1
|
Huang L, Duan Q, Liu Y, Wu Y, Li Z, Guo Z, Liu M, Lu X, Wang P, Liu F, Ren F, Li C, Wang J, Huang Y, Yan B, Kioumourtzoglou MA, Kinney PL. Artificial intelligence: A key fulcrum for addressing complex environmental health issues. ENVIRONMENT INTERNATIONAL 2025; 198:109389. [PMID: 40121790 DOI: 10.1016/j.envint.2025.109389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 02/16/2025] [Accepted: 03/15/2025] [Indexed: 03/25/2025]
Abstract
Environmental health (EH) is a complex and interdisciplinary field dedicated to the examination of environmental behaviours, toxicological effects, health risks, and strategies for mitigating harmful environmental factors. Traditional EH research investigates correlations between risk factors and health outcomes through control variables, but this route is difficult to address complex EH issue. Artificial intelligence (AI) technology not only has accelerated the innovation of the scientific research paradigm but also has become an important tool for solving complex EH problems. However, the in-depth and comprehensive implementation of AI in the field of EH still faces many barriers, such as model generalizability, data privacy protection, algorithm transparency, and regulatory and ethical issues. This review focuses on the compound exposures of EH and explores the potential, challenges, and development directions of AI in four key phases of EH research: (1) data collection, fusion, and management, (2) hazard identification and screening, (3) risk modeling and assessment and (4) EH management. It is not difficult to see that in the future, artificial intelligence technology will inevitably carry out multidimensional simulation of complex exposure factors through multi-mode data fusion, so as to achieve accurate identification of environmental health risks, and eventually become an efficient tool for global environmental health management. This review will help researchers re-examine this strategy and provide a reference for AI to solve complex exposure problems.
Collapse
Affiliation(s)
- Lei Huang
- State Key Laboratory of Water Pollution Control and Green Resource Recycling, School of the Environment, Nanjing University, Nanjing 210023, China; Basic Science Center for Energy and Climate Change, Beijing 100081, China.
| | - Qiannan Duan
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an 710127, China.
| | - Yuxin Liu
- State Key Laboratory of Water Pollution Control and Green Resource Recycling, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Yangyang Wu
- State Key Laboratory of Water Pollution Control and Green Resource Recycling, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Zenghui Li
- State Key Laboratory of Water Pollution Control and Green Resource Recycling, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Zhao Guo
- State Key Laboratory of Water Pollution Control and Green Resource Recycling, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Mingliang Liu
- State Key Laboratory of Water Pollution Control and Green Resource Recycling, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Xiaowei Lu
- State Key Laboratory of Water Pollution Control and Green Resource Recycling, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Peng Wang
- Faculty of Civil Engineering and Mechanics, Jiangsu University, Zhenjiang 212013, China
| | - Fan Liu
- State Key Laboratory of Water Pollution Control and Green Resource Recycling, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Futian Ren
- State Key Laboratory of Water Pollution Control and Green Resource Recycling, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Chen Li
- State Key Laboratory of Water Pollution Control and Green Resource Recycling, School of the Environment, Nanjing University, Nanjing 210023, China; Medical School, Nanjing University, Nanjing 210093, China
| | - Jiaming Wang
- State Key Laboratory of Water Pollution Control and Green Resource Recycling, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Yujia Huang
- State Key Laboratory of Water Pollution Control and Green Resource Recycling, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Beizhan Yan
- Lamont-Doherty Earth Observatory, Columbia University, New York, USA
| | | | | |
Collapse
|
2
|
El Mghouchi Y, Udristioiu MT, Yildizhan H. Multivariable Air-Quality Prediction and Modelling via Hybrid Machine Learning: A Case Study for Craiova, Romania. SENSORS (BASEL, SWITZERLAND) 2024; 24:1532. [PMID: 38475068 DOI: 10.3390/s24051532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 02/22/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024]
Abstract
Inadequate air quality has adverse impacts on human well-being and contributes to the progression of climate change, leading to fluctuations in temperature. Therefore, gaining a localized comprehension of the interplay between climate variations and air pollution holds great significance in alleviating the health repercussions of air pollution. This study uses a holistic approach to make air quality predictions and multivariate modelling. It investigates the associations between meteorological factors, encompassing temperature, relative humidity, air pressure, and three particulate matter concentrations (PM10, PM2.5, and PM1), and the correlation between PM concentrations and noise levels, volatile organic compounds, and carbon dioxide emissions. Five hybrid machine learning models were employed to predict PM concentrations and then the Air Quality Index (AQI). Twelve PM sensors evenly distributed in Craiova City, Romania, provided the dataset for five months (22 September 2021-17 February 2022). The sensors transmitted data each minute. The prediction accuracy of the models was evaluated and the results revealed that, in general, the coefficient of determination (R2) values exceeded 0.96 (interval of confidence is 0.95) and, in most instances, approached 0.99. Relative humidity emerged as the least influential variable on PM concentrations, while the most accurate predictions were achieved by combining pressure with temperature. PM10 (less than 10 µm in diameter) concentrations exhibited a notable correlation with PM2.5 (less than 2.5 µm in diameter) concentrations and a moderate correlation with PM1 (less than 1 µm in diameter). Nevertheless, other findings indicated that PM concentrations were not strongly related to NOISE, CO2, and VOC, and these last variables should be combined with another meteorological variable to enhance the prediction accuracy. Ultimately, this study established novel relationships for predicting PM concentrations and AQI based on the most effective combinations of predictor variables identified.
Collapse
Affiliation(s)
- Youness El Mghouchi
- Department of Energetics, ENSAM, Moulay Ismail University, Meknes 50050, Morocco
| | - Mihaela Tinca Udristioiu
- Department of Physics, Faculty of Science, University of Craiova, 13 A.I. Cuza Street, 200585 Craiova, Romania
| | - Hasan Yildizhan
- Engineering Faculty, Energy Systems Engineering, Adana Alparslan Türkeş Science and Technology University, Adana 46278, Turkey
| |
Collapse
|
3
|
Ahmed AAM, Jui SJJ, Sharma E, Ahmed MH, Raj N, Bose A. An advanced deep learning predictive model for air quality index forecasting with remote satellite-derived hydro-climatological variables. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167234. [PMID: 37739083 DOI: 10.1016/j.scitotenv.2023.167234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 09/15/2023] [Accepted: 09/19/2023] [Indexed: 09/24/2023]
Abstract
Forecasting the air quality index (AQI) is a critical and pressing challenge for developing nations worldwide. With air pollution emerging as a significant threat to the environment, this study considers seven study sites of the sub-tropical region in Bangladesh and introduces a novel hybrid deep-learning model. The proposed model, expressed as CLSTM-BiGRU, integrates a convolutional neural network (CNN), a long-short term memory (LSTM), and a bi-directional gated recurrent unit (BiGRU) network. Leveraging nineteen remotely sensed predictor variables and harnessing the grey wolf optimization (GWO) algorithm, the CLSTM-BiGRU model showcases its superiority in air quality forecasting. It consistently outperforms the benchmark models, yielding lower forecasting errors and higher efficiency (i.e., correlation coefficient ~1) values. Hence, this study underscores the feasibility and substantial potential of the hybrid deep learning model, which can provide precise forecasts of air quality index, and will be highly useful for relevant stakeholders and decision-makers. Furthermore, the adaptability and potential utility of this innovative model may be ascertained for air quality monitoring and effective public health risk mitigation in urban environments.
Collapse
Affiliation(s)
- Abul Abrar Masrur Ahmed
- Department of Infrastructure Engineering, University of Melbourne, Parkville, VIC 3010, Australia
| | - S Janifer Jabin Jui
- School of Mathematics Physics and Computing, University of Southern Queensland, Springfield, QLD 4300, Australia
| | - Ekta Sharma
- School of Mathematics Physics and Computing, University of Southern Queensland, Springfield, QLD 4300, Australia.
| | - Mohammad Hafez Ahmed
- Wadsworth Department of Civil and Environmental Engineering, West Virginia University, Morgantown, WV 26506-6103, United States.
| | - Nawin Raj
- School of Mathematics Physics and Computing, University of Southern Queensland, Springfield, QLD 4300, Australia.
| | - Aditi Bose
- School of Mathematics Physics and Computing, University of Southern Queensland, Springfield, QLD 4300, Australia.
| |
Collapse
|
4
|
Umar Z, Bossman A, Choi SY, Vo XV. Information flow dynamics between geopolitical risk and major asset returns. PLoS One 2023; 18:e0284811. [PMID: 37098028 PMCID: PMC10128946 DOI: 10.1371/journal.pone.0284811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 04/08/2023] [Indexed: 04/26/2023] Open
Abstract
We quantify information flows between geopolitical risk (GPR) and global financial assets such as equity, bonds, and commodities, with a focus on the Russian-Ukrainian conflict. We combine transfer entropy and the I-CEEMDAN framework to measure information flows at multi-term scales. Our empirical results indicate that (i) in the short term, crude oil and Russian equity show opposite responses to GPR; (ii) in the medium and long term, GPR information increases the risk in the financial market; and (iii) the efficiency of the financial asset markets can be confirmed on a long-term scale. These findings have important implications for market participants, such as investors, portfolio managers, and policymakers.
Collapse
Affiliation(s)
- Zaghum Umar
- College of Business, Zayed University, Abu Dhabi, United Arab Emirates
- Institute of Business Research, University of Economics Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Ahmed Bossman
- Department of Finance, University of Cape Coast, Cape Coast, Ghana
| | - Sun-Yong Choi
- Department of Financial Mathematics, Gachon University, Seongnam, Republic of Korea
| | - Xuan Vinh Vo
- Institute of Business Research, University of Economics Ho Chi Minh City, Ho Chi Minh City, Vietnam
| |
Collapse
|
5
|
Kamińska JA, Kajewska-Szkudlarek J. The importance of data splitting in combined NO x concentration modelling. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 868:161744. [PMID: 36690101 DOI: 10.1016/j.scitotenv.2023.161744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 01/04/2023] [Accepted: 01/17/2023] [Indexed: 06/17/2023]
Abstract
The polluted air breathed every day by those living in large conurbations poses a significant risk to their health. Through effective modelling (prediction) of concentrations of pollutants and identification of the factors influencing them, it should be possible to obtain advance information on dangers and to plan and implement measures to reduce them. This work describes two different modelling approaches: based on the NOx concentration of the previous hour (C&RT models); and based on meteorological factors, traffic flow, and past (up to two previous hours) NOx and NO2 concentrations (CA models). For each approach, three alternative machine learning methods were applied: artificial neutral network (ANN), random forest (RF), and support vector regression (SVR). The best fits were obtained for the models using ANN and RF (MAPE values in the range 18.3-18.5 %). Poorer fits were found for the SVR models (MAPE equal to 23.4 % for the C&RT approach and 29.3 % for CA). No significant preferences were identified between the C&RT and CA approaches (based on various goodness-of-fit measures). The choice should be determined by the purposes for which the forecast is to be used.
Collapse
Affiliation(s)
- Joanna A Kamińska
- Department of Applied Mathematics, Wroclaw University of Environmental and Life Sciences, Grunwaldzka Street 53, 50-357 Wroclaw, Poland
| | - Joanna Kajewska-Szkudlarek
- Institute of Environmental Engineering, Wroclaw University of Environmental and Life Sciences, Grunwaldzki Square 24, 50-363 Wroclaw, Poland.
| |
Collapse
|
6
|
Méndez M, Merayo MG, Núñez M. Machine learning algorithms to forecast air quality: a survey. Artif Intell Rev 2023; 56:1-36. [PMID: 36820441 PMCID: PMC9933038 DOI: 10.1007/s10462-023-10424-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/01/2023] [Indexed: 02/18/2023]
Abstract
Air pollution is a risk factor for many diseases that can lead to death. Therefore, it is important to develop forecasting mechanisms that can be used by the authorities, so that they can anticipate measures when high concentrations of certain pollutants are expected in the near future. Machine Learning models, in particular, Deep Learning models, have been widely used to forecast air quality. In this paper we present a comprehensive review of the main contributions in the field during the period 2011-2021. We have searched the main scientific publications databases and, after a careful selection, we have considered a total of 155 papers. The papers are classified in terms of geographical distribution, predicted values, predictor variables, evaluation metrics and Machine Learning model.
Collapse
Affiliation(s)
- Manuel Méndez
- Design and Testing of Reliable Systems Research Group, Universidad Complutense de Madrid, C/ Profesor José García Santesmases, 9, 28040 Madrid, Madrid Spain
| | - Mercedes G. Merayo
- Design and Testing of Reliable Systems Research Group, Universidad Complutense de Madrid, C/ Profesor José García Santesmases, 9, 28040 Madrid, Madrid Spain
| | - Manuel Núñez
- Design and Testing of Reliable Systems Research Group, Universidad Complutense de Madrid, C/ Profesor José García Santesmases, 9, 28040 Madrid, Madrid Spain
| |
Collapse
|
7
|
Ahmed AAM, Jui SJJ, Chowdhury MAI, Ahmed O, Sutradha A. The development of dissolved oxygen forecast model using hybrid machine learning algorithm with hydro-meteorological variables. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:7851-7873. [PMID: 36045185 PMCID: PMC9894995 DOI: 10.1007/s11356-022-22601-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 08/15/2022] [Indexed: 06/15/2023]
Abstract
Dissolved oxygen (DO) forecasting is essential for aquatic managers responsible for maintaining ecosystem health and the management of water bodies affected by water quality parameters. This paper aims to forecast dissolved oxygen (DO) concentration using a multivariate adaptive regression spline (MARS) hybrid model coupled with maximum overlap discrete wavelet transformation (MODWT) as a feature decomposition approach for Surma River water using a set of water quality hydro-meteorological variables. The proposed hybrid model is compared with numerous machine learning methods, namely Bayesian ridge regression (BNR), k-nearest neighbourhood (KNN), kernel ridge regression (KRR), random forest (RF), and support vector regression (SVR). The investigational results show that the proposed model of MODWT-MARS has a better prediction than the comparing benchmark models and individual standalone counter parts. The result shows that the hybrid algorithms (i.e. MODWT-MARS) outperformed the other models (r = 0.981, WI = 0.990, RMAE = 2.47%, and MAE = 0.089). This hybrid method may serve to forecast water quality variables with fewer predictor variables.
Collapse
Affiliation(s)
- Abul Abrar Masrur Ahmed
- Department of Infrastructure Engineering, University of Melbourne, Parkville, VIC 3010 Australia
- School of Mathematics Physics and Computing, University of Southern Queensland, Springfield, QLD 4300 Australia
| | - S. Janifer Jabin Jui
- School of Mathematics Physics and Computing, University of Southern Queensland, Springfield, QLD 4300 Australia
| | | | - Oli Ahmed
- School of Modern Sciences, Leading University, Sylhet, 3112 Bangladesh
| | - Ambica Sutradha
- School of Modern Sciences, Leading University, Sylhet, 3112 Bangladesh
| |
Collapse
|
8
|
Dong L, Hua P, Gui D, Zhang J. Extraction of multi-scale features enhances the deep learning-based daily PM 2.5 forecasting in cities. CHEMOSPHERE 2022; 308:136252. [PMID: 36055593 DOI: 10.1016/j.chemosphere.2022.136252] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 07/14/2022] [Accepted: 08/26/2022] [Indexed: 06/15/2023]
Abstract
Characterising the daily PM2.5 concentration is crucial for air quality control. To govern the status of the atmospheric environment, a novel hybrid model for PM2.5 forecasting was proposed by introducing a two-stage decomposition technology of complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN) and variational mode decomposition (VMD); subsequently, a deep learning approach of long short-term memory (LSTM) was proposed. Five cities with unique meteorological and economic characteristics were selected to assess the predictive ability of the proposed model. The results revealed that PM2.5 pollution was generally more severe in inland cities (66.98 ± 0.76 μg m-3) than in coastal cities (40.46 ± 0.40 μg m-3). The modelling comparison showed that in each city, the secondary decomposition algorithm improved the accuracy and prediction stability of the prediction models. When compared with other prediction models, LSTM effectively extracted featured information and achieved relatively accurate time-series prediction. The hybrid model of CEEMDAN-VMD-LSTM achieved a better prediction in the five cities (R2 = 0.9803 ± 0.01) compared with the benchmark models (R2 = 0.7537 ± 0.03). The results indicate that the proposed approach can identify the inherent correlations and patterns among complex datasets, particularly in time-series analysis.
Collapse
Affiliation(s)
- Liang Dong
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510535, China
| | - Pei Hua
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, 510006, Guangzhou, China; School of Environment, South China Normal University, University Town, 510006, Guangzhou, China
| | - Dongwei Gui
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China
| | - Jin Zhang
- State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Yangtze Institute for Conservation and Development, Hohai University, Nanjing, 210098, China; State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China.
| |
Collapse
|
9
|
Luts A, Kaasik M, Hõrrak U, Maasikmets M, Junninen H. Links between the concentrations of gaseous pollutants measured in different regions of Estonia. AIR QUALITY, ATMOSPHERE, & HEALTH 2022; 16:25-36. [PMID: 36258698 PMCID: PMC9560877 DOI: 10.1007/s11869-022-01261-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 09/21/2022] [Indexed: 06/16/2023]
Abstract
The factors that determine the concentrations of air pollutants (NO, NO2, SO2, O3), measured in 8 monitoring stations (4 rural background, 3 urban, and 1 industrial) in Estonia, are studied applying the factor analysis. The factor analysis reveals remarkable impact of COVID-19 lockdown, effects caused by dramatic decrease in oil-shale based energy production in Estonia provoked by new socio-economic conditions such as elevated price for CO2 emission quota, differences between rural and urban stations, maritime-continental difference for NO2 and ozone, and specific industrial impact in case of SO2. The multiple regression analysis to predict the ozone concentration in one rural background station at Tahkuse was performed, based on the ozone concentrations measured in other stations and the concentrations of NO, NO2, and CO2, recorded in the same station. It was found that the ozone concentration at Tahkuse is rather well predictable (determination coefficient, i.e., correlation coefficient squared, R 2 = 0.714), using only the concentrations from another rural station at Saarejärve that is about 110 km away from Tahkuse. Adding all the available data into the list of regression analysis arguments, the model predictability is improved moderately (determination coefficient R 2 = 0.795). Large model residuals above all tend to occur with the values measured and predicted at summer nights. Surprisingly, neither NO nor NO2 concentration measured in the Tahkuse station did appear a good predictor for ozone (R 2 = 0.02 and 0.05, respectively), possibly long-range transport of ozone (that has also experienced NO and/or NO2 influence during transport) overrides the local effects of NO and/or NO2.
Collapse
Affiliation(s)
- Aare Luts
- Institute of Physics, Tartu University, Ostwaldi str. 1, Tartu, Estonia
| | - Marko Kaasik
- Institute of Physics, Tartu University, Ostwaldi str. 1, Tartu, Estonia
- Estonian Environmental Research Centre, Tallinn, Estonia
| | - Urmas Hõrrak
- Institute of Physics, Tartu University, Ostwaldi str. 1, Tartu, Estonia
| | | | - Heikki Junninen
- Institute of Physics, Tartu University, Ostwaldi str. 1, Tartu, Estonia
| |
Collapse
|
10
|
Effectiveness of Particulate Matter Forecasting and Warning Systems within Urban Areas. SUSTAINABILITY 2022. [DOI: 10.3390/su14095394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The close relation between atmospheric pollution and human health has been well documented. Accordingly, various policies have been enacted worldwide to reduce and regulate air pollution, with most countries having established correlated monitoring systems. Notably in South Korea, increasing concerns about particulate matter (PM) concentrations led to the establishment of a nationwide forecasting and warning system in 2014. In this study, the PM trends in South Korea over the past decade were examined, and the correlated social issues were analyzed. In addition, the relationships between PM concentration, the forecasting–warning system, and people’s urban park use were analyzed to assess the efficacy of policy introduction. The results indicated that PM concentrations were an obstacle to outdoor activities, and the PM forecasting–warning system affected urban park use. Whereas the effects of PM forecasting and warning systems have not been sufficiently explored in practical terms in the literature, this study could be significant in proving the validity of environmental policies through the evidence including urban park visitors. This study also suggests future directions for developing PM forecasting and warning systems.
Collapse
|
11
|
Shi B, Zhou T, Lv S, Wang M, Chen S, Heidari AA, Huang X, Chen H, Wang L, Wu P. An evolutionary machine learning for pulmonary hypertension animal model from arterial blood gas analysis. Comput Biol Med 2022; 146:105529. [PMID: 35594682 DOI: 10.1016/j.compbiomed.2022.105529] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/11/2022] [Accepted: 04/13/2022] [Indexed: 11/03/2022]
Abstract
Pulmonary hypertension (PH) is a rare and fatal condition that leads to right heart failure and death. The pathophysiology of PH and potential therapeutic approaches are yet unknown. PH animal models' development and proper evaluation are critical to PH research. This work presents an effective analysis technology for PH from arterial blood gas analysis utilizing an evolutionary kernel extreme learning machine with multiple strategies integrated slime mould algorithm (MSSMA). In MSSMA, two efficient bee-foraging learning operators are added to the original slime mould algorithm, ensuring a suitable trade-off between intensity and diversity. The proposed MSSMA is evaluated on thirty IEEE benchmarks and the statistical results show that the search performance of the MSSMA is significantly improved. The MSSMA is utilised to develop a kernel extreme learning machine (MSSMA-KELM) on PH from arterial blood gas analysis. Comprehensively, the proposed MSSMA-KELM can be used as an effective analysis technology for PH from arterial Blood gas analysis with an accuracy of 93.31%, Matthews coefficient of 90.13%, Sensitivity of 91.12%, and Specificity of 90.73%. MSSMA-KELM can be treated as an effective approach for evaluating mouse PH models.
Collapse
Affiliation(s)
- Beibei Shi
- Affiliated People's Hospital of Jiangsu University, 8 Dianli Road, Zhenjiang, Jiangsu, 212000, China.
| | - Tao Zhou
- The First Clinical College, Wenzhou Medical University, Wenzhou, 325000, China.
| | - Shushu Lv
- The First Clinical College, Wenzhou Medical University, Wenzhou, 325000, China.
| | - Mingjing Wang
- College of Computer Science and Artificial Intelligence, Wenzhou University, Wenzhou, 325035, China.
| | - Siyuan Chen
- Affiliated People's Hospital of Jiangsu University, 8 Dianli Road, Zhenjiang, Jiangsu, 212000, China.
| | - Ali Asghar Heidari
- School of Surveying and Geospatial Engineering, College of Engineering, University of Tehran, Tehran, Iran; Department of Computer Science, School of Computing, National University of Singapore, Singapore, Singapore.
| | - Xiaoying Huang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China.
| | - Huiling Chen
- College of Computer Science and Artificial Intelligence, Wenzhou University, Wenzhou, 325035, China.
| | - Liangxing Wang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China.
| | - Peiliang Wu
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China.
| |
Collapse
|
12
|
Construction of Economic Management Big Data Platform Based on Artificial Intelligence Algorithm Monitoring and Early Warning. JOURNAL OF ELECTRICAL AND COMPUTER ENGINEERING 2022. [DOI: 10.1155/2022/1206405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The development of artificial intelligence and the emergence of big data have brought convenience to the development of various fields and also brought great influence to the economic field. There are many data sources for economic management, and the scale is huge, so how to manage these large-scale economic data has become an urgent problem to be solved. In addition, the issue of how to conduct security management on these large-scale data, protect the security of users’ accounts and property, and effectively monitor and prewarn economic market risks is also an urgent issue. This article aims to build an economic market risk monitoring and early warning platform through advanced science and technology such as artificial intelligence and big data to realize an intelligent risk control platform in the economic and financial fields, as well as a data-driven risk management model to create intelligent risk early warning and prevention and the response system to enhance the intelligent level of risk assessment, early warning, prevention, and disposal. Experiments show that the artificial intelligence algorithm monitoring and early warning economic management big data platform constructed in this article shows that its accuracy of economic risk prediction can reach more than 90%.
Collapse
|
13
|
A Prediction Model of Health Development Based on Linear Sequential Extreme Learning Machine Algorithm Matrix. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2022; 2022:7632841. [PMID: 35295280 PMCID: PMC8920680 DOI: 10.1155/2022/7632841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 02/12/2022] [Accepted: 02/15/2022] [Indexed: 11/17/2022]
Abstract
The rapid development of social economy not only increases people's living pressure but also reduces people's health. Looking for a healthy development prediction model has become a domestic concern. Based on the analysis of the influencing factors of health development, this paper looks for a model to predict the development of public health, so as to improve the accuracy of health development prediction. In this paper, the linear sequential extreme learning machine algorithm can be used to evaluate the health status of a large number of data, analyze the differences of each evaluation index, and construct the analysis model of health status. Therefore, this paper introduces rough set theory into linear sequential extreme learning machine algorithm. Rough set can analyze the double analysis of evaluation scheme, predict the health development of different individuals, and improve the evaluation accuracy of mass health evaluation. The simulation results show that the improved line sequential extreme learning machine algorithm can accurately analyze the mass health and meet the needs of different individuals' health evaluation.
Collapse
|
14
|
Kernel Ridge Regression Hybrid Method for Wheat Yield Prediction with Satellite-Derived Predictors. REMOTE SENSING 2022. [DOI: 10.3390/rs14051136] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Wheat dominates the Australian grain production market and accounts for 10–15% of the world’s 100 million tonnes annual global wheat trade. Accurate wheat yield prediction is critical to satisfying local consumption and increasing exports regionally and globally to meet human food security. This paper incorporates remote satellite-based information in a wheat-growing region in South Australia to estimate the yield by integrating the kernel ridge regression (KRR) method coupled with complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN) and the grey wolf optimisation (GWO). The hybrid model, ‘GWO-CEEMDAN-KRR,’ employing an initial pool of 23 different satellite-based predictors, is seen to outperform all the benchmark models and all the feature selection (ant colony, atom search, and particle swarm optimisation) methods that are implemented using a set of carefully screened satellite variables and a feature decomposition or CEEMDAN approach. A suite of statistical metrics and infographics comparing the predicted and measured yield shows a model prediction error that can be reduced by ~20% by employing the proposed GWO-CEEMDAN-KRR model. With the metrics verifying the accuracy of simulations, we also show that it is possible to optimise the wheat yield to achieve agricultural profits by quantifying and including the effects of satellite variables on potential yield. With further improvements in the proposed methodology, the GWO-CEEMDAN-KRR model can be adopted in agricultural yield simulation that requires remote sensing data to establish the relationships between crop health, yield, and other productivity features to support precision agriculture.
Collapse
|
15
|
Spatiotemporal Hybrid Random Forest Model for Tea Yield Prediction Using Satellite-Derived Variables. REMOTE SENSING 2022. [DOI: 10.3390/rs14030805] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Crop yield forecasting is critical for enhancing food security and ensuring an appropriate food supply. It is critical to complete this activity with high precision at the regional and national levels to facilitate speedy decision-making. Tea is a big cash crop that contributes significantly to economic development, with a market of USD 200 billion in 2020 that is expected to reach over USD 318 billion by 2025. As a developing country, Bangladesh can be a greater part of this industry and increase its exports through its tea yield and production with favorable climatic features and land quality. Regrettably, the tea yield in Bangladesh has not increased significantly since 2008 like many other countries, despite having suitable climatic and land conditions, which is why quantifying the yield is imperative. This study developed a novel spatiotemporal hybrid DRS–RF model with a dragonfly optimization (DR) algorithm and support vector regression (S) as a feature selection approach. This study used satellite-derived hydro-meteorological variables between 1981 and 2020 from twenty stations across Bangladesh to address the spatiotemporal dependency of the predictor variables for the tea yield (Y). The results illustrated that the proposed DRS–RF hybrid model improved tea yield forecasting over other standalone machine learning approaches, with the least relative error value (11%). This study indicates that integrating the random forest model with the dragonfly algorithm and SVR-based feature selection improves prediction performance. This hybrid approach can help combat food risk and management for other countries.
Collapse
|
16
|
Air quality deterministic and probabilistic forecasting system based on hesitant fuzzy sets and nonlinear robust outlier correction. Knowl Based Syst 2022. [DOI: 10.1016/j.knosys.2021.107789] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
17
|
Zaini N, Ean LW, Ahmed AN, Malek MA. A systematic literature review of deep learning neural network for time series air quality forecasting. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:4958-4990. [PMID: 34807385 DOI: 10.1007/s11356-021-17442-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 11/05/2021] [Indexed: 06/13/2023]
Abstract
Rapid progress of industrial development, urbanization and traffic has caused air quality reduction that negatively affects human health and environmental sustainability, especially among developed countries. Numerous studies on the development of air quality forecasting model using machine learning have been conducted to control air pollution. As such, there are significant numbers of reviews on the application of machine learning in air quality forecasting. Shallow architectures of machine learning exhibit several limitations and yield lower forecasting accuracy than deep learning architecture. Deep learning is a new technology in computational intelligence; thus, its application in air quality forecasting is still limited. This study aims to investigate the deep learning applications in time series air quality forecasting. Owing to this, literature search is conducted thoroughly from all scientific databases to avoid unnecessary clutter. This study summarizes and discusses different types of deep learning algorithms applied in air quality forecasting, including the theoretical backgrounds, hyperparameters, applications and limitations. Hybrid deep learning with data decomposition, optimization algorithm and spatiotemporal models are also presented to highlight those techniques' effectiveness in tackling the drawbacks of individual deep learning models. It is clearly stated that hybrid deep learning was able to forecast future air quality with higher accuracy than individual models. At the end of the study, some possible research directions are suggested for future model development. The main objective of this review study is to provide a comprehensive literature summary of deep learning applications in time series air quality forecasting that may benefit interested researchers for subsequent research.
Collapse
Affiliation(s)
- Nur'atiah Zaini
- Institute of Sustainable Energy, Universiti Tenaga Nasional, Selangor, Malaysia.
| | - Lee Woen Ean
- Institute of Sustainable Energy, Universiti Tenaga Nasional, Selangor, Malaysia
| | - Ali Najah Ahmed
- Institute of Energy Infrastructure, Universiti Tenaga Nasional, Selangor, Malaysia
| | | |
Collapse
|
18
|
Short-Term Load Probabilistic Forecasting Based on Improved Complete Ensemble Empirical Mode Decomposition with Adaptive Noise Reconstruction and Salp Swarm Algorithm. ENERGIES 2021. [DOI: 10.3390/en15010147] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Short-term load forecasting is an important part of load forecasting, which is of great significance to the optimal power flow and power supply guarantee of the power system. In this paper, we proposed the load series reconstruction method combined improved complete ensemble empirical mode decomposition with adaptive noise (ICEEMDAN) with sample entropy (SE). The load series is decomposed by ICEEMDAN and is reconstructed into a trend component, periodic component, and random component by comparing with the sample entropy of the original series. Extreme learning machine optimized by salp swarm algorithm (SSA-ELM) is used to predict respectively, and the final prediction value is obtained by superposition of the prediction results of the three components. Then, the prediction error of the training set is divided into four load intervals according to the predicted value, and the kernel probability density is estimated to obtain the error distribution of the training set. Combining the predicted value of the prediction set with the error distribution of the corresponding load interval, the prediction load interval can be obtained. The prediction method is verified by taking the hourly load data of a region in Denmark in 2019 as an example. The final experimental results show that the proposed method has a high prediction accuracy for short-term load forecasting.
Collapse
|
19
|
Kim J, Wang X, Kang C, Yu J, Li P. Forecasting air pollutant concentration using a novel spatiotemporal deep learning model based on clustering, feature selection and empirical wavelet transform. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 801:149654. [PMID: 34416605 DOI: 10.1016/j.scitotenv.2021.149654] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 07/30/2021] [Accepted: 08/10/2021] [Indexed: 06/13/2023]
Abstract
Accurate forecasting of air pollutant concentration is of great importance since it is an essential part of the early warning system. However, it still remains a challenge due to the limited information of emission source and high uncertainties of the dynamic processes. In order to improve the accuracy of air pollutant concentration forecast, this study proposes a novel hybrid model using clustering, feature selection, real-time decomposition by empirical wavelet transform, and deep learning neural network. First, all air pollutant time series are decomposed by empirical wavelet transform based on real-time decomposition, and subsets of output data are constructed by combining corresponding decomposed components. Second, each subset of output data is classified into several clusters by clustering algorithm, and then appropriate inputs are selected by feature selection method. Third, a deep learning-based predictor, which uses three dimensional convolutional neural network and bidirectional long short-term memory neural network, is applied to predict decomposition components of each cluster. Last, air pollutant concentration forecast for each monitoring station is obtained by reconstructing predicted values of all the decomposition components. PM2.5 concentration data of Beijing, China is used to validate and test our model. Results show that the proposed model outperforms other models used in this study. In our model, mean absolute percentage error for 1, 6, 10 h ahead PM2.5 concentration prediction is 4.03%, 6.87%, and 8.98%, respectively. These outcomes demonstrate that the proposed hybrid model is a powerful tool to provide highly accurate forecast for air pollutant concentration.
Collapse
Affiliation(s)
- Jusong Kim
- Tianjin Key Laboratory of Hazardous Waste Safety Disposal and Recycling Technology, School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin 300384, China; Department of Mathematics, University of Science, Pyongyang 999091, DPR Korea
| | - Xiaoli Wang
- Tianjin Key Laboratory of Hazardous Waste Safety Disposal and Recycling Technology, School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin 300384, China.
| | - Chollyong Kang
- Department of Mathematics, University of Science, Pyongyang 999091, DPR Korea
| | - Jinwon Yu
- Tianjin Key Laboratory of Hazardous Waste Safety Disposal and Recycling Technology, School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin 300384, China; Department of Mathematics, University of Science, Pyongyang 999091, DPR Korea
| | - Penghui Li
- Tianjin Key Laboratory of Hazardous Waste Safety Disposal and Recycling Technology, School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin 300384, China.
| |
Collapse
|
20
|
Short-Term Load Forecasting of Distributed Energy System Based on Kernel Principal Component Analysis and KELM Optimized by Fireworks Algorithm. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app112412014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Accurate and stable load forecasting has great significance to ensure the safe operation of distributed energy system. For the purpose of improving the accuracy and stability of distributed energy system load forecasting, a forecasting model in view of kernel principal component analysis (KPCA), kernel extreme learning machine (KELM) and fireworks algorithm (FWA) is proposed. First, KPCA modal is used to reduce the dimension of the feature, thus redundant input samples are merged. Next, FWA is employed to optimize the parameters C and σ of KELM. Lastly, the load forecasting modal of KPCA-FWA-KELM is established. The relevant data of a distributed energy system in Beijing, China, is selected for training test to verify the effectiveness of the proposed method. The results show that the new hybrid KPCA-FWA-KELM method has superior performance, robustness and versatility in load prediction of distributed energy systems.
Collapse
|
21
|
Adnan RM, R. Mostafa R, Kisi O, Yaseen ZM, Shahid S, Zounemat-Kermani M. Improving streamflow prediction using a new hybrid ELM model combined with hybrid particle swarm optimization and grey wolf optimization. Knowl Based Syst 2021. [DOI: 10.1016/j.knosys.2021.107379] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
22
|
In Situ Monitoring of Nitrate Content in Leafy Vegetables Using Attenuated Total Reflectance − Fourier-Transform Mid-infrared Spectroscopy Coupled with Machine Learning Algorithm. FOOD ANAL METHOD 2021. [DOI: 10.1007/s12161-021-02048-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
23
|
Wang J, Li H, Yang H, Wang Y. Intelligent multivariable air-quality forecasting system based on feature selection and modified evolving interval type-2 quantum fuzzy neural network. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 274:116429. [PMID: 33545527 DOI: 10.1016/j.envpol.2021.116429] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/26/2020] [Accepted: 01/02/2021] [Indexed: 06/12/2023]
Abstract
Owing to the high nonlinearity and noise in the air quality index (AQI), tackling the uncertainties and fuzziness in the forecasting process is still a prevalent problem. Therefore, this study developed an intelligent hybrid air-quality forecasting system based on feature selection and a modified evolving interval type-2 quantum fuzzy neural network (eIT2QFNN), which provides accurate air-quality forecasting information by considering climate influencing factors. The main contributions of this study are as follows. The optimal input structure of the model is determined by the proposed second-stage feature-selection model, which can better extract the influencing variables and remove redundant information. Moreover, a novel multi-objective chaotic Bonobo optimizer algorithm is proposed to improve the eIT2QFNN. The modified eIT2QFNN implements AQI prediction by considering the importance of influencing variables that can cope with the uncertainties and fuzziness in the forecasting process. Finally, the Diebold-Mariano and modified Diebold-Mariano tests are employed to evaluate the performance of the proposed system. The experimental results demonstrate that our proposed system significantly improves the modeling performance in terms of high accuracy and compact structure, and can thus serve as an effective tool for air-quality management.
Collapse
Affiliation(s)
- Jianzhou Wang
- School of Statistics, Dongbei University of Finance and Economics, Dalian, China
| | - Hongmin Li
- School of Statistics, Dongbei University of Finance and Economics, Dalian, China.
| | - Hufang Yang
- School of Statistics, Dongbei University of Finance and Economics, Dalian, China
| | - Ying Wang
- School of Statistics, Dongbei University of Finance and Economics, Dalian, China
| |
Collapse
|
24
|
Liu H, Yan G, Duan Z, Chen C. Intelligent modeling strategies for forecasting air quality time series: A review. Appl Soft Comput 2021. [DOI: 10.1016/j.asoc.2020.106957] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
25
|
MultiStep Ahead Forecasting for Hourly PM10 and PM2.5 Based on Two-Stage Decomposition Embedded Sample Entropy and Group Teacher Optimization Algorithm. ATMOSPHERE 2021. [DOI: 10.3390/atmos12010064] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The randomness, nonstationarity and irregularity of air pollutant data bring difficulties to forecasting. To improve the forecast accuracy, we propose a novel hybrid approach based on two-stage decomposition embedded sample entropy, group teaching optimization algorithm (GTOA), and extreme learning machine (ELM) to forecast the concentration of particulate matter (PM10 and PM2.5). First, the improvement complementary ensemble empirical mode decomposition with adaptive noise (ICEEMDAN) is employed to decompose the concentration data of PM10 and PM2.5 into a set of intrinsic mode functions (IMFs) with different frequencies. In addition, wavelet transform (WT) is utilized to decompose the IMFs with high frequency based on sample entropy values. Then the GTOA algorithm is used to optimize ELM. Furthermore, the GTOA-ELM is utilized to predict all the subseries. The final forecast result is obtained by ensemble of the forecast results of all subseries. To further prove the predictable performance of the hybrid approach on air pollutants, the hourly concentration data of PM2.5 and PM10 are used to make one-step-, two-step- and three-step-ahead predictions. The empirical results demonstrate that the hybrid ICEEMDAN-WT-GTOA-ELM approach has superior forecasting performance and stability over other methods. This novel method also provides an effective and efficient approach to make predictions for nonlinear, nonstationary and irregular data.
Collapse
|