1
|
Weng X, Gao MJ, Mao Z, Fu HM, Li SJ, Yan P, Chen YP. Unraveling the resistance mechanism of anammox granular sludge to iron nanoparticles. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 373:123565. [PMID: 39632309 DOI: 10.1016/j.jenvman.2024.123565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 11/07/2024] [Accepted: 11/30/2024] [Indexed: 12/07/2024]
Abstract
Iron nanoparticles (FeNPs) generated from industrial activities could end up into the sewer system, and potentially affect wastewater treatment processes. The impact of FeNPs on anammox process is getting increasing attention. However, the resistance mechanism of anammox granular sludge (AnGS) to FeNPs has not been fully elucidated. The current study investigated the metabolic and morphological response of AnGS to acute and chronic FeNPs exposure. Results showed that nitrogen removal efficiencies were elevated at 1-4 mM FeNPs concentrations compared to 0-0.5 mM FeNPs. Extracellular protein and tyrosine-like and tryptophan-like fluorophore secretions of AnGS were stimulated by FeNPs, which largely contributed to the adsorption of FeNPs on AnGS surface. FeNPs exposure triggered higher necrotic fraction of AnGS compared with no FeNPs condition. Highly absorbed particles appeared inside the bacterial cells of AnGS, soft X-ray imaging illustrated that anammox bacteria maintained intact cellular and anammoxosome structures whereas non-anammox bacterial structures were damaged under FeNPs exposure. Anammox bacterial abundance increased from 4.84% to 20.64%, when FeNPs concentrations increased from 0 mM to 4 mM, and anammoxosome membrane ensured anammox bacterial metabolism under FeNPs exposure. This study extended fundamental understanding of AnGS resistance mechanisms to FeNPs.
Collapse
Affiliation(s)
- Xun Weng
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environments of MOE, Chongqing University, Chongqing, 400045, China
| | - Meng-Jiao Gao
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environments of MOE, Chongqing University, Chongqing, 400045, China
| | - Zheng Mao
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environments of MOE, Chongqing University, Chongqing, 400045, China; Chongqing Institute of Geology and Mineral Resources, Chongqing, 401120, China
| | - Hui-Min Fu
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environments of MOE, Chongqing University, Chongqing, 400045, China; National Research Base of Intelligent Manufacturing Service, Chongqing Technology and Business University, Chongqing, 400067, China
| | - Shi-Jun Li
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environments of MOE, Chongqing University, Chongqing, 400045, China
| | - Peng Yan
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environments of MOE, Chongqing University, Chongqing, 400045, China
| | - You-Peng Chen
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environments of MOE, Chongqing University, Chongqing, 400045, China.
| |
Collapse
|
2
|
Wang YL, Yang YL, Tan X, Li X, Zhao L. Enhanced nutrients removal from low C/N ratio rural sewage by embedding heterotrophic nitrifying bacteria and activated alumina in a tidal flow constructed wetland. BIORESOURCE TECHNOLOGY 2024; 413:131513. [PMID: 39313009 DOI: 10.1016/j.biortech.2024.131513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 09/19/2024] [Accepted: 09/20/2024] [Indexed: 09/25/2024]
Abstract
Rural sewage treatment facilitates nitrogen and phosphorus removal yet can be costly. To address this challenge, a cost-effective embedding material mainly consisting of heterotrophic nitrifying bacteria, activated alumina (AA), and a solid carbon source (HPMC) was applied to a tidal flow constructed wetlands (TFCWs); aimed at stable nitrogen and phosphorus removal under low carbon-to-nitrogen (C/N) ratios. The TFCWs could be shortened to 16 d of startup duration time compared with the control group; and improved the ammonia nitrogen (NH4+-N), total nitrogen (TN), and total phosphorus (TP) removal efficiencies to 98 %, 93 %, and 68 %, respectively. Also, effluent NH4+-N, TN, and TP in the enhanced TFCWs could be stable at 0.52 ± 0.18, 1.23 ± 0.45, and 0.75 ± 0.25 mg/L, respectively. Microbial community analysis revealed that AA and HPMC were enriched Pseudomonas sp., which potentially accelerated the NH4+-N assimilation pathway and phosphate biological removal. Embedding materials-TFCWs can provide new solutions for integrated rural sewage technology.
Collapse
Affiliation(s)
- Yan-Lin Wang
- Faculty of Architecture, Civil and Transportation Engineering, Beijing University of Technology, Beijing 100124, PR China
| | - Yan-Ling Yang
- Faculty of Architecture, Civil and Transportation Engineering, Beijing University of Technology, Beijing 100124, PR China.
| | - Xu Tan
- Faculty of Architecture, Civil and Transportation Engineering, Beijing University of Technology, Beijing 100124, PR China; China Architecture Design and Research Group, Beijing 100044, PR China.
| | - Xing Li
- Faculty of Architecture, Civil and Transportation Engineering, Beijing University of Technology, Beijing 100124, PR China.
| | - Li Zhao
- China Architecture Design and Research Group, Beijing 100044, PR China.
| |
Collapse
|
3
|
Li SW, Xu W, Xie YJ, Fu L, Gao Q, Wang XC, Li Y, Wu ZR. Implementing a completely autotrophic nitrogen removal over nitrite process using a novel umbrella basalt fiber carrier. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2024; 90:270-286. [PMID: 39007319 DOI: 10.2166/wst.2024.188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 05/26/2024] [Indexed: 07/16/2024]
Abstract
The completely autotrophic nitrogen removal over nitrite (CANON) process is significantly hindered by prolonged start-up periods and unstable nitrogen removal efficiency. In this study, a novel umbrella basalt fiber (BF) carrier with good biological affinity and adsorption performance was used to initiate the CANON process. The CANON process was initiated on day 64 in a sequencing batch reactor equipped with umbrella BF carriers. During this period, the influent NH4+-N concentration gradually increased from 100 to 200 mg·L-1, and the dissolved oxygen was controlled below 0.8 mg L-1. Consequently, an average ammonia nitrogen removal efficiency (ARE) and total nitrogen removal efficiency (TNRE) of ∼90 and 80% were achieved, respectively. After 130 days, ARE and TNRE remained stable at 92 and 81.1%, respectively. This indicates a reliable method for achieving rapid start-up and stable operation of the CANON process. Moreover, Candidatus Kuenenia and Candidatus Brocadia were identified as dominant anammox genera on the carrier. Nitrosomonas was the predominant genus among ammonia-oxidizing bacteria. Spatial differences were observed in the microbial population of umbrella BF carriers. This arrangement facilitated autotrophic nitrogen removal in a single reactor. This study indicates that the novel umbrella BF carrier is a highly suitable biocarrier for the CANON process.
Collapse
Affiliation(s)
- Shan-Wei Li
- School of Environmental and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Wei Xu
- School of Environmental and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yu-Jie Xie
- School of Environmental and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Liang Fu
- Engineering Research Center of Low-Carbon Treatment and Green Development of Polluted Water in Northeast China, Northeast Normal University, Changchun 130117, China
| | - Qi Gao
- School of Environmental and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xiao-Chun Wang
- School of Environmental and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Yan Li
- School of Environmental and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Zhi-Ren Wu
- School of Environmental and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China E-mail:
| |
Collapse
|
4
|
Liu X, Yang H, Yang K. Optimizing the hydrolysis-acidification stage in municipal wastewater treatment: comparison of immobilized fillers and granular sludge. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:6288-6300. [PMID: 38147258 DOI: 10.1007/s11356-023-31649-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 12/17/2023] [Indexed: 12/27/2023]
Abstract
The decomposition of organic macromolecules in sewage currently benefits substantially from hydrolysis-acidification. The full use of its qualities can help domestic sewage to biodegrade more quickly, which promotes the subsequent aerobic reactions. This study evaluated the hydrolysis-acidification performance of granular sludge and filler in residential sewage. Both forms were highly effective at producing volatile fatty acids (VFAs) at the beginning of the reaction, but the granular sludge gradually disintegrated over time, particularly at low temperatures. The production of VFAs decreased (68.08 mg/L), and the effluent dissolved organic nitrogen (DON) increased (6.23 mg/L). However, the effluent of fillers remained at a lower level (1.3 mg/L) and produced more VFAs (74.13 mg/L). High-throughput sequencing revealed that the filler included a greater quantity of hydrolytic-acidifying bacteria than the granular sludge, which resulted in higher performance. In this study, the optimal form of utilizing hydrolytic acidifying bacteria was discussed to provide a theoretical basis to improve the full utilization of organic matter in domestic sewage and the removal of as much total nitrogen as possible.
Collapse
Affiliation(s)
- Xuyan Liu
- Hebei GEO University, Shijiazhuang, 050031, China
- Hebei Province Collaborative Innovation Center for Sustainable Utilization of Water Resources and Optimization of Industrial Structure, Shijiazhuang, 050031, China
| | - Hong Yang
- Key Laboratory of Beijing Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, No. 100, Pingleyuan, Chaoyang District, Beijing, 100124, China
| | - Kai Yang
- Shijiazhuang University, Shijiazhuang, 050035, China.
| |
Collapse
|
5
|
Weng X, Fu HM, Mao Z, Yan P, Xu XW, Shen Y, Chen YP. Fate of iron nanoparticles in anammox system: Dissolution, migration and transformation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 348:119323. [PMID: 37852083 DOI: 10.1016/j.jenvman.2023.119323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 10/06/2023] [Accepted: 10/10/2023] [Indexed: 10/20/2023]
Abstract
Iron nanoparticles (FeNPs) are commonly used in various industrial processes, leading to their release into the environment and eventual entrance into wastewater treatment plants (WWTPs). FeNPs undergo dissolution, migration, and transformation in WWTPs, which can potentially affect the stable operation of anaerobic ammonia oxidation (anammox) systems and may be discharged with wastewater or biomass. To better understand the fate of FeNPs in anammox systems, exposure experiments were conducted using anammox granular sludges (AnGS) and FeNPs. Results demonstrated that FeNPs released Fe2+ upon contact with water, with a portion being bound to functional groups in extracellular polymeric substances (EPS) and the rest entering the bacteria to form highly absorbable substances. A significant amount of FeNPs was observed to cover the surface of AnGS or aggregate and deposit at the bottom of the reactor, eventually converting into Fe3O4 and stably existing within the anammox system. The findings of this study clarify the fate of FeNPs in anammox systems and provide important insights into the stable operation of anammox systems under FeNPs exposure.
Collapse
Affiliation(s)
- Xun Weng
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environments of MOE, Chongqing University, Chongqing, 400045, China
| | - Hui-Min Fu
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environments of MOE, Chongqing University, Chongqing, 400045, China; National Research Base of Intelligent Manufacturing Service, Chongqing Technology and Business University, Chongqing, 400067, China
| | - Zheng Mao
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environments of MOE, Chongqing University, Chongqing, 400045, China; Chongqing Institute of Geology and Mineral Resources, Chongqing, 401120, China
| | - Peng Yan
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environments of MOE, Chongqing University, Chongqing, 400045, China
| | - Xiao-Wei Xu
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environments of MOE, Chongqing University, Chongqing, 400045, China
| | - Yu Shen
- National Research Base of Intelligent Manufacturing Service, Chongqing Technology and Business University, Chongqing, 400067, China
| | - You-Peng Chen
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environments of MOE, Chongqing University, Chongqing, 400045, China.
| |
Collapse
|
6
|
Yi M, Wang H, Ma X, Wang C, Wang M, Liu Z, Lu M, Cao J, Ke X. Efficient nitrogen removal of a novel Pseudomonas chengduensis strain BF6 mainly through assimilation in the recirculating aquaculture systems. BIORESOURCE TECHNOLOGY 2023; 379:129036. [PMID: 37037330 DOI: 10.1016/j.biortech.2023.129036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/01/2023] [Accepted: 04/07/2023] [Indexed: 05/03/2023]
Abstract
Biological nitrogen removal has received increasing attention in wastewater treatment. A bacterium with excellent nitrogen removal performance was isolated from biofilters of recirculating aquaculture systems (RAS) and identified as Pseudomonas chengduensis BF6. It was indicated that inorganic nitrogen is transformed into gaseous and biological nitrogen by the metabolic pathways of denitrification, anammox, and assimilation, which is the main nitrogen removal pathway of strain BF6. The strain BF6 could effectively remove nitrogen within 24 h under the conditions of ammonia, nitrate, nitrite, and mixed nitrogen sources with maximum total nitrogen removal efficiencies reaching 97.00 %, 61.40 %, 79.10 %, and 84.98 %, respectively. The strain BF6 exhibited total nitrogen removal efficiency of 91.14 %, altered the microbial diversity and enhanced the relative abundance of Pseudomonas in the RAS biofilter. These findings demonstrate that Pseudomonas sp. BF6 is a highly efficient nitrogen-removing bacterium with great potential for application in aquaculture wastewater remediation.
Collapse
Affiliation(s)
- Mengmeng Yi
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou 510380, PR China
| | - He Wang
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou 510380, PR China
| | - Xiaona Ma
- Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, PR China; College of Bio-systems Engineering and Food Science, Zhejiang University, Hangzhou 310058, PR China
| | - Chun Wang
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, PR China
| | - Miao Wang
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou 510380, PR China
| | - Zhigang Liu
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou 510380, PR China
| | - Maixin Lu
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou 510380, PR China; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming 525000, PR China
| | - Jianmeng Cao
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou 510380, PR China; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming 525000, PR China
| | - Xiaoli Ke
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou 510380, PR China; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming 525000, PR China.
| |
Collapse
|
7
|
Li B, Jiang Y, Wang Y, Li X, Xia K, Tian M, He X. Activity enhancement and the anammox mechanism under low temperature via PVA-SA and nano Fe 2O 3-PVA-SA entrapped beads. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 845:157306. [PMID: 35839881 DOI: 10.1016/j.scitotenv.2022.157306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/29/2022] [Accepted: 07/08/2022] [Indexed: 06/15/2023]
Abstract
Anaerobic ammonia-oxidizing bacteria (AAOB) have a long growth time and low activity at low temperatures. In suspended systems, sludge is easily lost, which limits the mainstream application of anaerobic ammonia oxidation (anammox).Entrapment provides effective ideas for solving these problems. In this study, polyvinyl‑sodium alginate (PVA-SA) and nano Fe2O3-PVA-SA entrapment beads were prepared to discuss the effectiveness of entrapment enhanced anammox sludge at low temperatures. The differences in the entrapped beads and granules were compared to analyze the strengthening mechanism. The results show that the nitrogen removal performance of granules, PVA-SA and nano Fe2O3-PVA-SA entrapped beads, first decreased and then increased during the cooling and low-temperature operation. Nano Fe2O3-PVA-SA entrapped beads showed the smallest decline and the highest degree of recovery. Reaction metering ratio (△NO2--N/△NH4+-N and △NO3--N/△NH4+-N) showed that entrapment could realize Nitrite oxidizing bacteria (NOB) inhibition and improve the activity of denitrifying bacteria (DNB) to promote the removal of total nitrogen by providing a strict anaerobic environment. The results demonstrate that entrapment is beneficial for maintaining the content of heme c, specifically, nano Fe2O3 can stimulate its production, and is beneficial for alleviating the reduction of hydrazine dehydrogenase (HDH) enzyme activity. The extracellular polymeric substances (EPS) content and analysis showed that entrapment does not change the composition of EPS, and can maintain the EPS content. Nano Fe2O3 can stimulate AAOB to secrete more EPS to maintain sludge stability. From a molecular perspective, entrapment can maintain the expression of functional genes, promote the enrichment of AAOB, thus improving the nitrogen removal performance from the dual perspectives of "quality" and "quantity".
Collapse
Affiliation(s)
- Bolin Li
- Wuhan University of Technology, Wuhan, Hubei 430070, China.
| | - Yuqing Jiang
- Wuhan University of Technology, Wuhan, Hubei 430070, China
| | - Yue Wang
- Wuhan University of Technology, Wuhan, Hubei 430070, China
| | - Xiang Li
- Suzhou University of Science and Technology, Suzhou, Jiangsu 215009, China
| | - Kai Xia
- Wuhan University of Technology, Wuhan, Hubei 430070, China
| | - Mengyuan Tian
- Wuhan University of Technology, Wuhan, Hubei 430070, China
| | - Xiaoman He
- Wuhan University of Technology, Wuhan, Hubei 430070, China
| |
Collapse
|
8
|
Zhang Q, Lin JG, Kong Z, Zhang Y. A critical review of exogenous additives for improving the anammox process. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 833:155074. [PMID: 35398420 DOI: 10.1016/j.scitotenv.2022.155074] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/22/2022] [Accepted: 04/02/2022] [Indexed: 06/14/2023]
Abstract
Anammox achieves chemoautotrophic nitrogen removal under anaerobic and anoxic conditions and is a low-carbon wastewater biological nitrogen removal process with broad application potential. However, the physiological limitations of AnAOB often cause problems in engineering applications, such as a long start-up time, unstable operation, easily inhibited reactions, and difficulty in long-term strain preservation. Exogenous additives have been considered an alternative strategy to address these issues by retaining microbes, shortening the doubling time of AnAOB and improving functional enzyme activity. This paper reviews the role of carriers, biochar, intermediates, metal ions, reaction substrates, redox buffers, cryoprotectants and organics in optimizing anammox. The pathways and mechanisms of exogenous additives, which are explored to solve problems, are systematically summarized and analyzed in this article according to operational performance, functional enzyme activity, and microbial abundance to provide helpful information for the engineering application of anammox.
Collapse
Affiliation(s)
- Qi Zhang
- College of the Environment & Ecology, Xiamen University, South Xiang'an Road, Xiang'an District, Xiamen, Fujian 361102, China
| | - Jih-Gaw Lin
- College of the Environment & Ecology, Xiamen University, South Xiang'an Road, Xiang'an District, Xiamen, Fujian 361102, China; Institute of Environmental Engineering, National Chiao Tung University, 1001 University Road, Hsinchu 30010, Taiwan
| | - Zhe Kong
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Yanlong Zhang
- College of the Environment & Ecology, Xiamen University, South Xiang'an Road, Xiang'an District, Xiamen, Fujian 361102, China.
| |
Collapse
|
9
|
Shi Y, Hu Y, Liang D, Wang G, Xie J, Zhu X. Enhanced denitrification of sewage via bio-microcapsules embedding heterotrophic nitrification-aerobic denitrification bacteria Acinetobacter pittii SY9 and corn cob. BIORESOURCE TECHNOLOGY 2022; 358:127260. [PMID: 35550921 DOI: 10.1016/j.biortech.2022.127260] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 04/27/2022] [Accepted: 05/01/2022] [Indexed: 06/15/2023]
Abstract
In this work, bio-microcapsules were prepared by embedding heterotrophic nitrification and aerobic denitrification (HN-AD) bacteria (Acinetobacter Pittii SY9) and corn cob. Bio-microcapsules (20 g/L of corn cob and 30% v/v suspension of strain SY9) were porous (pore size 2579.74-3725.44 nm; porosity 53.6%-79.9%). Under the appropriate conditions (C/N > 2, temperature of 20-35 ℃, rotation speed of 100-120 rpm, pH of 7-9), TN removal efficiency of bio-microcapsules reached 94.4%, and 74.0% of nitrogen was converted into N2. The results of kinetics fitting indicated that aerobic denitrification was the limiting step during HN-AD process. Bio-microcapsules could slow the carbon release of corn cob for 120 days, which ensuring high HN-AD performance even at low C/N of 2.8. Bio-microcapsule SBR could stably run for 88 days with TN removal efficiency > 90% for synthetic sewage. Bio-microcapsules embedding strain SY9 and corn cob have prospective applications for enhancing denitrification of sewage.
Collapse
Affiliation(s)
- Yunqi Shi
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Yongyou Hu
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China.
| | - Donghui Liang
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Guobin Wang
- Guangzhou Pengkai Environment Technology Co., Ltd, Guangzhou 511493, China
| | - Jieyun Xie
- Guangzhou Pengkai Environment Technology Co., Ltd, Guangzhou 511493, China
| | - Xiaoqiang Zhu
- Guangzhou Pengkai Environment Technology Co., Ltd, Guangzhou 511493, China
| |
Collapse
|
10
|
Zou Z, Yang H, Zhang S, Chi W, Wang X, Liu Z. Nitrogen removal performance and microbial community analysis of immobilized biological fillers in rare earth mine wastewater. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
11
|
Gao D, Li Y, Liang H. Biofilm carriers for anaerobic ammonium oxidation: Mechanisms, applications, and roles in mainstream systems. BIORESOURCE TECHNOLOGY 2022; 353:127115. [PMID: 35395366 DOI: 10.1016/j.biortech.2022.127115] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 03/30/2022] [Accepted: 04/01/2022] [Indexed: 06/14/2023]
Abstract
The anaerobic ammonium oxidation (ANAMMOX) process was proposed as the most promising nitrogen removal process. Biofilm carriers were demonstrated to effectively enhance the anaerobic ammonium oxidating bacteria (AnAOB) retention. This paper reviews the effect of carrier properties on the AnAOB biofilm development according to the biofilm development process and the application state-of-art of three major kinds of conventional carriers, organic-based, inorganic-based carriers, and gel carriers, from the view of system performance and functional microorganisms. The carrier modification methods and purpose are thoroughly summarized and classified into three categories corresponding to various carrier defects. Four important aspects of the desirable carrier for the mainstream ANAMMOX process were proposed, including providing spatial configuration, enhancing the biomass retention, reinforcing the activity, and improving the growth environment, which needs to combine the advantages of organic and inorganic materials. Eventually, the future application directions of novel carriers for the ANAMMOX-based process were also highlighted.
Collapse
Affiliation(s)
- Dawen Gao
- School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing 100044, China.
| | - Yuqi Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Hong Liang
- School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| |
Collapse
|
12
|
Wang J, Liang J, Ning D, Zhang T, Wang M. A review of biomass immobilization in anammox and partial nitrification/anammox systems: Advances, issues, and future perspectives. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 821:152792. [PMID: 35033568 DOI: 10.1016/j.scitotenv.2021.152792] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 12/11/2021] [Accepted: 12/26/2021] [Indexed: 06/14/2023]
Abstract
Two biomass immobilization techniques; entrapment and carrier-based, attract increasing attention in anammox and partial nitrification/anammox (PN/A) systems. This paper provides a comprehensive review of the advances, outstanding issues, and future research directions in this field. The application of both entrapment and carrier-based biofilm immobilization for reactor start up, improving the nitrogen removal performance, and protecting autotrophic bacteria from environmental fluctuations in anammox and partial nitrification/anammox systems are summarized and discussed. The key characteristics of carriers for biomass immobilization are biocompatibility for supporting microbial growth, permeability for effective mass transfer, and physical/chemical stability for long-term use. Carriers without these characteristics must be improved and re-evaluated for their feasibility in applications. Lab-scale, pilot, and full-scale studies are needed to overcome the potential obstacles of preliminary studies, and to investigate the long-term performance of biomass immobilization techniques, especially using real wastewater as influent, which may introduce more complexity and threaten the carrier's immobilization. In addition, calculating the 'nitrogen removal rate normalized by the packing ratio of carriers (NRR-C)' in the immobilization system is strongly suggested to obtain a direct comparison of immobilization performance/limitations from different studies. This review will improve understanding of the major challenges of immobilization technology in anammox and PN/A systems and provide insights into the next-stage of research and full-scale applications.
Collapse
Affiliation(s)
- Jinxing Wang
- Department of Environmental Engineering, Xi'an Jiaotong University, Xi'an 710049, China; College of Horticulture, North West Agriculture and Forestry University, Yangling 712100, China
| | - Jidong Liang
- Department of Environmental Engineering, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Dingying Ning
- Department of Environmental Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Tengge Zhang
- Department of Energy and Mineral Engineering and EMS Energy Institute, The Pennsylvania State University, University Park, PA 16802, USA
| | - Meng Wang
- Department of Energy and Mineral Engineering and EMS Energy Institute, The Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
13
|
Chowdhury MMI, Nakhla G. Enhanced mainstream nitrogen removal from synthetic wastewater using gel-immobilized anammox in fluidized bed bioreactors: Process performance and disintegration mechanisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 811:151373. [PMID: 34748847 DOI: 10.1016/j.scitotenv.2021.151373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/27/2021] [Accepted: 10/28/2021] [Indexed: 06/13/2023]
Abstract
Anammox retention, which is crucial for successful nitrogen removal because of slow growth, is still a major challenge. Fixed film processes or gel-immobilization techniques can minimize biomass washout. However, the detachment mechanisms from gel-immobilized beads are still unclear. Despite the widely known advantages of fluidized bed reactor (FBR) with respect to biomass retention, the technology has not been investigated for anammox processes, and thus, the current study evaluated the feasibility of using immobilized anammox gel beads as a carrier media in anammox fluidized bed reactor (AFBR), with a particular focus on understanding detachment mechanisms. The study optimized the packing ratio in AFBR and compared holed and non-holed beads. The optimum packing ratio (on a volumetric basis) was 30% (v/v) with a nitrogen removal rate (NRR) of 0.40 kg N/m3-d at a volumetric nitrogen loading rate (NLR) of 0.51 kg N/m3-d. Biomass detachment rates increased linearly with specific anammox activity (SAA). The fluidized bed reactor employing holed (more porous) anammox gel beads (HFBR) exhibited 20% lower biomass detachment rates than the non-holed fluidized bed reactor (NHFBR). Moreover, the HFBR achieved a maximum NRR of 0.81 kg N/m3-d at NLR of 1.01 kg N/m3-d after 35 days without operational problems, whereas the NHFBR with non-holed anammox gel beads failed after 30 days. The hindrance to diffusion of the generated nitrogen gas was the main mechanism of beads breakup and biomass washout, and thus, the sustainability of the beads hinges on increased external porosity. Therefore, developing microporous gel beads is critical for achieving a high rate stable anammox process that overcomes the limitations of the current technologies.
Collapse
Affiliation(s)
| | - George Nakhla
- Civil and Environmental Engineering, University of Western Ontario, London, ON N6A 5B9, Canada; Chemical and Biochemical Engineering, University of Western Ontario, London, ON N6A 5B9, Canada.
| |
Collapse
|
14
|
Islam Chowdhury MM, Nakhla G. Anammox enrichment: impact of sludge retention time on nitrogen removal. ENVIRONMENTAL TECHNOLOGY 2021; 43:1-12. [PMID: 34240682 DOI: 10.1080/09593330.2021.1951846] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 06/25/2021] [Indexed: 06/13/2023]
Abstract
Enrichment of anammox bacteria has long been considered to be time-consuming because of the slow growth rate. This study evaluated the impact of sludge retention time (SRT) on the enrichment of anammox bacteria with a focus on nitrogen removal and specific anammox activity (SAA) in sequencing batch reactors (SBR). A total of eight different SRTs in the range of 30-1280 days at nitrogen loading rates (NLR) range from 12.1 to 122.1 mg/L-d were used to evaluate the anammox activity. SAA was negligible during the first 105 days due to denitrification and continued to increase thereafter to peak at 0.22 g N/g VSS-d on day 530 as the solids and hydraulic retention times (SRT and HRT) decreased from 120 to 80 days and 10 to 2 days, respectively. The stability of SAA (0.21 ± 0.02 g N/g VSS-d) from day 503 to day 670 indicates that anammox bacteria should be enriched at SRTs ranging from 30 to 80 days and NLR of 122.1 mg N/L-d. Moreover, the SBR achieved a maximum nitrogen removal efficiency of 86.6% at an SRT of 30 days and an NLR of 122 mg/L-d. Microbial analysis indicated that the two most abundant microorganisms accounting for 48% of the bacterial population are Anammoxoglobus followed by the heterotrophic denitrifier Rhizobiales. The maximum specific growth rate (was estimated as 0.062 d-1, consistent with typical of 0.057 d-1. The average first-order decay rate was estimated as 0.008 d-1, and the half-saturation constants (ks) averaged 16.2 mg NH4-N/L.
Collapse
Affiliation(s)
| | - George Nakhla
- Civil and Environmental Engineering, University of Western Ontario, London, Canada
- Chemical and Biochemical Engineering, University of Western Ontario, London, Canada
| |
Collapse
|
15
|
Wang Y, Li B, Li Y, Chen X. Research progress on enhancing the performance of autotrophic nitrogen removal systems using microbial immobilization technology. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 774:145136. [PMID: 33609842 DOI: 10.1016/j.scitotenv.2021.145136] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 01/05/2021] [Accepted: 01/08/2021] [Indexed: 06/12/2023]
Abstract
The autotrophic nitrogen removal process has great potential to be applied to the biological removal of nitrogen from wastewater, but its application is hindered by its unstable operation under adverse environmental conditions, such as those presented by low temperatures, high organic matter concentrations, or the presence of toxic substances. Granules and microbial entrapment technology can effectively retain and enrich microbial assemblages in reactors to improve operating efficiency and reactor stability. The carriers can also protect the reactor's internal microorganisms from interference from the external environment. This article critically reviews the existing literature on autotrophic nitrogen removal systems using immobilization technology. We focus our discussion on the natural aggregation process (granulation) and entrapment technology. The selection of carrier materials and entrapment methods are identified and described in detail and the mechanisms through which entrapment technology protects microorganisms are analyzed. This review will provide a better understanding of the mechanisms through which immobilization operates and the prospects for immobilization technology to be applied in autotrophic nitrogen removal systems.
Collapse
Affiliation(s)
- Yue Wang
- School of Resource and Environmental Engineering, Wuhan University of Technology, Wuhan, Hubei 430070, China
| | - Bolin Li
- School of Resource and Environmental Engineering, Wuhan University of Technology, Wuhan, Hubei 430070, China.
| | - Ye Li
- School of Resource and Environmental Engineering, Wuhan University of Technology, Wuhan, Hubei 430070, China
| | - Xiaoguo Chen
- School of Resource and Environmental Engineering, Wuhan University of Technology, Wuhan, Hubei 430070, China
| |
Collapse
|
16
|
Berillo D, Al-Jwaid A, Caplin J. Polymeric Materials Used for Immobilisation of Bacteria for the Bioremediation of Contaminants in Water. Polymers (Basel) 2021; 13:1073. [PMID: 33805360 PMCID: PMC8037671 DOI: 10.3390/polym13071073] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/21/2021] [Accepted: 03/22/2021] [Indexed: 02/07/2023] Open
Abstract
Bioremediation is a key process for reclaiming polluted soil and water by the use of biological agents. A commonly used approach aims to neutralise or remove harmful pollutants from contaminated areas using live microorganisms. Generally, immobilised microorganisms rather than planktonic cells have been used in bioremediation methods. Activated carbon, inorganic minerals (clays, metal oxides, zeolites), and agricultural waste products are acceptable substrates for the immobilisation of bacteria, although there are limitations with biomass loading and the issue with leaching of bacteria during the process. Various synthetic and natural polymers with different functional groups have been used successfully for the efficient immobilisation of microorganisms and cells. Promise has been shown using macroporous materials including cryogels with entrapped bacteria or cells in applications for water treatment and biotechnology. A cryogel is a macroporous polymeric gel formed at sub-zero temperatures through a process known as cryogelation. Macroporous hydrogels have been used to make scaffolds or supports for immobilising bacterial, viral, and other cells. The production of composite materials with immobilised cells possessing suitable mechanical and chemical stability, porosity, elasticity, and biocompatibility suggests that these materials are potential candidates for a range of applications within applied microbiology, biotechnology, and research. This review evaluates applications of macroporous cryogels as tools for the bioremediation of contaminants in wastewater.
Collapse
Affiliation(s)
- Dmitriy Berillo
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton BN2 4GJ, UK
- Department of Biotechnology, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan
- Department of Pharmaceutical and Toxicological Chemistry, Pharmacognosy and Botany School of Pharmacy, Asfendiyarov Kazakh National Medical University, Almaty 050000, Kazakhstan
| | - Areej Al-Jwaid
- School of Environment and Technology, University of Brighton, Brighton BN2 4GJ, UK; (A.A.-J.); (J.C.)
- Environment and Pollution Engineering Technical Department, Basrah Engineering Technical College, Southern Technical University, Basra 61003, Iraq
| | - Jonathan Caplin
- School of Environment and Technology, University of Brighton, Brighton BN2 4GJ, UK; (A.A.-J.); (J.C.)
| |
Collapse
|
17
|
Chen J, Zhou X, Cao X, Li S. Optimizing anammox capacity for weak wastewater in an AnSBBR using aerobic activated sludge as inoculation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 280:111649. [PMID: 33187776 DOI: 10.1016/j.jenvman.2020.111649] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 11/04/2020] [Accepted: 11/05/2020] [Indexed: 06/11/2023]
Abstract
Process optimization is essential for improving the efficiency of anaerobic ammonium oxidation (anammox) process in a practical application. In this study, an anaerobic sequence biofilm batch reactor (AnSBBR) inoculated with aerobic activated sludge was chosen as an efficient mainstream anammox reactor for treating low-nitrogen wastewater. To optimize the AnSBBR-anammox process, eight different operation stages lasting for a total of 215 days were conducted by regulating key process parameters. Principal components analysis revealed significant effects of the substrate ratio (SR) and volumetric exchange ratio (VER) on anammox performance, while other parameters (cycle time, hydraulic retention time and nitrogen loading rate) played minor roles. The highest removal efficiencies for ammonia and total nitrogen, respectively, reached 99.8% and 95.3% under optimal conditions. High-throughput sequencing found the anammox species Candidatus Brocadia and Candidatus Kuenenia made up as much as 8.5% and 3.5%, respectively, of the microbial community. Redundancy analysis indicated that these taxa were also greatly influenced by operating parameters, particularly SR and VER. This research helps to decode the correlations among nitrogen removal capacity, process parameters and the microbial community to enhance anammox in an AnSBBR system.
Collapse
Affiliation(s)
- Jiabo Chen
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, China; Innovation Center for Postgraduate Education in Municipal Engineering of Shanxi Province, Taiyuan, 030024, China
| | - Xin Zhou
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, China; Innovation Center for Postgraduate Education in Municipal Engineering of Shanxi Province, Taiyuan, 030024, China.
| | - Xiwei Cao
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, China; Innovation Center for Postgraduate Education in Municipal Engineering of Shanxi Province, Taiyuan, 030024, China
| | - Shuhan Li
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, China; Innovation Center for Postgraduate Education in Municipal Engineering of Shanxi Province, Taiyuan, 030024, China
| |
Collapse
|
18
|
Wang H, Peng L, Mao N, Geng J, Ren H, Xu K. Effects of Fe 3+ on microbial communities shifts, functional genes expression and nitrogen transformation during the start-up of Anammox process. BIORESOURCE TECHNOLOGY 2021; 320:124326. [PMID: 33166881 DOI: 10.1016/j.biortech.2020.124326] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 10/17/2020] [Accepted: 10/23/2020] [Indexed: 06/11/2023]
Abstract
In this study, the effect of Fe3+ on the start-up of Anammox process was investigated. Four EGSB reactors were operated with the addition of 0 (R1), 0.04 (R2), 0.08 (R3) and 0.14 (R4) mmol/L Fe3+, respectively. The results showed that Fe3+ remarkably improved the nitrogen loading rate (NLR) and operation efficiency of the reactor. After 180 days, the influent NH4+-N concentration in the four reactors was 201.4, 301.8, 343.2, 380.2 mg N/L, and the NLR was 589.3, 877.6, 993.0, 1105.8 mg N/(L·d), respectively. And the nitrogen removal rate (NRR) in R2, R3 and R4 was respectively 1.54, 1.73 and 1.94 times of that in R1. High throughput sequencing revealed that Fe3+ could promote the enrichment of Anammox bacteria Candidatus Brocadia. Moreover, the analysis by qPCR indicated that the abundance of Anammox 16S rRNA gene and the functional gene hzsB increased, which showed a positive correlation with the concentration of Fe3+.
Collapse
Affiliation(s)
- Haiyue Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Ling Peng
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Nianjia Mao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Jinju Geng
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Hongqiang Ren
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Ke Xu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China.
| |
Collapse
|
19
|
Activated sludge under free ammonia treatment using gel immobilization technology for long-term partial nitrification with different initial biomass. Process Biochem 2020. [DOI: 10.1016/j.procbio.2020.07.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|