1
|
Fatima I, Wakade G, Ahmad N, Daniell H. Expression of endochitinase and exochitinase in lettuce chloroplasts increases plant biomass and kills fungal pathogen Candida albicans. PLANT BIOTECHNOLOGY JOURNAL 2025; 23:1437-1451. [PMID: 39967296 PMCID: PMC12018847 DOI: 10.1111/pbi.14596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/30/2024] [Accepted: 12/31/2024] [Indexed: 02/20/2025]
Abstract
Lettuce (Lactuca sativa) is a popular leafy vegetable with global production of ~28 million Mt, cultivated >1 million hectares, with a market value of US$ 4 billion in 2022. However, lettuce is highly susceptible to fungal pathogens that drastically reduce biomass and quality due to spoilage/rot. Therefore, in this study, we investigated the expression of chitinase genes via the lettuce chloroplast genome to enhance biomass and disease resistance. Site-specific integration of the expression cassette into chloroplast genomes was confirmed using two sets of PCR primers. Homoplasmy in transplastomic lines was confirmed in Southern blots by the absence of untransformed genomes. Maternal inheritance of transgenes was confirmed by the lack of segregation when seedlings were germinated in the selection medium. Chitinases expressed in chloroplasts are active in a broad range of pH (5-9) and temperatures (20-50 °C). Exochitinase expression significantly increased the number of leaves, root or shoot length and biomass throughout the growth cycle. Endochitinase expression reduced root/shoot biomass at early stages but recovered in older plants. Plant extracts expressing endochitinase/exochitinase showed activities as high as purified commercial enzymes. Antifungal activity in Candida albicans cultures inhibited growth up to 87%. A novel Carbotrace 680™ Optotracer binding to the ß-1,4 linkages of chitin, evaluated for the first time in plant systems, is highly sensitive to measure chitinase activity. To the best of our knowledge, this is the first report of chitinase expression via the chloroplast genomes of an edible plant, to confer desired agronomic traits or for biomedical applications.
Collapse
Affiliation(s)
- Iqra Fatima
- Department of Basic & Translational Sciences, School of Dental MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- National Institute for Biotechnology and Genetic Engineering CollegePakistan Institute of Engineering and Applied Sciences (NIBGE‐C, PIEAS)FaisalabadPakistan
| | - Geetanjali Wakade
- Department of Basic & Translational Sciences, School of Dental MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Niaz Ahmad
- National Institute for Biotechnology and Genetic Engineering CollegePakistan Institute of Engineering and Applied Sciences (NIBGE‐C, PIEAS)FaisalabadPakistan
| | - Henry Daniell
- Department of Basic & Translational Sciences, School of Dental MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| |
Collapse
|
2
|
Rodríguez-Ramos J, Sadler N, Zegeye EK, Farris Y, Purvine S, Couvillion S, Nelson WC, Hofmockel KS. Environmental matrix and moisture influence soil microbial phenotypes in a simplified porous media incubation. mSystems 2025; 10:e0161624. [PMID: 39992132 PMCID: PMC11915792 DOI: 10.1128/msystems.01616-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 01/16/2025] [Indexed: 02/25/2025] Open
Abstract
Soil moisture and porosity regulate microbial metabolism by influencing factors, such as system chemistry, substrate availability, and soil connectivity. However, accurately representing the soil environment and establishing a tractable microbial community that limits confounding variables is difficult. Here, we use a reduced-complexity microbial consortium grown in a glass bead porous media amended with chitin to test the effects of moisture and a structural matrix on microbial phenotypes. Leveraging metagenomes, metatranscriptomes, metaproteomes, and metabolomes, we saw that our porous media system significantly altered microbial phenotypes compared with the liquid incubations, denoting the importance of incorporating pores and surfaces for understanding microbial phenotypes in soils. These phenotypic shifts were mainly driven by differences in expression of Streptomyces and Ensifer, which included a significant decrease in overall chitin degradation between porous media and liquid. Our findings suggest that the success of Ensifer in porous media is likely related to its ability to repurpose carbon via the glyoxylate shunt amidst a lack of chitin degradation byproducts while potentially using polyhydroxyalkanoate granules as a C source. We also identified traits expressed by Ensifer and others, including motility, stress resistance, and carbon conservation, that likely influence the metabolic profiles observed across treatments. Together, these results demonstrate that porous media incubations promote structure-induced microbial phenotypes and are likely a better proxy for soil conditions than liquid culture systems. Furthermore, they emphasize that microbial phenotypes encompass not only the multi-enzyme pathways involved in metabolism but also include the complex interactions with the environment and other community members.IMPORTANCESoil moisture and porosity are critical in shaping microbial metabolism. However, accurately representing the soil environment in tractable laboratory experiments remains a challenging frontier. Through our reduced complexity microbial consortium experiment in porous media, we reveal that predicting microbial metabolism from gene-based pathways alone often falls short of capturing the intricate phenotypes driven by cellular interactions. Our findings highlight that porosity and moisture significantly affect chitin decomposition, with environmental matrix (i.e., glass beads) shifting community metabolism towards stress tolerance, reduced resource acquisition, and increased carbon conservation, ultimately invoking unique microbial strategies not evident in liquid cultures. Moreover, we find evidence that changes in moisture relate to community shifts regarding motility, transporters, and biofilm formation, which likely influence chitin degradation. Ultimately, our incubations showcase how reduced complexity communities can be informative of microbial metabolism and present a useful alternative to liquid cultures for studying soil microbial phenotypes.
Collapse
Affiliation(s)
- Josué Rodríguez-Ramos
- Pacific Northwest National Laboratory, Earth and Biological Sciences Directorate, Richland, Washington, USA
| | - Natalie Sadler
- Pacific Northwest National Laboratory, Earth and Biological Sciences Directorate, Richland, Washington, USA
| | - Elias K. Zegeye
- Pacific Northwest National Laboratory, Earth and Biological Sciences Directorate, Richland, Washington, USA
| | - Yuliya Farris
- Pacific Northwest National Laboratory, Earth and Biological Sciences Directorate, Richland, Washington, USA
| | - Samuel Purvine
- Pacific Northwest National Laboratory, Earth and Biological Sciences Directorate, Richland, Washington, USA
| | - Sneha Couvillion
- Pacific Northwest National Laboratory, Earth and Biological Sciences Directorate, Richland, Washington, USA
| | - William C. Nelson
- Pacific Northwest National Laboratory, Earth and Biological Sciences Directorate, Richland, Washington, USA
| | - Kirsten S. Hofmockel
- Pacific Northwest National Laboratory, Earth and Biological Sciences Directorate, Richland, Washington, USA
| |
Collapse
|
3
|
Zhu H, Chen S, Xue J, Wang X, Yang T, He J, Luo Y. Advances and challenges in green extraction of chitin for food and agriculture applications: A review. Int J Biol Macromol 2025; 297:139762. [PMID: 39800035 DOI: 10.1016/j.ijbiomac.2025.139762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/03/2025] [Accepted: 01/09/2025] [Indexed: 01/15/2025]
Abstract
Chitin, the second most abundant polysaccharide in nature, offers numerous practical applications due to its versatile functional properties. However, its utilization is constrained by significant challenges in extraction, as well as low solubility and high crystallinity. While traditional chemical and biological fermentation methods can achieve high-purity chitin, these processes are often environmentally harmful or time/energy-consuming. Ionic liquids and deep eutectic solvents have emerged as more sustainable alternatives for chitin extraction, though both methods still face certain limitations, which are comprehensively discussed in this review. Besides extraction, chitin or modified chitin is increasingly being used to create a variety of biomaterials, which have shown considerable potential in food applications, including food packaging, preservation, stabilization, and nutrient encapsulation and delivery. Furthermore, the applications of chitin-based biomaterials are also reviewed in agriculture, where they are utilized as fertilizers, biocides, the elicitation of plants, or to treat seeds. This review not only provides a deeper understanding of the advancements and limitations in green chitin extraction methods but also highlights the broad potential of chitin-based biomaterials in both food and agriculture.
Collapse
Affiliation(s)
- Honglin Zhu
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, United States
| | - Sunni Chen
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, United States
| | - Jingyi Xue
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, United States
| | - Xinhao Wang
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, United States
| | - Tiangang Yang
- Department of Chemistry, University of Connecticut, Storrs, CT 06269, United States
| | - Jie He
- Department of Chemistry, University of Connecticut, Storrs, CT 06269, United States
| | - Yangchao Luo
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, United States.
| |
Collapse
|
4
|
Vandecasteele B, Viaene J, Castejón-Del Pino R, Lataf A, Cuypers A, Vandamme D. S-enhanced microbial activation of biochars and processed grass fibers for circular horticulture. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177760. [PMID: 39616914 DOI: 10.1016/j.scitotenv.2024.177760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 09/26/2024] [Accepted: 11/24/2024] [Indexed: 12/21/2024]
Abstract
Sulfur-enhanced microbiologically activated biochar and processed grass fibers were tested for suitability as bulk material for horticultural substrates. The potential for use as bulk material was improved when grass fibers with lower biological stability were acidified with elemental sulfur (S). Acidification of the fibers with S was obtained within 2 weeks and resulted in a higher biological stability due to improved decomposition during incubation with S, a change in the microbiome, or inhibition due to high sulfate concentrations, which reduced the decomposition activity. The application of wood-based biochars as bulk or stand-alone material for horticultural substrates is restricted by their high pH and high acid-buffering capacity. Acidification of biochar through microbial activation occurred slowly. The dynamics of lowering pH after S treatment were determined by the acid-buffering capacity of the biochar. In the long term a strong drop in pH was observed in biochars with a low acid-buffering capacity. For the biochars with a high acid-buffering capacity, pH drop was moderate despite a clear decrease in acid-buffering capacity. The microbial activation of biochar was accelerated by adding mineral fertilizer or chitin. Microbial activation of the biochars was confirmed by S mineralization after application of elemental S and by N mineralization from chitin. The acidification of biochars produced from bark or straw-like fiber with elemental S resulted in only small changes in surface properties.
Collapse
Affiliation(s)
- Bart Vandecasteele
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Burg. Van Gansberghelaan 92, 9820 Merelbeke, Belgium.
| | - Jarinda Viaene
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Burg. Van Gansberghelaan 92, 9820 Merelbeke, Belgium
| | - Raúl Castejón-Del Pino
- Department of Soil and Water Conservation and Organic Waste Management, CEBAS-CSIC, Campus Universitario de Espinardo, 30100 Murcia, Spain
| | - Amine Lataf
- Hasselt University, Centre for Environmental Sciences (CMK), Agoralaan Building D, 3590 Diepenbeek, Belgium
| | - Ann Cuypers
- Hasselt University, Centre for Environmental Sciences (CMK), Agoralaan Building D, 3590 Diepenbeek, Belgium
| | - Dries Vandamme
- Hasselt University, Centre for Environmental Sciences (CMK), Agoralaan Building D, 3590 Diepenbeek, Belgium
| |
Collapse
|
5
|
Nie X, Huang X, Li M, Lu Z, Ling X. Advances in Soil Amendments for Remediation of Heavy Metal-Contaminated Soils: Mechanisms, Impact, and Future Prospects. TOXICS 2024; 12:872. [PMID: 39771087 PMCID: PMC11679158 DOI: 10.3390/toxics12120872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/26/2024] [Accepted: 11/27/2024] [Indexed: 01/11/2025]
Abstract
Heavy metal contamination is a critical factor contributing to soil degradation and poses significant environmental threats with profound implications for ecosystems and human health. Soil amendments have become an effective strategy to address these challenges by reducing heavy metal hazards and remediating contaminated soils. This review offers a comprehensive analysis of recent advancements in soil amendments for heavy metal-contaminated soils, with a focus on natural, synthetic, natural-synthetic copolymer, and biological amendments. By thoroughly examining and contrasting their remediation mechanisms and effects, this study provides a detailed evaluation of their influence on soil physicochemical properties, leachable heavy metal content, and microbial communities. Through bibliometric analysis, current research priorities and trends are highlighted, offering a multidimensional comparison of these amendments and clarifying their varying applicability and limitations. Furthermore, this review explores future prospects and the inherent challenges in soil amendments for heavy metal contamination, aiming to offer valuable insights and theoretical references for the development and selection of novel, efficient, multifunctional, environmentally friendly amendments.
Collapse
Affiliation(s)
- Xinyi Nie
- School of Environment and Energy Engineering, Anhui Jianzhu University, Hefei 230601, China
- Anhui Provincial Key Laboratory of Environmental Pollution Control and Resource Reuse, Hefei 230601, China
| | - Xianhuai Huang
- School of Environment and Energy Engineering, Anhui Jianzhu University, Hefei 230601, China
- Anhui Provincial Key Laboratory of Environmental Pollution Control and Resource Reuse, Hefei 230601, China
| | - Man Li
- Institute of Geotechnical Engineering, Southeast University, Nanjing 211189, China
| | - Zhaochi Lu
- Institute of Geotechnical Engineering, Southeast University, Nanjing 211189, China
| | - Xinhe Ling
- College of Civil Engineering, Anhui Jianzhu University, Hefei 230601, China
| |
Collapse
|
6
|
Han J, Ullah M, Andoh V, Khan MN, Feng Y, Guo Z, Chen H. Engineering Bacterial Chitinases for Industrial Application: From Protein Engineering to Bacterial Strains Mutation! A Comprehensive Review of Physical, Molecular, and Computational Approaches. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:23082-23096. [PMID: 39388625 DOI: 10.1021/acs.jafc.4c06856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Bacterial chitinases are integral in breaking down chitin, the natural polymer in crustacean and insect exoskeletons. Their increasing utilization across various sectors such as agriculture, waste management, biotechnology, food processing, and pharmaceutical industries highlights their significance as biocatalysts. The current review investigates various scientific strategies to maximize the efficiency and production of bacterial chitinases for industrial use. Our goal is to optimize the heterologous production process using physical, molecular, and computational tools. Physical methods focus on isolating, purifying, and characterizing chitinases from various sources to ensure optimal conditions for maximum enzyme activity. Molecular techniques involve gene cloning, site-directed mutation, and CRISPR-Cas9 gene editing as an approach for creating chitinases with improved catalytic activity, substrate specificity, and stability. Computational approaches use molecular modeling, docking, and simulation techniques to accurately predict enzyme-substrate interactions and enhance chitinase variants' design. Integrating multidisciplinary strategies enables the development of highly efficient chitinases tailored for specific industrial applications. This review summarizes current knowledge and advances in chitinase engineering to serve as an indispensable guideline for researchers and industrialists seeking to optimize chitinase production for various uses.
Collapse
Affiliation(s)
- Jianda Han
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212000, P. R. China
| | - Mati Ullah
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212000, P. R. China
| | - Vivian Andoh
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212000, P. R. China
| | - Muhammad Nadeem Khan
- Department of Cell Biology and Genetics, Shantou University Medical College, Shantou 515041, P. R. China
| | - Yong Feng
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212000, P. R. China
| | - Zhongjian Guo
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212000, P. R. China
| | - Huayou Chen
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212000, P. R. China
| |
Collapse
|
7
|
Su H, Lai H, Gao F, Zhang R, Wu S, Ge F, Li Y, Yao H. The proliferation of beneficial bacteria influences the soil C, N, and P cycling in the soybean-maize intercropping system. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:25688-25705. [PMID: 38483720 DOI: 10.1007/s11356-024-32851-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 03/06/2024] [Indexed: 04/19/2024]
Abstract
Soybean-maize intercropping system can improve the utilization rate of farmland and the sustainability of crop production systems. However, there is a significant gap in understanding the interaction mechanisms between soil carbon (C), nitrogen (N), and phosphorus (P) cycling functional genes, rhizosphere microorganisms, and nutrient availability. To reveal the key microorganisms associated with soil nutrient utilization and C, N, and P cycling function in the soybean-maize intercropping system, we investigated the changes in soil properties, microbial community structure, and abundance of functional genes for C, N, and P cycling under soybean-maize intercropping and monocropping at different fertility stages in a pot experiment. We found that there was no significant difference in the rhizosphere microbial community between soybean-maize intercropping and monocropping at the seeding stage. As the reproductive period progressed, differences in microbial community structure between intercropping and monocropping gradually became significant, manifesting the advantages of intercropping. During the intercropping process of soybean and maize, the relative abundance of beneficial bacteria in soil rhizosphere significantly increased, particularly Streptomycetaceae and Pseudomonadaceae. Moreover, the abundances of C, N, and P cycling functional genes, such as abfA, mnp, rbcL, pmoA (C cycling), nifH, nirS-3, nosZ-2, amoB (N cycling), phoD, and ppx (P cycling), also increased significantly. Redundancy analysis and correlation analysis showed that Streptomycetaceae and Pseudomonadaceae were significantly correlated with soil properties and C, N, and P cycling functional genes. In brief, soybean and maize intercropping can change the structure of microbial community and promote the proliferation of beneficial bacteria in the soil rhizosphere. The accumulation of these beneficial bacteria increased the abundance of C, N, and P cycling functional genes in soil and enhanced the ability of plants to fully utilize environmental nutrients and promoted growth.
Collapse
Affiliation(s)
- Hao Su
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, Fujian Province, China
- Zhejiang Provincial Key Laboratory of Urban Environmental Process and Pollution Control, Ningbo (Beilun) Zhongke Haixi Industry Technology Innovation Center, Ningbo, 315800, Zhejiang Province, China
- College of JunCao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Huiling Lai
- Lianhe Equator Environmental Impact Assessment Co., Ltd, Tianjin, 300042, China
| | - Fuyun Gao
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, Fujian Province, China
- Zhejiang Provincial Key Laboratory of Urban Environmental Process and Pollution Control, Ningbo (Beilun) Zhongke Haixi Industry Technology Innovation Center, Ningbo, 315800, Zhejiang Province, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ruipeng Zhang
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, Fujian Province, China
- Zhejiang Provincial Key Laboratory of Urban Environmental Process and Pollution Control, Ningbo (Beilun) Zhongke Haixi Industry Technology Innovation Center, Ningbo, 315800, Zhejiang Province, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Sixuan Wu
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, Fujian Province, China
- Zhejiang Provincial Key Laboratory of Urban Environmental Process and Pollution Control, Ningbo (Beilun) Zhongke Haixi Industry Technology Innovation Center, Ningbo, 315800, Zhejiang Province, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Furong Ge
- Beilun District Agriculture and Rural Bureau, Ningbo, 315800, Zhejiang Province, China
| | - Yaying Li
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, Fujian Province, China.
- Zhejiang Provincial Key Laboratory of Urban Environmental Process and Pollution Control, Ningbo (Beilun) Zhongke Haixi Industry Technology Innovation Center, Ningbo, 315800, Zhejiang Province, China.
| | - Huaiying Yao
- Wuhan Institute of Technology, Wuhan, 430074, China
| |
Collapse
|
8
|
Shu X, Ye Q, Huang H, Xia L, Tang H, Liu X, Wu J, Li Y, Zhang Y, Deng L, Liu W. Effects of grazing exclusion on soil microbial diversity and its functionality in grasslands: a meta-analysis. FRONTIERS IN PLANT SCIENCE 2024; 15:1366821. [PMID: 38567132 PMCID: PMC10985342 DOI: 10.3389/fpls.2024.1366821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 02/28/2024] [Indexed: 04/04/2024]
Abstract
Grazing exclusion (GE) is considered an effective strategy for restoring the degradation of overgrazed grasslands on the global scale. Soil microbial diversity plays a crucial role in supporting multiple ecosystem functions (multifunctionality) in grassland ecosystems. However, the impact of grazing exclusion on soil microbial diversity remains uncertain. Here, we conducted a meta-analysis using a dataset comprising 246 paired observations from 46 peer-reviewed papers to estimate how GE affects microbial diversity and how these effects vary with climatic regions, grassland types, and GE duration ranging from 1 to 64 years. Meanwhile, we explored the relationship between microbial diversity and its functionality under grazing exclusion. Overall, grazing exclusion significantly increased microbial Shannon (1.9%) and microbial richness (4.9%) compared to grazing group. For microbial groups, GE significantly increased fungal richness (8.6%) and bacterial richness (5.3%), but decreased specific microbial richness (-11.9%). The responses of microbial Shannon to GE varied among climatic regions, grassland types, and GE duration. Specifically, GE increased microbial diversity in in arid, semi-arid, and dry sub-humid regions, but decreased it in humid regions. Moreover, GE significantly increased microbial Shannon in semidesert grasslands (5.9%) and alpine grasslands (3.0%), but not in temperate grasslands. Long-term (>20 year) GE had greater effects on microbial diversity (8.0% for Shannon and 6.7% for richness) compared to short-term (<10 year) GE (-0.8% and 2.4%). Furthermore, grazing exclusion significantly increased multifunctionality, and both microbial and plant Shannon positively correlated with multifunctionality. Overall, our findings emphasize the importance of considering climate, GE duration, and grassland type for biodiversity conservation and sustainable grassland ecosystem functions.
Collapse
Affiliation(s)
- Xiangyang Shu
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest, Ministry of Education, Sichuan Normal University, Chengdu, China
| | - Qinxin Ye
- Institute of Agricultural Bioenvironment and Energy, Chengdu Academy of Agriculture and Forestry Sciences, Chengdu, China
| | - Han Huang
- College of Economics and Management, Xinjiang Agricultural University, Urumqi, China
| | - Longlong Xia
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Hao Tang
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest, Ministry of Education, Sichuan Normal University, Chengdu, China
| | - Xingyi Liu
- Institute of Agricultural Bioenvironment and Energy, Chengdu Academy of Agriculture and Forestry Sciences, Chengdu, China
| | - Jianwei Wu
- Institute of Agricultural Bioenvironment and Energy, Chengdu Academy of Agriculture and Forestry Sciences, Chengdu, China
| | - Yiding Li
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Yanyan Zhang
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Liangji Deng
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Weijia Liu
- Institute of Agricultural Bioenvironment and Energy, Chengdu Academy of Agriculture and Forestry Sciences, Chengdu, China
| |
Collapse
|
9
|
Huang Z, He X, Zhang C, Zhang M, Wang J, Hou Y, Wang D, Yao S, Yu Q, Ji K. Microbial communities and functions changed in rhizosphere soil of Pinus massoniana provenances with different carbon storage. Front Microbiol 2023; 14:1264670. [PMID: 38029152 PMCID: PMC10655096 DOI: 10.3389/fmicb.2023.1264670] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 10/17/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction The average carbon storage of Pinus massoniana is much higher than the average carbon storage of Chinese forests, an important carbon sink tree species in subtropical regions of China. However, there are few studies on the differences in rhizosphere microorganisms of P. massoniana with different carbon storages. Methods To clarify the relationships between plant carbon storage level, environmental parameters and microbial community structure, we identified three carbon storage levels from different P. massoniana provenances and collected rhizosphere soil samples. We determined chemical properties of soil, extracellular enzyme activity, and microbial community structures at different carbon storage levels and examined how soil factors affect rhizosphere microorganisms under different carbon storage levels. Results The results revealed that soil organic carbon (SOC), nitrate nitrogen (NO3--N), ammonium nitrogen (NH4+-N) contents all increased with increasing carbon storage levels, while pH decreased accordingly. In contrast, the available phosphorus (AP) content did not change significantly. The soil AP content was within the range of 0.91 ~ 1.04 mg/kg. The microbial community structure of P. massoniana changed with different carbon storage, with Acidobacteria (44.27%), Proteobacteria (32.57%), and Actinobacteria (13.43%) being the dominant bacterial phyla and Basidiomycota (73.36%) and Ascomycota (24.64%) being the dominant fungal phyla across the three carbon storage levels. Soil fungi were more responsive to carbon storage than bacteria in P. massoniana. C/N, NH4+-N, NO3--N, and SOC were the main drivers (p < 0.05) of changes in rhizosphere microbial communities. Discussion The results revealed that in the rhizosphere there were significant differences in soil carbon cycle and microorganism nutrient preferences at different carbon storages of P. massoniana provenance, which were significantly related to the changes in rhizosphere microbial community structure. Jiangxi Anyuan (AY) provenance is more suitable for the construction of high carbon storage plantation.
Collapse
Affiliation(s)
- Zichen Huang
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Xin He
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Chi Zhang
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Mengyang Zhang
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Jiannan Wang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing, China
| | - Yanqing Hou
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Dengbao Wang
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Sheng Yao
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Qiong Yu
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Kongshu Ji
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
10
|
Liu Y, Dai W, Yao D, Wang N, Liu M, Wang L, Tian W, Yan P, Huang Z, Wang H. Arsenic pollution from human activities drives changes in soil microbial community characteristics. Environ Microbiol 2023; 25:2592-2603. [PMID: 37349980 DOI: 10.1111/1462-2920.16442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 05/30/2023] [Indexed: 06/24/2023]
Abstract
Soil arsenic (As) pollution not only decreases plant productivity but also soil quality, in turn hampering sustainable agricultural development. Despite the negative effects of As contamination on rice yield and quality being reported widely, the responses of microbial communities and co-occurrence networks in paddy soil to As pollution have not been explored. Here, based on high-throughput sequencing technologies, we investigated bacterial abundance and diversity in paddy soils with different levels of As contamination, and constructed associated microbial co-occurrence networks. As pollution reduced soil bacterial diversity significantly (p < 0.001). In addition, bioavailable As concentrations were negatively correlated with Actinobacteria and Acidobacteria relative abundance (p < 0.05). Conversely, As pollution had a positive relationship with Chloroflexi, Betaproteobacteria, and Bacteroidetes relative abundance (p < 0.05). Firmicutes relative abundance decreased with an increase in total As concentration. The ecological clusters and key groups in bacterial co-occurrence networks exhibited distinct trends with an increase in As pollution. Notably, Acidobacteria play an important role in maintaining microbial networks in As contaminated soils. Overall, we provide empirical evidence that As contamination influences soil microbial community structure, posing a threat to soil ecosystem health and sustainable agriculture.
Collapse
Affiliation(s)
- Yang Liu
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
- University of Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Nanjing, China
| | - Wei Dai
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
- University of Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Nanjing, China
| | - Dandan Yao
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
- University of Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Nanjing, China
| | - Ning Wang
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
- University of Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Nanjing, China
| | - Mingqing Liu
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, China
| | - Lei Wang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, China
| | - Wei Tian
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, China
| | - Peirui Yan
- Mangshi Soil and Fertilizer Workstation, Yunnan, China
| | - Zhonglin Huang
- Guangxi Bossco Environmental Protection Technology Co., Ltd., Nanning, China
| | - Hui Wang
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
- University of Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Nanjing, China
| |
Collapse
|
11
|
Wang J, Riaz M, Babar S, Xia H, Li Y, Xia X, Wang X, Jiang C. Iron-modified biochar reduces nitrogen loss and improves nitrogen retention in Luvisols by adsorption and microbial regulation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 879:163196. [PMID: 37004773 DOI: 10.1016/j.scitotenv.2023.163196] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 03/15/2023] [Accepted: 03/27/2023] [Indexed: 05/17/2023]
Abstract
Nitrogen (N) loss poses a great threat to global environmental sustainability. The application of modified biochar is a novel strategy to improve soil nitrogen retention and alleviate the negative effects caused by N fertilizers. Therefore, in this study iron modified biochar was used as a soil amendment to investigate the potential mechanisms of N retention in Luvisols. The experiment comprised five treatments i.e., CK (control), 0.5 % BC, 1 % BC, 0.5 % FBC and 1 % FBC. Our results showed that the intensity of functional groups and surface structure of FBC was improved. The 1 % FBC treatment showed a significant increment in soil NO3--N, dissolved organic nitrogen (DON), and total nitrogen (TN) content by 374.7 %, 51.9 %, and 14.4 %, respectively, compared with CK. The accumulation of N in cotton shoots and roots was increased by 28.6 % and 6.6 % with 1 % FBC addition. The application of FBC also stimulated the activities of soil enzymes related to C and N cycling i.e., β-glucosidase (βG), β-Cellobiohydrolase (CBH), and Leucine aminopeptidase (LAP). In the soil treated with FBC, a significant improvement in the structure and functions of the soil bacterial community was found. FBC addition altered the taxa involved in the N cycle by affecting soil chemical properties, especially for Achromobacte, Gemmatimonas, and Cyanobacteriales. In addition to direct adsorption, the regulation of FBC on organisms related to N-cycling also played an important role in soil nitrogen retention.
Collapse
Affiliation(s)
- Jiyuan Wang
- Microelement Research Center, College of Resources and Environment, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Muhammad Riaz
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, PR China
| | - Saba Babar
- Microelement Research Center, College of Resources and Environment, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Hao Xia
- Microelement Research Center, College of Resources and Environment, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Yuxuan Li
- Microelement Research Center, College of Resources and Environment, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Xiaoyang Xia
- Microelement Research Center, College of Resources and Environment, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Xiangling Wang
- Microelement Research Center, College of Resources and Environment, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China; The Key Laboratory of Oasis Ecoagriculture, Xinjiang Production and Construction Corps, Shihezi University, Shihezi, Xinjiang 832000, PR China
| | - Cuncang Jiang
- Microelement Research Center, College of Resources and Environment, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China; The Key Laboratory of Oasis Ecoagriculture, Xinjiang Production and Construction Corps, Shihezi University, Shihezi, Xinjiang 832000, PR China.
| |
Collapse
|
12
|
Chen H, Gao Y, Dong H, Sarkar B, Song H, Li J, Bolan N, Quin BF, Yang X, Li F, Wu F, Meng J, Wang H, Chen W. Chitin and crawfish shell biochar composite decreased heavy metal bioavailability and shifted rhizosphere bacterial community in an arsenic/lead co-contaminated soil. ENVIRONMENT INTERNATIONAL 2023; 176:107989. [PMID: 37245444 DOI: 10.1016/j.envint.2023.107989] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 05/08/2023] [Accepted: 05/21/2023] [Indexed: 05/30/2023]
Abstract
Sustainable management of ever-increasing organic biowaste and arable soil contamination by potentially toxic elements are of concern from both environmental and agricultural perspectives. To tackle the waste issue of crawfish shells and simultaneously minimize the threat of arsenic (As) and lead (Pb) to human health, a pot trial was conducted using chitin (CT), crawfish shell biochar (CSB), crawfish shell powder (CSP), and CT-CSB composite to compare their remediation efficiencies in As/Pb co-contaminated soil. Results demonstrated that addition of all amendments decreased Pb bioavailability, with the greatest effect observed for the CT-CSB treatment. Application of CSP and CSB increased the soil available As concentration, while significant decreases were observed in the CT and CT-CSB treatments. Meanwhile, CT addition was the most effective in enhancing the soil enzyme activities including acid phosphatase, α-glucosidase, N-acetyl-β-glucosaminidase, and cellobiohydrolase, whereas CSB-containing treatments suppressed the activities of most enzymes. The amendments altered the bacterial abundance and composition in soil. For instance, compared to the control, all treatments increased Chitinophagaceae abundance by 2.6-4.7%. The relative abundance of Comamonadaceae decreased by 1.6% in the CSB treatment, while 2.1% increase of Comamonadaceae was noted in the CT-CSB treatment. Redundancy and correlation analyses (at the family level) indicated that the changes in bacterial community structure were linked to bulk density, water content, and As/Pb availability of soils. Partial least squares path modeling further indicated that soil chemical property (i.e., pH, dissolved organic carbon, and cation exchange capacity) was the strongest predictor of As/Pb availability in soils following amendment application. Overall, CT-CSB could be a potentially effective amendment for simultaneously immobilizing As and Pb and restoring soil ecological functions in contaminated arable soils.
Collapse
Affiliation(s)
- Hanbo Chen
- School of Environmental and Chemical Engineering, Foshan University, Foshan 528000, China; Agronomy College, Shenyang Agricultural University, Shenyang 110866, China; Institute of Eco-environmental Research, School of Environmental and Natural Resources, Zhejiang University of Science & Technology, Hangzhou 310023, China
| | - Yurong Gao
- School of Environmental and Chemical Engineering, Foshan University, Foshan 528000, China; Agronomy College, Shenyang Agricultural University, Shenyang 110866, China
| | - Huiyun Dong
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Binoy Sarkar
- Future Industries Institute, University of South Australia, Mawson Lakes, SA 5095, Australia
| | - Hocheol Song
- Department of Earth Resources and Environmental Engineering, College of Engineering, Hanyang University, Seoul 04763, Korea
| | - Jianhong Li
- Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Nanthi Bolan
- School of Agriculture and Environment, The University of Western Australia, Perth, WA 6001, Australia; The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6001, Australia
| | - Bert F Quin
- Quin Environmentals (NZ) Ltd., PO Box 125122, St. Heliers, Auckland 1740, New Zealand
| | - Xing Yang
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, College of Ecology and Environment, Hainan University, Haikou 570228, China
| | - Fangbai Li
- Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Fengchang Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Jun Meng
- Agronomy College, Shenyang Agricultural University, Shenyang 110866, China
| | - Hailong Wang
- School of Environmental and Chemical Engineering, Foshan University, Foshan 528000, China; Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, Zhejiang A&F University, Hangzhou 311300, China.
| | - Wenfu Chen
- Agronomy College, Shenyang Agricultural University, Shenyang 110866, China.
| |
Collapse
|
13
|
Tie J, Qiao Y, Jin N, Gao X, Liu Y, Lyu J, Zhang G, Hu L, Yu J. Yield and Rhizosphere Soil Environment of Greenhouse Zucchini in Response to Different Planting and Breeding Waste Composts. Microorganisms 2023; 11:microorganisms11041026. [PMID: 37110447 PMCID: PMC10143665 DOI: 10.3390/microorganisms11041026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/06/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
Composting, planting, and breeding waste for return to the field is the most crucial soil improvement method under the resource utilization of agricultural waste. However, how the vegetable yield and rhizosphere soil environment respond to different composts is still unknown. Therefore, eight formulations were designed for compost fermentation using agricultural waste [sheep manure (SM), tail vegetable (TV), cow manure (CM), mushroom residue (MR), and corn straw (CS)] without fertilizer (CK1) and local commercial organic fertilizer (CK2) as controls to study the yield and rhizosphere soil environment of greenhouse zucchini in response to different planting and breeding waste compost. Applying planting and breeding waste compost significantly increased the soil's organic matter and nutrient content. It inhibited soil acidification, which T4 (SM:TV:CS = 6:3:1) and T7 (SM:TV:MR:CS = 6:2:1:1) treatments affected significantly. Compared to CK2 treatment, T4 and T7 treatments showed a greater increase, with a significant increase of 14.69% and 11.01%, respectively. Therefore, T4, T7, and two control treatments were selected for high-throughput sequencing based on yield performance. Compared with the CK1 treatment, although multiple applications of chemical fertilizers led to a decrease in bacterial and fungal richness, planting and breeding waste compost maintained bacterial diversity and enhanced fungal diversity. Compared to CK2, the relative abundance increased in T7-treated Proteobacteria (Sphingomonas, Pseudomonas, and Lysobacter) and T4-treated Bacteroidetes (Flavobacterium) among bacteria. An increase in T4-treated Ascomycota (Zopfiella and Fusarium) and Basidiomycota among fungi and a decrease in T7-treated Mortierellomycota have been observed. Functional predictions of the bacterial Tax4Fun and fungal FUNGuild revealed that applying planting and breeding waste compost from the T4 treatment significantly increased the abundance of soil bacterial Metabolism of Cities, Genetic Information Processing, and Cellular Processes decreased the abundance of Pathotroph and Saprotroph-Symbiotroph fungi and increased the abundance of Saprotroph fungi. Overall, planting and breeding waste compost increased zucchini yield by improving soil fertility and microbial community structure. Among them, T4 treatment has the most significant effect, so T4 treatment can be selected as the optimized formulation of local commercial organic fertilizer. These findings have valuable implications for sustainable agricultural development.
Collapse
Affiliation(s)
- Jianzhong Tie
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Yali Qiao
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Ning Jin
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Xueqin Gao
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Yayu Liu
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Jian Lyu
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
- Gansu Provincial Key Laboratory of Arid Land Crop Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Guobin Zhang
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
- Gansu Provincial Key Laboratory of Arid Land Crop Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Linli Hu
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
- Gansu Provincial Key Laboratory of Arid Land Crop Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Jihua Yu
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
- Gansu Provincial Key Laboratory of Arid Land Crop Science, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
14
|
Qin Y, Wang S, Wang X, Liu C, Zhu G. Contribution of Ammonium-Induced Nitrifier Denitrification to N 2O in Paddy Fields. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:2970-2980. [PMID: 36719089 DOI: 10.1021/acs.est.2c06124] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Paddy fields are one of the most important sources of nitrous oxide (N2O), but biogeochemical N2O production mechanisms in the soil profile remain unclear. Our study used incubation, dual-isotope (15N-18O) labeling methods, and molecular techniques to elucidate N2O production characteristics and mechanisms in the soil profile (0-60 cm) during summer fallow, rice cropping, and winter fallow periods. The results pointed out that biotic processes dominated N2O production (72.2-100%) and N2O from the tillage layer accounted for 91.0-98.5% of total N2O in the soil profile. Heterotrophic denitrification (HD) was the main process generating N2O, contributing between 53.4 and 96.6%, the remainder being due to ammonia oxidation pathways, which was further confirmed by metagenomics and quantitative polymerase chain reaction (qPCR) assays. Nitrifier denitrification (ND) was an important N2O production source, contributing 0-46.6% of total N2O production, which showed similar trends with N2O emissions. Among physicochemical and biological factors, ammonium content and the ratio of total organic matter to nitrate were the main driving factors affecting the contribution ratios of the ammonia oxidation pathways and HD pathway, respectively. Moisture content and pH affect norC-carrying Spirochetes and thus the N2O production rate. These findings confirm the importance of ND to N2O production and help to elucidate the impact of anthropogenic activities, including tillage, fertilization, and irrigation, on N2O production.
Collapse
Affiliation(s)
- Yu Qin
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shanyun Wang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Xiaomin Wang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Chunlei Liu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Guibing Zhu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
15
|
Fan Y, Yin M, Chen H. Insights into the role of chitosan in hydrogen production by dark fermentation of waste activated sludge. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 859:160401. [PMID: 36414059 DOI: 10.1016/j.scitotenv.2022.160401] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/16/2022] [Accepted: 11/17/2022] [Indexed: 06/16/2023]
Abstract
Chitosan is widely used as a dewatering flocculant, but whether it affects hydrogen production from sludge anaerobic fermentation is unclear. This study aimed to elucidate the role of chitosan in the dark fermentation of waste activated sludge for hydrogen production. The results showed that chitosan had a negative effect on hydrogen production from sludge. Chitosan at 30 g/kg total suspended solids reduced hydrogen accumulation by 56.70 ± 1.22 % from 3.94 ± 0.12 to 1.71 ± 0.10 mL/g volatile suspended solids. Chitosan hindered the solubilization of sludge by flocculation, which reduced the available substrate for anaerobic fermentation. In addition, chitosan interfered with the electron transport system by reducing cytochrome C and caused lipid peroxidation by inducing reactive oxygen species, thereby inhibiting the activity of enzymes involved in anaerobic fermentation. Hydrogen production was reduced because hydrogen-producing processes (i.e., hydrolysis, acidification, and acetification) were inhibited more strongly than hydrogen-consuming processes (i.e., methanogenesis, sulfate reduction, and homoacetogenesis). Furthermore, chitosan enriched the abundance of Spirochaetaceae sp. and Holophagaceae sp., which occupied the survival space of hydrogen-producing microorganisms. This study reveals the potential impact of chitosan on hydrogen production in dark fermentation of sludge and provide direct evidence that chitosan triggers oxidative stress in anaerobic fermentation.
Collapse
Affiliation(s)
- Yanchen Fan
- College of Environment and Resources, Xiangtan University, Xiangtan 411105, China
| | - Mengyu Yin
- College of Environment and Resources, Xiangtan University, Xiangtan 411105, China
| | - Hongbo Chen
- College of Environment and Resources, Xiangtan University, Xiangtan 411105, China.
| |
Collapse
|
16
|
Synergic chitin degradation by Streptomyces sp. SCUT-3 chitinases and their applications in chitinous waste recycling and pathogenic fungi biocontrol. Int J Biol Macromol 2023; 225:987-996. [PMID: 36403764 DOI: 10.1016/j.ijbiomac.2022.11.161] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/02/2022] [Accepted: 11/15/2022] [Indexed: 11/19/2022]
Abstract
The genus Streptomyces comprises the most important chitin decomposers in soil and revealing their chitinolytic machinery is beneficial for the conversion of chitinous wastes. Streptomyces sp. SCUT-3, a chitin-hydrolyzing and a robust feather-degrading bacterium, was isolated previously. The potential chitin-degrading enzymes produced by SCUT-3 were analyzed in the present study. Among these enzymes, three chitinases were successfully expressed in Pichia pastoris at comparatively high yields of 4.8 U/mL (SsExoChi18A), 11.2 U/mL (SsExoChi18B), and 17.8 U/mL (SsEndoChi19). Conserved motifs and constructive 3D structures of these three exo- and endochitinases were also analyzed. These chitinases hydrolyzed colloidal chitin to chitin oligomers. SsExoChi18A showed apparent synergic effects with SsEndoChi19 in colloidal chitin and shrimp shell hydrolysis, with an improvement of 29.3 % and 124.9 %, respectively. Compared with SsExoChi18B and SsEndoChi19, SsExoChi18A exhibited the strongest antifungal effects against four plant pathogens by inhibiting mycelial growth and spore germination. This study provided good candidates for chitinous waste-processing enzymes and antifungal biocontrol agents. These synergic chitin-degrading enzymes of SCUT-3 are good targets for its further genetical modification to construct super chitinous waste-degrading bacteria with strong abilities to hydrolyze both protein and chitin, thereby providing a direction for the future path of the chitinous waste recycling industry.
Collapse
|
17
|
McClure R, Farris Y, Danczak R, Nelson W, Song HS, Kessell A, Lee JY, Couvillion S, Henry C, Jansson JK, Hofmockel KS. Interaction Networks Are Driven by Community-Responsive Phenotypes in a Chitin-Degrading Consortium of Soil Microbes. mSystems 2022; 7:e0037222. [PMID: 36154140 PMCID: PMC9599572 DOI: 10.1128/msystems.00372-22] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 08/24/2022] [Indexed: 12/24/2022] Open
Abstract
Soil microorganisms provide key ecological functions that often rely on metabolic interactions between individual populations of the soil microbiome. To better understand these interactions and community processes, we used chitin, a major carbon and nitrogen source in soil, as a test substrate to investigate microbial interactions during its decomposition. Chitin was applied to a model soil consortium that we developed, "model soil consortium-2" (MSC-2), consisting of eight members of diverse phyla and including both chitin degraders and nondegraders. A multiomics approach revealed how MSC-2 community-level processes during chitin decomposition differ from monocultures of the constituent species. Emergent properties of both species and the community were found, including changes in the chitin degradation potential of Streptomyces species and organization of all species into distinct roles in the chitin degradation process. The members of MSC-2 were further evaluated via metatranscriptomics and community metabolomics. Intriguingly, the most abundant members of MSC-2 were not those that were able to metabolize chitin itself, but rather those that were able to take full advantage of interspecies interactions to grow on chitin decomposition products. Using a model soil consortium greatly increased our knowledge of how carbon is decomposed and metabolized in a community setting, showing that niche size, rather than species metabolic capacity, can drive success and that certain species become active carbon degraders only in the context of their surrounding community. These conclusions fill important knowledge gaps that are key to our understanding of community interactions that support carbon and nitrogen cycling in soil. IMPORTANCE The soil microbiome performs many functions that are key to ecology, agriculture, and nutrient cycling. However, because of the complexity of this ecosystem we do not know the molecular details of the interactions between microbial species that lead to these important functions. Here, we use a representative but simplified model community of bacteria to understand the details of these interactions. We show that certain species act as primary degraders of carbon sources and that the most successful species are likely those that can take the most advantage of breakdown products, not necessarily the primary degraders. We also show that a species phenotype, including whether it is a primary degrader or not, is driven in large part by the membership of the community it resides in. These conclusions are critical to a better understanding of the soil microbial interaction network and how these interactions drive central soil microbiome functions.
Collapse
Affiliation(s)
- Ryan McClure
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Yuliya Farris
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Robert Danczak
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - William Nelson
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Hyun-Seob Song
- Department of Biological Systems Engineering, University of Nebraska—Lincoln, Lincoln, Nebraska, USA
- Department of Food Science and Technology, Nebraska Food for Health Center, University of Nebraska—Lincoln, Lincoln, Nebraska, USA
| | - Aimee Kessell
- Department of Biological Systems Engineering, University of Nebraska—Lincoln, Lincoln, Nebraska, USA
| | - Joon-Yong Lee
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Sneha Couvillion
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Christopher Henry
- Data Science and Learning Division, Argonne National Laboratory, Lemont, Illinois, USA
| | - Janet K. Jansson
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Kirsten S. Hofmockel
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, USA
- Department of Agronomy, Iowa State University, Ames, Iowa, USA
| |
Collapse
|
18
|
Garimano N, Scalise ML, Gómez F, Amaral MM, Ibarra C. Intestinal mucus-derived metabolites modulate virulence of a clade 8 enterohemorrhagic Escherichia coli O157:H7. Front Cell Infect Microbiol 2022; 12:975173. [PMID: 36004327 PMCID: PMC9393340 DOI: 10.3389/fcimb.2022.975173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 07/20/2022] [Indexed: 11/24/2022] Open
Abstract
The human colonic mucus is mainly composed of mucins, which are highly glycosylated proteins. The normal commensal colonic microbiota has mucolytic activity and is capable of releasing the monosaccharides contained in mucins, which can then be used as carbon sources by pathogens such as Enterohemorrhagic Escherichia coli (EHEC). EHEC can regulate the expression of some of its virulence factors through environmental sensing of mucus-derived sugars, but its implications regarding its main virulence factor, Shiga toxin type 2 (Stx2), among others, remain unknown. In the present work, we have studied the effects of five of the most abundant mucolytic activity-derived sugars, Fucose (L-Fucose), Galactose (D-Galactose), N-Gal (N-acetyl-galactosamine), NANA (N-Acetyl-Neuraminic Acid) and NAG (N-Acetyl-D-Glucosamine) on EHEC growth, adhesion to epithelial colonic cells (HCT-8), and Stx2 production and translocation across a polarized HCT-8 monolayer. We found that bacterial growth was maximum when using NAG and NANA compared to Galactose, Fucose or N-Gal, and that EHEC adhesion was inhibited regardless of the metabolite used. On the other hand, Stx2 production was enhanced when using NAG and inhibited with the rest of the metabolites, whilst Stx2 translocation was only enhanced when using NANA, and this increase occurred only through the transcellular route. Overall, this study provides insights on the influence of the commensal microbiota on the pathogenicity of E. coli O157:H7, helping to identify favorable intestinal environments for the development of severe disease.
Collapse
|
19
|
Rangel F, Santos RA, Monteiro M, Lavrador AS, Gasco L, Gai F, Oliva-Teles A, Enes P, Serra CR. Isolation of Chitinolytic Bacteria from European Sea Bass Gut Microbiota Fed Diets with Distinct Insect Meals. BIOLOGY 2022; 11:964. [PMID: 36101344 PMCID: PMC9312007 DOI: 10.3390/biology11070964] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 06/23/2022] [Accepted: 06/23/2022] [Indexed: 11/17/2022]
Abstract
Insect meal (IM), recently authorized for use in aquafeeds, positions itself as a promising commodity for aquafeed inclusion. However, insects are also rich in chitin, a structural polysaccharide present in the exoskeleton, which is not digested by fish, resulting in lower fish performance. Through the application of a dietary pressure, this study aimed to modulate European sea bass gut microbiota towards the enrichment of chitinolytic bacteria to allow the isolation of novel probiotics capable of improving the use of IM-containing diets, overcoming chitin drawbacks. Five isoproteic (44%) and isolipidic (18%) diets were used: a fish meal (FM)-based diet (diet CTR), a chitin-supplemented diet (diet CHIT5), and three diets with either 25% of Hermetia illucens and Tenebrio molitor larvae meals (HM25 and TM25, respectively) or H. illucens exuviae meal (diet HEM25) as partial FM substitutes. After an 8-week feeding trial, the results showed a clear modulatory effect towards spore-forming bacteria by HM25 and HEM25 diets, with the latter being responsible for the majority of the chitinolytic fish isolates (FIs) obtained. Sequential evaluation of the FI hemolytic activity, antibiotic resistance, total chitinolytic activity, sporulation, and survival in gastrointestinal-like conditions identified FI645 and FI658 as the most promising chitinolytic probiotics for in vivo application.
Collapse
Affiliation(s)
- Fábio Rangel
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, Ed. FC4, 4169-007 Porto, Portugal; (F.R.); (R.A.S.); (M.M.); (A.S.L.); (A.O.-T.)
- CIMAR/CIIMAR Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal
| | - Rafaela A. Santos
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, Ed. FC4, 4169-007 Porto, Portugal; (F.R.); (R.A.S.); (M.M.); (A.S.L.); (A.O.-T.)
- CIMAR/CIIMAR Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal
| | - Marta Monteiro
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, Ed. FC4, 4169-007 Porto, Portugal; (F.R.); (R.A.S.); (M.M.); (A.S.L.); (A.O.-T.)
- CIMAR/CIIMAR Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal
| | - Ana Sofia Lavrador
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, Ed. FC4, 4169-007 Porto, Portugal; (F.R.); (R.A.S.); (M.M.); (A.S.L.); (A.O.-T.)
- CIMAR/CIIMAR Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal
| | - Laura Gasco
- Department of Agricultural, Forest and Food Sciences, University of Turin, Largo P. Braccini 2, 10095 Grugliasco, Torino, Italy;
| | - Francesco Gai
- Institute of Science of Food Production, National Research Council, Largo P. Braccini 2, 10095 Grugliasco, Torino, Italy;
| | - Aires Oliva-Teles
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, Ed. FC4, 4169-007 Porto, Portugal; (F.R.); (R.A.S.); (M.M.); (A.S.L.); (A.O.-T.)
- CIMAR/CIIMAR Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal
| | - Paula Enes
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, Ed. FC4, 4169-007 Porto, Portugal; (F.R.); (R.A.S.); (M.M.); (A.S.L.); (A.O.-T.)
- CIMAR/CIIMAR Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal
| | - Cláudia R. Serra
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, Ed. FC4, 4169-007 Porto, Portugal; (F.R.); (R.A.S.); (M.M.); (A.S.L.); (A.O.-T.)
- CIMAR/CIIMAR Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal
| |
Collapse
|
20
|
Jabeur F, Mechri S, Mensi F, Gharbi I, Naser YB, Kriaa M, Bejaoui N, Bachouche S, Badis A, Annane R, Djellali M, Sadok S, Jaouadi B. Extraction and characterization of chitin, chitosan, and protein hydrolysate from the invasive Pacific blue crab, Portunus segnis (Forskål, 1775) having potential biological activities. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:36023-36039. [PMID: 35061182 DOI: 10.1007/s11356-021-18398-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 12/25/2021] [Indexed: 06/14/2023]
Abstract
The diversity of marine biomasses is a set of exploitable and renewable resources with application in several sectors. In this context, a co-culture based on three protease-producing bacterial isolates, namely Aeribacillus pallidus VP3, Lysinibacillus fusiformis C250R, and Anoxybacillus kamchatkensis M1V strains, was carried out in a medium based on the blue swimming crab Portunus segnis bio-waste. Proteases production was optimized using a central composite design (CCD). The highest level of proteases production obtained was 8,809 U/mL in a medium comprising 75 g/L of Portunus segnis by-product powder (Pspp). The biological value of Pspp and its obtained derivatives were evidenced via accredited protocols. The recovered protein hydrolysate (PHyd) was found to be active towards radical scavenging power and against angiotensin I-converting enzyme (ACE). The blue crab chitin (BC) extraction efficiency was achieved with a yield of 32%. Afterwards, chitosan was prepared through chitin N-deacetylation with a yield of 52%, leading to an acetylation degree (AD) of 19% and solubility of 90%. In addition, chitosan is found to be active against the growth of all pathogenic bacteria tested.
Collapse
Affiliation(s)
- Fadoua Jabeur
- Laboratoire des Biotechnologies Microbiennes et Enzymatiques et Biomolécules (LBMEB), Centre de Biotechnologie de Sfax (CBS), Université de Sfax, Route Sidi Mansour Km 6, BP 1177, 3018, Sfax, Tunisia
| | - Sondes Mechri
- Laboratoire des Biotechnologies Microbiennes et Enzymatiques et Biomolécules (LBMEB), Centre de Biotechnologie de Sfax (CBS), Université de Sfax, Route Sidi Mansour Km 6, BP 1177, 3018, Sfax, Tunisia
| | - Fethi Mensi
- Laboratoire de Biotechnologies Bleues et de Bioproduits Aquatiques (B3Aqua), Institut National des Sciences et Technologies de la Mer (INSTM), Annexe La Goulette Port de Pêche, 2060, La Goulette, Tunisia
| | - Ines Gharbi
- Laboratoire des Biotechnologies Microbiennes et Enzymatiques et Biomolécules (LBMEB), Centre de Biotechnologie de Sfax (CBS), Université de Sfax, Route Sidi Mansour Km 6, BP 1177, 3018, Sfax, Tunisia
| | - Yosri Ben Naser
- Laboratoire des Biotechnologies Microbiennes et Enzymatiques et Biomolécules (LBMEB), Centre de Biotechnologie de Sfax (CBS), Université de Sfax, Route Sidi Mansour Km 6, BP 1177, 3018, Sfax, Tunisia
| | - Mouna Kriaa
- Laboratoire des Biotechnologies Microbiennes et Enzymatiques et Biomolécules (LBMEB), Centre de Biotechnologie de Sfax (CBS), Université de Sfax, Route Sidi Mansour Km 6, BP 1177, 3018, Sfax, Tunisia
| | - Nejla Bejaoui
- Laboratoire de Biotechnologies Bleues et de Bioproduits Aquatiques (B3Aqua), Institut National des Sciences et Technologies de la Mer (INSTM), Annexe La Goulette Port de Pêche, 2060, La Goulette, Tunisia
- Institut National Agronomique de Tunisie (INAT), Université de Carthage, 43 Avenue Charles Nicolle, 1082, Tunis Maharajène, Tunisia
| | - Samir Bachouche
- Centre National de Recherche et de Développement de la Pêche et de l'Aquaculture (CNRPDA), 11 Boulevard Colonel Amirouche, BP 67, 42415, Bou Ismaïl, Tipaza, Algeria
| | - Abdelmalek Badis
- Centre National de Recherche et de Développement de la Pêche et de l'Aquaculture (CNRPDA), 11 Boulevard Colonel Amirouche, BP 67, 42415, Bou Ismaïl, Tipaza, Algeria
- Laboratoire de Chimie des Substances Naturelles et de BioMolécules (LCSN-BioM), Faculté des Sciences, Département de Chimie, Université de Blida 1, Université de Blida 1, Route de Soumâa, BP 270, 09000, Blida, Algeria
| | - Rachid Annane
- Laboratoire de Chimie des Substances Naturelles et de BioMolécules (LCSN-BioM), Faculté des Sciences, Département de Chimie, Université de Blida 1, Université de Blida 1, Route de Soumâa, BP 270, 09000, Blida, Algeria
| | - Mostapha Djellali
- Centre National de Recherche et de Développement de la Pêche et de l'Aquaculture (CNRPDA), 11 Boulevard Colonel Amirouche, BP 67, 42415, Bou Ismaïl, Tipaza, Algeria
| | - Saloua Sadok
- Laboratoire de Biotechnologies Bleues et de Bioproduits Aquatiques (B3Aqua), Institut National des Sciences et Technologies de la Mer (INSTM), Annexe La Goulette Port de Pêche, 2060, La Goulette, Tunisia
| | - Bassem Jaouadi
- Laboratoire des Biotechnologies Microbiennes et Enzymatiques et Biomolécules (LBMEB), Centre de Biotechnologie de Sfax (CBS), Université de Sfax, Route Sidi Mansour Km 6, BP 1177, 3018, Sfax, Tunisia.
| |
Collapse
|
21
|
Liu S, Chen D, Wang Z, Zhang M, Zhu M, Yin M, Zhang T, Wang X. Shifts of bacterial community and molecular ecological network in activated sludge system under ibuprofen stress. CHEMOSPHERE 2022; 295:133888. [PMID: 35134395 DOI: 10.1016/j.chemosphere.2022.133888] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 02/01/2022] [Accepted: 02/03/2022] [Indexed: 06/14/2023]
Abstract
The major objectives of this study were to explore the long-term effects of ibuprofen (IBP) on nutrient removal, community compositions, and microbial interactions of the activated sludge system. The results showed that 1 mg/L IBP had no inhibitory effects on the removal of organic matters and nutrients. IBP significantly reduced the microbial diversity and changed the bacterial community structure. Some denitrifiers (Denitratisoma and Hyphomicrobium) increased significantly, while NOB (Nitrospira) significantly decreased under IBP stress (P < 0.05). Furthermore, molecular ecological network analysis indicated that IBP reduced the overall network size and links, but led to a closer network with more efficient communication, which might be the strategy of microbes to survive under the stress of IBP and further maintain the performance stability. Different phylogenetic populations had different responses to IBP, as a closer subnetwork with more synergistic relations was observed in Chloroflexi and a looser subnetwork with more competitive relationships was detected in Proteobacteria. The topological roles of nodes significantly changed, and the putative keystone species decreased under the stress of IBP. This study broadens our knowledge of the long-term effects of IBP on the microbial community structure and the interactions between species in the activated sludge system.
Collapse
Affiliation(s)
- Shidi Liu
- Beijing Engineering Research Center of Environmental Material for Water Purification, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Daying Chen
- Beijing Engineering Research Center of Environmental Material for Water Purification, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China; School of Environmental Science and Engineering, Tianjin University, Tianjin, 300037, China
| | - Zhimin Wang
- Beijing Engineering Research Center of Environmental Material for Water Purification, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Minglu Zhang
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing, 100048, China
| | - Minghan Zhu
- Beijing Engineering Research Center of Environmental Material for Water Purification, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Meilin Yin
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300037, China
| | - Tingting Zhang
- Beijing Engineering Research Center of Environmental Material for Water Purification, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Xiaohui Wang
- Beijing Engineering Research Center of Environmental Material for Water Purification, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| |
Collapse
|
22
|
Variation in the Structure and Composition of Bacterial Communities within Drinking Water Fountains in Melbourne, Australia. WATER 2022. [DOI: 10.3390/w14060908] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Modern drinking water distributions systems (DWDSs) have been designed to transport treated or untreated water safely to the consumer. DWDSs are complex environments where microorganisms are able to create their own niches within water, biofilm or sediment. This study was conducted on twelve drinking fountains (of three different types, namely types A, B and C) within the Melbourne (Australia) city area with the aim to (i) characterize the water quality and viable and total counts at each fountain, (ii) compare the differences in the structure and diversity of the bacterial community between bulk water and biofilm and (iii) determine differences between the bacterial communities based on fountain type. Samples of water and biofilm were assessed using both culture-dependent and culture-independent techniques. Heterotrophic plate counts of water samples ranged from 0.5 to 107.5 CFU mL−1, and as expected, total cell counts (cells mL−1) were, on average, 2.9 orders of magnitude higher. Based on the mean relative abundance of operational taxonomic units (OTUs), ANOSIM showed that the structure of the bacterial communities in drinking water and biofilm varied significantly (R = 0.58, p = 0.001). Additionally, ANOSIM showed that across fountain types (in water), the bacterial community was more diverse in fountain type C compared to type A (p < 0.001) and type B (p < 0.001). 16S rRNA next-generation sequencing revealed that the bacterial communities in both water and biofilm were dominated by only seven phyla, with Proteobacteria accounting for 71.3% of reads in water and 68.9% in biofilm. The next most abundant phylum was Actinobacteria (10.4% water; 11.7% biofilm). In water, the genus with the highest overall mean relative abundance was Sphingomonas (24.2%), while Methylobacterium had the highest mean relative abundance in biofilm samples (54.7%). At the level of genus and higher, significant differences in dominance were found across fountain types. In water, Solirubrobacterales (order) were present in type C fountains at a relative abundance of 17%, while the mean relative abundance of Sphingomonas sp. in type C fountains was less than half that in types A (25%) and B (43%). In biofilm, the relative abundance of Sphingomonas sp. was more than double in type A (10%) fountains compared to types B (4%) and C (5%), and Sandarakinorhabdus sp. were high in type A fountains (6%) and low in types B and C (1%). Overall this research showed that there were significant differences in the composition of bacterial communities in water and biofilm from the same site. Furthermore, significant variation exists between microbial communities present in the fountain types, which may be related to age. Long-established environments may lead to a greater chance of certain bacteria gaining abilities such as increased disinfection resistance. Variations between the structure of the bacterial community residing in water and biofilm and differences between fountain types show that it is essential to regularly test samples from individual locations to determine microbial quality.
Collapse
|
23
|
Zuo S, Wu D, Du Z, Xu C, Wu W. Effects of white-rot fungal pretreatment of corn straw return on greenhouse gas emissions from the North China Plain soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 807:150837. [PMID: 34627877 DOI: 10.1016/j.scitotenv.2021.150837] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 09/27/2021] [Accepted: 10/02/2021] [Indexed: 06/13/2023]
Abstract
Straw-return with fungal treatment is a potential method for reducing soil greenhouse gas emissions through carbon (C) sequestration and N2O mitigation. However, there is little information on the effects of different fungal treatments of crop straw return on soil CO2 and N2O emissions. To explore to what extent decomposed corn straw and its components controls soil CO2 and N2O emissions, we set up three sequential incubation experiments using soil collected from the North China Plain, an intensive agricultural area. Interactions between the different C contents of corn straw (CS), CS pretreated with Irpex lacteus (ICS), CS pretreated with Phanerochaete chrysosporium (PCS) and different NO3--N concentrations on the effect of soil CO2 and N2O emissions were conducted, and the kinetics of CO2 and N2O as influenced by changes in soil biochemical factors were analyzed. The effects of different lignocellulose components (lignin, cellulose, and xylan) on soil CO2 and N2O emissions were further studied. The results showed that straw pretreatment did not affect CO2 emissions. Both CO2 and N2O emissions increased when the C and N contents increased. However, applying PCS to 70% water-filled pore space soil effectively decreased the soil N2O emissions, by 41.8%-76.3% compared with adding the same level of CS. Moreover, extracellular enzyme activities related to C and N cycling were triggered, and the nosZI and nosZII abundances were significantly stimulated by the PCS application. These effects are closely related to the initial soluble C content of this treatment. Furthermore, adding xylan can significantly reduce N2O emissions. Overall, our data suggest that the environmentally beneficial effects of returning straw can be greatly enhanced by applying the straw-degrading white-rot fungi of P. chrysosporium in the North China Plain soil. Future studies are needed in the field to upscale this technology.
Collapse
Affiliation(s)
- Sasa Zuo
- Beijing Key Laboratory of Biodiversity and Organic Farming, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Di Wu
- Beijing Key Laboratory of Biodiversity and Organic Farming, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Zhangliu Du
- Beijing Key Laboratory of Biodiversity and Organic Farming, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Chuncheng Xu
- Department of Agricultural Engineering, College of Engineering, China Agricultural University, Beijing 100083, China
| | - Wenliang Wu
- Beijing Key Laboratory of Biodiversity and Organic Farming, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
24
|
Chen Z, Li Y, Chang SX, Xu Q, Li Y, Ma Z, Qin H, Cai Y. Linking enhanced soil nitrogen mineralization to increased fungal decomposition capacity with Moso bamboo invasion of broadleaf forests. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 771:144779. [PMID: 33736125 DOI: 10.1016/j.scitotenv.2020.144779] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 12/16/2020] [Accepted: 12/24/2020] [Indexed: 06/12/2023]
Abstract
Plant invasion can markedly alter soil fungal communities and nitrogen (N) availability; however, the linkage between the fungal decomposition capacity and N mineralization during plant invasion remains largely unknown. Here, we examined the relationship between net mineralization rates and relevant functional genes, as well as fungal species composition and function following Moso bamboo (Phyllostachys edulis) invasion of evergreen broadleaf forests, by studying broadleaf forests (non-invaded), mixed bamboo-broadleaf forests (moderately invaded) and bamboo forests (heavily invaded). Fungal species composition and functional genes involved in organic matter decomposition (laccase and cellobiohydrolase), N mineralization (alkaline peptidases) and nitrification (ammonia monooxygenase) were determined via high-throughput sequencing and real-time PCR. Both net ammonification and nitrification rates were generally increased with bamboo invasion into the broadleaf forest, where the net ammonification rate, on average, was 10.8 times higher than the nitrification rate across the three forest types. The fungal species composition and ecological guilds were altered with bamboo invasion, as demonstrated by the increased proportion of saprotrophs but decreased proportion of symbiotrophs in the bamboo forest. The increased net ammonification rate in bamboo forest was positively correlated with both fungal species composition and functional groups, and the fungal lcc gene (for lignin breakdown) abundance explained 67% of the variation of the net ammonification rate. In addition, the gene abundance of ammonia-oxidizing bacteria (AOB) explained 62% of the variation of net nitrification rate across the three forest types. The increased soil ammonification and nitrification rates following bamboo invasion of broadleaf forests suggest that the bamboo-invasion associated increase in soil N supply provided a positive feedback that facilitated bamboo invasion into broadleaf forests.
Collapse
Affiliation(s)
- Zhihao Chen
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; Zhejiang Provincial Key Laboratory of Carbon Cycling in Forest Ecosystems and Carbon Sequestration, Zhejiang A&F University, Hangzhou 311300, China
| | - Yongchun Li
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; Zhejiang Provincial Key Laboratory of Carbon Cycling in Forest Ecosystems and Carbon Sequestration, Zhejiang A&F University, Hangzhou 311300, China.
| | - Scott X Chang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; Department of Renewable Resources, University of Alberta, 442 Earth Sciences Building, Edmonton, AB T6G 2E3, Canada
| | - Qiufang Xu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; Zhejiang Provincial Key Laboratory of Carbon Cycling in Forest Ecosystems and Carbon Sequestration, Zhejiang A&F University, Hangzhou 311300, China
| | - Yongfu Li
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; Zhejiang Provincial Key Laboratory of Carbon Cycling in Forest Ecosystems and Carbon Sequestration, Zhejiang A&F University, Hangzhou 311300, China
| | - Zilong Ma
- Department of Renewable Resources, University of Alberta, 442 Earth Sciences Building, Edmonton, AB T6G 2E3, Canada
| | - Hua Qin
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; Zhejiang Provincial Key Laboratory of Carbon Cycling in Forest Ecosystems and Carbon Sequestration, Zhejiang A&F University, Hangzhou 311300, China
| | - Yanjiang Cai
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; Zhejiang Provincial Key Laboratory of Carbon Cycling in Forest Ecosystems and Carbon Sequestration, Zhejiang A&F University, Hangzhou 311300, China
| |
Collapse
|