1
|
Huang Y, Li Z. Defining region-specific soil quality standards for pesticides in China. CHEMOSPHERE 2025; 374:144198. [PMID: 39951946 DOI: 10.1016/j.chemosphere.2025.144198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 01/31/2025] [Accepted: 02/04/2025] [Indexed: 02/17/2025]
Abstract
China is a vast, pesticide-dependent agricultural country. Given that pesticide exposure patterns and dissipation vary across regions, there is a need to establish region-specific soil pesticide standards to protect human health. This study proposed a regulatory framework that can derive pesticide soil standards (PSSs) for the average (PSSA) and ceiling (PSSC) values. This framework consists of two components: human exposure assessment and pesticide dissipation. The former computes the region-specific exposure frequency and duration of the children and provides a comprehensive health risk assessment to derive PSSA. The latter calculates the region-specific pesticide dissipation and pesticide application intervals and determines the relationship between average and ceiling concentration after pesticide application to derive PSSC. Employing this framework, a spreadsheet-based simulation tool was developed to calculate standards for the four most widely used pesticides in China. The results showed that the simulated PSSA values of acetochlor, atrazine, carbofuran, and chlorpyrifos varied considerably among different provinces, ranging from 33.3-121.6, 300.7-683.4, 1.9-5.1, and 10.1-33.9 mg kg-1, respectively. Children in the southern provinces tended to have longer outdoor activity time (i.e., higher outdoor soil exposure frequency) than in the northern provinces due to the warm weather, hence these regions require stricter (i.e., lower) average soil standards. Pesticide dissipation rates in the northern provinces were slower than in the southern provinces. Nevertheless, due to the higher frequency of pesticide applications in the southern regions, the PSSC values in these areas are still generally lower than in the northern regions. In addition, a comparison was conducted between the current standards and simulated values for 13 regulated pesticides. The results found that there is a lack of ceiling standards in China to manage pesticide application patterns and the existing standards for some pesticides (e.g., chlordane, HCB, and lindane) may be too lenient for certain southern provinces to protect human health. Taken together, it is recommended that China's environmental agencies update the pesticide standard system. The regulatory framework and simulation tool proposed in this study are expected to provide scientific and reasonable support for establishing region-specific standards.
Collapse
Affiliation(s)
- Yabi Huang
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| | - Zijian Li
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, Guangdong, 518107, China.
| |
Collapse
|
2
|
Al-Hawadi JS, Majid S, Ahmad KS, Eldesoky GE, Ashraf GA. Bifenthrin's Environmental Fate: An Insight Into Its Soil Sorption and Degradation Studies. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2024; 2024:8868954. [PMID: 39628984 PMCID: PMC11614517 DOI: 10.1155/jamc/8868954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 10/19/2024] [Indexed: 12/06/2024]
Abstract
To fully comprehend each pesticide's behavior and interactions with soil and the environment, a thorough and nuanced analysis of each one is thought necessary. In this study, 10 randomly selected heterogeneous soil samples, each with distinct characteristics, were subjected to sorption trials as well as disintegration tests using biodegradation, hydrolysis, and photolysis. For sorption tests, the batch equilibrium approach was used, which revealed a dependence on the soils' physicochemical characteristics. Bifenthrin's distribution coefficient (K d ) varied from 7.27 to 25.89 μg·ml-1, with R 2 values varying from 0.92 to 0.99. Each soil physicochemical characteristic was associated with the various sorptive outcomes, which suggested an exothermic adsorptive reaction based on the negative thermodynamic values. The hydrolysis, soil-induced biodegradation, and photolysis processes had the shortest half-lives of bifenthrin, measuring 13.5 days, 12 days, and 121.5 days, respectively. According to these findings, bifenthrin has a moderate amount of binding and stability in soil, which makes partial decomposition of parent and daughter molecules challenging. This research advances our knowledge of bifenthrin's deteriorating processes and aids in the creation of cutting-edge strategies for ecological restoration using natural processes.
Collapse
Affiliation(s)
| | - Sara Majid
- Materials and Environmental Chemistry Lab, Lab-E21, Department of Environmental Sciences, Fatima Jinnah Women University, Rawalpindi, Pakistan
| | - Khuram Shahzad Ahmad
- Materials and Environmental Chemistry Lab, Lab-E21, Department of Environmental Sciences, Fatima Jinnah Women University, Rawalpindi, Pakistan
| | - Gaber E. Eldesoky
- Chemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ghulam Abbas Ashraf
- College of Environment, Hohai University, Nanjing 210098, China
- New Uzbekistan University, Mustaqillik Ave. 54, Tashkent 100007, Uzbekistan
| |
Collapse
|
3
|
Zhang Y, Zhang J, Wang Y, Luo Z, Li X, Wang Y, Luo J, Yang M. Unveiling the Contamination Patterns of Neonicotinoid Insecticides: Detection, Distribution, and Risk Assessment in Panax notoginseng across Plant Parts. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:17834-17846. [PMID: 39083644 DOI: 10.1021/acs.jafc.4c02561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
This study analyzed neonicotinoid insecticides (NEOs) and metabolite (m-NEOs) residues in 136 Panax notoginseng samples via ultra-performance liquid chromatography-tandem mass spectrometry. Imidacloprid was the most detected NEO (88.24% of samples), ranging from 1.50 to 2850 μg/kg. To the best of our knowledge, some novel NEOs were detected in P. notoginseng for the first time. NEO clustering patterns varied among plant parts, with higher contamination in leaves and flowers. Fourteen NEO/m-NEOs, including cycloxaprid and acetamiprid, showed site-specific behavior, indicating the possibility of using multiple NEOs simultaneously during planting, resulting in formation of distinct metabolites in different plant parts. Transfer rates in decoction and infusion ranged from 10.06 to 32.33%, reducing residues postprocessing. Dietary risk assessment showed low hazard quotients (HQa: 7.05 × 10-7 to 2.09 × 10-2; HQc: 3.74 × 10-7 to 2.38 × 10-3), but risk-ranking scores indicated potential hazards with imidacloprid and acetamiprid in flowers and leaves. The findings are expected to promote safety assessment and distribution research of NEOs in plants.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Jing Zhang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Yudan Wang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Zuliang Luo
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Xueli Li
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Yunyun Wang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Jiaoyang Luo
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education & Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Meihua Yang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
- Hainan Branch of the Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Haikou 570311, China
| |
Collapse
|
4
|
Hu Y, Xiao R, Wang Y, Li J, Guo C, Bai J, Zhang L, Zhang K, Jorquera MA, Manquian J, Pan W. Distribution of organophosphorus pesticides and its potential connection with probiotics in sediments of a shallow freshwater lake. JOURNAL OF CONTAMINANT HYDROLOGY 2024; 261:104306. [PMID: 38244424 DOI: 10.1016/j.jconhyd.2024.104306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 01/09/2024] [Accepted: 01/16/2024] [Indexed: 01/22/2024]
Abstract
Despite the serious health threats due to wide use of organophosphorus pesticides (OPPs) have been experimentally claimed to be remediated by probiotic microorganisms in various food and organism models, the interactions between OPPs and probiotics in the natural wetland ecosystem was rarely investigated. This study delves into the spatial and temporal distribution, contamination levels of OPPs in the Baiyangdian region, the diversity of probiotic communities in varying environmental contexts, and the potential connection with OPPs on these probiotics. In typical shallow lake wetland ecosystem-Baiyangdian lake in north China, eight OPPs were identified in the lake sediments, even though their detection rates were generally low. Malathion exhibited the highest average content among these pesticides (9.51 ng/g), followed by fenitrothion (6.70 ng/g). Conversely, chlorpyrifos had the lowest detection rate at only 2.14%. The region near Nanliu Zhuang (F10), significantly influenced by human activities, displayed the highest concentration of total OPPs (136.82 ng/g). A total of 145 probiotic species spanning 78 genera were identified in Baiyangdian sediments. Our analysis underscores the relations of environmental factors such as phosphatase activity, pH, and electrical conductivity (EC) with probiotic community. Notably, several high-abundance probiotics including Pseudomonas chlororaphis, Clostridium sp., Lactobacillus fermentum, and Pseudomonas putida, etc., which were reported to exhibit significant potential for the degradation of OPPs, showed strongly correlations with OPPs in the Baiyangdian lake sediments. The outcomes of this research offer valuable insights into the spatiotemporal dynamics of OPPs in natural large lake wetland and the probability of their in-situ residue bioremediation through the phosphatase pathway mediated by probiotic such as Lactic acid bacteria in soils/sediments contaminated with OPPs.
Collapse
Affiliation(s)
- Yanping Hu
- College of Environment & Safety Engineering, Fuzhou University, Fuzhou 350108, China
| | - Rong Xiao
- College of Environment & Safety Engineering, Fuzhou University, Fuzhou 350108, China.
| | - Yaping Wang
- College of Environment & Safety Engineering, Fuzhou University, Fuzhou 350108, China
| | - Junming Li
- College of Environment & Safety Engineering, Fuzhou University, Fuzhou 350108, China
| | - Congling Guo
- College of Environment & Safety Engineering, Fuzhou University, Fuzhou 350108, China
| | - Junhong Bai
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Ling Zhang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Kegang Zhang
- Department of Environmental Science and Engineering, North China Electric Power University, Baoding 071003, China
| | - Milko A Jorquera
- Department of Chemical Sciences and Natural Resources, University of La Frontera, Temuco 01145, Chile
| | - Javiera Manquian
- Department of Chemical Sciences and Natural Resources, University of La Frontera, Temuco 01145, Chile
| | - Wenbin Pan
- College of Environment & Safety Engineering, Fuzhou University, Fuzhou 350108, China
| |
Collapse
|
5
|
Huang Z, Shen Z, Liu C, Shi H, He S, Long G, Deng W, Yang J, Fan W. Characteristics of heavy metal accumulation and risk assessment in understory Panax notoginseng planting system. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:9029-9040. [PMID: 36183309 DOI: 10.1007/s10653-022-01392-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 09/10/2022] [Indexed: 06/16/2023]
Abstract
Yunnan Province is the main planting area of the precious Chinese herbal medicines (CHM) Panax notoginseng; however, it locates the geological area with high soil heavy metals in China. The frequent land replacement due to continuous cropping obstacles and excessive application of chemicals makes P. notoginseng prone to be contaminated by heavy metals under the farmland P. notoginseng (FPn) planting. To overcome farmland shortage, understory P. notoginseng (UPn) was developed as a new ecological planting model featured by no chemicals input. However, this newly developed planting system requires urgently the soil-plant heavy metal characteristics and risk assessment. This study aimed to evaluate the pollution status of eight heavy metals in the tillage layer (0-20 cm), subsoil layer (20-40 cm) and the plants of UPn in Lancang County, Yunnan Province. Pollution index (Pi) showed that the contamination degree of heavy metals in the tillage layer and subsoil layer was Cd > Pb > Ni > Cu > Zn > Cr > Hg > As and Pb > Cd > Cu > Ni > Cr > Hg > Zn > As, respectively. Potential ecological risk index (PERI) for the tillage layer and subsoil layer was slight and middle, respectively. The exceeding standard rate of Cd, As, Pb, Hg, Cu in the UPn roots was 5.33%, 5.33%, 13.33%, 26.67% and 1.33%, respectively, while only Cd and Hg in the UPn leaves exceeded the standard 10% and 14%, respectively. The enrichment abilities of Cd and Hg in the roots and leaves of UPn were the strongest, while that of Pb was the weakest. The Hazard index (HI) and target hazard quotient (THQ) of eight heavy metals in the roots and leaves of UPn were less than 1.Therefore, our results prove that Upn has no human health risk and provide a scientific basis for the safety evaluation and extension of UPn.
Collapse
Affiliation(s)
- Zhenhua Huang
- State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan, The Key Laboratory of Medicinal Plant Biology of Yunnan Province, National & Local Joint Engineering Research Center On Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, 650201, China
- College of Resources and Environment, Yunnan Agricultural University, Kunming, 650201, China
| | - Zhida Shen
- State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan, The Key Laboratory of Medicinal Plant Biology of Yunnan Province, National & Local Joint Engineering Research Center On Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, 650201, China
- College of Resources and Environment, Yunnan Agricultural University, Kunming, 650201, China
| | - Chunlan Liu
- State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan, The Key Laboratory of Medicinal Plant Biology of Yunnan Province, National & Local Joint Engineering Research Center On Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, 650201, China
- College of Resources and Environment, Yunnan Agricultural University, Kunming, 650201, China
| | - Huineng Shi
- State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan, The Key Laboratory of Medicinal Plant Biology of Yunnan Province, National & Local Joint Engineering Research Center On Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, 650201, China
- College of Resources and Environment, Yunnan Agricultural University, Kunming, 650201, China
| | - Shuran He
- State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan, The Key Laboratory of Medicinal Plant Biology of Yunnan Province, National & Local Joint Engineering Research Center On Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, 650201, China
- College of Resources and Environment, Yunnan Agricultural University, Kunming, 650201, China
| | - Guangqiang Long
- State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan, The Key Laboratory of Medicinal Plant Biology of Yunnan Province, National & Local Joint Engineering Research Center On Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, 650201, China
- College of Resources and Environment, Yunnan Agricultural University, Kunming, 650201, China
| | - Weiping Deng
- College of Science, Yunnan Agricultural University, Kunming, 650201, China
| | - Jianli Yang
- State Key Laboratory of Plant Physiology and Biochemistry, Institute of Plant Biology, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Wei Fan
- State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan, The Key Laboratory of Medicinal Plant Biology of Yunnan Province, National & Local Joint Engineering Research Center On Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, 650201, China.
| |
Collapse
|
6
|
Yang SH, Shin Y, Choi H. Simultaneous analytical method for 296 pesticide multiresidues in root and rhizome based herbal medicines with GC-MS/MS. PLoS One 2023; 18:e0288198. [PMID: 37410759 DOI: 10.1371/journal.pone.0288198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 06/21/2023] [Indexed: 07/08/2023] Open
Abstract
A method for the simultaneous analysis of pesticide multiresidues in three root/rhizome-based herbal medicines (Cnidium officinale, Rehmannia glutinosa, and Paeonia lactiflora) was developed with GC-MS/MS. To determine the concentrations of pesticide residues, 5 g of dried samples were saturated with distilled water, extracted with 10 mL of 0.1% formic acid in acetonitrile/ethyl acetate (7:3, v/v), and then partitioned using magnesium sulfate and sodium chloride. The organic layer was purified with Oasis PRiME HLB plus light, followed by a cleanup with dispersive solid-phase extraction containing alumina. The sample was then injected into GC-MS/MS (2 μL) using a pulsed injection mode at 15 psi and analyzed using multiple reaction monitoring (MRM) modes. The limit of quantitation for the 296 target pesticides was within 0.002-0.05 mg/kg. Among them, 77.7-88.5% showed recoveries between 70% and 120% with relative standard deviations (RSDs) ≤20% at fortified levels of 0.01, and 0.05 mg/kg. The analytical method was successfully applied to real herbal samples obtained from commercial markets, and 10 pesticides were quantitatively determined from these samples.
Collapse
Affiliation(s)
- Seung-Hyun Yang
- Department of Life & Environmental Sciences, College of Agriculture and Food Sciences, Wonkwang University, Iksan, Republic of Korea
- Department of Healthcare Advanced Chemical Research Institute, Environmental Toxicology & Chemistry Center, Hwasun-gun, Republic of Korea
| | - Yongho Shin
- Department of Applied Biology, College of Natural Resources and Life Science, Dong-A University, Busan, Republic of Korea
| | - Hoon Choi
- Department of Life & Environmental Sciences, College of Agriculture and Food Sciences, Wonkwang University, Iksan, Republic of Korea
| |
Collapse
|
7
|
Miao S, Wei Y, Pan Y, Wang Y, Wei X. Detection methods, migration patterns, and health effects of pesticide residues in tea. Compr Rev Food Sci Food Saf 2023; 22:2945-2976. [PMID: 37166996 DOI: 10.1111/1541-4337.13167] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 04/15/2023] [Accepted: 04/18/2023] [Indexed: 05/12/2023]
Abstract
Due to its rich health benefits and unique cultural charm, tea drinking is increasingly popular with the public in modern society. The safety of tea is the top priority that affects the development of tea industry and the health of consumers. During the process of tea growth, pesticides are used to prevent the invasion of pests and diseases with maintaining high quality and stable yield. Because hot water brewing is the traditional way of tea consumption, water is the main carrier for pesticide residues in tea into human body accompanied by potential risks. In this review, pesticides used in tea gardens are divided into two categories according to their solubility, among which water-soluble pesticides pose a greater risk. We summarized the methods of the sample pretreatment and detection of pesticide residues and expounded the migration patterns and influencing factors of tea throughout the process of growth, processing, storage, and consumption. Moreover, the toxicity and safety of pesticide residues and diseases caused by human intake were analyzed. The risk assessment and traceability of pesticide residues in tea were carried out, and potential eco-friendly improvement strategies were proposed. The review is expected to provide a valuable reference for reducing risks of pesticide residues in tea and ensuring the safety of tea consumption.
Collapse
Affiliation(s)
- Siwei Miao
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Yang Wei
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Yi Pan
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Yuanfeng Wang
- College of Life Sciences, Shanghai Normal University, Shanghai, P. R. China
| | - Xinlin Wei
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, P. R. China
| |
Collapse
|
8
|
Hu Z, Wu L, Gan H, Lan H, Zhu B, Ye X. Toxicological effects, residue levels and risks of endocrine-disrupting chemicals in Chinese medicine: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:79724-79743. [PMID: 37332031 DOI: 10.1007/s11356-023-28138-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 06/02/2023] [Indexed: 06/20/2023]
Abstract
Traditional Chinese medicine (TCM) that is used worldwide possesses the satisfactory function of disease prevention, treatment and health care, and this natural medicine seems to be favored due to its low side effects. Endocrine disrupting chemicals (EDCs), which exist in all aspects of our lives, may interfere with the synthesis, action and metabolism of human sex steroid hormones, resulting in the development and fertility problems as well as obesity and the disturbance of energy homeostasis. From planting to processing, TCM may be polluted by various EDCs. Many studies pay attention to this problem, but there are still few reviews on the residues and toxicity risks of EDCs in TCM. In this paper, researches related to EDCs in TCM were screened. The possible contamination sources of TCM from planting to processing and its toxic effects were introduced. Moreover, the residues of metals, pesticides and other EDCs in TCM as well as the health risks of human exposure to EDCs through ingestion of TCM materials were reviewed.
Collapse
Affiliation(s)
- Zhiqin Hu
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Lixiang Wu
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Hongya Gan
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Huili Lan
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Bingqi Zhu
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Xiaoqing Ye
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| |
Collapse
|
9
|
Tsiantas P, Bempelou E, Doula M, Karasali H. Validation and Simultaneous Monitoring of 311 Pesticide Residues in Loamy Sand Agricultural Soils by LC-MS/MS and GC-MS/MS, Combined with QuEChERS-Based Extraction. Molecules 2023; 28:molecules28114268. [PMID: 37298746 DOI: 10.3390/molecules28114268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 05/19/2023] [Accepted: 05/20/2023] [Indexed: 06/12/2023] Open
Abstract
Soil can be contaminated by pesticide residues through agricultural practices, by direct application or through spray-drift in cultivations. The dissipation of those chemicals in the soil may pose risks to the environment and human health. A simple and sensitive multi-residue analytical method was optimized and validated for the simultaneous determination of 311 active substances of pesticides in agricultural soils. The method involves sample preparation with QuEChERS-based extraction, and determination of the analytes with a combination of GC-MS/MS and LC-MS/MS techniques. Calibration plots were linear for both detectors over the range of five concentration levels, using matrix-matched calibration standards. The obtained recoveries from fortified-soil samples ranged from 70 to 119% and from 72.6 to 119% for GC-MS/MS and LC-MS/MS, respectively, while precision values were <20% in all cases. As regards the matrix effect (ME), signal suppression was observed in the liquid chromatography (LC)-amenable compounds, which was further estimated to be negligible. The gas chromatography (GC)-amenable compounds showed enhancement in the chromatographic response estimated as medium or strong ME. The calibrated limit of quantification (LOQ) value was 0.01 μg g-1 dry weight for most of the analytes, while the corresponding calculated limit of determination (LOD) value was 0.003 μg g-1 d.w. The proposed method was subsequently applied to agricultural soils from Greece, and positive determinations were obtained, among which were non-authorized compounds. The results indicate that the developed multi-residue method is fit for the purpose of analyzing low levels of pesticides in soil, according to EU requirements.
Collapse
Affiliation(s)
- Petros Tsiantas
- Laboratory of Chemical Control of Pesticides, Scientific Directorate of Pesticides' Control and Phytopharmacy, Benaki Phytopathological Institute, 8 St. Delta Str., 145 61 Kifissia, Greece
| | - Eleftheria Bempelou
- Laboratory of Chemical Control of Pesticides, Scientific Directorate of Pesticides' Control and Phytopharmacy, Benaki Phytopathological Institute, 8 St. Delta Str., 145 61 Kifissia, Greece
| | - Maria Doula
- Laboratory of Non-Parasitic Diseases, Scientific Directorate of Phytopathology, Benaki Phytopathological Institute, 8 St. Delta Str., 145 61 Kifissia, Greece
| | - Helen Karasali
- Laboratory of Chemical Control of Pesticides, Scientific Directorate of Pesticides' Control and Phytopharmacy, Benaki Phytopathological Institute, 8 St. Delta Str., 145 61 Kifissia, Greece
| |
Collapse
|
10
|
Changes in the toxicity of procymidone and its metabolite during the photohydrolysis process and the effect of the presence of microplastics. KOREAN J CHEM ENG 2023. [DOI: 10.1007/s11814-022-1231-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
11
|
Pszczolińska K, Perkons I, Bartkevics V, Drzewiecki S, Płonka J, Shakeel N, Barchanska H. Targeted and non-targeted analysis for the investigation of pesticides influence on wheat cultivated under field conditions. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 316:120468. [PMID: 36283473 DOI: 10.1016/j.envpol.2022.120468] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/23/2022] [Accepted: 10/15/2022] [Indexed: 06/16/2023]
Abstract
A comprehensive approach was applied to evaluate the effects of pesticides on the metabolism of wheat (Triticum aestivum L). The application of commercially available pesticide formulations under field cultivation conditions provided a source of metabolic data unlimited by model conditions, representing a novel approach to study the effects of pesticides on edible plants. Gas and liquid chromatography coupled to tandem mass spectrometry were employed for targeted and non-targeted analysis of wheat roots and shoots sampled six times during the six-week experiment. The applied pesticides: prothioconazole, tebuconazole, fluoxastrobin, diflufenican, florasulam, and penoxulam were found at concentrations ranging 0.0070-25.20 mg/kg and 0.0020-2.2 mg/kg in the wheat roots and shoots, respectively. The following pesticide metabolites were identified in shoots: prothioconazole-desthio (prothioconazole metabolite), 5-(4-chlorophenyl)-2,2-dimethyl-3-(1,2,4-triazol-1-ylmethyl)pentane-1,3-diol (tebuconazole metabolite), and N-(5,8-dimethoxy[1,2,4]triazolo[1,5-c]pyrimidin-2-yl)-2,4-dihydroxy-6-(trifluoromethyl)benzene sulphonamide (penoxulam metabolite). The metabolic fingerprints and profiles changed during the experiment, reflecting the cumulative response of wheat to both its growth environment and pesticides, as well as their metabolites. Approximately 15 days after the herbicide treatment no further changes in the plant metabolic profiles were observed, despite the presence of pesticide and their metabolites in both roots and shoots. This is the first study to combine the determination of pesticides and their metabolites plant tissues with the evaluation of plant metabolic responses under field conditions. This exhaustive approach contributes to broadening the knowledge of pesticide effects on edible plants, relevant to food safety.
Collapse
Affiliation(s)
- Klaudia Pszczolińska
- Institute of Plant Protection - National Research Institute Branch Sośnicowice, 44-153, Sośnicowice, Gliwicka 29, Poland.
| | - Ingus Perkons
- Institute of Food Safety, Animal Health and Environment "BIOR", Lejupes Street 3, Riga LV, 1076, Latvia.
| | - Vadims Bartkevics
- Institute of Food Safety, Animal Health and Environment "BIOR", Lejupes Street 3, Riga LV, 1076, Latvia.
| | - Sławomir Drzewiecki
- Institute of Plant Protection - National Research Institute Branch Sośnicowice, 44-153, Sośnicowice, Gliwicka 29, Poland.
| | - Joanna Płonka
- Department of Inorganic Chemistry, Analytical Chemistry and Electrochemistry, Faculty of Chemistry, Silesian University of Technology, B. Krzywoustego 6, 44-100, Gliwice, Poland.
| | - Nasir Shakeel
- Department of Inorganic Chemistry, Analytical Chemistry and Electrochemistry, Faculty of Chemistry, Silesian University of Technology, B. Krzywoustego 6, 44-100, Gliwice, Poland.
| | - Hanna Barchanska
- Department of Inorganic Chemistry, Analytical Chemistry and Electrochemistry, Faculty of Chemistry, Silesian University of Technology, B. Krzywoustego 6, 44-100, Gliwice, Poland.
| |
Collapse
|
12
|
Wang G, Ren Y, Bai X, Su Y, Han J. Contributions of Beneficial Microorganisms in Soil Remediation and Quality Improvement of Medicinal Plants. PLANTS (BASEL, SWITZERLAND) 2022; 11:3200. [PMID: 36501240 PMCID: PMC9740990 DOI: 10.3390/plants11233200] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/15/2022] [Accepted: 11/20/2022] [Indexed: 06/17/2023]
Abstract
Medicinal plants (MPs) are important resources widely used in the treatment and prevention of diseases and have attracted much attention owing to their significant antiviral, anti-inflammatory, antioxidant and other activities. However, soil degradation, caused by continuous cropping, excessive chemical fertilizers and pesticide residues and heavy metal contamination, seriously restricts the growth and quality formation of MPs. Microorganisms, as the major biota in soil, play a critical role in the restoration of the land ecosystem. Rhizosphere microecology directly or indirectly affects the growth and development, metabolic regulation and active ingredient accumulation of MPs. Microbial resources, with the advantages of economic efficiency, harmless to environment and non-toxic to organisms, have been recommended as a promising alternative to conventional fertilizers and pesticides. The introduction of beneficial microbes promotes the adaptability of MPs to adversity stress by enhancing soil fertility, inhibiting pathogens and inducing systemic resistance. On the other hand, it can improve the medicinal quality by removing soil pollutants, reducing the absorption and accumulation of harmful substances and regulating the synthesis of secondary metabolites. The ecological and economic benefits of the soil microbiome in agricultural practices are increasingly recognized, but the current understanding of the interaction between soil conditions, root exudates and microbial communities and the mechanism of rhizosphere microecology affecting the secondary metabolism of MPs is still quite limited. More research is needed to investigate the effects of the microbiome on the growth and quality of different medicinal species. Therefore, the present review summarizes the main soil issues in medicinal plant cultivation, the functions of microbes in soil remediation and plant growth promotion and the potential mechanism to further guide the use of microbial resources to promote the ecological cultivation and sustainable development of MPs.
Collapse
Affiliation(s)
| | | | | | | | - Jianping Han
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| |
Collapse
|
13
|
Chen C, Luo J, Bu C, Zhang W, Ma L. Efficacy of a large-scale integrated constructed wetland for pesticide removal in tail water from a sewage treatment plant. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156568. [PMID: 35688240 DOI: 10.1016/j.scitotenv.2022.156568] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 05/11/2022] [Accepted: 06/05/2022] [Indexed: 06/15/2023]
Abstract
The higher and higher detection frequencies of micro-pollutants such as pesticides in water are nowadays intensifying the investigation for strategies to provide effective engineering methods that could mitigate such substances. Traditional sewage treatment plants (STP) do not design specific processes for micro-pollutants removal in water. As an environmentally-friendly measure, some laboratory-scale wetlands have been proved to be effective in the removal of pesticides in water, but such studies are rarely carried out in large-scale wetlands, especially when they are adopted as a polishing step of STPs. Therefore, the further removals of micro-pollutants in tail water of STPs through the large-scale wetlands and the relevant removal mechanism are still knowledge gaps. In this study, 44 target pesticides were detected in the water of a large-scale integrated constructed wetland (ICW) for four seasons. The ICW was established to further process the tail water from a STP, whose drainage was from domestic sewage of local residents. There were 19, 16, 17, and 19 pesticides detected in spring, summer, autumn, and winter, respectively. The removal values for Σ19 pesticides ranged from 49.99% to 84.96% during the study period, and the removal of these pesticides followed significant seasonal trends, which was likely because the microorganisms responsible for biotic degradation were markedly influenced by seasonal temperature fluctuations. Proteobacteria, Chloroflexi, Acidobacteria, Planctomycetes, and Bacteroidetes were the dominant phyla, and might be associated with the biodegradation of organic pollutants in the ICW. Removal of pesticides by the ICW resulted in overall toxicity reductions in water, but butachlor and chlorpyrifos were still at non-ignorable ecological risks. This study highlights the potential of constructed wetlands for micro-pollutants removal in water as a polishing step in STPs.
Collapse
Affiliation(s)
- Chong Chen
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Jiahong Luo
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Chengcheng Bu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Weiwei Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Limin Ma
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China.
| |
Collapse
|
14
|
Liang W, Zhang J, Wurm FR, Wang R, Cheng J, Xie Z, Li X, Zhao J. Lignin-based non-crosslinked nanocarriers: A promising delivery system of pesticide for development of sustainable agriculture. Int J Biol Macromol 2022; 220:472-481. [PMID: 35987356 DOI: 10.1016/j.ijbiomac.2022.08.103] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/09/2022] [Accepted: 08/15/2022] [Indexed: 11/25/2022]
Abstract
Lignin sulfonate (LS), a waste material from the paper pulping, was modified with benzoic anhydride to obtain benzoylated lignin sulfonates of adjustable hydrophilicity (BLS). When BLS was combined with difenoconazole (Di), a broad-spectrum fungicide, lignin-based, non-crosslinked nanoparticles were obtained either by solvent exchange or solvent evaporation. When a mass ratio of 1:5 LS: benzoic anhydride was used, the Di release from Di@BLS5 after 1248 h was ca. 74 %, while a commercial difenoconazole microemulsion (Di ME) reached 100 % already after 96 h, proving the sustained release from the lignin nanocarriers. The formulation of Di in lignin-based nanocarriers also improved the UV stability and the foliar retention of Di compared to the commercial formulation of the fungicide. Bioactivity assay showed that Di@BLS5 exhibited high activities and duration against strawberry anthracnose (Colletotrichum gloeosporioides). Overall, the construction of fungicide delivery nano-platform using BLS via a simple non-crosslinked approach is a novel and promising way to develop new formulations for nanopesticide and the development of sustainable agriculture.
Collapse
Affiliation(s)
- Wenlong Liang
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou 310058, PR China; Sustainable Polymer Chemistry, Department of Molecules and Materials, MESA+ Institute for Nanotechnology, Faculty of Science and Technology, Universiteit Twente, PO Box 217, 7500 AE Enschede, the Netherlands
| | - Jiadong Zhang
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou 310058, PR China
| | - Frederik R Wurm
- Sustainable Polymer Chemistry, Department of Molecules and Materials, MESA+ Institute for Nanotechnology, Faculty of Science and Technology, Universiteit Twente, PO Box 217, 7500 AE Enschede, the Netherlands
| | - Rong Wang
- Economic Specialty Technology Extension Center, Lanxi 321100, PR China
| | - Jingli Cheng
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou 310058, PR China
| | - Zhengang Xie
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou 310058, PR China
| | - Xianbin Li
- Institute for the Control of Agrochemicals, Ministry of Agriculture, Beijing 100125, PR China.
| | - Jinhao Zhao
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou 310058, PR China.
| |
Collapse
|
15
|
Wang Y, Ruan H, Zhang J, Wang Y, Guo M, Ke T, Luo J, Yang M. CHA-based dual signal amplification immunofluorescence biosensor for ultrasensitive detection of dimethomorph. Anal Chim Acta 2022; 1227:340323. [DOI: 10.1016/j.aca.2022.340323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/23/2022] [Accepted: 08/23/2022] [Indexed: 11/01/2022]
|
16
|
Luo M, Chen L, Wei J, Cui X, Cheng Z, Wang T, Chao I, Zhao Y, Gao H, Li P. A two-step strategy for simultaneous dual-mode detection of methyl-paraoxon and Ni (Ⅱ). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 239:113668. [PMID: 35623151 DOI: 10.1016/j.ecoenv.2022.113668] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 05/11/2022] [Accepted: 05/16/2022] [Indexed: 06/15/2023]
Abstract
Exogenous pollution of Chinese medicinal materials by pesticide residues and heavy metal ions has attracted great attention. Relying on the rapid development of nanotechnology and multidisciplinary fields, fluorescent techniques have been widely applied in contaminant detection and pollution monitoring due to their advantages of simple preparation, low cost, high throughput and others. Most importantly, synchronous detection of multi-targets has always been pursued as one of the major goals in the design of fluorescent probes. Herein, we firstly develop a simultaneous sensing method for methyl-paraoxon (MP) and Nickel ion (Ni, Ⅱ) by using carbon based fluorescent nanocomposite with ratiometric signal readout and nanozyme. Notably, the designed system showed excellent effectiveness even when the two pollutants co-exist. Under the optimum conditions, this method provides low limits of detection of 1.25 µM for methyl-paraoxon and 0.01 µM for Ni (Ⅱ). To further verify the reliability, recovery studies of these two analytes were performed on ginseng radix et rhizoma, nelumbinis semen, and water samples. In addition, smartphone-based visual analysis has been introduced to expand its applicability in point of care detection. This work not only expands the application of the dual-mode approach to pollutant detection, but also provides insights into the analysis of multiple pollutants in a single assay.
Collapse
Affiliation(s)
- Mai Luo
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China
| | - Ling Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China
| | - Jinchao Wei
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy / Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research / International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China; State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China.
| | - Xiping Cui
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China
| | - Zehua Cheng
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China
| | - Ting Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China
| | - Incheng Chao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China
| | - Yunyang Zhao
- Scientific Research Center, Wenzhou Medical University, Wenzhou 325035, China
| | - Hao Gao
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy / Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research / International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China.
| | - Peng Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China; Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Macau 999078, China.
| |
Collapse
|
17
|
Yang Y, Zheng K, Guo LP, Wang CX, Zhong DB, Shang L, Nian HJ, Cui XM, Huang SJ. Rapid determination and dietary intake risk assessment of 249 pesticide residues in Panax notoginseng. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 233:113348. [PMID: 35240504 DOI: 10.1016/j.ecoenv.2022.113348] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 02/11/2022] [Accepted: 02/22/2022] [Indexed: 06/14/2023]
Abstract
UPLC-MS/MS and GC-MS/MS were used to establish a method to simultaneously determine various pesticide residues in Panax notoginseng. Results showed that the limits of detection of 249 pesticides were all 5-10 μg/kg. The detection rate of pesticides in 121 P. notoginseng samples was 93.39%, and 19 pesticides were detected. According to the US Code of Federal Regulations, the Chinese Pharmacopoeia recommended algorithm, and the Japanese "positive list system", the pass rates of pesticide residues were 100%, 99.17%, and 89.26%, respectively. The chronic risk quotient (ADI%) and acute risk quotient (ARfD%) of P. notoginseng were 0.00-0.12% and 0.00-0.15%, respectively. In summary, the detection method established in this study can be used for routine analysis of various P. notoginseng pesticide residues. The pesticide residues in the main root samples of P. notoginseng were at a safe level and unlikely pose health risks to consumers.
Collapse
Affiliation(s)
- Ye Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, PR China; Yunnan Provincial Panax Notoginseng Key Laboratory, Kunming 650500, PR China
| | - Kai Zheng
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, PR China; Yunnan Provincial Panax Notoginseng Key Laboratory, Kunming 650500, PR China
| | - Lan-Ping Guo
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, PR China
| | - Cheng-Xiao Wang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, PR China; Yunnan Provincial Panax Notoginseng Key Laboratory, Kunming 650500, PR China
| | - Du-Bo Zhong
- Yunnan Yunce Quality Testing Co., Ltd., Kunming 650217, PR China
| | - Le Shang
- Yunnan Yunce Quality Testing Co., Ltd., Kunming 650217, PR China
| | - Hong-Juan Nian
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, PR China
| | - Xiu-Ming Cui
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, PR China; Yunnan Provincial Panax Notoginseng Key Laboratory, Kunming 650500, PR China.
| | - Shao-Jun Huang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, PR China; Yunnan Provincial Panax Notoginseng Key Laboratory, Kunming 650500, PR China.
| |
Collapse
|
18
|
Degrendele C, Klánová J, Prokeš R, Příbylová P, Šenk P, Šudoma M, Röösli M, Dalvie MA, Fuhrimann S. Current use pesticides in soil and air from two agricultural sites in South Africa: Implications for environmental fate and human exposure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 807:150455. [PMID: 34634720 DOI: 10.1016/j.scitotenv.2021.150455] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/15/2021] [Accepted: 09/15/2021] [Indexed: 05/27/2023]
Abstract
Concerns about the possible negative impacts of current use pesticides (CUPs) for both the environment and human health have increased worldwide. However, the knowledge on the occurrence of CUPs in soil and air and the related human exposure in Africa is limited. This study investigated the presence of 30 CUPs in soil and air at two distinct agricultural sites in South Africa and estimated the human exposure and related risks to rural residents via soil ingestion and inhalation (using hazard quotients, hazard index and relative potency factors). We collected 12 soil and 14 air samples over seven days during the main pesticide application season in 2018. All samples were extracted, purified and analyzed by high-performance liquid chromatography coupled with tandem mass spectrometry. In soils, nine CUPs were found, with chlorpyrifos, carbaryl and tebuconazole having the highest concentrations (up to 63.6, 1.10 and 0.212 ng g-1, respectively). In air, 16 CUPs were found, with carbaryl, tebuconazole and terbuthylazine having the highest levels (up to 25.0, 22.2 and 1.94 pg m-3, respectively). Spatial differences were observed between the two sites for seven CUPs in air and two in soils. A large dominance towards the particulate phase was found for almost all CUPs, which could be related to mass transport kinetics limitations (non-equilibrium) following pesticide application. The estimated daily intake via soil ingestion and inhalation of individual pesticides ranged from 0.126 fg kg-1 day-1 (isoproturon) to 14.7 ng kg-1 day-1 (chlorpyrifos). Except for chlorpyrifos, soil ingestion generally represented a minor exposure pathway compared to inhalation (i.e. <5%). The pesticide environmental exposure largely differed between the residents of the two distinct agricultural sites in terms of levels and composition. The estimated human health risks due to soil ingestion and inhalation of pesticides were negligible although future studies should explore other relevant pathways.
Collapse
Affiliation(s)
| | - Jana Klánová
- Masaryk University, RECETOX Centre, 625 00 Brno, Czech Republic
| | - Roman Prokeš
- Masaryk University, RECETOX Centre, 625 00 Brno, Czech Republic
| | - Petra Příbylová
- Masaryk University, RECETOX Centre, 625 00 Brno, Czech Republic
| | - Petr Šenk
- Masaryk University, RECETOX Centre, 625 00 Brno, Czech Republic
| | - Marek Šudoma
- Masaryk University, RECETOX Centre, 625 00 Brno, Czech Republic
| | - Martin Röösli
- University of Basel, 4002 Basel, Switzerland; Swiss Tropical and Public Health Institute (Swiss TPH), 4002 Basel, Switzerland
| | - Mohamed Aqiel Dalvie
- Centre for Environmental and Occupational Health Research, School of Public Health and Family Medicine, University of Cape Town, 7925 Cape Town, South Africa
| | - Samuel Fuhrimann
- University of Basel, 4002 Basel, Switzerland; Swiss Tropical and Public Health Institute (Swiss TPH), 4002 Basel, Switzerland; Institute for Risk Assessment Sciences (IRAS), Utrecht University, 3584 Utrecht, the Netherlands
| |
Collapse
|
19
|
Li M, Xu G, Huang F, Hou S, Liu B, Yu Y. Influence of nano CuO on uptake and translocation of bifenthrin in rape (Brassica napus L.). Food Control 2021. [DOI: 10.1016/j.foodcont.2021.108333] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
20
|
Li JJ, Yang L, Miao CP, Teng YJ, Fu ZH, Cheng CL, Chang XX, Qian Y, Zhao LX. Impact of rhizosphere microorganisms on arsenic (As) transformation and accumulation in a traditional Chinese medical plant. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:60923-60934. [PMID: 34165739 DOI: 10.1007/s11356-021-14500-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 05/17/2021] [Indexed: 06/13/2023]
Abstract
Panax notoginseng is an important traditional medicinal plant, but the commercial value is threatened by root-rot disease caused by rhizosphere microbes and a potential health risk caused by plant arsenic (As) accumulation. Whether rhizospheric microbes isolated from P. notoginseng rhizosphere soil could impact As uptake and transport into P. notoginseng is not yet known. Among the three root-rot disease-causing pathogens Fusarium flocciferum (PG 1), Fusarium oxysporum (PG 2), and Fusarium solani (PG 3) and one root-rot disease biocontrol fungus Trichoderma koningiopsis (FC 1) and five biocontrol-exerting bacterial species Bacillus siamensis (BC 1), Delftia acidovorans (BC 2), Brevibacillus formosus (BC 3), Mortierella alpine (BC 4), and Bacillus subtilis (BC 5), one As-resistant pathogen and four biocontrol microorganisms with As-resistant ability were identified. The As-transforming ability of the identified fungi and bacteria was ranked in the order of FC 1 > PG 1 and BC 2 > BC 3 > BC 1, respectively. Then, the As-resistant biocontrol and pathogenic microbes were initiated to colonize the rhizosphere of 1-year-old P. notoginseng seedlings growing in artificially As(V)-contaminated soil to evaluate the impact of microbe inoculation on P. notoginseng As uptake and transport capacity. Concentration of As in P. notoginseng tissues decreased in the order of the sequence stem > root > leaf. Compared to treatment without colonization by microorganism, inoculation with microorganisms increased As root uptake efficiency and root As concentration, especially under treatment of inoculation by BC 2 and PG 1 + BC 2. As transport efficiency from root to stem decreased by inoculation with microorganism, especially under treatment with inoculation of BC 2 and PG 1 + BC 2. However, the impact of microorganism colonization on As stem to leaf transport efficiency was not obvious. In summary, inoculation with rhizosphere microbes may increase As accumulation in P. notoginseng root, especially when using bacteria with high As transformation ability. Therefore, it is necessary to evaluate the As transformation capacity before applying biological control microorganism to the rhizosphere of P. notoginseng.
Collapse
Affiliation(s)
- Jiao-Jiao Li
- School of Ecology and Environmental Sciences, Yunnan University, No. 2 Cuihu North Road, Kunming, 650091, People's Republic of China
| | - Long Yang
- School of Ecology and Environmental Sciences, Yunnan University, No. 2 Cuihu North Road, Kunming, 650091, People's Republic of China
| | - Cui-Ping Miao
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, School of Chemical Science and Technology, Yunnan University, No. 2 Cuihu North Road, Kunming, 650091, People's Republic of China
| | - Ya-Jun Teng
- Technology Center of Kunming Customs District P. R. China, Kunming, 650000, Yunnan, People's Republic of China
| | - Zi-Hao Fu
- School of Ecology and Environmental Sciences, Yunnan University, No. 2 Cuihu North Road, Kunming, 650091, People's Republic of China
| | - Chang-Lei Cheng
- Analysis and Measurements Center of Yunnan Provincial Non-ferrous Geology Bureau, Kunming, 650051, Yunnan, People's Republic of China
| | - Xue-Xiu Chang
- School of Ecology and Environmental Sciences, Yunnan University, No. 2 Cuihu North Road, Kunming, 650091, People's Republic of China
| | - Yu Qian
- School of Ecology and Environmental Sciences, Yunnan University, No. 2 Cuihu North Road, Kunming, 650091, People's Republic of China.
| | - Li-Xing Zhao
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, School of Chemical Science and Technology, Yunnan University, No. 2 Cuihu North Road, Kunming, 650091, People's Republic of China.
- Yunnan Institute of Microbiology, Yunnan University, Kunming, 650091, People's Republic of China.
| |
Collapse
|
21
|
Li Z, Mei X, Li T, Yang S, Qin L, Li B, Zu Y. Effects of calcium application on activities of membrane transporters in Panax notoginseng under cadmium stress. CHEMOSPHERE 2021; 262:127905. [PMID: 33182152 DOI: 10.1016/j.chemosphere.2020.127905] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 07/31/2020] [Accepted: 08/02/2020] [Indexed: 06/11/2023]
Abstract
Pot experiments were conducted to study combined effects of Ca and Cd on contents of Cd and Ca, and membrane transporters activities (CC (calcium channel protein), ATPase and CAXs (cationic/H+ antiporter) of two-year old Panax notoginseng with application of different concentrations of Ca2+ (0, 180 and 360 mgkg-1, prepared by Ca(OH)2 and CaCl2, respectively) under Cd2+ (0, 0.6, 6.0, and 12.0 mgkg-1, prepared by CdCl2•2.5H2O) treatments. The results showed that soil available Cd contents decreased with Ca(OH)2 and CaCl2 application. Soil pH value increased with Ca(OH)2 application. The contents of Cd in all parts of P. notoginseng increased with the increase in Cd treatment concentrations. The Cd content of P. notoginseng decreased with Ca(OH)2 and CaCl2 treatments. The activities of CC and ATPase in the main root of P. notoginseng decreased with the increase in Cd treatment concentrations and application of CaCl2. The activities of CC and ATPase increased with Ca(OH)2application. The activity of CAXs in the main root of P. notoginseng increased with the increase of Cd treatment concentration. The results indicate that Ca and Cd should be both related to membrane transporters activities and activities of CC, ATPase and CAXs are promoted by cooperation of Ca2+and OH+, which suggest the Ca(OH)2 application should be better than application of CaCl2 for Cd detoxification.
Collapse
Affiliation(s)
- Zuran Li
- College of Landscape and Horticulture, Yunnan Agricultural University, Kunming, 650201, China
| | - Xinyue Mei
- College of Resources and Environment, Yunnan Agricultural University, Kunming, 650201, China
| | - Tao Li
- College of Resources and Environment, Yunnan Agricultural University, Kunming, 650201, China
| | - Shu Yang
- College of Science, Yunnan Agricultural University, Kunming, 650201, China
| | - Li Qin
- College of Resources and Environment, Yunnan Agricultural University, Kunming, 650201, China
| | - Bo Li
- College of Resources and Environment, Yunnan Agricultural University, Kunming, 650201, China
| | - Yanqun Zu
- College of Resources and Environment, Yunnan Agricultural University, Kunming, 650201, China.
| |
Collapse
|
22
|
Young People’s Perceptions about the Difficulties of Entrepreneurship and Developing Rural Properties in Family Agriculture. SUSTAINABILITY 2020. [DOI: 10.3390/su12218783] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
This article aims to understand the perceptions of young rural entrepreneurs about the difficulties in investing in family farms in which they work. Ninety-eight people were interviewed at the event “Meeting of Young Entrepreneurs of the Rural Environment of Santa Catarina: the rural youth leading the sustainable development”, held in May 2019. The methodology applied in this paper is qualitative and quantitative, through a bibliographic review and a numerical analysis on work conditions and workers’ profile. A brief theoretical background is presented to facilitate the understanding of the results and their relation to family farming, entrepreneurship and its reality in Brazil. As a result, the economic issue was pointed out with 34% of the cases, as a hinter to undertake in rural properties, followed by the lack and low qualification of the workforce available with 12.6% of the cases and the lower selling price for the producer with 7.6% of the cases.
Collapse
|
23
|
Hassaan MA, El Nemr A. Pesticides pollution: Classifications, human health impact, extraction and treatment techniques. EGYPTIAN JOURNAL OF AQUATIC RESEARCH 2020; 46:207-220. [DOI: 10.1016/j.ejar.2020.08.007] [Citation(s) in RCA: 195] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
|