1
|
Han YH, Cui XW, Wang HY, Lai XB, Zhu Y, Li JB, Xie RR, Zhang Y, Zhang H, Chen Z. Recruitment of copiotrophic and autotrophic bacteria by hyperaccumulators enhances nutrient cycling to reclaim degraded soils at abandoned rare earth elements mining sites. JOURNAL OF HAZARDOUS MATERIALS 2025; 488:137351. [PMID: 39874764 DOI: 10.1016/j.jhazmat.2025.137351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/16/2025] [Accepted: 01/22/2025] [Indexed: 01/30/2025]
Abstract
Hyperaccumulators harbor potentials for remediating rare earth elements (REEs)-contaminated soils. However, how they thrive in low-nutrient abandoned REEs mining sites is poorly understood. Three ferns (REEs-hyperaccumulators Dicranopteris pedata and Blechnum orientale, and non-hyperaccumulator Pteris vittata) along with their rhizosphere soils were collected to answer this question by comparing differences in soil nutrient levels, soil and plant REEs concentrations, and bacterial diversity, composition, and functions. Results observed lower soil pH (4.67-4.95 vs. 7.96), total carbon (TC) (0.35-0.62 vs. 2.84 g kg-1), total nitrogen (TN) (20-23 vs. 133 mg kg-1), and total phosphorus (TP) (81-91 vs. 133 mg kg-1) at sites Dp and Bo than site Pv. Hyperaccumulators efficiently extracted soil REEs and translocated them to fronds (up to 6897-7759 mg kg-1). Bacterial α diversity in three soils did not significantly vary. In contrast, bacterial composition at sites Dp and Bo was dominant by higher abundances of copiotrophic bacteria (18 % vs. 12 %, p_Actinomycetota; 3.3-8.3 % vs. 1.9 %, p_Bacteroidota; 8.3-14 % vs. 6.9 %, c_Gammaproteobacteria) and autotrophic bacteria (18 % vs. 13 %, p_Chloroflexota; 13 % vs. 8.6 %, p_Cyanobacteriota) when compared to site Pv. These bacteria likely acted as nutrient cyclers that promoted the growth of hyperaccumulators, based on functional predictions from DiTing analyses. This study provides new insights into nutrient recovery in abandoned REEs mining sites, offering strategies to reclaim degraded soils using phyto-microbial technology.
Collapse
Affiliation(s)
- Yong-He Han
- Fujian Key Laboratory of Pollution Control and Resource Reuse, College of Environmental and Resource Sciences, Fujian Normal University, Fuzhou, Fujian 350117, China.
| | - Xi-Wen Cui
- Fujian Key Laboratory of Pollution Control and Resource Reuse, College of Environmental and Resource Sciences, Fujian Normal University, Fuzhou, Fujian 350117, China
| | - Hai-Yan Wang
- Key Laboratory for Humid Subtropical Eco-Geographical Processes of the Ministry of Education, Fujian Normal University, Fuzhou, Fujian 350117, China
| | - Xiao-Bin Lai
- Changting Branch of Zhongxi (Fujian) Rare Earth Mining Co., LTD., China Rare Earth Group, Longyan, Fujian 364000, China
| | - Ying Zhu
- Fujian Center for Disease Control & Prevention, Fuzhou, Fujian 350012, China
| | - Jia-Bing Li
- Fujian Key Laboratory of Pollution Control and Resource Reuse, College of Environmental and Resource Sciences, Fujian Normal University, Fuzhou, Fujian 350117, China
| | - Rong-Rong Xie
- Fujian Key Laboratory of Pollution Control and Resource Reuse, College of Environmental and Resource Sciences, Fujian Normal University, Fuzhou, Fujian 350117, China
| | - Yong Zhang
- Fujian Key Laboratory of Pollution Control and Resource Reuse, College of Environmental and Resource Sciences, Fujian Normal University, Fuzhou, Fujian 350117, China
| | - Hong Zhang
- Fujian Key Laboratory of Pollution Control and Resource Reuse, College of Environmental and Resource Sciences, Fujian Normal University, Fuzhou, Fujian 350117, China
| | - Zhibiao Chen
- Key Laboratory for Humid Subtropical Eco-Geographical Processes of the Ministry of Education, Fujian Normal University, Fuzhou, Fujian 350117, China.
| |
Collapse
|
2
|
Wei S, Moriuchi R, Wiyono CDAP, Inoue C, Chien MF. Unraveling tissue-specific molecular mechanisms orchestrating arsenic response processes in Pteris vittata through transcriptomic analysis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 294:118059. [PMID: 40121942 DOI: 10.1016/j.ecoenv.2025.118059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 03/12/2025] [Accepted: 03/13/2025] [Indexed: 03/25/2025]
Abstract
Pteris vittata remediates arsenic (As)-contaminated soils; however, the molecular mechanisms underlying the As management remain largely unknown. Therefore, in this study, we investigated As - related processes by conducting transcriptomic analysis on hydroponically grown P. vittata exposed to 500 ppb arsenate (AsV). Within 24 h, As was translocated to fronds, while As concentration among fronds differed (4.08-1323.35 µg/g-DW). Transcriptomic profiling of roots and fronds with high (PHAs) and low (PLAs) As concentrations revealed distinct As transport mechanisms. In the roots, the induction of PvPht1;3 and one PHO1 genes suggested the facilitation of AsV absorption, while ACR3 and POT genes were induced in both the roots and fronds. Notably, NRT2.5, NIP6;1, BOR2, and ABC transporter genes were specifically activated in PHAs, highlighting their potential roles in As hyperaccumulation. To our knowledge, this is the first report linking PHO1, POT, NRT2.5, NIP6;1, and BOR2 to As accumulation in P. vittata. Gene ontology enrichment analysis further emphasized a tissue-specific As response system. In the roots, differentially expressed genes (DEGs) associated with the activation of glutathione metabolic process, cell wall biogenesis, antioxidant response, and signal transduction pathways enabled a prompt response to As-derived stimuli, facilitating efficient As uptake and transport. In the fronds, DEGs related to cell wall modification, oxidative stress response, signal transduction, and active transport systems may contribute to As detoxification and hyperaccumulation. This study provides novel insights into the molecular basis of As uptake, transport, accumulation, and detoxification in P. vittata, providing valuable strategies for efficient phytoextraction via regulation of As metabolism.
Collapse
Affiliation(s)
- Shujun Wei
- Graduate School of Environmental Studies, Tohoku University, Aoba 6-6-20, Aramaki, Aoba-ku, Sendai 980-8579, Japan; CAS Center for Excellence in Molecular Plant Sciences, 300 Fenglin Road, Xuhui District, Shanghai 200032, China
| | - Ryota Moriuchi
- Functional Genomics Section, Shizuoka Instrumental Analysis Center, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| | - Christine Dwi A P Wiyono
- Graduate School of Environmental Studies, Tohoku University, Aoba 6-6-20, Aramaki, Aoba-ku, Sendai 980-8579, Japan; Faculty of Science and Technology, Seikei University, 3-3-1 Kichijoji Kitamachi, Musashino City, Tokyo 180-8633, Japan
| | - Chihiro Inoue
- Graduate School of Environmental Studies, Tohoku University, Aoba 6-6-20, Aramaki, Aoba-ku, Sendai 980-8579, Japan
| | - Mei-Fang Chien
- Graduate School of Environmental Studies, Tohoku University, Aoba 6-6-20, Aramaki, Aoba-ku, Sendai 980-8579, Japan.
| |
Collapse
|
3
|
Chi Y, Wang R, Zhang X, Ma X, Qin T, Zhang D, Chu S, Zhao T, Zhou P, Zhang D. Identification of cadmium-tolerant plant growth-promoting rhizobacteria and characterization of its Cd-biosorption and strengthening effect on phytoremediation: Development of a new amphibious-biocleaner for Cd-contaminated site. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 371:123225. [PMID: 39504667 DOI: 10.1016/j.jenvman.2024.123225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/21/2024] [Accepted: 11/01/2024] [Indexed: 11/08/2024]
Abstract
The use of plant growth-promoting rhizobacteria (PGPR) in decontaminating cadmium-contaminated soil and water is a sustainable and eco-friendly approach. This study aimed to isolate a PGPR strain from the rhizosphere soil of Solanum nigrum and evaluate its potential and mechanisms in remediating Cd-contaminated environments. The results showed that the isolated strain, Klebsiella sp. AW2, can tolerate 240 mg/L Cd2+. Batch biosorption experiments indicated that the optimal conditions for PGPR biosorption were a pH of 5.0, a biosorbent dosage of 1.0 g/L, and a Cd2+ concentration of 10 mg/L, resulting in a biosorption rate of 40.99%. Model fitting results revealed that the Cd biosorption process followed a uniform surface monolayer chemisorption mechanism, likely involving complexation with functional groups such as -NH, -OH, and -C=O, according to Fourier transform infrared spectrometer and desorption experiments. Furthermore, pot experiments demonstrated that PGPR application significantly enhanced the phytoremediation efficiency of Cd-contaminated soil, increasing the phytoextraction ratio by 32.41%. This improvement was primarily achieved by promoting S. nigrum growth and facilitating Cd horizontal transfer from rhizosphere soil to plants through influencing the rhizosphere soil physicochemical properties and Cd2+ influx in roots. In addition, the copy number of the 16S rRNA gene of the PGPR revealed that the PGPR was predominantly localized in the rhizosphere soil, directly leading to increased availability of Cd for plant uptake. Overall, these findings indicate that Klebsiella sp. AW2 is a promising biocleaner for Cd-contaminated environments and provide valuable insights into the application of biosorbents in phytoremediation efforts.
Collapse
Affiliation(s)
- Yaowei Chi
- School of Agriculture and Biology, Shanghai Jiaotong University, Shanghai, 200240, China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, Shanghai, 200240, China; Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, Shanghai, 200240, China; Shanghai Urban Forest Ecosystem Research Station, National Forestry and Grassland Administration, Shanghai, 200240, China; Bor S. Luh Food Safety Research Center, Shanghai, 200240, China; Yunnan Dali Research Institute, Shanghai Jiaotong University, Shanghai, 200240, China
| | - Renyuan Wang
- School of Agriculture and Biology, Shanghai Jiaotong University, Shanghai, 200240, China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, Shanghai, 200240, China; Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, Shanghai, 200240, China; Shanghai Urban Forest Ecosystem Research Station, National Forestry and Grassland Administration, Shanghai, 200240, China; Bor S. Luh Food Safety Research Center, Shanghai, 200240, China; Yunnan Dali Research Institute, Shanghai Jiaotong University, Shanghai, 200240, China
| | - Xia Zhang
- School of Agriculture and Biology, Shanghai Jiaotong University, Shanghai, 200240, China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, Shanghai, 200240, China; Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, Shanghai, 200240, China; Shanghai Urban Forest Ecosystem Research Station, National Forestry and Grassland Administration, Shanghai, 200240, China; Bor S. Luh Food Safety Research Center, Shanghai, 200240, China; Yunnan Dali Research Institute, Shanghai Jiaotong University, Shanghai, 200240, China
| | - Xianzhong Ma
- School of Agriculture and Biology, Shanghai Jiaotong University, Shanghai, 200240, China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, Shanghai, 200240, China; Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, Shanghai, 200240, China; Shanghai Urban Forest Ecosystem Research Station, National Forestry and Grassland Administration, Shanghai, 200240, China; Bor S. Luh Food Safety Research Center, Shanghai, 200240, China; Yunnan Dali Research Institute, Shanghai Jiaotong University, Shanghai, 200240, China
| | - Tian Qin
- School of Agriculture and Biology, Shanghai Jiaotong University, Shanghai, 200240, China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, Shanghai, 200240, China; Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, Shanghai, 200240, China; Shanghai Urban Forest Ecosystem Research Station, National Forestry and Grassland Administration, Shanghai, 200240, China; Bor S. Luh Food Safety Research Center, Shanghai, 200240, China; Yunnan Dali Research Institute, Shanghai Jiaotong University, Shanghai, 200240, China
| | - Dongwei Zhang
- School of Agriculture and Biology, Shanghai Jiaotong University, Shanghai, 200240, China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, Shanghai, 200240, China; Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, Shanghai, 200240, China; Shanghai Urban Forest Ecosystem Research Station, National Forestry and Grassland Administration, Shanghai, 200240, China; Bor S. Luh Food Safety Research Center, Shanghai, 200240, China; Yunnan Dali Research Institute, Shanghai Jiaotong University, Shanghai, 200240, China
| | - Shaohua Chu
- School of Agriculture and Biology, Shanghai Jiaotong University, Shanghai, 200240, China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, Shanghai, 200240, China; Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, Shanghai, 200240, China; Shanghai Urban Forest Ecosystem Research Station, National Forestry and Grassland Administration, Shanghai, 200240, China; Bor S. Luh Food Safety Research Center, Shanghai, 200240, China; Yunnan Dali Research Institute, Shanghai Jiaotong University, Shanghai, 200240, China
| | - Ting Zhao
- Yunnan Dali Research Institute, Shanghai Jiaotong University, Shanghai, 200240, China
| | - Pei Zhou
- School of Agriculture and Biology, Shanghai Jiaotong University, Shanghai, 200240, China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, Shanghai, 200240, China; Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, Shanghai, 200240, China; Shanghai Urban Forest Ecosystem Research Station, National Forestry and Grassland Administration, Shanghai, 200240, China; Bor S. Luh Food Safety Research Center, Shanghai, 200240, China; Yunnan Dali Research Institute, Shanghai Jiaotong University, Shanghai, 200240, China
| | - Dan Zhang
- School of Agriculture and Biology, Shanghai Jiaotong University, Shanghai, 200240, China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, Shanghai, 200240, China; Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, Shanghai, 200240, China; Shanghai Urban Forest Ecosystem Research Station, National Forestry and Grassland Administration, Shanghai, 200240, China; Bor S. Luh Food Safety Research Center, Shanghai, 200240, China; Yunnan Dali Research Institute, Shanghai Jiaotong University, Shanghai, 200240, China.
| |
Collapse
|
4
|
Lin J, Dai H, Yuan J, Tang C, Ma B, Xu J. Arsenic-induced enhancement of diazotrophic recruitment and nitrogen fixation in Pteris vittata rhizosphere. Nat Commun 2024; 15:10003. [PMID: 39562570 PMCID: PMC11577039 DOI: 10.1038/s41467-024-54392-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 11/07/2024] [Indexed: 11/21/2024] Open
Abstract
Heavy metal contamination poses an escalating global challenge to soil ecosystems, with hyperaccumulators playing a crucial role in environmental remediation and resource recovery. The enrichment of diazotrophs and resulting nitrogen accumulation promoted hyperaccumulator growth and facilitated phytoremediation. Nonetheless, the regulatory mechanism of hyperaccumulator biological nitrogen fixation has remained elusive. Here, we report the mechanism by which arsenic regulates biological nitrogen fixation in the arsenic-hyperaccumulator Pteris vittata. Field investigations and greenhouse experiments, based on multi-omics approaches, reveal that elevated arsenic stress induces an enrichment of key diazotrophs, enhances plant nitrogen acquisition, and thus improves plant growth. Metabolomic analysis and microfluidic experiments further demonstrate that the upregulation of specific root metabolites plays a crucial role in recruiting key diazotrophic bacteria. These findings highlight the pivotal role of nitrogen-acquisition mechanisms in the arsenic hyperaccumulation of Pteris vittata, and provide valuable insights into the plant stress resistance.
Collapse
Affiliation(s)
- Jiahui Lin
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou, China
| | - Hengyi Dai
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou, China
| | - Jing Yuan
- Department of Environmental Science and Forestry, Connecticut Agricultural Experiment Station, New Haven, CT, USA
| | - Caixian Tang
- La Trobe Institute for Sustainable Agriculture and Food, Department of Animal, Plant & Soil Sciences, Bundoora, VIC, Australia
| | - Bin Ma
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou, China
| | - Jianming Xu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China.
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou, China.
| |
Collapse
|
5
|
Song Y, Zhang F, Li H, Gao Y, Liu Y, Zhang Z, Fang Y, Liu X, Yang Z. Dominant role of soil iron and organic matters in arsenic transfer from soil to plant in a mine area in Hunan Province, Central China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:55410-55421. [PMID: 39230812 DOI: 10.1007/s11356-024-34675-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 08/06/2024] [Indexed: 09/05/2024]
Abstract
The transfer of arsenic (As) from soil to plant could be significantly influenced by soil parameters through regulating soil As bioavailability. To distinguish the bioavailable As provided by soil and the As uptaken by plants, herein two different soil bioavailable were defined, namely potential soil bioavailable As (evaluated through the bioavailable fraction of As) and actual soil bioavailable As (assessed through plant bioaccumulation factor, BF, and BFavailable). To identify the dominant soil parameters for the two soil bioavailable As forms, soil and plant samples were collected from a former As mine site. The results showed that the potential bioavailable As only accounted for 1.77 to 11.43% in the sampled soils, while the BF and BFavailable in the sampled vegetables ranged from 0.00 to 1.01 and 0.01 to 17.87, respectively. Despite a similar proportion of As in the residual fraction, soil with higher pH and organic matter (OM) content and lower iron (Fe) content showed a higher potential soil bioavailable As. Correlation analysis indicated a relationship between the soil pH and potential soil bioavailable As (r = 0.543, p < 0.01) and between the soil Fe and actual soil bioavailable As (r = - 0.644, p < 0.05, r = - 0.594, p < 0.05). Stepwise multiple linear regression (SMLR) analysis was employed to identify the dominant soil parameters and showed that soil pH and phosphorus (P) content could be used to predict the potential soil bioavailable As (R2 = 0.69, p < 0.001). On the other hand, soil Fe and OM could be used to predict the actual soil bioavailable As (R2 = 0.18-0.86, p < 0.001-0.015, in different vegetables). These results suggest that different soil parameters affect potential and actual soil bioavailable As. Hence, soil Fe and OM are the most important parameters controlling As transfer from soil to plant in the investigated area.
Collapse
Affiliation(s)
- Yang Song
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha, China
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha, China
| | - Fenglin Zhang
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha, China
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha, China
| | - Haipu Li
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha, China.
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha, China.
| | - Ya Gao
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha, China
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha, China
| | - Yang Liu
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha, China
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha, China
| | - Zhaoxue Zhang
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha, China
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha, China
| | - Ying Fang
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha, China
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha, China
| | - Xinghao Liu
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha, China
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha, China
| | - Zhaoguang Yang
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha, China
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha, China
| |
Collapse
|
6
|
Han YH, Li YX, Chen X, Zhang H, Zhang Y, Li W, Liu CJ, Chen Y, Ma LQ. Arsenic-enhanced plant growth in As-hyperaccumulator Pteris vittata: Metabolomic investigations and molecular mechanisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:171922. [PMID: 38522532 DOI: 10.1016/j.scitotenv.2024.171922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/19/2024] [Accepted: 03/21/2024] [Indexed: 03/26/2024]
Abstract
The first-known As-hyperaccumulator Pteris vittata is efficient in As uptake and translocation, which can be used for phytoremediation of As-contaminated soils. However, the underlying mechanisms of As-enhanced plant growth are unknown. We used untargeted metabolomics to investigate the potential metabolites and associated metabolic pathways regulating As-enhanced plant growth in P. vittata. After 60 days of growth in an MS-agar medium containing 15 mg kg-1 As, P. vittata biomass was 33-34 % greater than the no-As control. Similarly, the As contents in P. vittata roots and fronds were 272 and 1300 mg kg-1, considerably greater than the no-As control. Univariate and multivariate analyses based on electrospray ionization indicate that As exposure changed the expression of 1604 and 1248 metabolites in positive and negative modes. By comparing with the no-As control, As exposure significantly changed the expression of 14 metabolites including abscisic acid, d-glucose, raffinose, stachyose, chitobiose, xylitol, gibberellic acids, castasterone, citric acid, riboflavin-5-phosphate, ubiquinone, ubiquinol, UDP-glucose, and GDP-glucose. These metabolites are involved in phytohormone synthesis, energy metabolism, and sugar metabolism and may all potentially contribute to regulating As-enhanced plant growth in P. vittata. Our data provide clues to understanding the metabolic regulations of As-enhanced plant growth in P. vittata, which helps to enhance its phytoremediation efficiency of As-contaminated soils.
Collapse
Affiliation(s)
- Yong-He Han
- Fujian Key Laboratory of Pollution Control and Resource Reuse, College of Environmental and Resource Sciences, Fujian Normal University, Fuzhou 350117, China
| | - Yi-Xi Li
- Fujian Key Laboratory of Pollution Control and Resource Reuse, College of Environmental and Resource Sciences, Fujian Normal University, Fuzhou 350117, China
| | - Xian Chen
- Fujian Key Laboratory of Pollution Control and Resource Reuse, College of Environmental and Resource Sciences, Fujian Normal University, Fuzhou 350117, China
| | - Hong Zhang
- Fujian Key Laboratory of Pollution Control and Resource Reuse, College of Environmental and Resource Sciences, Fujian Normal University, Fuzhou 350117, China
| | - Yong Zhang
- Fujian Key Laboratory of Pollution Control and Resource Reuse, College of Environmental and Resource Sciences, Fujian Normal University, Fuzhou 350117, China
| | - Wei Li
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Chen-Jing Liu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Yanshan Chen
- School of Environment, Nanjing Normal University, Nanjing, Jiangsu 210023, China.
| | - Lena Q Ma
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Science, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
7
|
Singh S, Gupta A, Mishra H, Srivastava S, Patra PK. Vetiver grass cleans up arsenic contaminated field for subsequent safe cultivation of rice with low arsenic in grains: A two year field study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 923:171491. [PMID: 38447720 DOI: 10.1016/j.scitotenv.2024.171491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 03/01/2024] [Accepted: 03/03/2024] [Indexed: 03/08/2024]
Abstract
The presence of high concentrations of arsenic (As) in agricultural soils and its subsequent accumulation in rice crop is a serious issue threatening sustainability of agriculture and human health. In the present work, remediation of As contaminated field in Nadia, West Bengal, India was done through the cultivation of Vetiver (Vetiveria zizanoides L. Nash) and the same field was subsequently used for rice (Oryza sativa L.) cultivation. The results showed that V. zizanoides could reduce As concentrations in the field to bring it lower than the maximum permissible limit (20 mg kg-1) in 11 months' time. The rice plants grown in remediated field showed improvement in growth and photosynthesis parameters as compared to that of contaminated field. Importantly, yield related parameters (filled seed, 1000 grain weight, number of panicles etc.) were also significantly higher in remediated field than that in contaminated field. Arsenic concentration in roots, shoot, husk and grains of rice was found to be significantly lower in remediated field than in contaminated field. Grain As decreased from 0.75 to 0.77 μg g-1 dw in contaminated field to 0.15-0.18 μg g-1 dw. In conclusion, replacing rice for single year with V. zizanoides crop can significantly remediate the field and can be a viable option.
Collapse
Affiliation(s)
- Shraddha Singh
- Nuclear Agriculture & Biotechnology Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, Maharashtra, India; Homi Bhabha National Institute, Mumbai (MH) 400094, Maharashtra, India.
| | - Ankita Gupta
- Plant Stress Biology Laboratory, Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi 221005, UP, India
| | - Himanshu Mishra
- Architectural & Structural Engineering Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, Maharashtra, India
| | - Sudhakar Srivastava
- Plant Stress Biology Laboratory, Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi 221005, UP, India
| | - Prasanta K Patra
- Department of Agricultural Chemistry and Soil Science, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, Nadia (WB), India
| |
Collapse
|
8
|
Yu T, Chen X, Zeng XC, Wang Y. Biological oxidation of As(III) and Sb(III) by a novel bacterium with Sb(III) oxidase rather than As(III) oxidase under anaerobic and aerobic conditions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 916:169893. [PMID: 38185173 DOI: 10.1016/j.scitotenv.2024.169893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 12/31/2023] [Accepted: 01/02/2024] [Indexed: 01/09/2024]
Abstract
Sb and As are chemically similar, but the sequences and structures of Sb(III) and As(III) oxidase are totally distinct. It is thus interesting to explore whether Sb(III) oxidase oxidizes As(III), and if so, how microbial oxidations of Sb(III) and As(III) influence one another. Previous investigations have yielded ambiguous or even erroneous conclusions. This study aimed to clarify this issue. Firstly, we prepared a consortium of Sb(III)-oxidizing prokaryotes (SOPs) by enrichment cultivation. Metagenomic analysis reveals that SOPs with the Sb(III) oxidase gene, but lacking the As(III) oxidase gene are predominant in the SOP community. Despite this, SOPs exhibit comparable Sb(III) and As(III)-oxidizing activities in both aerobic and anaerobic conditions, indicating that at the microbial community level, Sb(III) oxidase can oxidize As(III). Secondly, we isolated a representative cultivable SOP, Ralstonia sp. SbOX with Sb(III) oxidase gene but without As(III) oxidase gene. Genomic analysis of SbOX reveals that this SOP strain has a complete Sb(III) oxidase (AnoA) gene, but lacks As(III) oxidase (AioAB or ArxAB) gene. It is interesting to discover that, besides its Sb(III) oxidation activities, SbOX also exhibits significant capabilities in oxidizing As(III) under both aerobic and anaerobic conditions. Moreover, under aerobic conditions and in the presence of both Sb(III) and As(III), SbOX exhibited a preference for oxidizing Sb(III). Only after the near complete oxidation of Sb(III) did SbOX initiate rapid oxidation of As(III). In contrast, under anaerobic conditions and in the presence of both Sb(III) and As(III), Sb(III) oxidation notably inhibited the As(III) oxidation pathway in SbOX, while As(III) exhibited minimal effects on the Sb(III) oxidation. These findings suggest that SOPs can oxidize As(III) under both aerobic and anaerobic conditions, exhibiting a strong preference for Sb(III) over As(III) oxidation in the presence of both. This study unveils a novel mechanism of interaction within the Sb and As biogeochemical cycles.
Collapse
Affiliation(s)
- Tingting Yu
- State Key Laboratory of Biogeology and Environmental Geology & School of Environmental Studies, China University of Geosciences (Wuhan), Wuhan, China
| | - Xiaoming Chen
- State Key Laboratory of Biogeology and Environmental Geology & School of Environmental Studies, China University of Geosciences (Wuhan), Wuhan, China
| | - Xian-Chun Zeng
- State Key Laboratory of Biogeology and Environmental Geology & School of Environmental Studies, China University of Geosciences (Wuhan), Wuhan, China.
| | - Yanxin Wang
- State Key Laboratory of Biogeology and Environmental Geology & School of Environmental Studies, China University of Geosciences (Wuhan), Wuhan, China
| |
Collapse
|
9
|
Zhao F, Han Y, Shi H, Wang G, Zhou M, Chen Y. Arsenic in the hyperaccumulator Pteris vittata: A review of benefits, toxicity, and metabolism. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 896:165232. [PMID: 37392892 DOI: 10.1016/j.scitotenv.2023.165232] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 06/27/2023] [Accepted: 06/28/2023] [Indexed: 07/03/2023]
Abstract
Arsenic (As) is a toxic metalloid, elevated levels of which in soils are becoming a major global environmental issue that poses potential health risks to humans. Pteris vittata, the first known As hyperaccumulator, has been successfully used to remediate As-polluted soils. Understanding why and how P. vittata hyperaccumulates As is the core theoretical basis of As phytoremediation technology. In this review, we highlight the beneficial effects of As in P. vittata, including growth promotion, elemental defense, and other potential benefits. The stimulated growth of P. vittata induced by As can be defined as As hormesis, but differs from that in non-hyperaccumulators in some aspects. Furthermore, the As coping mechanisms of P. vittata, including As uptake, reduction, efflux, translocation, and sequestration/detoxification are discussed. We hypothesize that P. vittata has evolved strong As uptake and translocation capacities to obtain beneficial effects from As, which gradually leads to As accumulation. During this process, P. vittata has developed a strong As vacuolar sequestration ability to detoxify overloaded As, which enables it to accumulate extremely high As concentrations in its fronds. This review also provides insights into several important research gaps that need to be addressed to advance our understanding of As hyperaccumulation in P. vittata from the perspective of the benefits of As.
Collapse
Affiliation(s)
- Fei Zhao
- School of Environment, Nanjing Normal University, Nanjing 210023, China; Jiangsu Engineering Lab of Water and Soil Eco-remediation, Nanjing Normal University, Nanjing 210023, China
| | - Yu Han
- School of Environment, Nanjing Normal University, Nanjing 210023, China; Jiangsu Engineering Lab of Water and Soil Eco-remediation, Nanjing Normal University, Nanjing 210023, China
| | - Hongyi Shi
- School of Environment, Nanjing Normal University, Nanjing 210023, China; Jiangsu Engineering Lab of Water and Soil Eco-remediation, Nanjing Normal University, Nanjing 210023, China
| | - Guoxiang Wang
- School of Environment, Nanjing Normal University, Nanjing 210023, China; Jiangsu Engineering Lab of Water and Soil Eco-remediation, Nanjing Normal University, Nanjing 210023, China
| | - Mingxi Zhou
- Biology Centre, Czech Academy of Sciences, Institute of Plant Molecular Biology, 37005 Ceske Budejovice, Czech Republic.
| | - Yanshan Chen
- School of Environment, Nanjing Normal University, Nanjing 210023, China; Jiangsu Engineering Lab of Water and Soil Eco-remediation, Nanjing Normal University, Nanjing 210023, China.
| |
Collapse
|
10
|
Liu CJ, Peng YJ, Hu CY, He SX, Xiao SF, Li W, Deng SG, Dai ZH, Ma LQ. Copper enhanced arsenic-accumulation in As-hyperaccumulator Pteris vittata by upregulating its gene expression for As uptake, translocation, and sequestration. JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132484. [PMID: 37688872 DOI: 10.1016/j.jhazmat.2023.132484] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/18/2023] [Accepted: 09/03/2023] [Indexed: 09/11/2023]
Abstract
In contaminated soils, arsenic (As) often co-exists with copper (Cu). However, its effects on As accumulation and the related mechanisms in As-hyperaccumulator Pteris vittata remain unclear. In this study, P. vittata plants were exposed to 50 µM As and/or 50 µM Cu under hydroponics to investigate the effects of Cu on plant growth and As accumulation, as well as gene expression related to arsenic uptake (P transporters), reduction (arsenate reductases), and translocation and sequestration (arsenite antiporters). After 14 d of growth and compared to the As treatment, the As concentration in P. vittata fronds increased by 1.4-times from 793 to 1131 mg·kg-1 and its biomass increased by 1.2-fold from 18.0 to 21.1 g·plant-1 in the As+Cu treatment. Copper-enhanced As accumulation was probably due to upregulated gene expressions related to As-metabolisms including As uptake (1.9-fold in P transporter PvPht1;3), translocation (2.1-2.4 fold in arsenite antiporters PvACR3/3;2) and sequestration (1.5-2.0 fold in arsenite antiporters PvACR3;1/3;3). Our results suggest that moderate amount of Cu can help to increase the As accumulation efficiency in P. vittata, which has implication in its application in phytoremedation in As and Cu co-contaminated soils.
Collapse
Affiliation(s)
- Chen-Jing Liu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - You-Jing Peng
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Chun-Yan Hu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Si-Xue He
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Shu-Fen Xiao
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Wei Li
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Song-Ge Deng
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Zhi-Hua Dai
- School of Ecology and Environment, Anhui Normal University, Wuhu, Anhui, 241000, China
| | - Lena Q Ma
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
11
|
Corzo Remigio A, Harris HH, Paterson DJ, Edraki M, van der Ent A. Chemical transformations of arsenic in the rhizosphere-root interface of Pityrogramma calomelanos and Pteris vittata. Metallomics 2023; 15:mfad047. [PMID: 37528060 PMCID: PMC10427965 DOI: 10.1093/mtomcs/mfad047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 07/31/2023] [Indexed: 08/03/2023]
Abstract
Pityrogramma calomelanos and Pteris vittata are cosmopolitan fern species that are the strongest known arsenic (As) hyperaccumulators, with potential to be used in the remediation of arsenic-contaminated mine tailings. However, it is currently unknown what chemical processes lead to uptake of As in the roots. This information is critical to identify As-contaminated soils that can be phytoremediated, or to improve the phytoremediation process. Therefore, this study identified the in situ distribution of As in the root interface leading to uptake in P. calomelanos and P. vittata, using a combination of synchrotron micro-X-ray fluorescence spectroscopy and X-ray absorption near-edge structure imaging to reveal chemical transformations of arsenic in the rhizosphere-root interface of these ferns. The dominant form of As in soils was As(V), even in As(III)-dosed soils, and the major form in P. calomelanos roots was As(III), while it was As(V) in P. vittata roots. Arsenic was cycled from roots growing in As-rich soil to roots growing in control soil. This study combined novel analytical approaches to elucidate the As cycling in the rhizosphere and roots enabling insights for further application in phytotechnologies to remediated As-polluted soils.
Collapse
Affiliation(s)
- Amelia Corzo Remigio
- Centre for Water in the Minerals Industry, Sustainable Minerals Institute, The University of Queensland, Brisbane, Australia
| | - Hugh H Harris
- Department of Chemistry, The University of Adelaide, Adelaide, Australia
| | | | - Mansour Edraki
- Centre for Water in the Minerals Industry, Sustainable Minerals Institute, The University of Queensland, Brisbane, Australia
| | - Antony van der Ent
- Centre for Mined Land Rehabilitation, Sustainable Minerals Institute, The University of Queensland, Brisbane, Australia
- Laboratory of Genetics, Wageningen University and Research, Wageningen, The Netherlands
- Laboratoire Sols et Environnement, INRAE, Université de Lorraine, Nancy, France
| |
Collapse
|
12
|
Wang W, Yang X, Mo Q, Li Y, Meng D, Li H. Intercropping efficiency of Pteris vittata with two legume plants: Impacts of soil arsenic concentrations. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 259:115004. [PMID: 37196521 DOI: 10.1016/j.ecoenv.2023.115004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 04/17/2023] [Accepted: 05/10/2023] [Indexed: 05/19/2023]
Abstract
Intercropping of hyperaccumulators with crops has emerged as a promising method for remediating arsenic (As)-contaminated soil in agroecosystems. However, the response of intercropping hyperaccumulators with different types of legume plants to diverse gradients of As-contaminated soil remains poorly understood. In this study, we assessed the response of plant growth and accumulation of an As hyperaccumulator (Pteris vittata L.) intercropped with two legume plants to three gradients of As-contaminated soil. Results indicated that soil As concentration had a substantial effect on the As uptake by plants. P. vittata growing in slightly As-contaminated soil (80 mg kg-1) exhibited higher As accumulation (1.52-5.49 folds) than those in higher As-contaminated soil (117 and 148 mg kg-1), owing to the lower soil pH in high As-contaminated soil. Intercropping with Sesbania cannabina L. increased As accumulation in P. vittata by 19.3%- 53.9% but decreased in intercropping with Cassia tora L. This finding was attributed to S. cannabina providing more NO3--N to P. vittata to support its growth, and higher resistance to As. The decreased rhizosphere pH in the intercropping treatment also resulted in the increased As accumulation in P. vittata. Meanwhile, the As concentrations in the seeds of the two legume plants met the national food standards(<0.5 mg kg-1). Therefore, the intercropping P. vittata with S. cannabina is a highly effective intercropping system in slightly As-contaminated soil and provides a potent method for As phytoremediation.
Collapse
Affiliation(s)
- Wenjuan Wang
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture of China, Guangzhou 510642, China
| | - Xu Yang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Qifeng Mo
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
| | - Yinshi Li
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture of China, Guangzhou 510642, China
| | - Dele Meng
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture of China, Guangzhou 510642, China
| | - Huashou Li
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture of China, Guangzhou 510642, China.
| |
Collapse
|
13
|
Peng YJ, Hu CY, Li W, Dai ZH, Liu CJ, Ma LQ. Arsenic induced plant growth by increasing its nutrient uptake in As-hyperaccumulator Pteris vittata: Comparison of arsenate and arsenite. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 322:121168. [PMID: 36740166 DOI: 10.1016/j.envpol.2023.121168] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 01/04/2023] [Accepted: 01/28/2023] [Indexed: 06/18/2023]
Abstract
Arsenic-hyperaccumulator Pteris vittata is efficient in taking up arsenate (AsV) and arsenite (AsIII), however, their impacts on P. vittata growth and nutrient uptake remain unclear. The uptake of AsV and AsIII, their influences on nutrient uptake and plant biomass, and As speciation were investigated in P. vittata after exposing to 5 or 50 μM AsV or AsIII for 12 d under hydroponics. The results show that AsV uptake in P. vittata was 1.2 times more efficient than AsIII, corresponding to 1.7-2.1 fold greater biomass than the control at 50 μM As. While AsV was dominant in the roots at ∼60%, AsIII was more dominant in the fronds at ∼70% in all treatments. Macronutrients P, K, Ca, and S were increased by 118-185% at 50 μM As, with greater uptake of micronutrients Fe, Mn, Cu, and Zn at 5 μM As. Further, positive correlations between P. vittata biomass and its As contents (r = 0.97), and P. vittata biomass and its S, Mg, P, or Ca contents (r = 0.70-0.98) were observed. Our results suggest that its increased nutrient uptake probably enhanced P. vittata growth under As exposure.
Collapse
Affiliation(s)
- You-Jing Peng
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, and Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou, 310058, China
| | - Chun-Yan Hu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, and Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou, 310058, China
| | - Wei Li
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, and Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou, 310058, China
| | - Zhi-Hua Dai
- School of Ecology and Environment, Anhui Normal University, Wuhu, Anhui, 241000, China
| | - Chen-Jing Liu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, and Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou, 310058, China
| | - Lena Q Ma
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, and Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
14
|
Bi D, Zheng D, Shi M, Hu Q, Wang H, Zhi H, Lou D, Zhang A, Hu Y. Role of SESTRIN2/AMPK/ULK1 pathway activation and lysosomes dysfunction in NaAsO 2-induced liver injury under oxidative stress. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 254:114751. [PMID: 36907090 DOI: 10.1016/j.ecoenv.2023.114751] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 02/10/2023] [Accepted: 03/06/2023] [Indexed: 06/18/2023]
Abstract
Arsenic, a serious environmental poison to human health, is widely distributed in nature. As the main organ of arsenic metabolism, liver is easily damaged. In the present study, we found that arsenic exposure can cause liver injury in vivo and in vitro, to date the underlying mechanism of which is yet unclear. Autophagy is a process that depends on lysosomes to degrade damaged proteins and organelles. Here, we reported that oxidative stress can be induced and then activated the SESTRIN2/AMPK/ULK1 pathway, damaged lysosomes, and finally induced necrosis upon arsenic exposure in rats and primary hepatocytes, which was characterized by lipidation of LC3II, the accumulation of P62 and the activation of RIPK1 and RIPK3. Similarly, lysosomes function and autophagy can be damaged under arsenic exposure, which can be alleviated after NAC treatment and aggravated by Leupeptin treatment in primary hepatocytes. Moreover, we also found that the transcription and protein expressions of necrotic-related indicators RIPK1 and RIPK3 in primary hepatocytes were decreased after P62 siRNA. Taken together, the results revealed that arsenic can induce oxidative stress, activate SESTRIN2/AMPK/ULK1 pathway to damage lysosomes and autophagy, and eventually induce necrosis to damage liver.
Collapse
Affiliation(s)
- Dingnian Bi
- Key Laboratory of Enviromental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang 550025, Guizhou, PR China
| | - Dan Zheng
- Guiyang Maternity and Child Health Hospital, Guizhou, PR China
| | - Mingyang Shi
- Key Laboratory of Enviromental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang 550025, Guizhou, PR China
| | - Qian Hu
- Key Laboratory of Enviromental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang 550025, Guizhou, PR China
| | - Hongling Wang
- Key Laboratory of Enviromental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang 550025, Guizhou, PR China
| | - Haiyan Zhi
- Key Laboratory of Enviromental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang 550025, Guizhou, PR China
| | - Didong Lou
- Department of Forensic Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, Guizhou, PR China; Key Laboratory of Traditional Chinese Medicine Toxicology in Forensic Medicine, Guizhou Education Department, Guiyang 550025, Guizhou, PR China
| | - Aihua Zhang
- Key Laboratory of Enviromental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang 550025, Guizhou, PR China
| | - Yong Hu
- Key Laboratory of Enviromental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang 550025, Guizhou, PR China.
| |
Collapse
|
15
|
Wan X, Zeng W, Zhang D, Wang L, Lei M, Chen T. Changes in the concentration, distribution, and speciation of arsenic in the hyperaccumulator Pteris vittata at different growth stages. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 841:156708. [PMID: 35718183 DOI: 10.1016/j.scitotenv.2022.156708] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 05/25/2022] [Accepted: 06/11/2022] [Indexed: 06/15/2023]
Abstract
The arsenic (As) hyperaccumulator has become a model plant for the study of the interaction between plants and trace elements. However, the change in As concentration, distribution and speciation of hyperaccumulator Pteris vittata at different growth stages, especially with the aging process remains unknown. We collected P. vittata at different growth ages and analyzed As concentration, distribution, and speciation. Furthermore, metabolic profiling was conducted for P. vittata at different growth stages. With aging, the reduced glutathione/ oxidized glutathione ratio decreased while the malondialdehyde content increased, accompanied by the change in the main As speciation in P. vittata from arsenite to arsenate. Metabolic profiling also indicated significant difference in the compositions of metabolites during different growth stages. Specifically, flavonoid compounds were found to be positively correlated with As concentration. Results indicated that with the aging of P. vittata, the redox potential increased in the pinnae, leading to the oxidation of As, which may have impacted the distribution of As in this fern. Furthermore, the correlation between As concentration and flavonoid compounds implied the essential role of flavonoid metabolism in the accumulation and transport of As in this plant.
Collapse
Affiliation(s)
- Xiaoming Wan
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Weibin Zeng
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Degang Zhang
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Honghe University, Mengzi 661199, China
| | - Lingqing Wang
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mei Lei
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tongbin Chen
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
16
|
Antenozio ML, Capobianco G, Costantino P, Vamerali T, Bonifazi G, Serranti S, Brunetti P, Cardarelli M. Arsenic accumulation in Pteris vittata: Time course, distribution, and arsenic-related gene expression in fronds and whole plantlets. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 309:119773. [PMID: 35841986 DOI: 10.1016/j.envpol.2022.119773] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 07/08/2022] [Accepted: 07/10/2022] [Indexed: 06/15/2023]
Abstract
In this work, arsenic (As) accumulation and distribution over time in Pteris vittata young fronds from adult plants and in whole plantlets, grown on a highly contaminated As-soil, was determined by μ-XRF. A linear increase in As content up to 60 days was found in young fronds at different times, and a progressive distribution from the apex to the base of the fronds was observed. In whole plantlets, As signal was detectable from 9 to 20 days in the apex of a few fronds and fiddleheads. Later, up to 60 days, As was localized in all fronds, in the rhizome and in basal part of the roots. The dynamics of expression of As-related genes revealed a good correlation between As content and the level of the As (III)-antiporter PvACR3 transcript in plantlets roots and fronds and in young fronds. Moreover, the transcription of As (V)-related gametophytic genes PvGAPC1, PvOCT4 increases over time during As accumulation while PvGSTF1 is expressed only in roots. Here, we demonstrate the suitability of the μ-XRF technique to monitor As accumulation, which allowed us to propose that As is initially directly transported to fiddleheads and apex of fronds, is later distributed to the whole fronds and simultaneously accumulated in the rhizome and roots. We also provide indications on the expression of candidate genes possibly involved in As (hyper)accumulation.
Collapse
Affiliation(s)
- Maria Luisa Antenozio
- Istituto di Biologia e Patologia Molecolari, Consiglio Nazionale delle Ricerche, Sapienza Università di Roma, 00185, Rome, Italy; Dipartimento di Biologia e Biotecnologie, Sapienza Università di Roma, 00185, Rome, Italy
| | - Giuseppe Capobianco
- Dipartimento di Ingegneria Chimica Materiali Ambiente, La Sapienza - University of Roma, Via Eudossiana, 18, 00184, Rome, Italy
| | - Paolo Costantino
- Dipartimento di Biologia e Biotecnologie, Sapienza Università di Roma, 00185, Rome, Italy
| | - Teofilo Vamerali
- Dipartimento di Agronomia, Animali, Alimenti, Risorse Naturali e Ambiente, University of Padua, Viale dell'Università 16, 35020, Legnaro, Padua, Italy
| | - Giuseppe Bonifazi
- Dipartimento di Ingegneria Chimica Materiali Ambiente, La Sapienza - University of Roma, Via Eudossiana, 18, 00184, Rome, Italy
| | - Silvia Serranti
- Dipartimento di Ingegneria Chimica Materiali Ambiente, La Sapienza - University of Roma, Via Eudossiana, 18, 00184, Rome, Italy
| | - Patrizia Brunetti
- Istituto di Biologia e Patologia Molecolari, Consiglio Nazionale delle Ricerche, Sapienza Università di Roma, 00185, Rome, Italy.
| | - Maura Cardarelli
- Istituto di Biologia e Patologia Molecolari, Consiglio Nazionale delle Ricerche, Sapienza Università di Roma, 00185, Rome, Italy
| |
Collapse
|
17
|
Dai ZH, Ding S, Chen JY, Han R, Cao Y, Liu X, Tu S, Guan DX, Ma LQ. Selenate increased plant growth and arsenic uptake in As-hyperaccumulator Pteris vittata via glutathione-enhanced arsenic reduction and translocation. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127581. [PMID: 34736212 DOI: 10.1016/j.jhazmat.2021.127581] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/16/2021] [Accepted: 10/20/2021] [Indexed: 06/13/2023]
Abstract
The beneficial effects of selenium on As uptake and plant growth in As-hyperaccumulator Pteris vittata are known, but the associated mechanisms remain unclear. Here, we investigated the effects of selenate on arsenic accumulation by P. vittata under two arsenate levels. P. vittata plants were exposed to 13 (As13) or 133 µM (As133) arsenate and 5 µM selenate in 0.2-strength Hoagland solution. After 14 d of growth, plant biomass, Se and As content, As speciation, and malondialdehyde (MDA), glutathione reductase (GR), glutathione peroxidase (GPX), and glutathione (GSH and GSSG) levels were determined. The results show that selenate promoted P. vittata growth and increased As concentrations in the roots and fronds by 256% from 97 to 346 mg kg-1 and 142% from 213 to 514 mg kg-1 under As13 treatment, and by 166% from 500 to 1332 mg kg-1 and 534% from 777 to 4928 mg kg-1 under As133 treatment. In addition, selenate increased the glutathione content in P. vittata roots and fronds by 75-86% under As13 treatment and 44-45% under As133 treatment. Selenate also increased the GPX activity by 161-173%, and GR activity by 72-79% in P. vittata under As13 and As133 treatments. The HPLC-ICP-MS analysis indicated that selenate increased both AsIII and AsV levels in P. vittata, with AsIII/AsV ratio being lower in the roots and higher in the fronds, i.e., more AsIII was being translocated to the fronds. Taken together, our results suggest that, via GPX-GR mediated enhancement of GSH-GSSG cycle, selenate effectively increases plant growth and As uptake in P. vittata by improving AsV reduction in the roots and AsIII translocation from the roots to the fronds.
Collapse
Affiliation(s)
- Zhi-Hua Dai
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Song Ding
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jia-Yi Chen
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Ran Han
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yue Cao
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Xue Liu
- Institute of Environmental Remediation and Human Health, Southwest Forestry University, Kunming 650224, China
| | - Shuxin Tu
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Dong-Xing Guan
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Lena Q Ma
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
18
|
Yang J, Yan Y, Lu N, Wan X, Yang J, Shi H, Chen T, Lei M. The key nodes and main factors influencing accumulation of soil arsenic in Pteris vittata L. under field conditions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 807:150787. [PMID: 34619206 DOI: 10.1016/j.scitotenv.2021.150787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 09/10/2021] [Accepted: 09/10/2021] [Indexed: 06/13/2023]
Abstract
Identifying the inflection points and main influencing factors for arsenic (As) accumulation in Pteris vittata L. under field conditions is important to improve the phytoremediation efficiency. In this study, data on the entire growth cycle (270 days) of P. vittata over a year were recorded through a field trial. The results showed that the As accumulation characteristics of P. vittata were obviously different from those observed in greenhouse experiments. The aboveground biomass of P. vittata began to stabilize on day 180; the As concentration increased to a peak on day 90 and subsequently declined until day 180. The As accumulation was 318.11 g/hm2 after 120 days, reaching 96.7% of the highest value predicted by the logistic model. The results indicated that soil humidity is the key influencing factor for As accumulation by P. vittata. Increasing the soil humidity can substantially improve the As extraction efficiency. Based on the results of As accumulation in P. vittata, it could be suggested that the effect of As efflux on P. vittata was not significant. According to theoretical calculations, the total As loss caused by rainfall leaching accounted for less than 2.2% of the total As accumulation. The parameters obtained herein are significant for guiding the remediation of As-contaminated soils under similar climatic conditions.
Collapse
Affiliation(s)
- Jun Yang
- Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yunxian Yan
- Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Nanjia Lu
- Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaoming Wan
- Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Junxing Yang
- Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huading Shi
- Technical Centre for Soil, Agricultural and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing 100012, China.
| | - Tongbin Chen
- Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mei Lei
- Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
19
|
Gupta K, Srivastava S, Saxena G, Kumar A. Application of Pteris vittata L. for phytoremediation of arsenic and biomonitoring of the process through cyto-genetic biomarkers of Trigonella foenum-graecum L. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2022; 28:91-106. [PMID: 35221574 PMCID: PMC8847651 DOI: 10.1007/s12298-022-01124-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 12/28/2021] [Accepted: 12/31/2021] [Indexed: 06/14/2023]
Abstract
The arsenic (As) contamination demands its remediation from the environment which is naturally possible by the application of Pteris vittata L. However, biomonitoring of phytoremediation potential of P. vittata at chromosomal and DNA level is still meager. The present study was designed to biomonitor the phytoremediation efficiency of P. vittata through phytotoxic and cyto-genotoxic biomarkers assessment using Trigonella foenum-graecum L. (Fenugreek; Methi) as test system. Study revealed hyperaccumulation potential of P. vittata which extracted arsenic in its tissues. Biomonitoring evaluation depicted that phytotoxic damage was reduced in Trigonella exposed to remediated soil, which was revealed through reduced electrolyte leakage, hydrogen peroxide and MDA content. Moreover, cyto-genetic endpoints like mitotic depression (44.03%), relative abnormality rate (16.6%) and chromosomal abnormality frequency (1.06%) were also lesser in test plants grown in remediated soil compared to those grown in non-remediated soil. Along with this various chromosomal aberrations like stickiness, breaks, laggards, bridges, fragmentations and micronuclei were also augmented in test plants exposed to non-remediated arsenic enriched soil. It was evident that arsenic enriched soil caused toxicity to plants in dose-dependent manner that was assessable through the analysis of biochemical parameters and cyto-genetic biomarkers. The cyto-genetic biomarkers are very efficient, simple and non-expensive tools to biomonitor arsenic toxicity at chromosomal as well as DNA level to assess the remediation potential of P. vittata in field conditions.
Collapse
Affiliation(s)
- Kiran Gupta
- Department of Botany, Lucknow University, Lucknow, 226007 India
| | - Sudhakar Srivastava
- Plant Stress Biology Laboratory, Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi, 221005 India
| | - Gauri Saxena
- Department of Botany, Lucknow University, Lucknow, 226007 India
| | - Amit Kumar
- Department of Botany, Lucknow University, Lucknow, 226007 India
| |
Collapse
|
20
|
Chen JX, Cao Y, Yan X, Chen Y, Ma LQ. Novel PvACR3;2 and PvACR3;3 genes from arsenic-hyperaccumulator Pteris vittata and their roles in manipulating plant arsenic accumulation. JOURNAL OF HAZARDOUS MATERIALS 2021; 415:125647. [PMID: 33740714 DOI: 10.1016/j.jhazmat.2021.125647] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 03/09/2021] [Accepted: 03/10/2021] [Indexed: 06/12/2023]
Abstract
Arsenite (AsIII) antiporter ACR3 is crucial for arsenic (As) translocation and sequestration in As-hyperaccumulator Pteris vittata, which has potential for phytoremediation of As-contaminated soils. In this study, two new ACR3 genes PvACR3;2 and PvACR3;3 were cloned from P. vittata and studied in model organism yeast (Saccharomyces cerevisiae) and model plant tobacco (Nicotiana tabacum). Both ACR3s mediated AsIII efflux in yeast, decreasing its As accumulation and enhancing its As tolerance. In addition, PvACR3;2 and PvACR3;3 were expressed in tobacco plant. Localized on the plasma membrane, PvACR3;2 mediated both AsIII translocation to the shoots and AsIII efflux from the roots in tobacco, resulting in 203 - 258% increase in shoot As after exposing to 5 μM AsIII under hydroponics. In comparison, localized to the vacuolar membrane, PvACR3;3 sequestrated AsIII in tobacco root vacuoles, leading to 18 - 20% higher As in the roots and 15 - 36% lower As in the shoots. Further, based on qRT-PCR, both genes were mainly expressed in P. vittata fronds, indicating PvACR3;2 and PvACR3;3 may play roles in AsIII translocation and sequestration in the fronds. This study provides not only new insights into the functions of new ACR3 genes in P. vittata, but also important gene resources for manipulating As accumulation in plants for phytoremediation and food safety.
Collapse
Affiliation(s)
- Jun-Xiu Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Yue Cao
- School of Environmental Science and Engineering, Guangdong Provincial Key Lab for Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510006, China
| | - Xiangjuan Yan
- School of Environment, Nanjing Normal University, Nanjing 210023, China
| | - Yanshan Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China; School of Environment, Nanjing Normal University, Nanjing 210023, China.
| | - Lena Q Ma
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
21
|
Sarma H, Islam NF, Prasad R, Prasad MNV, Ma LQ, Rinklebe J. Enhancing phytoremediation of hazardous metal(loid)s using genome engineering CRISPR-Cas9 technology. JOURNAL OF HAZARDOUS MATERIALS 2021; 414:125493. [PMID: 34030401 DOI: 10.1016/j.jhazmat.2021.125493] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/15/2021] [Accepted: 02/21/2021] [Indexed: 05/15/2023]
Abstract
Rapid and drastic changes in the global climate today have given a strong impetus to developing newer climate-resilient phytoremediation approaches. These methods are of great public and scientific importance given the urgency of this environmental crisis. Climate change has adverse effects on the growth, outputs, phenology, and overall productivity of plants. Contamination of soil with metal(loid)s is a major worldwide problem. Some metal(loids) are carcinogenic pollutants that have a long half-life and are non-degradable in the environment. There are many instances of the potential link between chronic heavy metal exposure and human disease. The adaptation of plants in the changing environment is, however, a major concern in phytoremediation practice. The creation of climate-resistant metal hyperaccumulation plants using molecular techniques could provide new opportunities to mitigate these problems. Consequently, advancements in molecular science would accelerate our knowledge of adaptive plant remediation/resistance and plant production in the context of global warming. Genome modification using artificial nucleases has the potential to enhance phytoremediation by modifying genomes for a sustainable future. This review focuses on biotechnology to boost climate change tolerant metallicolous plants and the future prospects of such technology, particularly the CRISPR-Cas9 genome editing system, for enhancing phytoremediation of hazardous pollutants.
Collapse
Affiliation(s)
- Hemen Sarma
- Department of Botany, N N Saikia College, Titabar 785 630, Assam, India
| | - N F Islam
- Department of Botany, N N Saikia College, Titabar 785 630, Assam, India
| | - Ram Prasad
- Department of Botany, School of Life Sciences, Mahatma Gandhi Central University, Motihari 845401, Bihar, India
| | - M N V Prasad
- School of Life Sciences, University of Hyderabad, Hyderabad 500046 Telangana, India
| | - Lena Q Ma
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jörg Rinklebe
- Laboratory of Soil-, and Groundwater-Management, Institute of Soil Engineering, Waste and Water Science, Faculty of Architecture and Civil Engineering, University of Wuppertal, Pauluskirchstraße 7, 42285 Wuppertal, Germany; University of Sejong, Department of Environment, Energy and Geoinformatics, 98 Gunja-Dong, Guangjin-Gu, Seoul, Republic of Korea.
| |
Collapse
|
22
|
New evidence of arsenic translocation and accumulation in Pteris vittata from real-time imaging using positron-emitting 74As tracer. Sci Rep 2021; 11:12149. [PMID: 34234174 PMCID: PMC8263723 DOI: 10.1038/s41598-021-91374-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 05/21/2021] [Indexed: 11/09/2022] Open
Abstract
Pteris vittata is an arsenic (As) hyperaccumulator plant that accumulates a large amount of As into fronds and rhizomes (around 16,000 mg/kg in both after 16 weeks hydroponic cultivation with 30 mg/L arsenate). However, the sequence of long-distance transport of As in this hyperaccumulator plant is unclear. In this study, we used a positron-emitting tracer imaging system (PETIS) for the first time to obtain noninvasive serial images of As behavior in living plants with positron-emitting 74As-labeled tracer. We found that As kept accumulating in rhizomes as in fronds of P. vittata, whereas As was retained in roots of a non-accumulator plant Arabidopsis thaliana. Autoradiograph results of As distribution in P. vittata showed that with low As exposure, As was predominantly accumulated in young fronds and the midrib and rachis of mature fronds. Under high As exposure, As accumulation shifted from young fronds to mature fronds, especially in the margin of pinna, which resulted in necrotic symptoms, turning the marginal color to gray and then brown. Our results indicated that the function of rhizomes in P. vittata was As accumulation and the regulation of As translocation to the mature fronds to protect the young fronds under high As exposure.
Collapse
|
23
|
Antenozio ML, Giannelli G, Marabottini R, Brunetti P, Allevato E, Marzi D, Capobianco G, Bonifazi G, Serranti S, Visioli G, Stazi SR, Cardarelli M. Phytoextraction efficiency of Pteris vittata grown on a naturally As-rich soil and characterization of As-resistant rhizosphere bacteria. Sci Rep 2021; 11:6794. [PMID: 33762609 PMCID: PMC7990962 DOI: 10.1038/s41598-021-86076-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 02/28/2021] [Indexed: 12/21/2022] Open
Abstract
This study evaluated the phytoextraction capacity of the fern Pteris vittata grown on a natural arsenic-rich soil of volcanic-origin from the Viterbo area in central Italy. This calcareous soil is characterized by an average arsenic concentration of 750 mg kg−1, of which 28% is bioavailable. By means of micro-energy dispersive X-ray fluorescence spectrometry (μ-XRF) we detected As in P. vittata fronds after just 10 days of growth, while a high As concentrations in fronds (5,000 mg kg−1), determined by Inductively coupled plasma-optical emission spectrometry (ICP-OES), was reached after 5.5 months. Sixteen arsenate-tolerant bacterial strains were isolated from the P. vittata rhizosphere, a majority of which belong to the Bacillus genus, and of this majority only two have been previously associated with As. Six bacterial isolates were highly As-resistant (> 100 mM) two of which, homologous to Paenarthrobacter ureafaciens and Beijerinckia fluminensis, produced a high amount of IAA and siderophores and have never been isolated from P. vittata roots. Furthermore, five isolates contained the arsenate reductase gene (arsC). We conclude that P. vittata can efficiently phytoextract As when grown on this natural As-rich soil and a consortium of bacteria, largely different from that usually found in As-polluted soils, has been found in P. vittata rhizosphere.
Collapse
Affiliation(s)
- M L Antenozio
- IBPM-CNR, Dip. Biologia e Biotecnologie, Sapienza Università di Roma, P.le A. Moro 5, 00185, Rome, Italy.,Dip. Biologia e Biotecnologie, Sapienza Università di Roma, 00185, Rome, Italy
| | - G Giannelli
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124, Parma, Italy
| | - R Marabottini
- Department for Innovation in Biological, Agri-Food and Forestry Systems (DIBAF), University of Viterbo, Via San Camillo de Lellis snc, 01100, Viterbo, Italy
| | - P Brunetti
- IBPM-CNR, Dip. Biologia e Biotecnologie, Sapienza Università di Roma, P.le A. Moro 5, 00185, Rome, Italy
| | - E Allevato
- Department of Chemical, Pharmaceutical and Agricultural Science (DOCPAS), University of Ferrara, 44121, Ferrara, Italy
| | - D Marzi
- IBPM-CNR, Dip. Biologia e Biotecnologie, Sapienza Università di Roma, P.le A. Moro 5, 00185, Rome, Italy
| | - G Capobianco
- Dip. Ingegneria Chimica Materiali Ambiente, Sapienza Università di Roma, 00184, Rome, Italy
| | - G Bonifazi
- Dip. Ingegneria Chimica Materiali Ambiente, Sapienza Università di Roma, 00184, Rome, Italy
| | - S Serranti
- Dip. Ingegneria Chimica Materiali Ambiente, Sapienza Università di Roma, 00184, Rome, Italy
| | - G Visioli
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124, Parma, Italy
| | - S R Stazi
- Department of Chemical, Pharmaceutical and Agricultural Science (DOCPAS), University of Ferrara, 44121, Ferrara, Italy.
| | - M Cardarelli
- IBPM-CNR, Dip. Biologia e Biotecnologie, Sapienza Università di Roma, P.le A. Moro 5, 00185, Rome, Italy.
| |
Collapse
|