1
|
Chen K, Dai S, Li J, Lin L, Qin W, Gao Y, Hu E, Jiang J. Towards circular economy: Sustainable valorization of municipal solid waste incineration fly ash for recovery of high-purity chlorides and calcium, and separation of heavy metals. ENVIRONMENTAL RESEARCH 2025; 277:121536. [PMID: 40187390 DOI: 10.1016/j.envres.2025.121536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2025] [Revised: 03/17/2025] [Accepted: 04/02/2025] [Indexed: 04/07/2025]
Abstract
Incineration is an effective method for handling the increasing volume of municipal solid waste, but the resulting fly ash presents a significant problem that needs to be addressed. Municipal solid waste incineration fly ash (MSWI FA) contains toxic and hazardous substances, including heavy metals, dioxins, and chlorides, and is classified as hazardous waste. This paper analyzes the current situation of MSWI FA and summarizes the main treatment methods, including solidification/stabilization, thermal treatment, and chemical separation/resource recovery. The review critically evaluates research on the chemical separation/resource recovery of MSWI FA, covering chlorides removal and resource utilization, heavy metals recovery through hydrometallurgy, thermal separation, and electrochemical methods, as well as calcium extraction and CaCO3 production by CO2 mineralization. It highlights innovative chemical separation/resource recovery technologies and future prospects to promote the development of MSWI FA valorization technologies and achieve sustainable management of MSWI FA.
Collapse
Affiliation(s)
- Kailun Chen
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Shijin Dai
- Comprehensive Management and Service Center of Baoan City Appearance and Environment, Shenzhen, 518101, China
| | - Jinglin Li
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Li Lin
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Weikai Qin
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Yuchen Gao
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Endian Hu
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Jianguo Jiang
- School of Environment, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
2
|
Tonietti L, Esposito M, Cascone M, Barosa B, Fiscale S, Muscari Tomajoli MT, Sbaffi T, Santomartino R, Covone G, Cordone A, Rotundi A, Giovannelli D. Unveiling the Bioleaching Versatility of Acidithiobacillus ferrooxidans. Microorganisms 2024; 12:2407. [PMID: 39770610 PMCID: PMC11678928 DOI: 10.3390/microorganisms12122407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/20/2024] [Accepted: 11/21/2024] [Indexed: 01/11/2025] Open
Abstract
Acidithiobacillus ferrooxidans is a Gram-negative bacterium that thrives in extreme acidic conditions. It has emerged as a key player in biomining and bioleaching technologies thanks to its unique ability to mobilize a wide spectrum of elements, such as Li, P, V, Cr, Fe, Ni, Cu, Zn, Ga, As, Mo, W, Pb, U, and its role in ferrous iron oxidation and reduction. A. ferrooxidans catalyzes the extraction of elements by generating iron (III) ions in oxic conditions, which are able to react with metal sulfides. This review explores the bacterium's versatility in metal and elemental mobilization, with a focus on the mechanisms involved, encompassing its role in the recovery of industrially relevant elements from ores. The application of biomining technologies leveraging the bacterium's natural capabilities not only enhances element recovery efficiency, but also reduces reliance on conventional energy-intensive methods, aligning with the global trend towards more sustainable mining practices. However, its use in biometallurgical applications poses environmental issues through its effect on the pH levels in bioleaching systems, which produce acid mine drainage in rivers and lakes adjacent to mines. This dual effect underscores its potential to shape the future of responsible mining practices, including potentially in space, and highlights the importance of monitoring acidic releases in the environment.
Collapse
Affiliation(s)
- Luca Tonietti
- Department of Science and Technology, University Parthenope, 80143 Naples, Italy; (S.F.); (M.T.M.T.); (A.R.)
- International PhD Programme/UNESCO Chair “Environment, Resources and Sustainable Development”, 80143 Naples, Italy
- Department of Biology, University Federico II, 80126 Naples, Italy; (M.E.); (M.C.); (B.B.); (A.C.)
- INAF-OAC, Osservatorio Astronomico di Capodimonte, 80137 Naples, Italy;
| | - Mattia Esposito
- Department of Biology, University Federico II, 80126 Naples, Italy; (M.E.); (M.C.); (B.B.); (A.C.)
| | - Martina Cascone
- Department of Biology, University Federico II, 80126 Naples, Italy; (M.E.); (M.C.); (B.B.); (A.C.)
| | - Bernardo Barosa
- Department of Biology, University Federico II, 80126 Naples, Italy; (M.E.); (M.C.); (B.B.); (A.C.)
| | - Stefano Fiscale
- Department of Science and Technology, University Parthenope, 80143 Naples, Italy; (S.F.); (M.T.M.T.); (A.R.)
- International PhD Programme/UNESCO Chair “Environment, Resources and Sustainable Development”, 80143 Naples, Italy
| | - Maria Teresa Muscari Tomajoli
- Department of Science and Technology, University Parthenope, 80143 Naples, Italy; (S.F.); (M.T.M.T.); (A.R.)
- International PhD Programme/UNESCO Chair “Environment, Resources and Sustainable Development”, 80143 Naples, Italy
| | - Tomasa Sbaffi
- Molecular Ecology Group (MEG), National Research Council of Italy—Water Research Institute (CNR-IRSA), 28922 Verbania, Italy;
| | - Rosa Santomartino
- UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh, Edinburgh EH8 9YL, UK;
| | - Giovanni Covone
- INAF-OAC, Osservatorio Astronomico di Capodimonte, 80137 Naples, Italy;
- Department of Physics, University of Naples Federico II, 80126 Naples, Italy
| | - Angelina Cordone
- Department of Biology, University Federico II, 80126 Naples, Italy; (M.E.); (M.C.); (B.B.); (A.C.)
| | - Alessandra Rotundi
- Department of Science and Technology, University Parthenope, 80143 Naples, Italy; (S.F.); (M.T.M.T.); (A.R.)
- INAF-IAPS, Istituto di Astrofisica e Planetologia Spaziali, 00133 Rome, Italy
| | - Donato Giovannelli
- Department of Biology, University Federico II, 80126 Naples, Italy; (M.E.); (M.C.); (B.B.); (A.C.)
- National Research Council, Institute of Marine Biological Resources and Biotechnologies, CNR-IRBIM, 60125 Ancona, Italy
- Department of Marine and Coastal Science, Rutgers University, New Brunswick, NJ 08901, USA
- Marine Chemistry & Geochemistry Department, Woods Hole Oceanographic Institution, Falmouth, MA 02543, USA
- Earth-Life Science Institute, ELSI, Tokyo Institute of Technology, Tokyo 152-8550, Japan
| |
Collapse
|
3
|
Tezyapar Kara I, Huntington VE, Simmons N, Wagland ST, Coulon F. Extracting metal ions from basic oxygen steelmaking dust by using bio-hydrometallurgy. Heliyon 2024; 10:e32437. [PMID: 38933961 PMCID: PMC11200337 DOI: 10.1016/j.heliyon.2024.e32437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/03/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024] Open
Abstract
This study aimed to optimise metal extraction from secondary hazardous sources, such as basic oxygen steelmaking dust (BOS-D). Initially, three batch systems approaches, including bioleaching using Acidithiobacillus ferrooxidans, chemical leaching using choline chloride-ethylene glycol (ChCl-EG) and a combined approach were compared. Then, scaling up was evaluated through a semi-continuous bioleaching column system with varied leachate recirculation over 21 days, focusing on Y, Ce, Nd, Li, Co, Cu, Zn, Mn, and Al. Bioleaching outperformed the control experiments within 3 days in the batch, demonstrating the key role of A. ferrooxidans. Chemical leaching conducted with a solid concentration of 12.5 % (w/v) successfully dissolved over 50 % of all metals within 2 h. For rare earth elements (REE), both bioleaching and hybrid leaching outperformed chemical leaching. However, considering factors such as process duration, overall efficiency, and ease of extraction, chemical leaching was the most effective method. Leachate recirculation reached a plateau after 11 days, resulting in extraction efficiency of 39 % when semi-continuous column set-up was used. Interestingly, variations in recirculation rates did not influence the extraction efficiency. Overall, this study emphasizes the considerable potential of bioleaching for metal recovery, but also highlights the need for further studies for enhancing permeability for percolation methods and optimisation, particularly in parameters such as aeration rate, when transitioning to larger scale systems.
Collapse
Affiliation(s)
- Ipek Tezyapar Kara
- Cranfield University, School of Water, Energy and Environment, Cranfield, MK430AL, UK
| | | | - Nuannat Simmons
- Cranfield University, School of Water, Energy and Environment, Cranfield, MK430AL, UK
| | - Stuart T. Wagland
- Cranfield University, School of Water, Energy and Environment, Cranfield, MK430AL, UK
| | - Frederic Coulon
- Cranfield University, School of Water, Energy and Environment, Cranfield, MK430AL, UK
| |
Collapse
|
4
|
Teng F, Wang Z, Ren K, Liu S, Ding H. Analysis of composition characteristics and treatment techniques of municipal solid waste incineration fly ash in China. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 357:120783. [PMID: 38579475 DOI: 10.1016/j.jenvman.2024.120783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 03/16/2024] [Accepted: 03/27/2024] [Indexed: 04/07/2024]
Abstract
The rapid development of the economy and society is causing an increase in the amount of municipal solid waste (MSW) produced by people's daily lives. With the strong support of the Chinese government, incineration power generation has steadily become the primary method of treating MSW, accounting for 79.86%. However, burning produces a significant amount of municipal solid waste incineration fly ash (MSWI-FA), which contains heavy metals, soluble chlorine salts, and dioxins. China's MSWI-FA yield increased by 8.23% annually to 7.80 million tons in 2022. Besides, the eastern region, especially the southeastern coastal region, has the highest yield of MSWI-FA. There are certain similarities in the chemical characteristics of MSWI-FA samples from Northeast, North, East, and South China. Zn and CaO have the largest amounts of metals and oxides, respectively. The Cl content is about 20 wt%. This study provides an overview of the techniques used in the thermal treatment method, solidification and stabilization, and separation and extraction of MSWI-FA and compares their benefits and drawbacks. In addition, the industrial applications and standard requirements of landfill treatment and resource utilization of MSWI-FA in China are analyzed. It is discovered that China's resource utilization of MSWI-FA is insufficient through the study on the fly ash disposal procedures at a few MSW incineration facilities located in the economically developed Guangdong Province and the traditional industrial city of Tianjin. Finally, the prospects for the disposal of MSWI-FA were discussed.
Collapse
Affiliation(s)
- Fangyuan Teng
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, China
| | - Ziyang Wang
- Hebei Survey Institute of Gelogy, Shijiazhuang, Hebei, 050051, China
| | - Ke Ren
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, China
| | - Shejiang Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, China.
| | - Hui Ding
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, China
| |
Collapse
|
5
|
Valizadeh B, Abdoli MA, Dobaradaran S, Mahmoudkhani R, Asl YA. Risk control of heavy metal in waste incinerator ash by available solidification scenarios in cement production based on waste flow analysis. Sci Rep 2024; 14:6252. [PMID: 38491026 PMCID: PMC10943089 DOI: 10.1038/s41598-024-56551-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 03/07/2024] [Indexed: 03/18/2024] Open
Abstract
Incineration is a common method in municipal solid waste management, which has several advantages such as reducing the volume of waste, but with concerns about exhaust gas and ash management. In this study, heavy metals in bottom ash, secondary furnace ash and fly ash of two waste incinerators in Tehran and Nowshahr were analyzed and its control in cement production was investigated. For this purpose, twelve monthly samples of three types of incinerator ash were analyzed. By combining the studied ashes in the raw materials, the quantity of metals in the cement was analyzed. Finally, by investigating four scenarios based on quantitative variations in the routes of municipal solid waste, ash quantity and the related risk caused by its heavy metals were studied. The results showed that the concentration of heavy metals in the three ash samples of the studied incinerators was 19,513-23,972 µg/g and the composition of the metals included Hg (less than 0.01%), Pb (2.93%), Cd (0.59%), Cu (21.51%), Zn (58.7%), As (less than 0.01%), Cr (15.88%), and Ni (0.91%). The best quality of produced cement included 20% ash and 10% zeolite, which was the basis of the next calculations. It was estimated that the reduction of the release of metals into the environment includes 37 gr/day in best scenario equal to 10.6 tons/year. Ash solidification can be considered as a complementary solution in waste incinerator management.
Collapse
Affiliation(s)
- Behzad Valizadeh
- Department of Environmental Engineering, Faculty of Environment, University of Tehran, Tehran, Iran
| | - Mohammad Ali Abdoli
- Department of Environmental Engineering, Faculty of Environment, University of Tehran, Tehran, Iran.
| | - Sina Dobaradaran
- Systems Environmental Health and Energy Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
- Department of Environmental Health Engineering, Faculty of Health and Nutrition, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Rouhalla Mahmoudkhani
- Department of Environmental Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| | | |
Collapse
|
6
|
Funari V, Toller S, Vitale L, Santos RM, Gomes HI. Urban mining of municipal solid waste incineration (MSWI) residues with emphasis on bioleaching technologies: a critical review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:59128-59150. [PMID: 37041362 DOI: 10.1007/s11356-023-26790-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 03/29/2023] [Indexed: 05/10/2023]
Abstract
Metals are essential in our daily lives and have a finite supply, being simultaneously contaminants of concern. The current carbon emissions and environmental impact of mining are untenable. We need to reclaim metals sustainably from secondary resources, like waste. Biotechnology can be applied in metal recovery from waste streams like fly ashes and bottom ashes of municipal solid waste incineration (MSWI). They represent substantial substance flows, with roughly 46 million tons of MSWI ashes produced annually globally, equivalent in elemental richness to low-grade ores for metal recovery. Next-generation methods for resource recovery, as in particular bioleaching, give the opportunity to recover critical materials and metals, appropriately purified for noble applications, in waste treatment chains inspired by circular economy thinking. In this critical review, we can identify three main lines of discussion: (1) MSWI material characterization and related environmental issues; (2) currently available processes for recycling and metal recovery; and (3) microbially assisted processes for potential recycling and metal recovery. Research trends are chiefly oriented to the potential exploitation of bioprocesses in the industry. Biotechnology for resource recovery shows increasing effectiveness especially downstream the production chains, i.e., in the waste management sector. Therefore, this critical discussion will help assessing the industrial potential of biotechnology for urban mining of municipal, post-combustion waste.
Collapse
Affiliation(s)
- Valerio Funari
- Institute of Marine Sciences (ISMAR-CNR), Department of Earth System Sciences and Environmental Technologies, National Research Council of Italy (CNR), Bologna Research Area, 40129, Bologna, Italy.
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn (SZN), Via Ammiraglio F. Acton 55, 80133, Napoli, Italy.
| | - Simone Toller
- Institute of Marine Sciences (ISMAR-CNR), Department of Earth System Sciences and Environmental Technologies, National Research Council of Italy (CNR), Bologna Research Area, 40129, Bologna, Italy
- Department of Chemical, Life and Environmental Sustainability Sciences (SCVSA), University of Parma, Parco Area delle Scienze, 17/A, Parma, Italy
| | - Laura Vitale
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn (SZN), Via Ammiraglio F. Acton 55, 80133, Napoli, Italy
| | - Rafael M Santos
- School of Engineering, University of Guelph, Thornbrough Building, 50 Stone Rd E, Guelph, Ontario, N1G 2W1, Canada
| | - Helena I Gomes
- Food, Water, Waste Research Group, Faculty of Engineering, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| |
Collapse
|
7
|
de Oliveira Neto JF, Candido LA, de Freitas Dourado AB, Santos SM, Florencio L. Waste of electrical and electronic equipment management from the perspective of a circular economy: A Review. WASTE MANAGEMENT & RESEARCH : THE JOURNAL OF THE INTERNATIONAL SOLID WASTES AND PUBLIC CLEANSING ASSOCIATION, ISWA 2023; 41:760-780. [PMID: 36413067 DOI: 10.1177/0734242x221135341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
In addition to the difficulties involved in the management of conventional solid waste, the management of waste of electrical and electronic equipment (WEEE) is significantly more complex due to its unusual chemical composition and fast generation. Both developed and developing countries have been looking for solutions to deal with the problems caused by the growing flow of WEEE, especially regarding sustainable solutions based on reducing resource exploitation by the recovery of materials from this type of waste. In this context, this work presents a quali-quantitative and comprehensive literature review of the publications on the management of WEEE, from the perspective of a circular economy. The results showed that the first publications on the topic appear in 2006, with a significant increase from 2015, the year when the Circular Economy Action Plan was instituted in the European Community. The most prominent authors have been giving emphasis to researches on recycling, reuse and technologies for the recovery of materials/energy from WEEE. Nevertheless, few studies have been found focusing on the prevention/reduction in WEEE generation, priority actions of the WEEE management hierarchy. The works analysed show that the current management of WEEE, despite considering the circularity of materials, prioritizes the development of technological solutions of the end-of-pipe type, greatly represented by the recovery of materials, instead of preventing the generation, which may be detrimental to long-term sustainability. The work ends with the presentation of a SWOT-TOWS (strengths, weaknesses, opportunities and threats) analysis conducted to define the main strategies for the improvement of WEEE management from a circular economy perspective.
Collapse
Affiliation(s)
| | - Laíse Alves Candido
- Departamento de Engenharia Civil e Ambiental, Universidade Federal de Pernambuco, Recife, Brazil
| | | | | | - Lourdinha Florencio
- Departamento de Engenharia Civil e Ambiental, Universidade Federal de Pernambuco, Recife, Brazil
| |
Collapse
|
8
|
Qin J, Zhang Y, Yi Y. Water washing and acid washing of gasification fly ash from municipal solid waste: Heavy metal behavior and characterization of residues. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 320:121043. [PMID: 36627047 DOI: 10.1016/j.envpol.2023.121043] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 11/22/2022] [Accepted: 01/06/2023] [Indexed: 06/17/2023]
Abstract
Gasification fly ash (GFA) is a hazardous solid residue generated in the slagging-gasification of municipal solid waste (MSW). GFA contains higher amounts of heavy metals such as Pb and Zn than incineration fly ash (IFA), which increases the difficulty of heavy metal immobilization but simultaneously makes it a potential feedstock for metal recovery. Water washing and acid washing are conventional and economic methods to treat wastes with high heavy metal and chloride contents. However, the research on the effects of such methods in treating GFA is still blank. Hence, in this study, water washing and acid washing of GFA were investigated in detail. Heavy metal behaviors at different time points during the washing processes were studied in a wide pH range and comprehensive characterizations of washed GFAs were also conducted. The results show that different re-precipitates could be identified in washed GFAs depending on different pH conditions. After water washing for 24 h, more than 60% of Zn in GFA would dissolve and re-precipitate into calcium zincate. It is also revealed that the precipitation effect could in turn influence the pH during the washing process. After acid washing with a low-concentration acid, heavy metal leachabilities were found reduced due to the pH and precipitation effect. High-concentration acid washing could effectively extract Zn and Cd with extraction ratios exceeding 90%. Applying 1.2 M-HCl washing, a short washing period of 15 min could realize a Pb extraction ratio of 81.2%, much higher than 53.2% when extending the washing period to 24 h.
Collapse
Affiliation(s)
- Junde Qin
- School of Civil and Environmental Engineering, Nanyang Technological University, 639798, Singapore; Nanyang Environment & Water Research Institute, Nanyang Technological University, 639798, Singapore
| | - Yunhui Zhang
- College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Yaolin Yi
- School of Civil and Environmental Engineering, Nanyang Technological University, 639798, Singapore.
| |
Collapse
|
9
|
MSWI Fly Ash Multiple Washing: Kinetics of Dissolution in Water, as Function of Time, Temperature and Dilution. MINERALS 2022. [DOI: 10.3390/min12060742] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Municipal solid waste incineration fly ash (FA) can represent a sustainable supply of supplementary material to the construction industries if it is pre-treated to remove hazardous substances such as chloride, sulfate, and heavy metals. In this paper, the phenomenology associated with a water washing multi-cycle treatment of FA is investigated, focusing attention upon the mineral dissolution process. The efficacy of the treatment is assessed by leaching tests, according to the European Standard, and discussed in light of the occurring mineral phases. The water-to-solid (L/S) ratio is a crucial parameter, along with the number of washing cycles, for removing halite and sylvite, whereas quartz, calcite, anhydrite, and an amorphous phase remain in the solid residue. The sequential extraction method and dissolution kinetics modelling provide further elements to interpret leaching processes, and suggest that dissolution takes place through a two-step mechanism. Altogether, multi-step washing with L/S = 5 is effective in reducing contaminants under the legal limits for non-hazardous waste disposal, while the legal limits for non-reactive or reusable material cannot be completely reached, owing to sulfate and some heavy metals which still leached out from the residue.
Collapse
|
10
|
Shen W, Zhu N, Xi Y, Huang J, Li F, Wu P, Dang Z. Effects of medical waste incineration fly ash on the promotion of heavy metal chlorination volatilization from incineration residues. JOURNAL OF HAZARDOUS MATERIALS 2022; 425:128037. [PMID: 34906873 DOI: 10.1016/j.jhazmat.2021.128037] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 12/03/2021] [Accepted: 12/06/2021] [Indexed: 06/14/2023]
Abstract
High contents of heavy metals and Cl are major challenges for incineration residue disposal. Classification by the Chinese government and the coronavirus disease 2019 pandemic have changed the characteristics of incineration residues, thereby increasing the difficulty of disposal. In this study, medical waste incineration fly ash (MWI FA) was proposed as an additive to promote chlorination volatilization of heavy metals from municipal solid waste incineration fly ash (MSWI FA) and medical waste incineration slag (MWI S). When the mixing ratio of MWI FA to MSWI FA was 1:3, the chlorination volatilization efficiencies of Cu, Zn, Pb, and Cd at 1000 °C for 60 min were 50.2%, 99.4%, 99.7%, and 97.9%, respectively. When MWI FA was mixed with MWI S at a ratio of 1:1, the chlorination volatilization efficiencies of Cu, Zn, Pb, and Cd at 1200 °C for 40 min were 88.9%, 99.7%, 97.3%, and 100%, respectively. Adding MWI FA can replenish Cl in MSWI FA and MWI S while increasing the surface area and forming pore structures by sublimation of NaCl and decomposition of CaSO4, or can reduce the melting point and viscosity by Na2O destroying the glass matrix. Therefore, MWI FA can be co-disposed with MSWI FA and MWI S respectively to enhance the chlorination volatilization of heavy metals.
Collapse
Affiliation(s)
- Weiqing Shen
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Nengwu Zhu
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China; The Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters Ministry of Education, Guangzhou 510006, PR China; Guangdong Environmental Protection Key Laboratory of Solid Waste Treatment and Recycling, Guangzhou 510006, PR China; Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, Guangzhou 510006, PR China.
| | - Yunhao Xi
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Junlin Huang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Fei Li
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Pingxiao Wu
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China; The Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters Ministry of Education, Guangzhou 510006, PR China
| | - Zhi Dang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China; The Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters Ministry of Education, Guangzhou 510006, PR China
| |
Collapse
|
11
|
Li H, Sun J, Gui H, Xia D, Wang Y. Physiochemical properties, heavy metal leaching characteristics and reutilization evaluations of solid ashes from municipal solid waste incinerator plants. WASTE MANAGEMENT (NEW YORK, N.Y.) 2022; 138:49-58. [PMID: 34864522 DOI: 10.1016/j.wasman.2021.11.035] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/02/2021] [Accepted: 11/23/2021] [Indexed: 06/13/2023]
Abstract
A clear understanding of the physicochemical, compositional, morphological properties and heavy metal leaching behaviours of municipal solid waste (MSW) incinerated fly ash (FA) and bottom ash (BA) are essential to guide their respective re-utilizations. In this study, FA and BA collected from three MSW incinerator plants located in Xiamen were systematically exploited. Results indicated that FA in the three plants exhibited more porous structures than BA, and the particle sizes of FA and BA were 45-295 μm and >3000 μm, respectively. However, both ashes showed similar main mineralogical crystalline phases of Ca(OH)2, CaCO3 and SiO2, indicative of high feasibilities in manufacturing cement, bricks or construction materials. Additionally, the heavy metal migration of MSW into leachate, flue gas, FA and BA were all specifically measured in this study to provide full data analyses and in-depth understandings of heavy metal migrations, manifesting that the heavy metals of MSW majorly migrated into the FA and BA with clearly discrepant metal ratios and only a very small fraction migrated into the leachate and flue gas. To maximumly reuse both FA and BA, importantly, the green degree and cost-benefit analysis methods were integrated into this study to evaluate their re-utilization alternatives on environmental impacts and economic benefits, and results implied that FA was beneficial for re-utilizing as aggregates in bricks while BA was optimum as paving materials. This study provides overall systematic perspectives on guiding the re-utilization of FA/BA from the MSW incinerators and also considers their environmental and economic benefits for future long-term management.
Collapse
Affiliation(s)
- Heng Li
- Key Laboratory of Estuarine Ecological Security and Environmental Health, Tan Kah Kee College, Xiamen University, Zhangzhou, PR China; Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, PR China
| | - Jinging Sun
- Xiamen Environmental Energy Investment & Development Co., Ltd., Xiamen, PR China
| | - Hongjie Gui
- Key Laboratory of Estuarine Ecological Security and Environmental Health, Tan Kah Kee College, Xiamen University, Zhangzhou, PR China
| | - Dong Xia
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, PR China.
| | - Yuanpeng Wang
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, PR China.
| |
Collapse
|
12
|
Zhang Y, Wang L, Chen L, Ma B, Zhang Y, Ni W, Tsang DCW. Treatment of municipal solid waste incineration fly ash: State-of-the-art technologies and future perspectives. JOURNAL OF HAZARDOUS MATERIALS 2021; 411:125132. [PMID: 33858099 DOI: 10.1016/j.jhazmat.2021.125132] [Citation(s) in RCA: 131] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 01/07/2021] [Accepted: 01/08/2021] [Indexed: 06/12/2023]
Abstract
Municipal solid waste incineration (MSWI) fly ash is considered as a hazardous waste that requires specific treatment before disposal. The principal treatments encompass thermal treatment, stabilization/solidification, and resource recovery. To maximize environmental, social, and economic benefits, the development of low-carbon and sustainable treatment technologies for MSWI fly ash has attracted extensive interests in recent years. This paper critically reviewed the state-of-the-art treatment technologies and novel resource utilization approaches for the MSWI fly ash. Innovative technologies and future perspectives of MSWI fly ash management were highlighted. Moreover, the latest understanding of immobilization mechanisms and the use of advanced characterization technologies were elaborated to foster future design of treatment technologies and the actualization of sustainable management for MSWI fly ash.
Collapse
Affiliation(s)
- Yuying Zhang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Lei Wang
- Institute of Construction Materials, Technische Universität Dresden, 01062 Dresden, Germany.
| | - Liang Chen
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Bin Ma
- Laboratory for Concrete & Construction Chemistry, Swiss Federal Laboratories for Materials Science and Technology (Empa), 8600 Dübendorf, Switzerland
| | - Yike Zhang
- State Key Laboratory of Energy Clean Utilization, Zhejiang University, Hangzhou 310027, China
| | - Wen Ni
- School of Civil and Resource Engineering, University of Science and Technology Beijing, 100083, China
| | - Daniel C W Tsang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
| |
Collapse
|
13
|
Giachino A, Focarelli F, Marles-Wright J, Waldron KJ. Synthetic biology approaches to copper remediation: bioleaching, accumulation and recycling. FEMS Microbiol Ecol 2021; 97:6021318. [PMID: 33501489 DOI: 10.1093/femsec/fiaa249] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 12/02/2020] [Indexed: 12/20/2022] Open
Abstract
One of the current aims of synthetic biology is the development of novel microorganisms that can mine economically important elements from the environment or remediate toxic waste compounds. Copper, in particular, is a high-priority target for bioremediation owing to its extensive use in the food, metal and electronic industries and its resulting common presence as an environmental pollutant. Even though microbe-aided copper biomining is a mature technology, its application to waste treatment and remediation of contaminated sites still requires further research and development. Crucially, any engineered copper-remediating chassis must survive in copper-rich environments and adapt to copper toxicity; they also require bespoke adaptations to specifically extract copper and safely accumulate it as a human-recoverable deposit to enable biorecycling. Here, we review current strategies in copper bioremediation, biomining and biorecycling, as well as strategies that extant bacteria use to enhance copper tolerance, accumulation and mineralization in the native environment. By describing the existing toolbox of copper homeostasis proteins from naturally occurring bacteria, we show how these modular systems can be exploited through synthetic biology to enhance the properties of engineered microbes for biotechnological copper recovery applications.
Collapse
Affiliation(s)
- Andrea Giachino
- Faculty of Medical Sciences, Biosciences Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, United Kingdom
| | - Francesca Focarelli
- Faculty of Medical Sciences, Biosciences Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, United Kingdom
| | - Jon Marles-Wright
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, United Kingdom
| | - Kevin J Waldron
- Faculty of Medical Sciences, Biosciences Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, United Kingdom
| |
Collapse
|
14
|
Sanito RC, You SJ, Chang TJ, Wang YF. Economic and environmental evaluation of flux agents in the vitrification of resin waste: A SWOT analysis. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 270:110910. [PMID: 32721344 DOI: 10.1016/j.jenvman.2020.110910] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 05/11/2020] [Accepted: 06/02/2020] [Indexed: 06/11/2023]
Abstract
Flux agents play an important role in the pyrolysis treatment of vitrifying hazardous wastes. Among these is plasma jets, a cost-less flux agent derived from shell powder which can be used to create vitrification. It is a promising option to be applied in the vitrification of elements and to remove the VOCs of hazardous waste, namely, resin from PCB scrap in an atmospheric-pressure microwave plasma reactor. In this study, a laboratory scale experiment was conducted. The experiment was performed in the pyrolysis of resin which was added with flux agents. The economic evaluation of the flux agents, and the circular economy concept of the final residue derived from the plasma pyrolysis was then analyzed post treatment. To test the strength and weakness of the experiment, the SWOT analysis was performed. The outcome helped in the understanding of the cost-less flux agent used in the pyrolysis treatment of hazardous waste. Results showed that fusing shell powder in resin was better for improving the removal efficiency of VOCs, such as benzene and toluene as well as toxic metals than compared to other flux agents such as limestone and quartz sand. Moreover, the final residue of resin was found to fulfil the concept of circular economy where it could be reused as an absorbent of methyl blue, thereby indicating good absorption performance, from 1 ppm-100 ppm. The twelve strategies that were derived from the SWOT analysis could be used as information outlining the current internal and external condition for the development and application of shell powder. Shell powder, as a cost-less flux agent, has the potential for enhancing waste management and circular economy when used in the pyrolysis treatment of future hazardous wastes.
Collapse
Affiliation(s)
- Raynard Christianson Sanito
- Department of Civil Engineering, Chung Yuan Christian University, No. 200 Chung Pei Road, Chung-Li, 320, Taiwan; Department of Environmental Engineering, Chung Yuan Christian University, No. 200 Chung Pei Road, Chung-Li, 320, Taiwan
| | - Sheng-Jie You
- Department of Environmental Engineering, Chung Yuan Christian University, No. 200 Chung Pei Road, Chung-Li, 320, Taiwan; Center for Environmental Risk Management, Chung Yuan Christian University, No. 200 Chung Pei Road, Chung-Li, 320, Taiwan
| | - Tien-Jin Chang
- Institute of Environmental Engineering and Management, National Taipei University of Technology, No.1, Sec. 3, Zhong Xiao Road, Taipei, 106, Taiwan
| | - Ya-Fen Wang
- Department of Environmental Engineering, Chung Yuan Christian University, No. 200 Chung Pei Road, Chung-Li, 320, Taiwan; Center for Environmental Risk Management, Chung Yuan Christian University, No. 200 Chung Pei Road, Chung-Li, 320, Taiwan.
| |
Collapse
|
15
|
Greening the Browns: A Bio-Based Land Use Framework for Analysing the Potential of Urban Brownfields in an Urban Circular Economy. SUSTAINABILITY 2020. [DOI: 10.3390/su12156278] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The Circular Economy (CE) is expected to accelerate the use of resources with bio-based origin. Cities have an important role in such an economy, not only as main consumers but also because vegetation provides numerous ecosystem services essential for the well-being of urban dwellers. Urban lands are, however, heavily burdened with both past and present activities and ongoing urbanization. Retrofitting obsolete and potentially contaminated brownfields provides an opportunity to engage with bio-based land uses within the city. At the same time, plants are an important part of Gentle Remediation Options (GROs), a more sustainable alternative for managing contamination risks and restoring soil health. This paper (1) provides a tentative selection of Urban Greenspaces (UGSs) relevant for brownfields, and a compilation of ecosystem services provided by the selected UGSs, and (2) presents a framework covering the 14 selected bio-based land uses on brownfields, including GRO interventions over time. This framework provides three practical tools: the conceptualization of linkages between GROs and prospective UGS uses, a scatter diagram for the realization of 14 UGS opportunities on brownfields, and a decision matrix to analyze the requirements for UGS realization on brownfields.
Collapse
|
16
|
Complementary Currencies: An Analysis of the Creation Process Based on Sustainable Local Development Principles. SUSTAINABILITY 2020. [DOI: 10.3390/su12145672] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Complementary currencies are a reality and are being applied both globally and locally. The aim of this article is to explain the viability of this type of currency and its application in local development, in this case, in a rural mountain municipality in the province of Almería (Spain) called Almócita. The Plus, Minus, Interesting (PMI); “Flying Balloon”; and Strength, Weakness, Opportunity (SWOT) analysis methodologies will be used to carry out the study. Finally, a ranking of success factors will be carried out with a brainstorming exercise. As to the results, there are, a priori, more advantages than disadvantages of implementing these currencies, but the local population has clarified that their main concern is depopulation along with a lack of varied work. As a counterpart to this and strengths or advantages, almost all the participants mention the support from the Almócita city council and the initiatives that are constantly being promoted.
Collapse
|
17
|
Bioleaching of Heavy Metals from Municipal Solid Waste Incineration Fly Ash: Availability of Recoverable Sulfur Prills and Form Transformation of Heavy Metals. METALS 2020. [DOI: 10.3390/met10060815] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Bioleaching is an effective and promising approach for the recovery or removal of heavy metals from metal-laden municipal solid waste incineration fly ash. To exclude the risk of reacidification of the leached fly ash after bioleaching with sulfur powder, molded sulfur prills were used as energy substrate for sulfur oxidizing bacteria to examine the availability of reusing the recyclable sulfur forms. The chemical species of heavy metals during the bioleaching process were also investigated. Results showed that the pH reduction, sulfate production, and metal solubilization with sulfur prills were comparable to that with sulfur powder despite of the theoretically calculated smaller surface of the formers. After 15 days of bioleaching, 80.7–82.1% of Cd, 72.5–74.1% of Zn, 42.8–43.9% of Cu, 24.1–25.2% of Cr, and 12.4–13.0% of Pb were removed from the fly ash, respectively. During bioleaching, heavy metals in the acid extractable and reducible fraction were significantly removed, and metals in oxidizable from were partially reduced. The low leaching toxicity of heavy metals according to toxicity characteristic leaching procedure (TCLP) verified the effective detoxification of fly ash. Moreover, the comparable pH reduction and metal removal efficiencies of bioleaching process with recycled sulfur prills to that with fresh sulfur revealed the potential of reusing the recoverable sulfur prills in the bioleaching process for decontamination of heavy metals from municipal solid waste fly ash.
Collapse
|
18
|
Enhanced electrodialytic bioleaching of fly ashes of municipal solid waste incineration for metal recovery. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.136188] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|