1
|
Liu S, Zheng X, Kong T, Wang Y, Xin G, Duan X, Huang X. Proportions of Mn and Co in BM xC 1-x perovskite altered catalytic performance and ecological safety: Insights into algal metabolic response. JOURNAL OF HAZARDOUS MATERIALS 2025; 488:137338. [PMID: 39889596 DOI: 10.1016/j.jhazmat.2025.137338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/29/2024] [Accepted: 01/21/2025] [Indexed: 02/03/2025]
Abstract
Perovskites have been widely used in catalysis because of high activity and low cost. Although the catalytic efficiency of perovskites could be strengthened by adjusting the type and proportion of B-site element, the relationship between their performance and ecological risks is unknown. In this study, three Ba-based perovskites with different proportions of Mn and Co at the B-site (BMCs) were synthesized to compare their catalytic efficiency in activation of peroxymonosulfate (PMS). Moreover, their toxicity to freshwater alga Chlorella vulgaris were evaluated. Increasing the B-site Mn/Co ratio populated the amount of the oxygen vacancies (OVs). BMC with the B-site Mn/Co ratio of 1: 1 exhibited the highest catalytic activity in PMS activation for degradation of aqueous 4-chlorophenol. All three perovskites induced the algal growth inhibition in a dose-dependent manner, followed by the order of BM0.8C0.2 > BM0.2C0.8 ≈ BM0.5C0.5. Microscopy observations collectively found that the B-site regulated perovskites could destroy cell structures. Notably, metabolite homeostasis in algal cells was disturbed by three BMCs, uridine monophosphate and pentacosanoic acid could be potential biomarkers for evaluating their ecotoxicity. The highest catalytic activity with relatively low toxicity of BMCs with the Mn/Co ratio of 1:1 at B-site, probably because of Mn release rather than OVs. This research expanded our perception of the ecotoxicity of new-type perovskites in aquatic environment.
Collapse
Affiliation(s)
- Saibo Liu
- State Key Lab of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology, School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, PR China
| | - Xiaodie Zheng
- State Key Lab of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology, School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, PR China
| | - Tao Kong
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing 102249, PR China
| | - Yuxian Wang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing 102249, PR China.
| | - Guorong Xin
- State Key Lab of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology, School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, PR China
| | - Xiaoguang Duan
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Xiaochen Huang
- State Key Lab of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology, School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, PR China.
| |
Collapse
|
2
|
Ngo LT, Huang WT, Chan MH, Su TY, Li CH, Hsiao M, Liu RS. Comprehensive Neurotoxicity of Lead Halide Perovskite Nanocrystals in Nematode Caenorhabditis elegans. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306020. [PMID: 37661358 DOI: 10.1002/smll.202306020] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Indexed: 09/05/2023]
Abstract
To date, all-inorganic lead halide perovskite quantum dots have emerged as promising materials for photonic, optoelectronic devices, and biological applications, especially in solar cells, raising numerous concerns about their biosafety. Most of the studies related to the toxicity of perovskite quantum dots (PeQDs) have focused on the potential risks of hybrid perovskites by using zebrafish or human cells. So far, the neurotoxic effects and fundamental mechanisms of PeQDs remain unknown. Herein, a comprehensive methodology is designed to investigate the neurotoxicity of PeQDs by using Caenorhabditis elegans as a model organism. The results show that the accumulation of PeQDs mainly focuses on the alimentary system and head region. Acute exposure to PeQDs results in a decrease in locomotor behaviors and pharyngeal pumping, whereas chronic exposure to PeQDs causes brood decline and shortens lifespan. In addition, some abnormal issues occur in the uterus during reproduction assays, such as vulva protrusion, impaired eggs left in the vulva, and egg hatching inside the mother. Excessive reactive oxygen species formation is also observed. The neurotoxicity of PeQDs is explained by gene expression. This study provides a complete insight into the neurotoxicity of PeQD and encourages the development of novel nontoxic PeQDs.
Collapse
Affiliation(s)
- Loan Thi Ngo
- Department of Chemistry, National Taiwan University, Taipei, 106, Taiwan
- Nano Science and Technology Program, Taiwan International Graduate Program, Academia Sinica and National Taiwan University, Academia Road 128, Nankang, Taipei, 115, Taiwan
| | - Wen-Tse Huang
- Department of Chemistry, National Taiwan University, Taipei, 106, Taiwan
| | - Ming-Hsien Chan
- Genomics Research Center, Academia Sinica, Academia Road 128, Nankang, Taipei, 115, Taiwan
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan
| | - Ting-Yi Su
- Department of Chemistry, National Taiwan University, Taipei, 106, Taiwan
| | - Chien-Hsiu Li
- Genomics Research Center, Academia Sinica, Academia Road 128, Nankang, Taipei, 115, Taiwan
| | - Michael Hsiao
- Genomics Research Center, Academia Sinica, Academia Road 128, Nankang, Taipei, 115, Taiwan
| | - Ru-Shi Liu
- Department of Chemistry, National Taiwan University, Taipei, 106, Taiwan
| |
Collapse
|
3
|
Ding X, He R, Zhang T, Mei L, Zhu S, Wang C, Liao Y, Wang D, Wang H, Guo J, Chen L, Gu Z, Hu H. Lung Toxicity and Molecular Mechanisms of Lead-Based Perovskite Nanoparticles in the Respiratory System. ACS APPLIED MATERIALS & INTERFACES 2023; 15:42139-42152. [PMID: 37650305 DOI: 10.1021/acsami.3c04255] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Lead-based perovskite nanoparticles (Pb-PNPs) have found extensive applications across diverse fields. However, because of poor stability and relatively strong water solubility, the potential toxicity of Pb-PNPs released into the environment during their manufacture, usage, and disposal has attracted significant attention. Inhalation is a primary route through which human exposure to Pb-PNPs occurs. Herein, the toxic effects and underlying molecular mechanisms of Pb-PNPs in the respiratory system are investigated. The in vitro cytotoxicity of CsPbBr3 nanoparticles in BEAS-2B cells is studied using multiple bioassays and electron microscopy. CsPbBr3 nanoparticles of different concentrations induce excessive oxidative stress and cell apoptosis. Furthermore, CsPbBr3 nanoparticles specifically recruit the TGF-β1, which subsequently induces epithelial-mesenchymal transition. In addition, the biodistribution and lung toxicity of representative CsPbBr3 nanoparticles in ICR mice are investigated following intranasal administration. These findings indicate that CsPbBr3 nanoparticles significantly induce pulmonary inflammation and epithelial-mesenchymal transition and can even lead to pulmonary fibrosis in mouse models. Above findings expose the adverse effects and molecular mechanisms of Pb-PNPs in the lung, which broadens the safety data of Pb-PNPs.
Collapse
Affiliation(s)
- Xuefeng Ding
- Academician Workstation, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, P. R. China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, P. R. China
- Department of Critical Care Medicine, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, P. R. China
| | - Rendong He
- Academician Workstation, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, P. R. China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, P. R. China
- Department of Clinical Laboratory, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, P. R. China
| | - Tingjun Zhang
- Academician Workstation, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, P. R. China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, P. R. China
- Department of Infectious Diseases, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, P. R. China
| | - Linqiang Mei
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, P. R. China
- Center of Materials Science and Optoelectronics Engineering, College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Shuang Zhu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, P. R. China
- Center of Materials Science and Optoelectronics Engineering, College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Chengyan Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, P. R. China
- Center of Materials Science and Optoelectronics Engineering, College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - You Liao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, P. R. China
- Center of Materials Science and Optoelectronics Engineering, College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Dongmei Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, P. R. China
- Center of Materials Science and Optoelectronics Engineering, College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Hao Wang
- Academician Workstation, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, P. R. China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, P. R. China
- Department of Cardiology, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, P. R. China
| | - Junsong Guo
- Academician Workstation, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, P. R. China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, P. R. China
- Department of Cardiology, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, P. R. China
| | - Li Chen
- Department of Critical Care Medicine, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, P. R. China
| | - Zhanjun Gu
- Academician Workstation, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, P. R. China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, P. R. China
- Center of Materials Science and Optoelectronics Engineering, College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Houxiang Hu
- Academician Workstation, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, P. R. China
- Department of Cardiology, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, P. R. China
| |
Collapse
|
4
|
Mallick A, Mendez Lopez RD, Arye G, Cahen D, Visoly-Fisher I. Soil adsorption and transport of lead in the presence of perovskite solar cell-derived organic cations. JOURNAL OF HAZARDOUS MATERIALS 2023; 451:131147. [PMID: 36893601 DOI: 10.1016/j.jhazmat.2023.131147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 02/06/2023] [Accepted: 03/02/2023] [Indexed: 06/18/2023]
Abstract
Perovskite photovoltaics offer a highly efficient and low-cost solar energy harvesting technology. However, the presence of lead (Pb) cations in photovoltaic halide perovskite (HaPs) materials is concerning, and quantifying the environmental hazard of accidental Pb2+ leaching into the soil is crucial for assessing the sustainability of this technology. Pb2+ from inorganic salts was previously found to remain in the upper soil layers due to adsorption. However, Pb-HaPs contain additional organic and inorganic cations, and competitive cation adsorption may affect Pb2+ retention in soils. Therefore, we measured, analyzed by simulations and report the depths to which Pb2+ from HaPs penetrates into 3 types of agricultural soil. Most of the HaP-leached Pb2+ is found to be retained already in the first cm of the soil columns, and subsequent rain events do not induce Pb2+ penetration below the first few cm of soil surface. Surprisingly, organic co-cations from the dissolved HaP are found to enhance the Pb2+ adsorption capacity in clay-rich soil, compared to non-HaP-based Pb2+ sources. Our results imply that installation over soil types with improved Pb2+ adsorption, and removal of only the contaminated topsoil, are sufficient means to prevent ground water contamination by HaP-leached Pb2+.
Collapse
Affiliation(s)
- Arindam Mallick
- Solar Energy Center, Swiss Institute for Dryland Environmental and Energy Research, Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion, 8499000, Israel
| | - Rene D Mendez Lopez
- Dept. of Chemistry, Bar-Ilan Univ., Ramat Gan 52900, Israel; Bar-Ilan Institute of Nanotechnology and Advanced Materials (BINA), Ramat Gan 5290002, Israel
| | - Gilboa Arye
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion, 849900, Israel.
| | - David Cahen
- Dept. of Chemistry, Bar-Ilan Univ., Ramat Gan 52900, Israel; Bar-Ilan Institute of Nanotechnology and Advanced Materials (BINA), Ramat Gan 5290002, Israel; Mol. Chem. & Mater. Sci. Dept., Weizmann Institute of Science, Rehovot 76100, Israel.
| | - Iris Visoly-Fisher
- Solar Energy Center, Swiss Institute for Dryland Environmental and Energy Research, Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion, 8499000, Israel.
| |
Collapse
|
5
|
Zhang H, Lee JW, Nasti G, Handy R, Abate A, Grätzel M, Park NG. Lead immobilization for environmentally sustainable perovskite solar cells. Nature 2023; 617:687-695. [PMID: 37225881 DOI: 10.1038/s41586-023-05938-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 03/10/2023] [Indexed: 05/26/2023]
Abstract
Lead halide perovskites are promising semiconducting materials for solar energy harvesting. However, the presence of heavy-metal lead ions is problematic when considering potential harmful leakage into the environment from broken cells and also from a public acceptance point of view. Moreover, strict legislation on the use of lead around the world has driven innovation in the development of strategies for recycling end-of-life products by means of environmentally friendly and cost-effective routes. Lead immobilization is a strategy to transform water-soluble lead ions into insoluble, nonbioavailable and nontransportable forms over large pH and temperature ranges and to suppress lead leakage if the devices are damaged. An ideal methodology should ensure sufficient lead-chelating capability without substantially influencing the device performance, production cost and recycling. Here we analyse chemical approaches to immobilize Pb2+ from perovskite solar cells, such as grain isolation, lead complexation, structure integration and adsorption of leaked lead, based on their feasibility to suppress lead leakage to a minimal level. We highlight the need for a standard lead-leakage test and related mathematical model to be established for the reliable evaluation of the potential environmental risk of perovskite optoelectronics.
Collapse
Affiliation(s)
- Hui Zhang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University, Nanjing, China
- School of Chemical Engineering and Center for Antibonding Regulated Crystals, Sungkyunkwan University, Suwon, Republic of Korea
| | - Jin-Wook Lee
- Department of Nano Engineering and Department of Nano Science and Technology, SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon, Republic of Korea
- SKKU Institute of Energy Science and Technology (SIEST), Sungkyunkwan University, Suwon, Republic of Korea
| | - Giuseppe Nasti
- Department of Chemical, Materials and Production Engineering, University of Naples Federico II, Naples, Italy
| | | | - Antonio Abate
- Department of Chemical, Materials and Production Engineering, University of Naples Federico II, Naples, Italy.
| | - Michael Grätzel
- SKKU Institute of Energy Science and Technology (SIEST), Sungkyunkwan University, Suwon, Republic of Korea.
- Laboratory of Photonics and Interfaces, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
| | - Nam-Gyu Park
- School of Chemical Engineering and Center for Antibonding Regulated Crystals, Sungkyunkwan University, Suwon, Republic of Korea.
- SKKU Institute of Energy Science and Technology (SIEST), Sungkyunkwan University, Suwon, Republic of Korea.
| |
Collapse
|
6
|
Chai L, Wang H, Li X, Wang H. Comparison of the characteristics of gut microbiota response to lead in Bufo gargarizans tadpole at different developmental stages. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:20907-20922. [PMID: 36261638 DOI: 10.1007/s11356-022-23671-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 10/12/2022] [Indexed: 06/16/2023]
Abstract
In amphibians, lead (Pb) exposure could alter the composition and structure of gut microbiota, but changes involving microbiota of several successive phases following Pb exposure have been less studied. In the present study, we compared the effects of Pb exposure on morphological parameters and gut microbiota of Bufo gargarizans at Gosner stage (Gs) 33, Gs36, and Gs42. Our results showed that total length (TL), snout-vent length (SVL), and body wet weight (TW) of B. gargarizans at Gs33, as well as TL and SVL at Gs42, were significantly increased after Pb exposure. In addition, high-throughput sequencing analysis indicated that gut microbiota has distinct responses to Pb exposure at different developmental stages. The diversity of gut microbiota was significantly reduced under Pb exposure at Gs33, while it was significantly increased at Gs42. In terms of community composition, Spirochaetota, Armatimonadota, and Patescibacteria appeared in the control groups at Gs42, but not after Pb treatment. Furthermore, functional prediction indicated that the relative abundance of metabolism pathway was significantly decreased at Gs33 and Gs36, and significantly increased at Gs42. Our results fill an important knowledge gap and provide comparative information on the gut microbiota of tadpoles at different developmental stages following Pb exposure.
Collapse
Affiliation(s)
- Lihong Chai
- School of Water and Environment, Chang'an University, Xi'an, 710054, China
- Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Chang'an University, Xi'an, 710062, China
| | - Hemei Wang
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
| | - Xinyi Li
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
| | - Hongyuan Wang
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China.
| |
Collapse
|
7
|
Nasti G, Aldamasy MH, Flatken MA, Musto P, Matczak P, Dallmann A, Hoell A, Musiienko A, Hempel H, Aktas E, Di Girolamo D, Pascual J, Li G, Li M, Mercaldo LV, Veneri PD, Abate A. Pyridine Controlled Tin Perovskite Crystallization. ACS ENERGY LETTERS 2022; 7:3197-3203. [PMID: 36277134 PMCID: PMC9578040 DOI: 10.1021/acsenergylett.2c01749] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 08/23/2022] [Indexed: 05/09/2023]
Abstract
Controlling the crystallization of perovskite in a thin film is essential in making solar cells. Processing tin-based perovskite films from solution is challenging because of the uncontrollable faster crystallization of tin than the most used lead perovskite. The best performing devices are prepared by depositing perovskite from dimethyl sulfoxide because it slows down the assembly of the tin-iodine network that forms perovskite. However, while dimethyl sulfoxide seems the best solution to control the crystallization, it oxidizes tin during processing. This work demonstrates that 4-(tert-butyl) pyridine can replace dimethyl sulfoxide to control the crystallization without oxidizing tin. We show that tin perovskite films deposited from pyridine have a 1 order of magnitude lower defect density, which promotes charge mobility and photovoltaic performance.
Collapse
Affiliation(s)
- Giuseppe Nasti
- Department
of Chemical Materials and Production Engineering, University of Naples Federico II, Piazzale Vincenzo Tecchio 80, 80125 Naples, Italy
- Giuseppe
Nasti:
| | - Mahmoud Hussein Aldamasy
- Department
of Novel Materials and Interfaces for Photovoltaic Solar Cells, Helmholtz-Zentrum Berlin für Materialien und
Energie GmbH, Hahn-Meitner-Platz 1, 14109 Berlin, Germany
- Egyptian
Petroleum Research Institute, 4441312 Cairo, Egypt
| | - Marion Alwine Flatken
- Department
of Novel Materials and Interfaces for Photovoltaic Solar Cells, Helmholtz-Zentrum Berlin für Materialien und
Energie GmbH, Hahn-Meitner-Platz 1, 14109 Berlin, Germany
| | - Pellegrino Musto
- National
Research Council of Italy Institute for Polymers Composites and Biomaterials, Via Campi Flegrei 34, 80078 Pozzuoli (NA), Italy
| | - Piotr Matczak
- Faculty
of Chemistry, University of Łódź́́́, 90-149 Lodz, Poland
| | - André Dallmann
- Humboldt
Universität zu Berlin, Institut für Chemie, Brook-Taylor-Str. 2, 12489 Berlin, Germany
| | - Armin Hoell
- Department
of Novel Materials and Interfaces for Photovoltaic Solar Cells, Helmholtz-Zentrum Berlin für Materialien und
Energie GmbH, Hahn-Meitner-Platz 1, 14109 Berlin, Germany
| | - Artem Musiienko
- Department
of Novel Materials and Interfaces for Photovoltaic Solar Cells, Helmholtz-Zentrum Berlin für Materialien und
Energie GmbH, Hahn-Meitner-Platz 1, 14109 Berlin, Germany
| | - Hannes Hempel
- Department
of Novel Materials and Interfaces for Photovoltaic Solar Cells, Helmholtz-Zentrum Berlin für Materialien und
Energie GmbH, Hahn-Meitner-Platz 1, 14109 Berlin, Germany
| | - Ece Aktas
- Department
of Chemical Materials and Production Engineering, University of Naples Federico II, Piazzale Vincenzo Tecchio 80, 80125 Naples, Italy
| | - Diego Di Girolamo
- Department
of Chemical Materials and Production Engineering, University of Naples Federico II, Piazzale Vincenzo Tecchio 80, 80125 Naples, Italy
| | - Jorge Pascual
- Department
of Novel Materials and Interfaces for Photovoltaic Solar Cells, Helmholtz-Zentrum Berlin für Materialien und
Energie GmbH, Hahn-Meitner-Platz 1, 14109 Berlin, Germany
| | - Guixiang Li
- Department
of Novel Materials and Interfaces for Photovoltaic Solar Cells, Helmholtz-Zentrum Berlin für Materialien und
Energie GmbH, Hahn-Meitner-Platz 1, 14109 Berlin, Germany
| | - Meng Li
- Key
Lab for Special Functional Materials of Ministry of Education, National
and Local Joint Engineering Research Center for High-Efficiency Display
and Lighting Technology, School of Materials Science and Engineering,
Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng 475004 China
| | - Lucia Vittoria Mercaldo
- Italian
National Agency for New Technologies, Energy and Sustainable Economic
Development (ENEA) - Portici Research Center, Piazzale E. Fermi, 80055 Portici (NA), Italy
| | - Paola Delli Veneri
- Italian
National Agency for New Technologies, Energy and Sustainable Economic
Development (ENEA) - Portici Research Center, Piazzale E. Fermi, 80055 Portici (NA), Italy
| | - Antonio Abate
- Department
of Chemical Materials and Production Engineering, University of Naples Federico II, Piazzale Vincenzo Tecchio 80, 80125 Naples, Italy
- Department
of Novel Materials and Interfaces for Photovoltaic Solar Cells, Helmholtz-Zentrum Berlin für Materialien und
Energie GmbH, Hahn-Meitner-Platz 1, 14109 Berlin, Germany
- Antonio Abate:
| |
Collapse
|
8
|
Ren M, Qian X, Chen Y, Wang T, Zhao Y. Potential lead toxicity and leakage issues on lead halide perovskite photovoltaics. JOURNAL OF HAZARDOUS MATERIALS 2022; 426:127848. [PMID: 34838362 DOI: 10.1016/j.jhazmat.2021.127848] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 11/05/2021] [Accepted: 11/16/2021] [Indexed: 06/13/2023]
Abstract
Recently, lead halide perovskite solar cells have become a promising next-generation photovoltaics candidate for large-scale application to realize low-cost renewable electricity generation. Although perovskite solar cells have tremendous advantages such as high photovoltaic performance, low cost and facile solution-based fabrication, the issues involving lead could be one of the main obstacles for its commercialization and large-scale applications. Lead has been widely used in photovoltaics industry, yielding its environmental and health issues of vital importance because of the widespread application of photovoltaics. When the solar cell panels especially perovskite solar cells are damaged, lead would possibly leak into the surrounding environment, causing air, soil and groundwater contamination. Therefore, lots of research efforts have been put into evaluating the lead toxicity and potential leakage issues, as well as studying the encapsulation of lead to deal with leakage issue during fire hazard and precipitation in photovoltaics. In this review, we summarize the latest progress on investigating the lead safety issue on photovoltaics, especially lead halide perovskite solar cells, and the corresponding solutions. We also outlook the future development towards solving the lead safety issues from different aspects.
Collapse
Affiliation(s)
- Meng Ren
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Rd., Shanghai 200240, China
| | - Xufang Qian
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Rd., Shanghai 200240, China
| | - Yuetian Chen
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Rd., Shanghai 200240, China
| | - Tianfu Wang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Rd., Shanghai 200240, China
| | - Yixin Zhao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Rd., Shanghai 200240, China.
| |
Collapse
|
9
|
Horváth E, Kollár M, Andričević P, Rossi L, Mettan X, Forró L. Fighting Health Hazards in Lead Halide Perovskite Optoelectronic Devices with Transparent Phosphate Salts. ACS APPLIED MATERIALS & INTERFACES 2021; 13:33995-34002. [PMID: 34261313 DOI: 10.1021/acsami.0c21137] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Organic-inorganic lead halide perovskite (CH3NH3PbI3) solar cells have surpassed 25% power conversion efficiency, being ready for industrial-scale production of cheap photovoltaic (PV) panels. In this action, the major hurdle is its lead content, which in case of device failure, could be washed into the soil, entering the food chain. Since there is a zero tolerance on lead in the human organism, this health hazard is a critical obstacle for commercialization. Here, we propose a solution to this problem by incorporating phosphate salts (e.g., (NH4)2HPO4) in PV and other perovskite-based optoelectronic devices in various architectures. Phosphate salts do not react with CH3NH3PbI3 and do not alter its advantageous optoelectronic properties, but in a wet environment, they react immediately with lead, forming a highly insoluble compound, precluding this way the spread of lead into the environment. It is expected that this study will stimulate research, enabling lead halide perovskite solar cells to reach a similar environmental risk category as the commercially available, nonwater-soluble heavy metal-containing CdTe and gallium diselenide technologies.
Collapse
Affiliation(s)
- Endre Horváth
- Laboratory of Physics of Complex Matter, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
- Institute for Industrial Sciences and Technologies, HEPIA-HES-SO, 1202 Geneva, Switzerland
| | - Marton Kollár
- Laboratory of Physics of Complex Matter, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Pavao Andričević
- Laboratory of Physics of Complex Matter, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Lidia Rossi
- Laboratory of Physics of Complex Matter, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Xavier Mettan
- Laboratory of Physics of Complex Matter, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - László Forró
- Laboratory of Physics of Complex Matter, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| |
Collapse
|
10
|
Kwak JI, Kim L, An YJ. Sublethal toxicity of PbI 2 in perovskite solar cells to fish embryos (Danio rerio and Oryzias latipes): Deformity and growth inhibition. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 771:145388. [PMID: 33545466 DOI: 10.1016/j.scitotenv.2021.145388] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 12/28/2020] [Accepted: 01/19/2021] [Indexed: 05/24/2023]
Abstract
Pb-based perovskite in solar cells is a source of PbI2. The objective of this study was to characterize the embryonic toxicity of PbI2, a potentially leachable chemical and hazardous material, for two fish species (zebrafish and Japanese medaka). A series of measurements were performed to assess mortality, abnormalities (deformities and other pathological changes), hatchability, and growth inhibition. The results obtained showed that the toxicities observed were predominantly associated with Pb2+ and I-. Therefore, given the potential ecotoxicity of PbI2, precautions should be taken to prevent its release during the breakage and disposal of Pb-based perovskite solar cells.
Collapse
Affiliation(s)
- Jin Il Kwak
- Department of Environmental Health Science, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Lia Kim
- Department of Environmental Health Science, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Youn-Joo An
- Department of Environmental Health Science, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea.
| |
Collapse
|
11
|
Buitrago E, Novello AM, Meyer T. Third‐Generation Solar Cells: Toxicity and Risk of Exposure. Helv Chim Acta 2020. [DOI: 10.1002/hlca.202000074] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Elina Buitrago
- Ecole Polytechnique Fédérale de Lausanne (EPFL) Safety Competence Center (DSPS-SCC) Station 6 CH-1015 Lausanne Switzerland
- Ecole Polytechnique Fédérale de Lausanne (EPFL) Group of Chemical and Physical Safety (ISIC-GSCP) Station 6 CH-1015 Lausanne Switzerland
| | - Anna Maria Novello
- Ecole Polytechnique Fédérale de Lausanne (EPFL) Safety Competence Center (DSPS-SCC) Station 6 CH-1015 Lausanne Switzerland
- Ecole Polytechnique Fédérale de Lausanne (EPFL) Group of Chemical and Physical Safety (ISIC-GSCP) Station 6 CH-1015 Lausanne Switzerland
| | - Thierry Meyer
- Ecole Polytechnique Fédérale de Lausanne (EPFL) Safety Competence Center (DSPS-SCC) Station 6 CH-1015 Lausanne Switzerland
- Ecole Polytechnique Fédérale de Lausanne (EPFL) Group of Chemical and Physical Safety (ISIC-GSCP) Station 6 CH-1015 Lausanne Switzerland
| |
Collapse
|
12
|
Patsiou D, Del Rio-Cubilledo C, Catarino AI, Summers S, Mohd Fahmi A, Boyle D, Fernandes TF, Henry TB. Exposure to Pb-halide perovskite nanoparticles can deliver bioavailable Pb but does not alter endogenous gut microbiota in zebrafish. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 715:136941. [PMID: 32041050 DOI: 10.1016/j.scitotenv.2020.136941] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 01/17/2020] [Accepted: 01/24/2020] [Indexed: 05/24/2023]
Abstract
Lead-halide perovskite nanoparticles (NPs) are a new technology, and investigation of toxicity is of considerable importance due to the potential lead (Pb) release into the environment. The aim of the study was to investigate aqueous and dietary toxicity of Pb-halide perovskite NP and Pb in zebrafish Danio rerio. Perovskite NP toxicity was evaluated in zebrafish by mortality, gene expression, histopathology, and phylogenetic analysis of gut microbiota. Zebrafish larvae were exposed to five Pb-halide perovskite NPs in parallel with Pb(NO3)2 exposures, and zebrafish adults were exposed to the three perovskite NPs that caused the strongest effect and Pb(NO3)2. No median lethal concentration (LC50) was observed for zebrafish larvae exposed to up to 200 mg/L of perovskite NPs for 96 h. Mortality, metallothionein 2 (mt2) and δ-aminolevulinic acid dehydratase (ala-d) gene expression (24-h exposure) in zebrafish larvae after aqueous perovskite NPs exposures did not differ from total Pb concentration - response curves. The lack of differences in mortality and gene expression between perovskite NPs and soluble Pb after aqueous exposure suggest that toxicity from perovskite NPs can be attributed to bioavailable Pb rather than nano-specific effects. Induction of mt2 and reduction of ala-d expression levels in liver tissues showed Pb bioavailability after 2-d and 4-d dietary exposure to perovskite-spiked feeds. Changes in gut microbiota of adult zebrafish were detected after 14-d exposure to Pb-spiked food, but no changes were detected from perovskite-NP spiked food. The phylogenetic analysis identified different microbiome profiles of Pb-fed fish compared to perovskite-fed fish suggesting a different mechanism of toxicity. Exposure to Pb-halide perovskite NPs led to absorption of Pb likely from release of Pb ions rather than absorption of NPs. Pb-halide perovskite NPs can release bioavailable Pb and this needs to be considered during the development of this technology.
Collapse
Affiliation(s)
- Danae Patsiou
- Institute of Life and Earth Sciences, School of Energy, Geoscience, Infrastructure and Society, Heriot-Watt University, Edinburgh EH14 4AS, UK; Institute of Oceanography, Hellenic Centre for Marine Research, Athinon-Souniou Ave., P.O. Box 712, 19013 Anavyssos, Greece.
| | - Cristina Del Rio-Cubilledo
- Institute of Life and Earth Sciences, School of Energy, Geoscience, Infrastructure and Society, Heriot-Watt University, Edinburgh EH14 4AS, UK
| | - Ana Isabel Catarino
- Institute of Life and Earth Sciences, School of Energy, Geoscience, Infrastructure and Society, Heriot-Watt University, Edinburgh EH14 4AS, UK; Vlaams Instituut voor de Zee, Flanders Marine Institute InnovOcean site, Wandelaarkaai 7, 8400 Oostende, Belgium.
| | - Stephen Summers
- Institute of Mechanical Process and Energy Engineering, School of Engineering & Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK; Singapore Centre for Environmental Life Science Engineering, Nanyang Technological University, 637551, Singapore
| | - Afiq Mohd Fahmi
- Institute of Mechanical Process and Energy Engineering, School of Engineering & Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK; Fakulti Sains Sekitaran dan Marin, Universiti Malaysia Terengganu, Kuala Nerus, 21300, Malaysia
| | - David Boyle
- Institute of Life and Earth Sciences, School of Energy, Geoscience, Infrastructure and Society, Heriot-Watt University, Edinburgh EH14 4AS, UK; School of Biological and Marine Sciences, University of Plymouth, Plymouth PL4 8AA, UK
| | - Teresa F Fernandes
- Institute of Life and Earth Sciences, School of Energy, Geoscience, Infrastructure and Society, Heriot-Watt University, Edinburgh EH14 4AS, UK
| | - Theodore B Henry
- Institute of Life and Earth Sciences, School of Energy, Geoscience, Infrastructure and Society, Heriot-Watt University, Edinburgh EH14 4AS, UK; Department of Forestry Wildlife and Fisheries, and Center for Environmental Biotechnology, The University of Tennessee, Knoxville, TN 37996, USA.
| |
Collapse
|