1
|
Rodrigues ACM, Torres-Rodriguez N, Yuan J, Dufour A, Drude de Lacerda L, Heimbürger-Boavida LE. Mercury dynamics in the mangrove-influenced estuary of the Parnaíba Delta, Brazil. CHEMOSPHERE 2025; 376:144262. [PMID: 40043627 DOI: 10.1016/j.chemosphere.2025.144262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 02/20/2025] [Accepted: 02/25/2025] [Indexed: 03/23/2025]
Abstract
The Parnaíba River Delta (PRD), located in northeastern Brazil, is an ecologically crucial estuarine system little impacted by anthropogenic activities. This study aimed to assess mercury (Hg) contamination levels in the water and sediments and their link to changes in the hydrographic parameters across the delta to evaluate spatial distribution patterns and Hg speciation. Water and surface sediment samples were collected from 12 stations throughout the PRD. Results showed that total Hg (tHg) levels ranged from 4.27 to 39.01 pM, with the majority associated with particles (pHg: 16.03 ± 9.95 pM). Dissolved methylmercury concentrations (dMeHg: 0.043 ± 0.015 pM) were low and represented a minor fraction of Hg. Seawater intrusion during flood tide was associated with lower levels of all Hg species. Particulate Hg was sequestered and stored in the fine-grained mangrove sediments (0.14-28.2 ng g-1 dry weight). Our study provides baseline data on Hg cycling in the PRD, highlighting its pristine condition and function as a buffer between terrestrial and marine environments. Pristine mangrove systems are effectively sequestering carbon and mercury and should, therefore, be considered as blue carbon and blue mercury ecosystems for mitigation strategies.
Collapse
Affiliation(s)
- Andreia C M Rodrigues
- Aix Marseille Université, CNRS/INSU, Université de Toulon, IRD, Mediterranean Institute of Oceanography (MIO), Marseille, France.
| | - Natalia Torres-Rodriguez
- Aix Marseille Université, CNRS/INSU, Université de Toulon, IRD, Mediterranean Institute of Oceanography (MIO), Marseille, France.
| | - Jingjing Yuan
- Aix Marseille Université, CNRS/INSU, Université de Toulon, IRD, Mediterranean Institute of Oceanography (MIO), Marseille, France; Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin, 300072, China.
| | - Aurélie Dufour
- Aix Marseille Université, CNRS/INSU, Université de Toulon, IRD, Mediterranean Institute of Oceanography (MIO), Marseille, France.
| | - Luiz Drude de Lacerda
- Laboratório de Biogeoquímica Costeira, Instituto de Ciências do Mar, Universidade Federal do Ceará, Av. Abolição 3207, Fortaleza, 60.165-081, CE, Brazil.
| | - Lars-Eric Heimbürger-Boavida
- Aix Marseille Université, CNRS/INSU, Université de Toulon, IRD, Mediterranean Institute of Oceanography (MIO), Marseille, France.
| |
Collapse
|
2
|
Chen X, Zhou Y, Mai Z, Cheng H, Wang X. Mangroves increased the mercury methylation potential in the sediment by producing organic matters and altering microbial methylators community. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 962:178457. [PMID: 39799656 DOI: 10.1016/j.scitotenv.2025.178457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 01/07/2025] [Accepted: 01/08/2025] [Indexed: 01/15/2025]
Abstract
Mangrove ecosystem has attracted global attention as a hotspot for mercury (Hg) methylation. Although numerous biotic and abiotic parameters have been reported to influence methylmercury (MeHg) production in sediments, the key factors determining the elevated MeHg levels in mangrove wetlands have not been well addressed. In this study, Hg levels in the sediments from different habitats (mudflats, mangrove fringe, and mangrove interior) in the Futian mangrove wetland were investigated, aiming to characterize the predominant factors affecting the MeHg production and distinguish the key microbial taxa responsible for Hg methylation. MeHg concentrations in the sediments from the mangrove interior (1.03 ± 0.34 ng g-1 dw) were significantly higher than those in mudflats (0.26 ± 0.08 ng g-1 dw) and mangrove fringe (0.45 ± 0.10 ng g-1 dw). Mangrove vegetation also promoted the accumulation of organic matters in sediments, which stimulated the growth of methylators, ultimately leading to an elevated MeHg level in the sediment. The data from 16S sequencing and random forest analysis further indicated that the increased abundances of Desulfococcus and Desulfosarcina, which belong to complete-oxidizing microbes with acetyl-CoA pathway and are favored by mangrove vegetation, were the primary contributors to MeHg production. Besides, syntrophic partners of methylators (e.g. Syntrophus) also play a considerable role in MeHg production. The present findings provide a deep understanding of Hg-methylation in mangrove wetlands, and offers valuable insights into of the interactions between mangrove plants and soil microbiome in the presence of Hg contamination.
Collapse
Affiliation(s)
- Xiaoxin Chen
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Yanwu Zhou
- State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Zhimao Mai
- State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Hao Cheng
- State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China.
| | - Xun Wang
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
3
|
Okeke ES, Nwankwo CEI, Owonikoko WM, Emencheta SC, Ozochi CA, Nweze EJ, Okeke VC, Nwuche CO, Enochoghene AE. Mercury's poisonous pulse: Blazing a new path for aquatic conservation with eco-friendly mitigation strategies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177719. [PMID: 39631341 DOI: 10.1016/j.scitotenv.2024.177719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 11/19/2024] [Accepted: 11/21/2024] [Indexed: 12/07/2024]
Abstract
Many compounds and inorganic elements released from natural and anthropogenic origins contaminate the environment and are implicated in catastrophes involving most biologically driven ecological processes and public health. One such element is Mercury. Mercury exists in both inorganic elemental form and the more metabolically active molecular form e.g. methyl mercury. They enjoy wide applications in medicine and form key components of numerous electrical and electronic devices. Unfortunately, severe health and adverse physiological conditions have developed from the impacts of mercury on the flora and fauna of both aquatic and terrestrial organisms. Despite being present in tiny amounts in water bodies, mercury undergoes a process of trophic amplification where its concentration increases significantly as it moves up the food chain through processes like biomethylation, bioaccumulation, and biomagnification. Most current methods for removing mercury through physical and chemical means have significant drawbacks, including high costs, complex technical requirements, and harmful secondary effects on the environment. Therefore, only environmentally friendly and sustainable approaches are acceptable to mitigate the risks to public health and ecosystem damage. Bioremediation involves the use of biological systems, i.e., plants and microbes, to recover mercury from the environment. The application of microorganisms in remediation is the hallmark of all mitigation strategies targeted at mercury pollution in the soil and aquatic matrices. The present paper provides a comprehensive overview of the current knowledge on mercury pollution in the environment (i.e., atmosphere, soil, water, and sediments). Many symptoms of mercury poisoning in fish, birds, and other animals, including man, were extensively treated. Information on the existing physico-chemical treatment methods, as well as the more ecologically friendly bioremediation measures available, was summarized. The importance of strengthening existing international policies, commitments, protocols, and alignments on the control of anthropogenic generation, treatment, and reduction of mercury discharges to the environment was highlighted.
Collapse
Affiliation(s)
- Emmanuel Sunday Okeke
- Natural Science Unit, School of General Studies, University of Nigeria, Nsukka 410001, Enugu State, Nigeria; Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Nsukka 410001, Enugu State, Nigeria; Institute of Environmental Health and Ecological Security, School of the Environment and Safety, Jiangsu University, 301 Xuefu Rd., Zhenjiang 212013, Jiangsu, China
| | - Chidiebele Emmanuel Ikechukwu Nwankwo
- Natural Science Unit, School of General Studies, University of Nigeria, Nsukka 410001, Enugu State, Nigeria; School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Rd., Zhenjiang 212013, Jiangsu, China; Department of Microbiology, Faculty of Biological Sciences, University of Nigeria, Nsukka 410001, Enugu State, Nigeria
| | - Wasiu Mathew Owonikoko
- Laboratory for Environmental Physiology and Toxicology Research Unit, Department of Physiology, Igbinedion University, Nigeria
| | - Stephen Chijioke Emencheta
- Department of Pharmaceutical Microbiology and Biotechnology, University of Nigeria, Nsukka 410001, Nigeria; VBLab - Laboratory of Bacterial Viruses, University of Sorocaba, 18023-000 Sorocaba, SP, Brazil
| | - Chizoba Anthonia Ozochi
- Department of Science Laboratory Technology, Federal Polytechnic, Ohodo 411103, PMB 01801, Enugu, Enugu State, Nigeria
| | - Ekene John Nweze
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Nsukka 410001, Enugu State, Nigeria.
| | - Veronica Chisom Okeke
- Department of Pharmaceutical Microbiology and Biotechnology, University of Nigeria, Nsukka 410001, Nigeria
| | - Charles Ogugua Nwuche
- Department of Microbiology, Faculty of Biological Sciences, University of Nigeria, Nsukka 410001, Enugu State, Nigeria.
| | - Adebisi Esther Enochoghene
- Environmental Management and Toxicology Unit, Department of Biological Sciences, Lead City University, Ibadan, Nigeria.
| |
Collapse
|
4
|
Liu Y, Liu H, Guo Y, Lu D, Hou X, Shi J, Yin Y, Cai Y, Jiang G. Atmospheric Hg(0) dry deposition over environmental surfaces: Insights from mercury isotope fractionation. ECO-ENVIRONMENT & HEALTH 2024; 3:543-555. [PMID: 39605969 PMCID: PMC11599991 DOI: 10.1016/j.eehl.2024.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 04/10/2024] [Accepted: 04/21/2024] [Indexed: 11/29/2024]
Abstract
Atmospheric Hg(0) dry deposition is a vital process that significantly affects the global distribution and cycling of Hg. However, significant knowledge gaps and challenges remain in understanding atmospheric Hg(0) deposition and its subsequent post-deposition processes. Hg isotope fractionation has emerged as the most powerful tool for evaluating the impact of atmospheric Hg(0) deposition and unraveling key processes associated with it. By focusing on Hg isotope fractionation processes, Hg isotopic compositions, and influencing factors, this review presents current knowledge, recent advances, and new insights into atmospheric Hg(0) deposition and post-deposition processes over vegetation, soil, snow, and water surfaces. This review also points out the knowledge gaps pertaining to atmospheric Hg(0) deposition and highlights the need for further investigation into the associated processes, mechanisms, isotope fractionation, and modeling. Further research into Hg isotope fractionation in atmospheric Hg(0) deposition and post-deposition processes will advance source and process tracing, paleoclimate reconstruction, and the modeling of Hg isotope distribution on regional and global scales.
Collapse
Affiliation(s)
- Yanwei Liu
- Laboratory of Environmental Nanotechnology and Health Effect, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences (UCAS), Beijing 100049, China
| | - Hongwei Liu
- University of Chinese Academy of Sciences (UCAS), Beijing 100049, China
| | - Yingying Guo
- Laboratory of Environmental Nanotechnology and Health Effect, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences (UCAS), Beijing 100049, China
| | - Dawei Lu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences (UCAS), Beijing 100049, China
| | - Xingwang Hou
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences (UCAS), Beijing 100049, China
| | - Jianbo Shi
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences (UCAS), Beijing 100049, China
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
- Institute of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Yongguang Yin
- Laboratory of Environmental Nanotechnology and Health Effect, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences (UCAS), Beijing 100049, China
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
- Institute of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Yong Cai
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, United States
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences (UCAS), Beijing 100049, China
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
| |
Collapse
|
5
|
Chen M, Neupane B, Zhan X, Liu T, Lin Z, Gao C, Zaccone C, Bao K. Three thousand years of Hg pollution recorded in mangrove wetland sediments from South China. ENVIRONMENTAL RESEARCH 2024; 252:118866. [PMID: 38580002 DOI: 10.1016/j.envres.2024.118866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 03/09/2024] [Accepted: 04/02/2024] [Indexed: 04/07/2024]
Abstract
Mercury (Hg) is known to affect aquatic, terrestrial ecosystems as well as human health, through biomagnification. Mangrove wetlands are potential Hg sinks because of their low tidal velocity, fast sedimentation rate, strong reducing condition and high organic matter content. The spatial and temporal distribution of Hg has been a hot topic of recent studies in mangrove wetlands. In this study, we investigated Hg concentration, accumulation rate and isotopes to reconstruct the Hg pollution history and to differentiate its potential sources in the Gaoqiao mangrove wetland (Guangdong province), which is part of the largest mangrove area in China. We reconstructed a first, continuous, high-resolution Hg pollution history over the last 3000 years in South China. Our findings show that mangrove wetland sediments are more enriched in Hg than the adjacent grasslands. The increased Hg concentration and δ202Hg in recent sediments mirror the enhanced anthropogenic impacts; Hg concentrations in areas with high levels of anthropogenic disturbance are up to 5× higher than the average background value (9.9 ± 1.2 μg kg-1). Compared to mangroves in coastal areas of South China and around the world, the Hg concentration in Gaoqiao is much lower. The significant increase of Hg since the 1950s and the major Hg peak since the 1980s were the evidence of the human activities influences and indicated the possible start date of Anthropocene. After 2007 CE, a decline in Hg pollution occurs due to the effective implementation of the mangrove protection policy. Three potential sources were identified by the Hg isotope traces including urban gaseous Hg, industrial Hg, and regional soil and leaf litter Hg input.
Collapse
Affiliation(s)
- Minqi Chen
- School of Geography, South China Normal University, Guangzhou, 510631, China
| | - Bigyan Neupane
- School of Geography, South China Normal University, Guangzhou, 510631, China; Institute of Fundamental Research and Studies (InFeRS), Kathmandu, 44600, Nepal
| | - Xuan Zhan
- Eco-Environmental Monitoring and Research Center, Pearl River Valley and South China Sea Ecology and Environment Administration, Ministry of Ecology and Environment, Guangzhou, 510611, China
| | - Ting Liu
- School of Geography, South China Normal University, Guangzhou, 510631, China
| | - Zhanyi Lin
- School of Geography, South China Normal University, Guangzhou, 510631, China
| | - Changjun Gao
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangdong Academy of Forestry, Guangzhou, 510520, China
| | - Claudio Zaccone
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, Verona, 37134, Italy.
| | - Kunshan Bao
- School of Geography, South China Normal University, Guangzhou, 510631, China.
| |
Collapse
|
6
|
Zhou Z, Tang Z, Wang H, Liu K, Wang Y, Xiao X, Yin Y, Liu G, Cai Y, Li Y. Spatial and temporal variations in the pollution status and sources of mercury in the Jiaozhou bay. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 346:123554. [PMID: 38395130 DOI: 10.1016/j.envpol.2024.123554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/27/2024] [Accepted: 02/10/2024] [Indexed: 02/25/2024]
Abstract
In the past few decades, mercury (Hg) discharged into the coastal bays of China has significantly increased; however, long-term trends regarding the pollution status and sources of Hg in these bays have yet to be clear. Focusing on this issue, surface sediments and core sediments were collected in the Jiaozhou Bay (JZB), a typical bay highly affected by human activities in China, to analyze the concentrations and stable isotopic composition of Hg. Total mercury (THg) concentrations in surface sediment varied from 7 to 163 ng/g, with higher levels located in the eastern JZB, possibly attributed to intensive industrial and population density. THg in sediment cores 14 and 20 displayed fluctuating increasing trends from 1936 to 2019, reflecting the deterioration of Hg pollution. In contrast, THg in sediment core 28 near the river mouth exhibited a declining trend, possibly due to the river dam construction. Using a stable isotope mixing model, contributions of various sources (atmospheric, riverine, and industrial emissions) to Hg in the JZB were estimated. The results showed that industrial emissions were the main source (over 50%) of mercury in the JZB in 2019. Sediment cores recorded an increase in industrial Hg due to early industrialization and Reform and Opening-up before 2000. In addition, sediment core 20 demonstrated a rise in the percentage of riverine Hg due to land reclamation at the bay's mouth during 2000-2007.
Collapse
Affiliation(s)
- Zhengwen Zhou
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education and College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, China
| | - Zhekai Tang
- School of Oceanography, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Huiling Wang
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education and College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, China
| | - Ke Liu
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education and College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, China
| | - Yingjun Wang
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Xiaotong Xiao
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education and College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, China
| | - Yongguang Yin
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Guangliang Liu
- Department of Chemistry & Biochemistry, Florida International University, Miami, FL 33199, United States
| | - Yong Cai
- Department of Chemistry & Biochemistry, Florida International University, Miami, FL 33199, United States
| | - Yanbin Li
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education and College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, China.
| |
Collapse
|
7
|
Sun C, Wang X, Qiao X. Multimedia fate simulation of mercury in a coastal urban area based on the fugacity/aquivalence method. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 915:170084. [PMID: 38224886 DOI: 10.1016/j.scitotenv.2024.170084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 01/07/2024] [Accepted: 01/08/2024] [Indexed: 01/17/2024]
Abstract
Due to intensive industrial production and living activities, urban areas are the main anthropogenic mercury (Hg) emission sources. After entering the environment through exhaust gases, wastewater or waste residues, Hg can migrate and transform among different environmental compartments in various species, such as elemental mercury (Hg0), divalent mercury (Hg2+) and methylmercury (MeHg). Studies have yet to report on the multimedia behaviors of Hg in urban areas due to the complexity of the processes involved. In this study, the atmospheric Hg emission in Dalian, a coastal city in Northeast China, was estimated by an anthropogenic emission inventory, and a Level III multimedia model was constructed based on the fugacity/aquivalence method to simulate the fate of Hg in air, water, soil, sediment, vegetation and film. The total annual atmospheric emission was 9.91 t, of which coal combustion and non-coal sources accounted for 70.1 % and 29.9 %, respectively. Atmospheric emission and advection were dominated by Hg0, and aquatic emission and advection were dominated by Hg2+. The migration of air-vegetation, vegetation-soil and soil-air were three important pathways of Hg in urban areas. The model was validated by collecting local soil and vegetation samples and regional air, seawater and sediment monitoring data. The scenario simulation indicated that the local load would decrease to different extents with a 21.0 % reduction in atmospheric Hg emission by implementing the "coal-to-gas" measures. Our developed model can characterize the fate of Hg in coastal urban areas and provide a reference for control strategies.
Collapse
Affiliation(s)
- Chang Sun
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Xiaochen Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Xianliang Qiao
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.
| |
Collapse
|
8
|
Barreira J, Araújo DF, Rodrigues BQA, Tonhá MS, Mendes RDA, Souto-Oliveira CE, Babinski M, Knoery J, Sanders CJ, Garnier J, Machado W. Copper isotopes as a tool to trace contamination in mangroves from an urbanized watershed. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 340:122785. [PMID: 37871737 DOI: 10.1016/j.envpol.2023.122785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 08/27/2023] [Accepted: 10/21/2023] [Indexed: 10/25/2023]
Abstract
This study investigates the chronology of copper (Cu) contamination and its stable isotopes within an emblematic Brazilian mangrove impacted by multiple urban and industrial Cu sources, deforestation, and eutrophication. In particular, it tests Cu isotopes as tracers of anthropogenic inputs into an anthropized watershed impacted by multiple sources. To do so, we used multi-isotopic approaches (δ65Cu, δ13C, and δ15N), elemental analyses (Al, Ca, Fe, P, Cu, C, and N), and selective and sequential extractions in a210Pb-dated sediment core. This geochemical "toolbox" allowed identifying two main stages of Cu evolution in the sediment core. In the first stage, before 1965, Cu isotope fingerprints responded to landscape changes, indicating a shift from marine to geogenic dominance due to the remobilization and erosion of terrestrial materials. In the second stage, after 1965, the sediment geochemical profile showed increased Cu total concentrations with a higher bioavailability (as reflected by sequential extraction data) accompanying changes in Cu isotope signatures towards anthropogenic values. The findings evidence that local industrial sources, possibly combined with diffuse urban sources, export Cu into downstream mangroves with a distinguishable isotope signature compared to natural values. This study demonstrates the applicability of Cu isotopes as new environmental forensic tools to trace anthropogenic sources in mangrove sediments. Incorporated into a robust geochemical toolbox that combines inorganic and organic proxies for sedimentary materials, this new tool provides a comprehensive understanding of Cu dynamics in mangrove ecosystems, shedding light on the historical and current sources of Cu.
Collapse
Affiliation(s)
- João Barreira
- Geochemistry Program, Chemistry Institute, Fluminense Federal University, Brazil.
| | - Daniel F Araújo
- Ifremer, CCEM Contamination Chimique des Ecosystèmes Marins, F-44000, Nantes, France
| | - Breno Q A Rodrigues
- Geochemistry Program, Chemistry Institute, Fluminense Federal University, Brazil
| | | | | | | | | | - Joël Knoery
- Ifremer, CCEM Contamination Chimique des Ecosystèmes Marins, F-44000, Nantes, France
| | | | | | - Wilson Machado
- Geochemistry Program, Chemistry Institute, Fluminense Federal University, Brazil
| |
Collapse
|
9
|
Yang S, Li P, Sun K, Wei N, Liu J, Feng X. Mercury isotope compositions in seawater and marine fish revealed the sources and processes of mercury in the food web within differing marine compartments. WATER RESEARCH 2023; 241:120150. [PMID: 37269625 DOI: 10.1016/j.watres.2023.120150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 05/25/2023] [Accepted: 05/28/2023] [Indexed: 06/05/2023]
Abstract
Anthropogenic activities and climate change have significantly increased mercury (Hg) levels in seawater. However, the processes and sources of Hg in differing marine compartments (e.g. estuary, marine continental shelf (MCS) or pelagic area) have not been well studied, which makes it difficult to understand Hg cycling in marine ecosystems. To address this issue, the total Hg (THg) concentration, methylmercury (MeHg) concentration and stable Hg isotopes were determined in seawater and fish samples collected from differing marine compartments of the South China Sea (SCS). The results showed that the estuarine seawater exhibited substantially higher THg and MeHg concentrations than those in the MCS and pelagic seawater. Significantly negative δ202Hg (-1.63‰ ± 0.42‰) in estuarine seawater compared with that in pelagic seawater (-0.58‰ ± 0.08‰) may suggest watershed input and domestic sewage discharge of Hg in the estuarine compartment. The Δ199Hg value in estuarine fish (0.39‰ ± 0.35‰) was obviously lower than that in MCS (1.10‰ ± 0.54‰) and pelagic fish (1.15‰ ± 0.46‰), which showed that relatively little MeHg photodegradation occurred in the estuarine compartment. The Hg isotope binary mixing model based on Δ200Hg revealed that approximately 74% MeHg in pelagic fish is derived from atmospheric Hg(II) deposition, and over 60% MeHg in MCS fish is derived from sediments. MeHg sources for estuarine fish may be highly complex (e.g. sediment or riverine/atmospheric input) and further investigations are warranted to clarify the contribution of each source. Our study showed that Hg stable isotopes in seawater and marine fish can be used to identify the processes and sources of Hg in different marine compartments. This finding is of great relevance to the development of marine Hg food web models and the management of Hg in fish.
Collapse
Affiliation(s)
- Shaochen Yang
- Hubei Key Laboratory of Critical Zone Evolution, School of Earth Sciences, China University of Geosciences, Wuhan 430074, China
| | - Ping Li
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Kaifeng Sun
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment of the People's Republic of China, Guangzhou 510655, China
| | - Nan Wei
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment of the People's Republic of China, Guangzhou 510655, China
| | - Jinling Liu
- Hubei Key Laboratory of Critical Zone Evolution, School of Earth Sciences, China University of Geosciences, Wuhan 430074, China.
| | - Xinbin Feng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| |
Collapse
|
10
|
Zhou Z, Wang H, Li Y. Mercury stable isotopes in the ocean: Analytical methods, cycling, and application as tracers. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 874:162485. [PMID: 36858226 DOI: 10.1016/j.scitotenv.2023.162485] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 02/22/2023] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
Mercury (Hg) has seven stable isotopes that can be utilized to trace the sources of Hg and evaluate the importance of transport and transformation processes in the cycling of Hg in the environment. The ocean is an integral part of the Earth and plays an important role in the global mercury cycle. However, there is a lack of a systematic review of Hg stable isotopes in marine environments. This review is divided into four sections: a) advances in Hg stable isotope analysis, b) the isotope ratios of Hg in various marine environmental matrices (seawater, sediment, and organisms), c) processes governing stable Hg isotope ratios in the ocean, and d) application of Hg stable isotopes to understand biotic uptake and migration. Mercury isotopes have provided much useful information on marine Hg cycling that cannot be given by Hg concentrations alone. This includes (i) sources of Hg in coastal or estuarine environments, (ii) transformation pathways and mechanisms of different forms of Hg in marine environments, (iii) trophic levels and feeding guilds of marine fish, and (iv) migration/habitat changes of marine fish. With the improvement of methods for seawater Hg isotope analysis (especially species-specific methods) and the measurement of Hg isotope fractionation during natural biogeochemical processes in the ocean, Hg stable isotopes will advance our understanding of the marine Hg cycle in the future, e.g., mercury exchange at the sea-atmosphere interface and seawater-sediment interface, contributions of different water masses to Hg in the ocean, fractionation mechanisms of Hg and MeHg transformation in seawater.
Collapse
Affiliation(s)
- Zhengwen Zhou
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education and College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Huiling Wang
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education and College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Yanbin Li
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education and College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China.
| |
Collapse
|
11
|
Yang Y, Liang X, Wang B, Xie Z, Shen X, Sun X, Zhu X. Biophysical parameters retrieval of mangrove ecosystem using 3D point cloud descriptions from UAV photographs. ECOL INFORM 2022. [DOI: 10.1016/j.ecoinf.2022.101845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
12
|
Yuan W, Wang X, Lin CJ, Wu F, Luo K, Zhang H, Lu Z, Feng X. Mercury Uptake, Accumulation, and Translocation in Roots of Subtropical Forest: Implications of Global Mercury Budget. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:14154-14165. [PMID: 36150175 DOI: 10.1021/acs.est.2c04217] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Plant roots are responsible for transporting large quantities of nutrients in forest ecosystems and yet are frequently overlooked in global assessments of Hg cycling budgets. In this study, we systematically determined the distribution of total Hg mass and its stable isotopic signatures in a subtropical evergreen forest to elucidate sources of Hg in plant root tissues and the associated translocation mechanisms. Hg stored in roots and its isotopic signatures show significant correlations to those found in surrounding soil at various soil depths. The odd mass-independent fractionation (MIF) of root Hg at a shallow soil depth displays a -0.10‰ to -0.50‰ negative transition compared to the values in aboveground woody biomass. The evidence suggests that root Hg is predominantly derived from surrounding soil, rather than translocation of atmospheric uptake via aboveground tissues. The cortex has a more negative mass-dependent fractionation (MDF) of -0.10‰ to -1.20‰ compared to the soil samples, indicating a preferential uptake of lighter isotopes by roots. The similar MDF and odd-MIF signals found in root components imply limited Hg transport in roots. This work highlights that Hg stored in plant roots is not a significant sink of atmospheric Hg. The heterogeneous distribution of Hg mass in roots of various sizes represents a significant uncertainty of current estimates of Hg pool size in forest ecosystems.
Collapse
Affiliation(s)
- Wei Yuan
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Xun Wang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Che-Jen Lin
- Center for Advances in Water and Air Quality, Lamar University, Beaumont, Texas 77710, United States
| | - Fei Wu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kang Luo
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Hui Zhang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Zhiyun Lu
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla 666303, China
| | - Xinbin Feng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
- Center for Excellence in Quaternary Science and Global Change, Chinese Academy of Sciences, Xi'an 710061, China
| |
Collapse
|
13
|
Ma H, Cheng H, Guo F, Zhang L, Tang S, Yang Z, Peng M. Distribution of mercury in foliage, litter and soil profiles in forests of the Qinling Mountains, China. ENVIRONMENTAL RESEARCH 2022; 211:113017. [PMID: 35217011 DOI: 10.1016/j.envres.2022.113017] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 02/19/2022] [Accepted: 02/21/2022] [Indexed: 06/14/2023]
Abstract
Forest ecosystems have been confirmed to be a sink of the global mercury (Hg) in the biogeochemical cycle. However, few studies have investigated the distribution of Hg in forest ecosystems on a regional scale in China. This work aimed to investigate the concentrations, distribution and influential factors of Hg in the Qinling Mountains forests in central China. Foliage, litter and soil profile samples were collected at 24 sampling sites across the Qinling Mountains forests. The results of the present study showed that the concentrations of Hg in foliage, litter, organic soils and mineral soils were maintained at relatively low levels compared with those in subtropical forests of Southwest China. The average Hg concentrations followed the order litter (74 ± 34 ng g-1) > organic soil (71 ± 37 ng g-1) > mineral soil (34 ± 21 ng g-1) > foliage (31 ± 15 ng g-1). Mercury in foliage showed no obvious spatial pattern, likely due to differences in tree species and ages across the sampling sites. Higher concentrations of Hg in litter were observed on the southern slope (low altitude), while the distribution of Hg in organic soils was the opposite. Both the tree species and environmental parameters (altitude, temperature and precipitation) controlled the Hg concentrations in litter by regulating the decomposition rate of the litter. There were significantly positive correlations between the Hg concentrations and soil organic carbon, nitrogen and sulfur in all soil layers, indicating that organic matter has a high geochemical affinity for Hg in soils. Because of the lower turnover rate and the higher accumulation of organic matter in high altitude and low temperature areas, Hg loss from biogeochemical cycling processes was effectively reduced. The spatial distribution of Hg in forests soil can be shaped by the distribution of organic matter at the regional scale.
Collapse
Affiliation(s)
- Honghong Ma
- Institute of Geophysical & Geochemical Exploration, Chinese Academy of Geological Sciences, Langfang, 065000, China; Key Laboratory of Geochemical Cycling of Carbon and Mercury in the Earth's Critical Zone, Chinese Academy Geological Sciences, Langfang, 065000, China; Geochemical Research Center of Soil Quality, China Geological Survey, Langfang, 065000, China
| | - Hangxin Cheng
- Institute of Geophysical & Geochemical Exploration, Chinese Academy of Geological Sciences, Langfang, 065000, China; Key Laboratory of Geochemical Cycling of Carbon and Mercury in the Earth's Critical Zone, Chinese Academy Geological Sciences, Langfang, 065000, China; Geochemical Research Center of Soil Quality, China Geological Survey, Langfang, 065000, China.
| | - Fei Guo
- Institute of Geophysical & Geochemical Exploration, Chinese Academy of Geological Sciences, Langfang, 065000, China; Key Laboratory of Geochemical Cycling of Carbon and Mercury in the Earth's Critical Zone, Chinese Academy Geological Sciences, Langfang, 065000, China; Geochemical Research Center of Soil Quality, China Geological Survey, Langfang, 065000, China
| | - Li Zhang
- Institute of Geophysical & Geochemical Exploration, Chinese Academy of Geological Sciences, Langfang, 065000, China; Key Laboratory of Geochemical Cycling of Carbon and Mercury in the Earth's Critical Zone, Chinese Academy Geological Sciences, Langfang, 065000, China; Geochemical Research Center of Soil Quality, China Geological Survey, Langfang, 065000, China
| | - Shiqi Tang
- Institute of Geophysical & Geochemical Exploration, Chinese Academy of Geological Sciences, Langfang, 065000, China; Key Laboratory of Geochemical Cycling of Carbon and Mercury in the Earth's Critical Zone, Chinese Academy Geological Sciences, Langfang, 065000, China; Geochemical Research Center of Soil Quality, China Geological Survey, Langfang, 065000, China
| | - Zheng Yang
- Institute of Geophysical & Geochemical Exploration, Chinese Academy of Geological Sciences, Langfang, 065000, China; Key Laboratory of Geochemical Cycling of Carbon and Mercury in the Earth's Critical Zone, Chinese Academy Geological Sciences, Langfang, 065000, China; Geochemical Research Center of Soil Quality, China Geological Survey, Langfang, 065000, China
| | - Min Peng
- Institute of Geophysical & Geochemical Exploration, Chinese Academy of Geological Sciences, Langfang, 065000, China; Key Laboratory of Geochemical Cycling of Carbon and Mercury in the Earth's Critical Zone, Chinese Academy Geological Sciences, Langfang, 065000, China; Geochemical Research Center of Soil Quality, China Geological Survey, Langfang, 065000, China
| |
Collapse
|
14
|
Zhao L, Zhang Y, Wang L, Lyu H, Xia S, Tang J. Effective removal of Hg(II) and MeHg from aqueous environment by ball milling aided thiol-modification of biochars: Effect of different pyrolysis temperatures. CHEMOSPHERE 2022; 294:133820. [PMID: 35104542 DOI: 10.1016/j.chemosphere.2022.133820] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 01/26/2022] [Accepted: 01/29/2022] [Indexed: 06/14/2023]
Abstract
In order to synthesize biochar with the enhanced adsorption of inorganic mercury (Hg(II)) and organic mercury (Methylmercury, MeHg), biochars pyrolyzed at different pyrolysis temperatures (300, 500, and 700 °C) were ball milled with 3-trimethoxysilylpropanethiol (3-MPTS). Characterization results showed that 3-MPTS acted as an activator which further enlarged pores in biochars and ball-milling increased surface area of biochars. During ball milling, oxygen-containing functional groups increased which facilitated the loading of -SH group. The maximum adsorption capacities for Hg(II) adsorption in ball mill sulfhydryl modified biochars of 300, 500, and 700 °C were 401.8, 379.6 and 270.6 mg/g, respectively; simultaneously, the maximum adsorption capacity of MeHg was 108.16, 85.27 and 39.14 mg/g, respectively, which showed preferential increasing of 5.54 times on MeHg compared to the non-thiol modified biochar at low pyrolysis temperature of 300 °C. Results of kinetic adsorption experiments suggested that sorption data fitted well with Pseudo-second-order kinetic model, which proved that the mainly rate-limiting adsorption step was surface diffusion. Langmuir isotherm model fitting result showed that ligand exchange, surface complexation, surface adsorption and electrostatic attraction are dominant removal mechanisms. The 3-MPTS content and ball milling time are crucial during ball milling, and 2% 3-MPTS and 30 h of ball milling were found to be the most suitable conditions for both Hg(II) and MeHg adsorption. The result suggests that ball milling aided thiol-modification has great potential in synthesis of -SH modified biochar with prioritized MeHg adsorption.
Collapse
Affiliation(s)
- Ling Zhao
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Yaru Zhang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Lan Wang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Honghong Lyu
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China.
| | - Siyu Xia
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Jingchun Tang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China.
| |
Collapse
|
15
|
Huang S, Jiang R, Song Q, Zhao Y, Lv S, Zhang Y, Huo Y, Chen Y. The Hg behaviors in mangrove ecosystems revealed by Hg stable isotopes: a case study of Maowei mangrove. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:25349-25359. [PMID: 34843054 DOI: 10.1007/s11356-021-17744-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 11/21/2021] [Indexed: 06/13/2023]
Abstract
As one of the most productive marine ecosystems in the tropics and subtropics, mangroves are an important part of the global mercury (Hg) cycling. The environmental processes and effects of Hg in mangroves are complex and affect human Hg exposure, and it is crucial to understand Hg behaviors in the mangrove ecosystem. However, clarifying Hg behaviors in the mangrove ecosystem remains difficult because of an insufficient understanding of the dominant pathways. In this study, measurements of mercury (Hg) concentration and isotope ratios in sediment and plant tissues from a mangrove wetland were used to investigate Hg isotope fractionation in mangrove plants and sediments. Spatial patterns in Hg concentration and isotope signatures indicate that Hg re-emission in the sediment was suppressed by mangrove plants. The ratio of Δ199Hg/Δ201Hg was 0.93 for all sediments, indicating that Hg mass-independent fractionation in the mangrove ecosystem was primarily affected by photoreduction, while the ratios of Δ199Hg/Δ201Hg and Δ199Hg/δ202Hg for plant tissues suggested that natural organic matter reduction of Hg(II) was occurred in the plants. The distinct positive Δ199Hg values found in mangrove plants were supposed to be the results of the unique physiological characteristics of mangroves. The exterior Hg sources from atmosphere and seawater emphasize the role of mangrove ecosystems in the global Hg biogeochemistry. Our study highlights the distinct Hg isotope signatures in the mangrove from that in forests and indicates unique Hg behaviors in the mangrove ecosystem.
Collapse
Affiliation(s)
- Shuyuan Huang
- Ministry of Natural Resources, Third Institute of Oceanography, Xiamen, 361005, China
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, 361102, China
| | - Ronggen Jiang
- Ministry of Natural Resources, Third Institute of Oceanography, Xiamen, 361005, China
| | - Qingyong Song
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, 361102, China
| | - Yuhan Zhao
- Ministry of Natural Resources, Third Institute of Oceanography, Xiamen, 361005, China
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Supeng Lv
- Ministry of Natural Resources, Third Institute of Oceanography, Xiamen, 361005, China
| | - Yuanbiao Zhang
- Ministry of Natural Resources, Third Institute of Oceanography, Xiamen, 361005, China.
| | - Yunlong Huo
- Ministry of Natural Resources, Third Institute of Oceanography, Xiamen, 361005, China
| | - Yaojin Chen
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, 361102, China
| |
Collapse
|
16
|
Castro S, Luiz-Silva W, Machado W, Valezio E. Mangrove sediments as long-term mercury sinks: Evidence from millennial to decadal time scales. MARINE POLLUTION BULLETIN 2021; 173:113031. [PMID: 34656863 DOI: 10.1016/j.marpolbul.2021.113031] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 09/30/2021] [Accepted: 10/02/2021] [Indexed: 06/13/2023]
Abstract
The mercury (Hg) cycle in estuaries has been globally discussed, although Holocene deposition in mangrove sediments remains unknown. Herein, a sediment core from a mangrove system in southeastern Brazil was 14C-dated to evaluate millennial Hg deposition. The highest Hg concentrations (1010-2540 ng g-1) in surface sediments were explained by emissions from a chlor-alkali industry (1964 CE). However, Hg levels were also high in pre-industrial periods, associated to fine grain-size and algal organic deposition. Less anomalous Hg concentrations in bottom sediments indicate Holocene ages (~1940-3324 cal yr BP), potentially associated to Serra do Mar mountains weathering. This study reveals the capacity of mangrove to retain Hg over millennial time scales, acting as significant and long-term Hg sinks. Therefore, the use of Hg as an Anthropocene marker must be considered cautiously in coastal systems that act as Hg sinks in times when environmental changes were not caused by human activities.
Collapse
Affiliation(s)
- Sanny Castro
- Institute of Geosciences, University of Campinas, Campinas, Brazil.
| | | | - Wilson Machado
- Geochemistry Department, Fluminense Federal University, Niterói, Brazil
| | - Everton Valezio
- Institute of Geosciences, University of Campinas, Campinas, Brazil
| |
Collapse
|
17
|
Zhou J, Obrist D. Global Mercury Assimilation by Vegetation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:14245-14257. [PMID: 34617727 DOI: 10.1021/acs.est.1c03530] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Assimilation of mercury (Hg) by vegetation represents one of the largest global environmental Hg mass fluxes. We estimate Hg assimilation by vegetation globally via a bottom-up scaling approach using tissue Hg concentrations synthesized from a comprehensive database multiplied by respective annual biomass production (NPP). As global annual NPP is close to annual vegetation die-off, Hg mass associated with global NPP approximates the transfer of Hg from plants to soils, which represents an estimate of vegetation-mediated atmospheric deposition. Annual vegetation assimilation of Hg from combined atmospheric and soil uptake is estimated at 3062 ± 607 Mg yr-1, which is composed of 2491 ± 551 Mg yr-1 from aboveground tissue uptake and 571 ± 253 Mg yr-1 from root uptake. Assimilation of atmospheric Hg amounts to 2422 ± 483 Mg yr-1 when considering aboveground tissues only. Atmospheric assimilation increases to 2705 ± 504 Mg yr-1 when considering that root Hg may be partially derived from prior foliar uptake and transported internally to roots. Estimated atmospheric Hg assimilation by vegetation is 54-137% larger than the current model and litterfall estimates, largely because of the inclusion of lichens, mosses, and woody tissues in deposition and all global biomes. Belowground, about 50% of root Hg was taken up from soils with currently unknown ecological and biogeochemical consequences.
Collapse
Affiliation(s)
- Jun Zhou
- Department of Environmental, Earth, and Atmospheric Sciences, University of Massachusetts, Lowell, Massachusetts 01854, United States
| | - Daniel Obrist
- Department of Environmental, Earth, and Atmospheric Sciences, University of Massachusetts, Lowell, Massachusetts 01854, United States
| |
Collapse
|
18
|
Robin SL, Marchand C, Ham B, Pattier F, Laporte-Magoni C, Serres A. Influences of species and watersheds inputs on trace metal accumulation in mangrove roots. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 787:147438. [PMID: 34000538 DOI: 10.1016/j.scitotenv.2021.147438] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/23/2021] [Accepted: 04/26/2021] [Indexed: 06/12/2023]
Abstract
Mangrove forest is a key ecosystem between land and sea, and provides many services such as trapping sediments and contaminants. These contaminants include trace metals (TM) that can accumulate in mangroves soil and biota. This paper innovates by the comparative study of the effects of the watershed inputs on TM distribution in mangrove soil, on roots bioconcentration factors of two species (Avicennia marina and Rhizophora stylosa), and on Fe plaque formation and immobilization of these TM. Two mangrove forests in New Caledonia were chosen as study sites. One mangrove is located downstream ultramafic rocks and a Ni mine (ultrabasic site), whereas the second mangrove ends a volcano-sedimentary watershed (non-ultrabasic site). TM concentrations (Co, Cr, Cu, Fe, Hg, Mn, Ni, Pb, Zn) were measured in soil, porewaters, and roots of both species via ICP-OES or Hg analyzer. Analyzed TM were significantly more concentrated in soils at the ultrabasic site with Fe, Cr, and Ni the most abundant. Iron, Mn, and Ni were the most concentrated in the roots with mean values of 9,651, 192, and 133 mg kg-1 respectively. However, the bioconcentration factors (BCF) of Fe (0.16) and Ni (0.11) were low due to a lack of ions in the dissolved phase and potential uptake regulation. The uptake of TM by mangrove trees was influenced by concentrations in soil, but more importantly by their potential bioavailability and the physiological characteristics of each species. TM concentrations and BCF were lower for R. stylosa probably due to less permeable root system. A. marina limits TM absorption through Fe plaque formation on its pneumatophores with a capacity to retain TM up to 94% for Mn. Mean Fe plaque formation is potentially correlated to Fe concentration in soil. Eventually, framboids of pyrite were observed within root tissues in the epidermis of A. marina's pneumatophores.
Collapse
Affiliation(s)
- Sarah Louise Robin
- Institut de Sciences Exactes et Appliquées (ISEA EA7484), Université de la Nouvelle-Calédonie, 145 Avenue James Cook, Nouville, BP R4 98851, Nouméa Cedex, New Caledonia.
| | - Cyril Marchand
- Institut de Sciences Exactes et Appliquées (ISEA EA7484), Université de la Nouvelle-Calédonie, 145 Avenue James Cook, Nouville, BP R4 98851, Nouméa Cedex, New Caledonia
| | - Brian Ham
- Institut de Sciences Exactes et Appliquées (ISEA EA7484), Université de la Nouvelle-Calédonie, 145 Avenue James Cook, Nouville, BP R4 98851, Nouméa Cedex, New Caledonia
| | - France Pattier
- Institut de Sciences Exactes et Appliquées (ISEA EA7484), Université de la Nouvelle-Calédonie, 145 Avenue James Cook, Nouville, BP R4 98851, Nouméa Cedex, New Caledonia
| | - Christine Laporte-Magoni
- Institut de Sciences Exactes et Appliquées (ISEA EA7484), Université de la Nouvelle-Calédonie, 145 Avenue James Cook, Nouville, BP R4 98851, Nouméa Cedex, New Caledonia
| | - Arnaud Serres
- Institut de Sciences Exactes et Appliquées (ISEA EA7484), Université de la Nouvelle-Calédonie, 145 Avenue James Cook, Nouville, BP R4 98851, Nouméa Cedex, New Caledonia
| |
Collapse
|
19
|
Huang S, Zhao Y, Lv S, Wang W, Wang W, Zhang Y, Huo Y, Sun X, Chen Y. Distribution of mercury isotope signatures in Yundang Lagoon, Xiamen, China, after long-term interventions. CHEMOSPHERE 2021; 272:129716. [PMID: 33601205 DOI: 10.1016/j.chemosphere.2021.129716] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 01/14/2021] [Accepted: 01/17/2021] [Indexed: 05/24/2023]
Abstract
Isotope signatures of mercury (Hg) were determined for Hg fractions in seawater, sediments, porewaters, core sediments and fish from the Yundang Lagoon, Xiamen, China. Sequential extraction was used to extract Hg fractions in sediments and the purge-trap method was used to preconcentrate Hg in seawater. A large variation in mass dependent fractionation (δ202Hg: -2.50‰ to -0.36‰) was observed in the lagoon. Seawater and fish samples showed positive mass-independent fractionation (Δ199Hg: -0.06‰-0.45‰), while most of sediment and porewater samples displayed insignificant mass-independent fractionation (Δ199Hg: -0.10‰-0.07‰). Ancillary parameters (total organic carbon, sulfide, pH, Eh, water content and grain size) were also measured in the sediments to investigate correlations with Hg isotopes. Three sources (domestic sewage, sediments and atmospheric deposition) were identified as the main sources of Hg in the lagoon seawater. Photochemical reaction was the main process causing isotope fractionation in seawater. Through Hg partitioning and deposition, light isotopes were enriched from dissolved Hg to particulate Hg, then to sediments, and then to porewaters. Finally, Hg isotope signatures were used to identify the Hg sources and fractionation processes in core sediments from different depths. Our results demonstrate that Hg isotopes are powerful tools for tracing Hg sources and arriving at a better understanding of Hg biogeochemical cycling in the lagoon after long-term interventions.
Collapse
Affiliation(s)
- Shuyuan Huang
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, China; State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, 361102, China
| | - Yuhan Zhao
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, China; College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Supeng Lv
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, China
| | - Weiguo Wang
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, China
| | - Weili Wang
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, China
| | - Yuanbiao Zhang
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, China.
| | - Yunlong Huo
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, China
| | - Xiuwu Sun
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, China
| | - Yaojin Chen
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, 361102, China
| |
Collapse
|