. After 180 min of irradiation with 1, the degradation rate of TC can reach 97.91%. In addition, the trapping experiments showed that ·OH was the main active substance in the photocatalytic degradation of TC compared with ·O2− and h+. Because of its simple synthesis and high removal efficiency, catalyst 1 has potential value for the treatment of wastewater containing organic matter.
Collapse
|
6
|
Hou L, Wen Y, Wu J, Yue Y, Zhang J, Zhang J, Qian G. Reveal of free radicals in manganese-based catalysts and their roles during selective catalytic reduction of nitrogen oxide. J Colloid Interface Sci 2022; 628:193-204. [DOI: 10.1016/j.jcis.2022.07.093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 06/07/2022] [Accepted: 07/15/2022] [Indexed: 12/01/2022]
|
7
|
Li C, Xu B, Chen L, Jin M, Yi G, Chen L, Xing B, Zhang Y, Wu Y. Persulfate Activation by N-Doping Biochar from Peanut for Efficient Degradation of Phenol. Catal Letters 2022. [DOI: 10.1007/s10562-022-04206-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
8
|
de Lima Oliveira R, Nicinski K, Pisarek M, Kaminska A, Thomas A, Pasternak G, Colmenares JC. Porous heteroatom‐doped carbons: efficient catalysts for selective oxidation of alcohols by activated persulfate. ChemCatChem 2022. [DOI: 10.1002/cctc.202200787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Rafael de Lima Oliveira
- Institute of Low Temperature and Structure ResearchPolish Academy of Sciences: Instytut Niskich Temperatur i Baden Strukturalnych im Wlodzimierza Trzebiatowskiego Polskiej Akademii Nauk Catalysis and Nanomaterials Okólna 2, 03948 Wroclaw POLAND
| | - Krzysztof Nicinski
- Institute of Physical Chemistry Polish Academy of Sciences: Polska Akademia Nauk Instytut Chemii Fizycznej Catalysis POLAND
| | - Marcin Pisarek
- Institute of Physical Chemistry Polish Academy of Sciences: Polska Akademia Nauk Instytut Chemii Fizycznej Catalysis POLAND
| | - Agnieszka Kaminska
- Institute of Physical Chemistry Polish Academy of Sciences: Polska Akademia Nauk Instytut Chemii Fizycznej Catalysis POLAND
| | - Arne Thomas
- TU Berlin: Technische Universitat Berlin Chemistry POLAND
| | - Grzegorz Pasternak
- Wroclaw University of Technology: Politechnika Wroclawska Material Science POLAND
| | - Juan C. Colmenares
- Institute of Physical Chemistry Polish Academy of Sciences: Polska Akademia Nauk Instytut Chemii Fizycznej Catalysis POLAND
| |
Collapse
|
9
|
Han M, Zhu W, Hossain MSA, You J, Kim J. Recent progress of functional metal-organic framework materials for water treatment using sulfate radicals. ENVIRONMENTAL RESEARCH 2022; 211:112956. [PMID: 35218711 DOI: 10.1016/j.envres.2022.112956] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 01/16/2022] [Accepted: 02/11/2022] [Indexed: 06/14/2023]
Abstract
Human health is being threatened by the ever-increasing water pollution. Sulfate radical (SO4•-)-based advanced oxidation processes (SR-AOPs) are rapidly being developed and gaining considerable attention due to their high oxidation potential and selectivity as a way to purify water by degrading organic contaminants in it. Among the catalytic materials that can activate the precursor to generate SO4•-, metal-organic frameworks (MOFs) are the most promising heterogeneous catalytic material in SR-AOPs because of their various structure possibilities, large surface area, ordered porous structure, and regular activation sites. Herein, an in-depth overview of MOFs and their derivatives for water purification with SR-AOPs is provided. The latest studies on pristine MOFs, MOF composites, and MOF derivatives (metal oxides, metal-carbon hybrids, and carbon materials) are summarized. The mechanisms of decomposition of pollutants in water via radical and non-radical pathways are also discussed. This review suggests future research directions for water purification through MOF-based SR-AOP.
Collapse
Affiliation(s)
- Minsu Han
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea
| | - Wenkai Zhu
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea
| | - Md Shahriar A Hossain
- School of Mechanical & Mining Engineering, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Jungmok You
- Department of Plant & Environmental New Resources, Graduate School of Biotechnology, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do, 17104, South Korea.
| | - Jeonghun Kim
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea.
| |
Collapse
|
10
|
Liao J, He X, Zhang Y, Zhu W, Zhang L, He Z. Bismuth impregnated biochar for efficient uranium removal from solution: Adsorption behavior and interfacial mechanism. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 819:153145. [PMID: 35038520 DOI: 10.1016/j.scitotenv.2022.153145] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 01/11/2022] [Accepted: 01/11/2022] [Indexed: 06/14/2023]
Abstract
In this work, Bi2O3 doped horse manure-derived biochar was obtained by carbonizing the H2O2-modified horse manure loaded with bismuth nitrate under nitrogen atmosphere at 500 °C. The results showed that there was a sharp response between the as-prepared bismuth impregnated biochar and uranium(VI) species in solution, which resulted in a short equilibrium time (<80 min), a fast adsorption rate (about 5.0 mg/(g·min)), a high removal efficiency (93.9%) and a large adsorption capacity (516.5 mg/g) (T = 298 K, pH = 4, Ci = 10 mg/L and m/V = 0.1 g/L). Besides, the removal behavior of the bismuth impregnated biochar for uranium(VI) did not depend on the interfering ions and ion strength, except Al3+, Ca2+, CO32- and PO43-. These results indicated that the modified biochar might possess the potential of remediating the actual uranium(VI)-containing wastewater. Moreover, the interaction mechanism between Bi2O3 doped biochar and uranium(VI) species was further explored. The results demonstrated that the enrichment of uranium(VI) on the surface of the as-prepared biochar was controlled by various factors, such as surface complexation, ion exchange, electrostatic attraction, precipitation and reduction, which facilitated the adsorption of uranium(VI) on the bismuth impregnated biochar.
Collapse
Affiliation(s)
- Jun Liao
- Division of Target Science and Fabrication, Research Center of Laser Fusion, China Academy of Engineering Physics, P. O. Box 919-987, Mianyang 621900, China; School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang 621010, China
| | - Xiaoshan He
- Division of Target Science and Fabrication, Research Center of Laser Fusion, China Academy of Engineering Physics, P. O. Box 919-987, Mianyang 621900, China
| | - Yong Zhang
- School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang 621010, China.
| | - Wenkun Zhu
- School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang 621010, China
| | - Lin Zhang
- Division of Target Science and Fabrication, Research Center of Laser Fusion, China Academy of Engineering Physics, P. O. Box 919-987, Mianyang 621900, China
| | - Zhibing He
- Division of Target Science and Fabrication, Research Center of Laser Fusion, China Academy of Engineering Physics, P. O. Box 919-987, Mianyang 621900, China.
| |
Collapse
|
11
|
Shen Y, Zhu K, He D, Huang J, He H, Lei L, Chen W. Tetracycline removal via adsorption and metal-free catalysis with 3D macroscopic N-doped porous carbon nanosheets: Non-radical mechanism and degradation pathway. J Environ Sci (China) 2022; 111:351-366. [PMID: 34949364 DOI: 10.1016/j.jes.2021.04.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 04/13/2021] [Accepted: 04/15/2021] [Indexed: 06/14/2023]
Abstract
Recently, metal-based carbon materials have been verified to be an effective persulfate activator, but secondary pollution caused by metal leaching is inevitable. Hence, a green metal-free 3D macroscopic N-doped porous carbon nanosheets (NPCN) was synthesized successfully. The obtained NPCN showed high adsorption capacity of tetracycline (TC) and excellent persulfate (PS) activation ability, especially when calcined at 700 °C (NPCN-700). The maximum adsorption capacity of NPCN-700 was 121.51 mg/g by H-bonds interactions. Moreover, the adsorption process followed pseudo-second-order kinetics model and Langmuir adsorption isotherm. The large specific surface area (365.27 mg/g) and hierarchical porous structure of NPCN-700 reduced the mass transfer resistance and increased the adsorption capacity. About 96.39% of TC was removed after adding PS. The effective adsorption of the catalyst greatly shortened the time for the target organic molecules to migrate to the catalyst. Moreover, the NPCN-700 demonstrated high reusability with the TC removal rate of 80.23% after 4 cycles. Quenching experiment and electron paramagnetic resonance (EPR) test confirmed the non-radical mechanism dominated by 1O2. More importantly, the C = O groups, defects and Graphitic N acted as active sites to generate 1O2. Correspondingly, electrochemical measurement revealed the direct electron transfer pathway of TC degradation. Finally, multiple degradation intermediates were recognized by the LC-MS measurement and three possible degradation pathways were proposed. Overall, the prepared NPCN had excellent application prospects for removal of antibiotics due to its remarkable adsorption and catalytic degradation capabilities.
Collapse
Affiliation(s)
- Yaqian Shen
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Ke Zhu
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Dongdong He
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Jin Huang
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Hongmei He
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Lele Lei
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Wenjin Chen
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, China.
| |
Collapse
|
12
|
Addison F, Offiong NA, Han Q, Wang R, Liu N. Nitrogen-doped mesoporous carbon material (NCMK-3) as a catalyst for the removal of 4-chlorophenol during persulfate oxidation and its efficiency after reuse. ENVIRONMENTAL TECHNOLOGY 2022; 43:192-198. [PMID: 32546059 DOI: 10.1080/09593330.2020.1782994] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 06/05/2020] [Indexed: 06/11/2023]
Abstract
Persulfate (PS) oxidation of 4-chlorophenol (4CP) is mostly catalysed by relatively expensive metal substrates. In this study, we investigated the influence of nitrogen-doped and non-doped mesoporous carbon materials (NCMK-3 and CMK-3) during persulfate (PS) oxidation of 4CP in water. Batch experiments were conducted such that PS was added to simulated contaminant mixture after 1 h agitation with NCMK-3 and CMK-3. Further, the experiment was carried out at different temperatures, pH ranges, concentrations of persulfate (PS), and different doses of NCMK-3, since it recorded better removal rates compared to CMK-3. The results revealed that NCMK-3 and CMK-3 aided the removal of 4CP from water during persulfate oxidation. When persulfate was added after an hour of equilibration with CMK-3 and NCMK-3, 83% and 92% of 4CP were removed within 20 min, respectively, whereas lower removal rates (≤40) were recorded in the absence of persulfate (PS). The removal rates of 4CP increased with an increase in temperature but reduced in the alkaline medium in the NCMK-3/PS system. The efficiency of the NCMK-3 reduced significantly after it was reused three times. Based on the results, NCMK-3 influences the activity of PS oxidation of 4-chlorophenol (4CP) and exhibited a synergistic effect in the removal of the organic contaminant from water.
Collapse
Affiliation(s)
- Francis Addison
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, College of New Energy and Environment, Jilin University, Changchun, People's Republic of China
| | - Nnanake-Abasi Offiong
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, College of New Energy and Environment, Jilin University, Changchun, People's Republic of China
| | - Qilin Han
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, College of New Energy and Environment, Jilin University, Changchun, People's Republic of China
| | - Ruofan Wang
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, College of New Energy and Environment, Jilin University, Changchun, People's Republic of China
| | - Na Liu
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, College of New Energy and Environment, Jilin University, Changchun, People's Republic of China
| |
Collapse
|
13
|
Yang Z, Qian J, Shan C, Li H, Yin Y, Pan B. Toward Selective Oxidation of Contaminants in Aqueous Systems. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:14494-14514. [PMID: 34669394 DOI: 10.1021/acs.est.1c05862] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The presence of diverse pollutants in water has been threating human health and aquatic ecosystems on a global scale. For more than a century, chemical oxidation using strongly oxidizing species was one of the most effective technologies to destruct pollutants and to ensure a safe and clean water supply. However, the removal of increasing amount of pollutants with higher structural complexity, especially the emerging micropollutants with trace concentrations in the complicated water matrix, requires excessive dosage of oxidant and/or energy input, resulting in a low cost-effectiveness and possible secondary pollution. Consequently, it is of practical significance but scientifically challenging to achieve selective oxidation of pollutants of interest for water decontamination. Currently, there are a variety of examples concerning selective oxidation of pollutants in aqueous systems. However, a systematic understanding of the relationship between the origin of selectivity and its applicable water treatment scenarios, as well as the rational design of catalyst for selective catalytic oxidation, is still lacking. In this critical review, we summarize the state-of-the-art selective oxidation strategies in water decontamination and probe the origins of selectivity, that is, the selectivity resulting from the reactivity of either oxidants or target pollutants, the selectivity arising from the accessibility of pollutants to oxidants via adsorption and size exclusion, as well as the selectivity due to the interfacial electron transfer process and enzymatic oxidation. Finally, the challenges and perspectives are briefly outlined to stimulate future discussion and interest on selective oxidation for water decontamination, particularly toward application in real scenarios.
Collapse
Affiliation(s)
- Zhichao Yang
- Research Center for Environmental Nanotechnology (ReCENT), School of Environment and State Key Laboratory of Pollution Control and Resources Reuse, Nanjing University, Nanjing 210023, China
| | - Jieshu Qian
- Research Center for Environmental Nanotechnology (ReCENT), School of Environment and State Key Laboratory of Pollution Control and Resources Reuse, Nanjing University, Nanjing 210023, China
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Chao Shan
- Research Center for Environmental Nanotechnology (ReCENT), School of Environment and State Key Laboratory of Pollution Control and Resources Reuse, Nanjing University, Nanjing 210023, China
| | - Hongchao Li
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Yuyang Yin
- Research Center for Environmental Nanotechnology (ReCENT), School of Environment and State Key Laboratory of Pollution Control and Resources Reuse, Nanjing University, Nanjing 210023, China
| | - Bingcai Pan
- Research Center for Environmental Nanotechnology (ReCENT), School of Environment and State Key Laboratory of Pollution Control and Resources Reuse, Nanjing University, Nanjing 210023, China
| |
Collapse
|
14
|
Application of Magnetic Composites in Removal of Tetracycline through Adsorption and Advanced Oxidation Processes (AOPs): A Review. Processes (Basel) 2021. [DOI: 10.3390/pr9091644] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Water pollution induced by the tetracycline (TC) has caused global increasing attention owing to its extensive use, environmental persistence, and potential harm for human health. Adsorption and advanced oxidation processes (AOPs) have been promising techniques for TC removal due to ideal effectiveness and efficiency. Magnetic composites (MCs) which exploit the combined advantages of nano scale, alternative sources, easy preparation, and separation from wastewater are widely used for catalysis and adsorption. Herein, we intensively reviewed the available literature in order to provide comprehensive insight into the applications and mechanisms of MCs for removal of TC by adsorption and AOPs. The synthesis methods of MCs, the TC adsorption, and removal mechanisms are fully discussed. MCs serve as efficient adsorbents and photocatalysts with superior performance of photocatalytic performance in TC degradation. In addition, the TC can be effectively decomposed by the Fenton-based and SO4•− mediated oxidation under catalysis of the reported MCs with excellent catalytic performance. Based on the existing literature, we further discuss the challenge and future perspectives in MCs-based adsorption and AOPs in removing TC.
Collapse
|
15
|
Yang Z, Zhao Z, Yang X, Ren Z. Xanthate modified magnetic activated carbon for efficient removal of cationic dyes and tetracycline hydrochloride from aqueous solutions. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126273] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
16
|
Xiao G, Xu T, Faheem M, Xi Y, Zhou T, Moryani HT, Bao J, Du J. Evolution of Singlet Oxygen by Activating Peroxydisulfate and Peroxymonosulfate: A Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18073344. [PMID: 33804931 PMCID: PMC8036714 DOI: 10.3390/ijerph18073344] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 03/18/2021] [Accepted: 03/19/2021] [Indexed: 11/16/2022]
Abstract
Advanced oxidation processes (AOPs) based on peroxydisulfate (PDS) or peroxymonosulfate (PMS) activation have attracted much research attention in the last decade for the degradation of recalcitrant organic contaminants. Sulfate (SO4•−) and hydroxyl (•OH) radicals are most frequently generated from catalytic PDS/PMS decomposition by thermal, base, irradiation, transition metals and carbon materials. In addition, increasingly more recent studies have reported the involvement of singlet oxygen (1O2) during PDS/PMS-based AOPs. Typically, 1O2 can be produced either along with SO4•− and •OH or discovered as the dominant reactive oxygen species (ROSs) for pollutants degradation. This paper reviews recent advances in 1O2 generation during PDS/PMS activation. First, it introduces the basic chemistry of 1O2, its oxidation properties and detection methodologies. Furthermore, it elaborates different activation strategies/techniques, including homogeneous and heterogeneous systems, and discusses the possible reaction mechanisms to give an overview of the principle of 1O2 production by activating PDS/PMS. Moreover, although 1O2 has shown promising features such as high degradation selectivity and anti-interference capability, its production pathways and mechanisms remain controversial in the present literatures. Therefore, this study identifies the research gaps and proposes future perspectives in the aspects of novel catalysts and related mechanisms.
Collapse
|
17
|
Yu J, Di S, Yu H, Ning T, Yang H, Zhu S. Insights into the structure-performance relationships of extraction materials in sample preparation for chromatography. J Chromatogr A 2020; 1637:461822. [PMID: 33360779 DOI: 10.1016/j.chroma.2020.461822] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 12/13/2020] [Accepted: 12/14/2020] [Indexed: 01/23/2023]
Abstract
Sample preparation is one of the most crucial steps in analytical processes. Commonly used methods, including solid-phase extraction, dispersive solid-phase extraction, dispersive magnetic solid-phase extraction, and solid-phase microextraction, greatly depend on the extraction materials. In recent decades, a vast number of materials have been studied and used in sample preparation for chromatography. Due to the unique structural properties, extraction materials significantly improve the performance of extraction devices. Endowing extraction materials with suitable structural properties can shorten the pretreatment process and improve the extraction efficiency and selectivity. To understand the structure-performance relationships of extraction materials, this review systematically summarizes the structural properties, including the pore size, pore shape, pore volume, accessibility of active sites, specific surface area, functional groups and physicochemical properties. The mechanisms by which the structural properties influence the extraction performance are also elucidated in detail. Finally, three principles for the design and synthesis of extraction materials are summarized. This review can provide systematic guidelines for synthesizing extraction materials and preparing extraction devices.
Collapse
Affiliation(s)
- Jing Yu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, P. R. China
| | - Siyuan Di
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, P. R. China
| | - Hao Yu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, P. R. China
| | - Tao Ning
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, P. R. China
| | - Hucheng Yang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, P. R. China
| | - Shukui Zhu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, P. R. China.
| |
Collapse
|
18
|
AgO/MgO/FeO@Si3N4 nanocomposite with robust adsorption capacity for tetracycline antibiotic removal from aqueous system. ADV POWDER TECHNOL 2020. [DOI: 10.1016/j.apt.2020.09.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
19
|
Jian Y, Liu H, Zhu J, Zeng Y, Liu Z, Hou C, Pu S. Transformation of novel TiOF2 nanoparticles to cluster TiO2-{001/101} and its degradation of tetracycline hydrochloride under simulated sunlight. RSC Adv 2020; 10:42860-42873. [PMID: 35514916 PMCID: PMC9058001 DOI: 10.1039/d0ra08476j] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 11/19/2020] [Indexed: 11/21/2022] Open
Abstract
The anatase type cluster TiO2-{001/101} was rapidly generated by a one-step hydrothermal method. The transformation process of coral-like TiOF2 nanoparticles to cluster TiO2-{001/101} was investigated for the first time, and the sensitization between cluster TiO2-{001/101} and tetracycline hydrochloride (TCH) was also discussed. The degradation rate of TCH by cluster TiO2-{001/101} under simulated sunlight was 92.3%, and the total removal rate was 1.76 times that of P25. Besides, cluster TiO2-{001/101} settles more easily than P25 in deionized water. The study showed that cluster TiO2-{001/101} derived from coral-like TiOF2 nanoparticles had a strong adsorption effect on TCH, which was attributed to the oxygen vacancy (Ov) and {001} facets of cluster TiO2-{001/101}. The strong adsorption effect promoted the sensitization between cluster TiO2-{001/101} and TCH, and widened the visible light absorption range of cluster TiO2-{001/101}. In addition, the fluorescence emission spectrum showed that cluster TiO2-{001/101} had a lower luminous intensity, which was attributed to the heterojunction formed by {001} facets and {101} facets that reduces the recombination rate of carriers. It should be noted that cluster TiO2-{001/101} still has good degradation performance for TCH after five cycles of degradation. This study provides a new idea for the synthesis of cluster TiO2-{001/101} with high photocatalytic performance for the treatment of TCH wastewater. Degradation of tetracycline hydrochloride by cluster TiO2-{001/101} under simulated sunlight.![]()
Collapse
Affiliation(s)
- Yue Jian
- Chongqing Academy of Animal Sciences
- Chongqing 402460
- China
- Scientific Observation and Experiment Station of Livestock Equipment Engineering in Southwest
- Ministry of Agriculture and Rural Affairs
| | - Huayang Liu
- College of Geology and Environment
- Xi'an University of Science and Technology
- Xi'an 710054
- China
| | - Jiaming Zhu
- Chongqing Academy of Animal Sciences
- Chongqing 402460
- China
- Scientific Observation and Experiment Station of Livestock Equipment Engineering in Southwest
- Ministry of Agriculture and Rural Affairs
| | - Yaqiong Zeng
- Chongqing Academy of Animal Sciences
- Chongqing 402460
- China
- Scientific Observation and Experiment Station of Livestock Equipment Engineering in Southwest
- Ministry of Agriculture and Rural Affairs
| | - Zuohua Liu
- Chongqing Academy of Animal Sciences
- Chongqing 402460
- China
| | - Chentao Hou
- College of Geology and Environment
- Xi'an University of Science and Technology
- Xi'an 710054
- China
| | - Shihua Pu
- Chongqing Academy of Animal Sciences
- Chongqing 402460
- China
- Scientific Observation and Experiment Station of Livestock Equipment Engineering in Southwest
- Ministry of Agriculture and Rural Affairs
| |
Collapse
|