1
|
Wang T, Chen X, Yao Y, Chen W, Li H, Xu Y, Guan T, Gong J, Qiu X, Zhu T. Pro-Thrombotic Changes in Response to Ambient Ozone Exposure Exacerbated by Temperatures. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:8391-8401. [PMID: 40262116 DOI: 10.1021/acs.est.4c13457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Abstract
Recent evidence links high temperatures to increased ozone-related cardiovascular mortality in a changing climate, but the underlying biological mechanisms remain unclear. We investigated the associations between short-term ozone exposure and pro-thrombosis, a key process in the pathophysiology of cardiovascular diseases across varying temperatures (5-30 °C) in a longitudinal panel study of 135 participants in Beijing, China. Pro-thrombotic biomarkers and whole blood transcriptome data were measured repeatedly. Bayesian kernel machine regression revealed that higher serum thromboxane (Tx)B2 levels were associated with increasing levels of joint exposure to air pollutants over 1 week when ozone rather than other pollutants contributed most to the overall effect. Causal mediation analyses found 715 transcripts associated with an increase in TxB2 following ozone exposure, which were enriched in pathways, including ribosome, thermogenesis, oxidative phosphorylation, and pathways of neurodegeneration. As the temperature increased, we observed a stronger association between ozone exposure and TxB2 increase. The TxB2 increments per interquartile range increase in the one-week average of ozone were 6.6, 13.2, 14.8, 16.6, and 18.4 units when the temperatures were 6.5, 15.0, 17.6, 21.4, and 26.7 °C, respectively. The number of mediating transcripts enriched in pathways related to translation, environmental adaptation, energy metabolism, and human diseases was also greater at higher temperatures than at lower ones. This study suggests that higher temperatures exacerbate ozone-related pro-thrombotic response, providing a biological basis for the increased risk of ozone-associated cardiovascular mortality at high temperatures.
Collapse
Affiliation(s)
- Teng Wang
- School of Health Policy and Management, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
- SKL-ESPC & SEPKL-AERM, College of Environmental Sciences and Engineering, and Center for Environment and Health, Peking University, Beijing 100871, China
| | - Xi Chen
- SKL-ESPC & SEPKL-AERM, College of Environmental Sciences and Engineering, and Center for Environment and Health, Peking University, Beijing 100871, China
- Hebei Technology Innovation Center of Human Settlement in Green Building, Shenzhen Institute of Building Research Co., Ltd., Xiongan 071800, China
| | - Yuan Yao
- SKL-ESPC & SEPKL-AERM, College of Environmental Sciences and Engineering, and Center for Environment and Health, Peking University, Beijing 100871, China
- Department of Environmental Health Sciences, Jonathan and Karin Fielding School of Public Health, University of California, Los Angeles, California 90095, United States
| | - Wu Chen
- SKL-ESPC & SEPKL-AERM, College of Environmental Sciences and Engineering, and Center for Environment and Health, Peking University, Beijing 100871, China
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, California 90032, United States
| | - Haonan Li
- SKL-ESPC & SEPKL-AERM, College of Environmental Sciences and Engineering, and Center for Environment and Health, Peking University, Beijing 100871, China
| | - Yifan Xu
- SKL-ESPC & SEPKL-AERM, College of Environmental Sciences and Engineering, and Center for Environment and Health, Peking University, Beijing 100871, China
| | - Tianjia Guan
- School of Health Policy and Management, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Jicheng Gong
- SKL-ESPC & SEPKL-AERM, College of Environmental Sciences and Engineering, and Center for Environment and Health, Peking University, Beijing 100871, China
| | - Xinghua Qiu
- SKL-ESPC & SEPKL-AERM, College of Environmental Sciences and Engineering, and Center for Environment and Health, Peking University, Beijing 100871, China
| | - Tong Zhu
- SKL-ESPC & SEPKL-AERM, College of Environmental Sciences and Engineering, and Center for Environment and Health, Peking University, Beijing 100871, China
| |
Collapse
|
2
|
Wang X, Wang X, Cheng Y, Luo C, Xia W, Gao Z, Bu W, Jiang Y, Fei Y, Shi W, Tang J, Liu L, Zhu J, Zhao X. Construction of metal interpretable scoring system and identification of tungsten as a novel risk factor in COPD. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 283:116842. [PMID: 39106568 DOI: 10.1016/j.ecoenv.2024.116842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 07/24/2024] [Accepted: 08/02/2024] [Indexed: 08/09/2024]
Abstract
Numerous studies have highlighted the correlation between metal intake and deteriorated pulmonary function, emphasizing its pivotal role in the progression of Chronic Obstructive Pulmonary Disease (COPD). However, the efficacy of traditional models is often compromised due to overfitting and high bias in datasets with low-level exposure, rendering them ineffective in delineating the contemporary risk trends associated with pulmonary diseases. To address these limitations, we embarked on developing advanced, interpretable models, crucial for elucidating the intricate mechanisms of metal toxicity and enriching the domain knowledge embedded in toxicity models. In this endeavor, we scrutinized extensive, long-term metal exposure datasets from NHANES to explore the interplay between metal and pulmonary functionality. Employing a variety of machine-learning approaches, we opted for the "Mixer of Experts" model for its proficiency in identifying a myriad of toxicological trends and sensitivities. We conceptualized and illustrated the TSAP (Toxicity Score at Population-level), a metal interpretable scoring system offering performance nearly equivalent to the amalgamation of standard interpretable methods addressing the "black box" conundrum. This streamlined, bifurcated procedural analysis proved instrumental in discerning established risk factors, thereby uncovering Tungsten as a novel contributor to COPD risk. SYNOPSIS: TSAP achieved satisfied performance with transparent interpretability, suggesting tungsten intake need further action for COPD prevention.
Collapse
Affiliation(s)
- Xuehai Wang
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China
| | - Xiangdong Wang
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China
| | - Yulan Cheng
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China
| | - Chao Luo
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China
| | - Weiyi Xia
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China
| | - Zhengnan Gao
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China
| | - Wenxia Bu
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China
| | - Yichen Jiang
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China
| | - Yue Fei
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China
| | - Weiwei Shi
- Nantong Hospital to Nanjing University of Chinese Medicine, China
| | - Juan Tang
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China
| | - Lei Liu
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China; Department of Pathology, Affiliated Hospital of Nantong University, Nantong 226001, China.
| | - Jinfeng Zhu
- Nantong Hospital to Nanjing University of Chinese Medicine, China.
| | - Xinyuan Zhao
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China.
| |
Collapse
|
3
|
Fatima M, Ahmad A, Butt I, Arshad S, Kiani B. Geospatial modelling of ambient air pollutants and chronic obstructive pulmonary diseases at regional scale in Pakistan. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:929. [PMID: 39271595 DOI: 10.1007/s10661-024-13105-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 09/06/2024] [Indexed: 09/15/2024]
Abstract
Pakistan is among the South Asian countries mostly vulnerable to the negative health impacts of air pollution. In this context, the study aimed to analyze the spatiotemporal patterns of chronic obstructive pulmonary disease (COPD) incidence and its relationship with air pollutants including aerosol absorbing index (AAI), carbon monoxide, sulfur dioxide (SO2), and nitrogen dioxide. Spatial scan statistics were employed to identify temporal, spatial, and spatiotemporal clusters of COPD. Generalized linear regression (GLR) and random forest (RF) models were utilized to evaluate the linear and non-linear relationships between COPD and air pollutants for the years 2019 and 2020. The findings revealed three spatial clusters of COPD in the eastern and central regions, with a high-risk spatiotemporal cluster in the east. The GLR identified a weak linear relationship between the COPD and air pollutants with R2 = 0.1 and weak autocorrelation with Moran's index = -0.09. The spatial outcome of RF model provided more accurate COPD predictions with improved R2 of 0.8 and 0.9 in the respective years and a very low Moran's I = -0.02 showing a random residual distribution. The RF findings also suggested AAI and SO2 to be the most contributing predictors for the year 2019 and 2020. Hence, the strong association of COPD clusters with some air pollutants highlight the urgency of comprehensive measures to combat air pollution in the region to avoid future health risks.
Collapse
Affiliation(s)
- Munazza Fatima
- Department of Geography, The Islamia University of Bahawalpur, Punjab, 63100, Pakistan.
| | - Adeel Ahmad
- Taylor Geospatial Institute, St. Louis, 63103, USA
- Department of Computer Science & Engineering, Washington University in St. Louis, St. Louis, 63130, USA
- Institute of Geography, University of Punjab Lahore, Lahore, 54590, Pakistan
| | - Ibtisam Butt
- Institute of Geography, University of Punjab Lahore, Lahore, 54590, Pakistan
| | - Sana Arshad
- Department of Geography, The Islamia University of Bahawalpur, Punjab, 63100, Pakistan
| | - Behzad Kiani
- Centre for Clinical Research, The University of Queensland, Brisbane, Australia
| |
Collapse
|
4
|
Chen X, Zhu T, Wang Q, Wang T, Chen W, Yao Y, Xu Y, Qiu X. Higher temperature and humidity exacerbate pollutant-associated lung dysfunction in the elderly. ENVIRONMENTAL RESEARCH 2024; 245:118039. [PMID: 38147919 DOI: 10.1016/j.envres.2023.118039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 12/07/2023] [Accepted: 12/22/2023] [Indexed: 12/28/2023]
Abstract
RATIONALE Air pollution and extreme temperature and humidity are risk factors for lung dysfunction, but their interactions are not clearly understood. OBJECTIVES To assess the impact of exposure to air pollutants and meteorological factors on lung function, and the contribution of their interaction to the overall effect. METHODS The peak expiratory flow rates of 135 participants were repeatedly measured during up to four visits. Two weeks before each visit, the concentrations of gaseous pollutants and 19 fine particle components, and the temperature and relative humidity, were continuously monitored in the community where they lived. A Bayesian Kernel machine regression model was used to explore the non-linear exposure-response relationships of the peak expiratory flow rate with pollutant exposure and meteorological factors, and their interactions. MEASUREMENTS AND MAIN RESULTS Increased temperature and relative humidity could exacerbate pollutant-associated decline in the peak expiratory flow rate, although their associations with lung dysfunction disappeared after adjustment for pollutant exposure. For example, declines of peak expiratory flow rate associated with interquartile range increase of 3-day cadmium exposure were -0.03 and -0.07 units, when temperature was at 0.1 and 19.5 °C, respectively. Decreased temperature were associated with declines of peak expiratory flow rate after adjustment for pollutant exposure, and had interaction with pollutant exposure on lung dysfunction. CONCLUSIONS High temperature, low temperature, and high humidity were all high-risk factors for lung dysfunction, and their interactions with pollutant levels contributed greatly to the overall effects.
Collapse
Affiliation(s)
- Xi Chen
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China; Hebei Technology Innovation Center of Human Settlement in Green Building, Shenzhen Institute of Building Research Co., Ltd., Xiongan, 071700, China
| | - Tong Zhu
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China.
| | - Qi Wang
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Teng Wang
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Wu Chen
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Yuan Yao
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Yifan Xu
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Xinghua Qiu
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| |
Collapse
|
5
|
Zhu RX, Nie XH, Liu XF, Zhang YX, Chen J, Liu XJ, Hui XJ. Short-term effect of particulate matter on lung function and impulse oscillometry system (IOS) parameters of chronic obstructive pulmonary disease (COPD) in Beijing, China. BMC Public Health 2023; 23:1417. [PMID: 37488590 PMCID: PMC10367330 DOI: 10.1186/s12889-023-16308-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 07/13/2023] [Indexed: 07/26/2023] Open
Abstract
OBJECTIVE This study aimed to evaluate the associations between particulate matter (PM), lung function and Impulse Oscillometry System (IOS) parameters in chronic obstructive pulmonary disease (COPD) patients and identity effects between different regions in Beijing, China. METHODS In this retrospective study, we recruited 1348 outpatients who visited hospitals between January 2016 and December 2019. Ambient air pollutant data were obtained from the central monitoring stations nearest the participants' residential addresses. We analyzed the effect of particulate matter with aerodynamic diameter ≤ 2.5 μm (PM2.5) exposure on lung function and IOS parameters using a multiple linear regression model, adjusting for sex, smoking history, education level, age, body mass index (BMI), mean temperature, and relative humidity . RESULTS The results showed a relationship between PM2.5, lung function and IOS parameters. An increase of 10 µg/m3 in PM2.5 was associated with a decline of 2.083% (95% CI: -3.047 to - 1.103) in forced expiratory volume in one second /predict (FEV1%pred), a decline of 193 ml/s (95% CI: -258 to - 43) in peak expiratory flow (PEF), a decline of 0.932% (95% CI: -1.518 to - 0.342) in maximal mid-expiratory flow (MMEF); an increase of 0.732 Hz (95% CI: 0.313 to 1.148) in resonant frequency (Fres), an increase of 36 kpa/(ml/s) (95% CI: 14 to 57) in impedance at 5 Hz (Z5) and an increase of 31 kpa/(ml/s) (95% CI: 2 to 54) in respiratory impedance at 5 Hz (R5). Compared to patients in the central district, those in the southern district had lower FEV1/FVC, FEV1%pred, PEF, FEF75%, MMEF, X5, and higher Fres, Z5 and R5 (p < 0.05). CONCLUSION Short-term exposure to PM2.5 was associated with reductions in lung function indices and an increase in IOS results in patients with COPD. The heavier the PM2.5, the more severe of COPD.
Collapse
Affiliation(s)
- Rui-Xia Zhu
- Department of pulmonary and critical care medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Xiu-Hong Nie
- Department of pulmonary and critical care medicine, Xuanwu Hospital, Capital Medical University, Beijing, China.
| | - Xiao-Fang Liu
- Department of pulmonary and critical care medicine, Tong Ren Hospital, Capital Medical University, Beijing, China
| | - Yong-Xiang Zhang
- Department of pulmonary and critical care medicine, Daxing District People's Hospital, Beijing, China.
| | - Jin Chen
- Respiratory department, Fuxing Hospital, Capital Medical University, Beijing, China
| | - Xue-Jiao Liu
- Department of pulmonary and critical care medicine, Daxing District People's Hospital, Beijing, China
| | - Xin-Jie Hui
- Department of pulmonary and critical care medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
6
|
Zhang W, Wang J, Chen B, Ji X, Zhao C, Chen M, Liao S, Jiang S, Pan Z, Wang W, Li L, Chen Y, Guo X, Deng F. Association of multiple air pollutants with oxygen saturation during sleep in COPD patients: Effect modification by smoking status and airway inflammatory phenotypes. JOURNAL OF HAZARDOUS MATERIALS 2023; 454:131550. [PMID: 37148791 DOI: 10.1016/j.jhazmat.2023.131550] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 04/11/2023] [Accepted: 04/30/2023] [Indexed: 05/08/2023]
Abstract
Air pollution contributes substantially to the development of chronic obstructive pulmonary disease (COPD). To date, the effect of air pollution on oxygen saturation (SpO2) during sleep and potential susceptibility factors remain unknown. In this longitudinal panel study, real-time SpO2 was monitored in 132 COPD patients, with 270 nights (1615 h) of sleep SpO2 recorded. Exhaled nitric oxide (NO), hydrogen sulfide (H2S) and carbon monoxide (CO) were measured to assess airway inflammatory characteristics. Exposure levels of air pollutants were estimated by infiltration factor method. Generalized estimating equation was used to investigate the effect of air pollutants on sleep SpO2. Ozone, even at low levels (<60 μg/m3), was significantly associated with decreased SpO2 and extended time of oxygen desaturation (SpO2 < 90%), especially in the warm season. The associations of other pollutants with SpO2 were weak, but significant adverse effects of PM10 and SO2 were observed in the cold season. Notably, stronger effects of ozone were observed in current smokers. Consistently, smoking-related airway inflammation, characterized by higher levels of exhaled CO and H2S but lower NO, significantly augmented the effect of ozone on SpO2 during sleep. This study highlights the importance of ozone control in protecting sleep health in COPD patients.
Collapse
Affiliation(s)
- Wenlou Zhang
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China; Department of Pulmonary and Critical Care Medicine, Peking University Third Hospital, Beijing 100191, China
| | - Junyi Wang
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China; Department of Pulmonary and Critical Care Medicine, Peking University Third Hospital, Beijing 100191, China
| | - Baiqi Chen
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China
| | - Xuezhao Ji
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China
| | - Chen Zhao
- Community Health Service Center, Huayuan Road, Haidian District, Beijing 100088, China
| | - Maike Chen
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China
| | - Sha Liao
- Department of Pulmonary and Critical Care Medicine, Peking University Third Hospital, Beijing 100191, China
| | - Simin Jiang
- Department of Pulmonary and Critical Care Medicine, Peking University Third Hospital, Beijing 100191, China
| | - Zihan Pan
- Department of Pulmonary and Critical Care Medicine, Peking University Third Hospital, Beijing 100191, China
| | - Wanzhou Wang
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China
| | - Luyi Li
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China
| | - Yahong Chen
- Department of Pulmonary and Critical Care Medicine, Peking University Third Hospital, Beijing 100191, China.
| | - Xinbiao Guo
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China
| | - Furong Deng
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China; Center for Environment and Health, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China.
| |
Collapse
|
7
|
Wang T, Chen X, Li H, Chen W, Xu Y, Yao Y, Zhang H, Han Y, Zhang L, Que C, Gong J, Qiu X, Zhu T. Pro-thrombotic changes associated with exposure to ambient ultrafine particles in patients with chronic obstructive pulmonary disease: roles of lipid peroxidation and systemic inflammation. Part Fibre Toxicol 2022; 19:65. [PMID: 36280873 PMCID: PMC9590143 DOI: 10.1186/s12989-022-00503-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 09/08/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Exposure to particulate matter air pollution is associated with an increased risk of cardiovascular mortality in patients with chronic obstructive pulmonary disease (COPD), but the underlying mechanisms are not yet understood. Enhanced platelet and pro-thrombotic activity in COPD patients may explain their increased cardiovascular risk. We aim to explore whether short-term exposure to ambient particulate matter is associated with pro-thrombotic changes in adults with and without COPD, and investigate the underlying biological mechanisms in a longitudinal panel study. Serum concentration of thromboxane (Tx)B2 was measured to reflect platelet and pro-thrombotic activity. Lipoxygenase-mediated lipid peroxidation products (hydroxyeicosatetraenoic acids [HETEs]) and inflammatory biomarkers (interleukins [ILs], monocyte chemoattractant protein-1 [MCP-1], tumour necrosis factor alpha [TNF-α], and macrophage inflammatory proteins [MIPs]) were measured as potential mediating determinants of particle-associated pro-thrombotic changes. RESULTS 53 COPD and 82 non-COPD individuals were followed-up on a maximum of four visits conducted from August 2016 to September 2017 in Beijing, China. Compared to non-COPD individuals, the association between exposure to ambient ultrafine particles (UFPs) during the 3-8 days preceding clinical visits and the TxB2 serum concentration was significantly stronger in COPD patients. For example, a 103/cm3 increase in the 6-day average UFP level was associated with a 25.4% increase in the TxB2 level in the COPD group but only an 11.2% increase in the non-COPD group. The association in the COPD group remained robust after adjustment for the levels of fine particulate matter and gaseous pollutants. Compared to the non-COPD group, the COPD group also showed greater increases in the serum concentrations of 12-HETE (16.6% vs. 6.5%) and 15-HETE (9.3% vs. 4.5%) per 103/cm3 increase in the 6-day UFP average. The two lipid peroxidation products mediated 35% and 33% of the UFP-associated increase in the TxB2 level of COPD patients. UFP exposure was also associated with the increased levels of IL-8, MCP-1, MIP-1α, MIP-1β, TNF-α, and IL-1β in COPD patients, but these inflammatory biomarkers did not mediate the TxB2 increase. CONCLUSIONS Short-term exposure to ambient UFPs was associated with a greater pro-thrombotic change among patients with COPD, at least partially driven by lipoxygenase-mediated pathways following exposure. Trial registration ChiCTR1900023692 . Date of registration June 7, 2019, i.e. retrospectively registered.
Collapse
Affiliation(s)
- Teng Wang
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Peking University, Beijing, China
| | - Xi Chen
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Peking University, Beijing, China.,Hebei Technology Innovation Center of Human Settlement in Green Building (TCHS), Shenzhen Institute of Building Research Co., Ltd., Xiongan, China
| | - Haonan Li
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Peking University, Beijing, China
| | - Wu Chen
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Peking University, Beijing, China
| | - Yifan Xu
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Peking University, Beijing, China
| | - Yuan Yao
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Peking University, Beijing, China
| | - Hanxiyue Zhang
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Peking University, Beijing, China
| | - Yiqun Han
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Peking University, Beijing, China.,Environmental Research Group, MRC Centre for Environment and Health, Imperial College London, London, UK
| | - Lina Zhang
- Shi Cha Hai Community Health Service Center, Beijing, China
| | - Chengli Que
- Peking University First Hospital, Peking University, Beijing, China
| | - Jicheng Gong
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Peking University, Beijing, China
| | - Xinghua Qiu
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Peking University, Beijing, China
| | - Tong Zhu
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Peking University, Beijing, China.
| |
Collapse
|
8
|
Yao Y, Chen X, Yang M, Han Y, Xue T, Zhang H, Wang T, Chen W, Qiu X, Que C, Zheng M, Zhu T. Neuroendocrine stress hormones associated with short-term exposure to nitrogen dioxide and fine particulate matter in individuals with and without chronic obstructive pulmonary disease: A panel study in Beijing, China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 309:119822. [PMID: 35870527 DOI: 10.1016/j.envpol.2022.119822] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 07/18/2022] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
Air pollution is a major trigger of chronic obstructive pulmonary disease (COPD). Dysregulation of the neuroendocrine hypothalamic-pituitary-adrenal (HPA) and sympathetic-adrenal medullary (SAM) axes is essential in progression of COPD. However, it is not clear whether air pollution exposure is associated with neuroendocrine responses in individuals with and without COPD. Based on a panel study of 51 stable COPD patients and 78 non-COPD participants with 384 clinical visits, we measured the morning serum levels of corticotropin-releasing hormone (CRH), adrenocorticotropic hormone (ACTH), cortisol, norepinephrine, and epinephrine as indicators of stress hormones released from the HPA and SAM axes. Ambient nitrogen dioxide (NO2), fine particulate matter (PM2.5), and meteorological conditions were continuously monitored at the station from 2 weeks before the start of clinical visits. Linear mixed-effects models were used to estimate associations between differences in stress hormones following an average of 1-14-day exposures to NO2 and PM2.5. The average 1 day air pollutant levels prior to the clinical visits were 24.4 ± 14.0 ppb for NO2 and 55.6 ± 41.5 μg/m3 for PM2.5. We observed significant increases in CRH, ACTH, and norepinephrine, and decreases in cortisol and epinephrine with interquartile range increase in the average NO2 and PM2.5 concentrations in all participants. In the stratified analyses, we identified significant between-group difference in epinephrine following NO2 exposure in individuals with and without COPD. These results may suggest the susceptibility of COPD patients to the neuroendocrine responses associated with short-term air pollution exposure.
Collapse
Affiliation(s)
- Yuan Yao
- SKL-ESPC and BIC-ESAT, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Xi Chen
- SKL-ESPC and BIC-ESAT, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China; Hebei Technology Innovation Center of Human Settlement in Green Building (TCHS), Shenzhen Institute of Building Research Co., Ltd., Shenzhen, 518049, China
| | - Meigui Yang
- SKL-ESPC and BIC-ESAT, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Yiqun Han
- SKL-ESPC and BIC-ESAT, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China; Environmental Research Group, MRC Centre for Environment and Health, Imperial College London, London, W12 0BZ, UK
| | - Tao Xue
- SKL-ESPC and BIC-ESAT, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China; School of Public Health, Peking University, Beijing, 100191, China
| | - Hanxiyue Zhang
- SKL-ESPC and BIC-ESAT, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Teng Wang
- SKL-ESPC and BIC-ESAT, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Wu Chen
- SKL-ESPC and BIC-ESAT, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Xinghua Qiu
- SKL-ESPC and BIC-ESAT, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Chengli Que
- Peking University First Hospital, Peking University, Beijing, 100034, China
| | - Mei Zheng
- SKL-ESPC and BIC-ESAT, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Tong Zhu
- SKL-ESPC and BIC-ESAT, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China.
| |
Collapse
|
9
|
Xu Y, Chen X, Han Y, Chen W, Wang T, Gong J, Fan Y, Zhang H, Zhang L, Li H, Wang Q, Yao Y, Xue T, Wang J, Qiu X, Que C, Zheng M, Zhu T. Ceramide metabolism mediates the impaired glucose homeostasis following short-term black carbon exposure: A targeted lipidomic analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 829:154657. [PMID: 35314239 DOI: 10.1016/j.scitotenv.2022.154657] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/24/2022] [Accepted: 03/14/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Ambient particulate matter (PM), especially its carbonaceous composition black carbon (BC) increases cardiometabolic risks, yet the underlying mechanisms are incompletely understood. Ceramides (Cer; a class of sphingolipids) are biological intermediates in glucose metabolism. OBJECTIVES To explore whether Cer metabolism mediates impaired glucose homeostasis following short-term PM exposure. METHODS In a panel study in Beijing, China, 112 participants were followed-up between 2016 and 2017. Targeted lipidomic analyses quantified 26 sphingolipids in 387 plasma samples. Ambient BC and PM with aerodynamic diameter ≤ 2.5 μm (PM2.5) were continuously monitored in a station. We examined the associations of sphingolipid levels with average BC and PM2.5 concentrations 1-14 days before clinical visits using linear mixed-effects models, and explored the mediation effects of sphingolipids on PM-associated fasting blood glucose (FBG) difference using mediation analyses. RESULTS Increased levels of FBG and multiple sphingolipids in Cer metabolic pathways were associated with BC exposure in 1-14-day time window, but not with PM2.5 exposure. For each 10 μg/m3 increase in the average BC concentration 1-14 days before the clinical visits, species in the Cer C24:1 pathway (Cer, dihydroceramide, hexosylceramide, lactosylceramide, and sphingomyelin C24:1) increased in levels ranging from 11.8% (95% confidence interval [CI]: -6.2-33.2) to 48.7% (95% CI: 8.8-103.4), as did the Cer C16:0, C18:0, and C20:0 metabolic pathway species, ranging from 3.2% (95% CI: -5.6-12.9) to 32.4% (95% CI: 7.0-63.8), respectively. The Cer C24:1 metabolic pathway species mediated 6.5-25.5% of the FBG increase associated with BC exposure in 9-day time window. The Cer C16:0, C18:0, and C20:0 metabolic pathway species mediated 5.4-26.2% of the BC-associated FBG difference. CONCLUSIONS In conclusion, Cer metabolism may mediate impaired glucose homeostasis following short-term BC exposure. The current findings are preliminary, which need to be corroborated by further studies.
Collapse
Affiliation(s)
- Yifan Xu
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Center for Environment and Health, Peking University, Beijing, China
| | - Xi Chen
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Center for Environment and Health, Peking University, Beijing, China; Hebei Technology Innovation Center of Human Settlement in Green Building, Shenzhen Institute of Building Research Co., Ltd., Xiongan, China
| | - Yiqun Han
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Center for Environment and Health, Peking University, Beijing, China; Environmental Research Group, MRC Centre for Environment and Health, Imperial College London, London, UK
| | - Wu Chen
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Center for Environment and Health, Peking University, Beijing, China
| | - Teng Wang
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Center for Environment and Health, Peking University, Beijing, China
| | - Jicheng Gong
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Center for Environment and Health, Peking University, Beijing, China
| | - Yunfei Fan
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Center for Environment and Health, Peking University, Beijing, China
| | - Hanxiyue Zhang
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Center for Environment and Health, Peking University, Beijing, China
| | - Lina Zhang
- Shi Cha Hai Community Health Service Center, Beijing, China
| | - Haonan Li
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Center for Environment and Health, Peking University, Beijing, China
| | - Qi Wang
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Center for Environment and Health, Peking University, Beijing, China
| | - Yuan Yao
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Center for Environment and Health, Peking University, Beijing, China
| | - Tao Xue
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Center for Environment and Health, Peking University, Beijing, China; School of Public Health, Peking University, Beijing, China
| | - Junxia Wang
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Center for Environment and Health, Peking University, Beijing, China
| | - Xinghua Qiu
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Center for Environment and Health, Peking University, Beijing, China
| | - Chengli Que
- Peking University First Hospital, Peking University, Beijing, China
| | - Mei Zheng
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Center for Environment and Health, Peking University, Beijing, China
| | - Tong Zhu
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Center for Environment and Health, Peking University, Beijing, China.
| |
Collapse
|
10
|
Gao K, Chen X, Zhang L, Yao Y, Chen W, Zhang H, Han Y, Xue T, Wang J, Lu L, Zheng M, Qiu X, Zhu T. Associations between differences in anemia-related blood cell parameters and short-term exposure to ambient particle pollutants in middle-aged and elderly residents in Beijing, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 816:151520. [PMID: 34762950 DOI: 10.1016/j.scitotenv.2021.151520] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 10/24/2021] [Accepted: 11/04/2021] [Indexed: 06/13/2023]
Abstract
Anemia is a highly prevalent disease among older populations, with multiple adverse health outcomes, and particles exposure is a potential risk factor for anemia. However, evidence on associations of exposure to particles with small size with anemia-related blood cell parameters levels in the elderly is limited, and the underlying mechanisms are unclear. Based on a panel study in Beijing, we found that in 135 elderly participants, mass concentrations of particle with an aerodynamic diameter ≤ 2.5 μm (PM2.5), black/elemental carbon (BC/EC, particle size range: 0-2.5 μm), and number concentrations of ultrafine particles (UFPs, particle size range: 5.6-93.1 nm) and accumulated mode particles (Acc, size range: 93.1-560 nm) were significantly associated with levels of red blood cell count (RBC), hemoglobin (HGB), hematocrit (HCT), mean corpuscular hemoglobin (MCH), mean corpuscular hemoglobin concentration (MCHC). The mean ± SD for PM2.5, UFPs, Acc, BC, OC, and EC were 69.7 ± 61.1 μg/m3, 12.5 ± 4.3 × 103/cm3, 1.6 ± 1.2 × 103/cm3, 3.0 ± 2.0 μg/m3, 8.7 ± 6.7 μg/m3, and 2.1 ± 1.6 μg/m3, respectively. Cotinine (higher than 50 ng/mL) is used as an indicator of smoking exposure. The association between MCHC difference and per interquartile range (IQR) increase in average UFPs concentration 14 d before clinical visits was -0.7% (95% CI: -1.1% to -0.3%). Significant associations of UFPs and Acc exposure with MCHC and MCH levels remain robust after adjustment for other pollutants. Furthermore, 25.2% (95% CI: 7.4% to 64.8%) and 29.8% (95% CI: 5.3% to 214.4%) of the difference in MCHC associated with average UFPs and Acc concentrations 14 d before clinical visits were mediated by the level of tumor necrosis factor α (TNF α), a biomarker of systemic inflammation. Our findings for the first time provide the evidence that short-term UFPs and Acc exposure contributed to the damage of anemia-related blood cell in the elderly, and systemic inflammation was a potential internal mediator.
Collapse
Affiliation(s)
- Ke Gao
- SKL-ESPC and BIC-ESAT, College of Environmental Sciences and Engineering, Peking University, Beijing, China; Key Laboratory of Beijing on Regional Air Pollution Control, College of Environmental and Energy Engineering, Beijing University of Technology, Beijing, China
| | - Xi Chen
- SKL-ESPC and BIC-ESAT, College of Environmental Sciences and Engineering, Peking University, Beijing, China; GRiC, Shenzhen Institute of Building Research Co., Ltd., Shenzhen, China
| | - Lina Zhang
- Shichahai community health service center, Beijing, China
| | - Yuan Yao
- SKL-ESPC and BIC-ESAT, College of Environmental Sciences and Engineering, Peking University, Beijing, China
| | - Wu Chen
- SKL-ESPC and BIC-ESAT, College of Environmental Sciences and Engineering, Peking University, Beijing, China
| | - Hanxiyue Zhang
- SKL-ESPC and BIC-ESAT, College of Environmental Sciences and Engineering, Peking University, Beijing, China
| | - Yiqun Han
- SKL-ESPC and BIC-ESAT, College of Environmental Sciences and Engineering, Peking University, Beijing, China; Department of Epidemiology and Biostatistics, MRC Centre for Environment and Health, Imperial College London, London, UK
| | - Tao Xue
- SKL-ESPC and BIC-ESAT, College of Environmental Sciences and Engineering, Peking University, Beijing, China; Institute of Reproductive and Child Health/Ministry of Health Key Laboratory of Reproductive Health, Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Junxia Wang
- SKL-ESPC and BIC-ESAT, College of Environmental Sciences and Engineering, Peking University, Beijing, China
| | - Liping Lu
- Key Laboratory of Beijing on Regional Air Pollution Control, College of Environmental and Energy Engineering, Beijing University of Technology, Beijing, China
| | - Mei Zheng
- SKL-ESPC and BIC-ESAT, College of Environmental Sciences and Engineering, Peking University, Beijing, China
| | - Xinghua Qiu
- SKL-ESPC and BIC-ESAT, College of Environmental Sciences and Engineering, Peking University, Beijing, China
| | - Tong Zhu
- SKL-ESPC and BIC-ESAT, College of Environmental Sciences and Engineering, Peking University, Beijing, China.
| |
Collapse
|
11
|
Liu J, Cao H, Zhang Y, Chen H. Potential years of life lost due to PM 2.5-bound toxic metal exposure: Spatial patterns across 60 cities in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 812:152593. [PMID: 34953837 DOI: 10.1016/j.scitotenv.2021.152593] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 12/16/2021] [Accepted: 12/17/2021] [Indexed: 05/17/2023]
Abstract
To clarify the spatial patterns of disease burden caused by toxic metals in fine particulate matter (PM2.5) across China, annual concentration levels of typical toxic metals in PM2.5 over 60 cities of China were retrieved. Then, potential years of life lost (PYLL) attributable to toxic metal (As, Cd, Cr (VI), Mn, and Ni) exposure was calculated from health risk assessments and lifetable estimates. The results show that Cr(VI) and As were the most polluted metals and greatly exceeded the recommended annual values in the National Ambient Air Quality Standard of China. PYLL for each death (mean ± standard deviation) of 19.8 ± 4.5 years was observed for lung cancer, followed closely by COPD and pneumonia. Furthermore, the PYLL rate (years per 100,000 people) attributable to exposure to these toxic metals was 457 (male: 505, female: 402) years for different cities; therein, Cr(VI) contributed the highest PYLL among these toxic metals, with a proportion of 72.7% (male: 75.3%, female: 69.5%), followed by As of 16.4% (male: 13.8%, female: 19.8%). The concentration level and PYLL both showed large spatial variability, of which the top-ranking cities were observed to be affected by well-developed metal-related industries and coal-powered industrial sectors.
Collapse
Affiliation(s)
- Jianwei Liu
- College of Resources and Environmental Sciences, Henan Agricultural University, Zhengzhou 450002, China.
| | - Hongbin Cao
- Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China
| | - Yali Zhang
- College of Resources and Environmental Sciences, Henan Agricultural University, Zhengzhou 450002, China
| | - Hui Chen
- College of Resources and Environmental Sciences, Henan Agricultural University, Zhengzhou 450002, China
| |
Collapse
|
12
|
Susceptibility of patients with chronic obstructive pulmonary disease to heart rate difference associated with the short-term exposure to metals in ambient fine particles: A panel study in Beijing, China. SCIENCE CHINA. LIFE SCIENCES 2022; 65:387-397. [PMID: 34008166 DOI: 10.1007/s11427-020-1912-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 02/16/2021] [Indexed: 10/21/2022]
Abstract
Susceptibility of patients with chronic obstructive pulmonary disease (COPD) to cardiovascular autonomic dysfunction associated with exposure to metals in ambient fine particles (PM2.5, particulate matter with aerodynamic diameter ≤2.5 µm) remains poorly evidenced. Based on the COPDB (COPD in Beijing) panel study, we aimed to compare the associations of heart rate (HR, an indicator of cardiovascular autonomic function) and exposure to metals in PM2.5 between 53 patients with COPD and 82 healthy controls by using linear mixed-effects models. In all participants, the HR levels were significantly associated with interquartile range increases in the average concentrations of Cr, Zn, and Pb, but the strength of the associations differed by exposure time (from 1.4% for an average 9 days (d) Cr exposure to 3.5% for an average 9 d Zn exposure). HR was positively associated with the average concentrations of PM2.5 and certain metals only in patients with COPD. Associations between HR and exposure to PM2.5, K, Cr, Mn, Ni, Cu, Zn, As, and Se in patients with COPD significantly differed from those in health controls. Furthermore, association between HR and Cr exposure was robust in COPD patients. In conclusion, our findings indicate that COPD could exacerbate difference in HR following exposure to metals in PM2.5.
Collapse
|
13
|
Chen X, Luan M, Liu J, Yao Y, Li X, Wang T, Zhang H, Han Y, Lu X, Chen W, Hu X, Zheng M, Qiu X, Zhu T. Risk factors in air pollution exposome contributing to higher levels of TNFα in COPD patients. ENVIRONMENT INTERNATIONAL 2022; 159:107034. [PMID: 34906887 DOI: 10.1016/j.envint.2021.107034] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 11/30/2021] [Accepted: 12/05/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND Air pollutants are found associated with various health effects in chronic obstructive pulmonary patients. Given the complicate chemical components of air pollutants, it is not clear which components are the main risk factors for these health effects. OBJECTIVES Based on the COPD in Beijing (COPDB) study and exposome concept, we examined comprehensively the air pollution components to screen out high-risk factors for systemic inflammation of COPD patients. METHODS Concentrations of PM with aerodynamic diameter ≤ 2.5 μm (PM2.5), ultrafine and accumulated-mode particles (UFPs and Acc), PM2.5-contained carbonaceous components/elements/water soluble ions, gaseous pollutants, temperature, and relative humidity (RH) were continuously monitored around participants. Urinary polycyclic aromatic hydrocarbons (PAHs) and cotinine, and serum tumor necrosis factor α (TNFα) were measured from 53 COPD and 82 non-COPD participants. Lifestyle variables were recorded using follow-up questionnaire. Linear mixed effects (LME) models were used to assess the associations of TNFα differences with exposure to air pollutants, meteorological variations, and lifestyle. RESULTS In COPD patients, the associations of TNFα differences with exposure to ozone, Cd, UFPs, Acc, 2-hydroxydibenzofuran, temperature and RH parameters, and several elements in PM2.5 were significant in certain time-windows. For example, per interquartile range (IQR) increase in average ozone concentration 14 d before visits was associated with 17.3% (95% confidence interval: 6.8%, 27.7%) TNFα difference. Associations between ozone, Cd, UFPs, Acc, the maximum value of RH, and 2-hydroxydibenzofuran exposure and TNFα differences remained robust in two-pollutant models, and contributed to 19.0%, 10.5%, 2.2%, 1.6%, 2.1%, and 1.5% TNFα differences, respectively. Among the high-risk factors for COPD patients, the responses to UFPs, Acc, and 2-hydroxydibenzofuran were not robust in non-COPD participants. DISCUSSION Ozone, Cd, UFPs, Acc, PAHs exposure and RH variation were high-risk factors of systemic inflammation for COPD patients, and the profile of high-risk factors were different from those in general population.
Collapse
Affiliation(s)
- Xi Chen
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; Hebei Technology Innovation Center of Human Settlement in Green Building, Shenzhen Institute of Building Research Co., Ltd., Xiongan 071700, China
| | - Mengxiao Luan
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Jinming Liu
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Yuan Yao
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Xiaoying Li
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Teng Wang
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Hanxiyue Zhang
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Yiqun Han
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; Department of Epidemiology and Biostatistics, MRC Centre for Environmental and Health, Imperial College London, SW7 2AZ, UK
| | - Xinchen Lu
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Wu Chen
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Xinyan Hu
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Mei Zheng
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Xinghua Qiu
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Tong Zhu
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China.
| |
Collapse
|
14
|
Chen X, Que C, Yao Y, Han Y, Zhang H, Li X, Lu X, Chen W, Hu X, Wu Y, Wang T, Zhang L, Zheng M, Qiu X, Zhu T. Susceptibility of individuals with lung dysfunction to systemic inflammation associated with ambient fine particle exposure: A panel study in Beijing. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 788:147760. [PMID: 34020092 DOI: 10.1016/j.scitotenv.2021.147760] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 05/02/2021] [Accepted: 05/10/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND The underlying mechanism on the susceptibility of chronic obstructive pulmonary disease (COPD) patients to air pollution has yet to be clarified. OBJECTIVES Based on the COPD in Beijing (COPDB) study, we examined whether lung dysfunction contributed to pollutant-associated systemic inflammation in COPD patients. METHODS Proinflammatory biomarkers including interleukin-8 (IL-8) and tumor necrosis factor α (TNFα) were measured in serum samples collected from 53 COPD and 82 healthy participants. Concentrations of particulate matter with aerodynamic diameter ≤ 2.5 μm (PM2.5), carbonaceous components in PM2.5, and PM size distribution were continuously monitored. Linear mixed effects models were used to examine the associations of biomarker differences with particle exposure, between COPD and healthy participants, and across subgroups with different levels of lung dysfunction. RESULTS COPD patients showed higher differences in IL-8 and TNFα levels associated with exposure to measured pollutants, comparing to healthy controls. In advanced analysis, particle-associated differences in IL-8 and TNFα levels were higher in participants with poorer lung ventilation and diffusion capacity, and higher ratio of residual volume. For example, an interquartile range increase in average PM2.5 concentration 2 weeks before visits was associated with a 15.7% difference in IL-8 level in participants with the lowest ratio of measured value to predicted value of forced expiratory volume in 1 s (FEV1%pred) (65.2%), and the association decreased monotonically with increasing FEV1%pred. Associations between differences in TNFα level and average ultrafine particle concentration 1 week before visits increased gradually with increasing ratio of measured value to predicted value of residual volume/total lung capacity. CONCLUSIONS COPD patients, especially those with poorer lung function, are more susceptible to systemic inflammation associated with fine particle exposure.
Collapse
Affiliation(s)
- Xi Chen
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; GRiC, Shenzhen Institute of Building Research Co., Ltd., Xiong'an 071700, China.
| | - Chengli Que
- Peking University First Hospital, Peking University, Beijing 100034, China.
| | - Yuan Yao
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China.
| | - Yiqun Han
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; Department of Epidemiology and Biostatistics, MRC Centre for Environmental and Health, Imperial College London, SW7 2AZ, UK.
| | - Hanxiyue Zhang
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China.
| | - Xiaoying Li
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China.
| | - Xinchen Lu
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China.
| | - Wu Chen
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China.
| | - Xinyan Hu
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China.
| | - Yusheng Wu
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China.
| | - Teng Wang
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China.
| | - Lina Zhang
- Beijing Xicheng District Shichahai Community Health Center, Beijing 100000, China.
| | - Mei Zheng
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China.
| | - Xinghua Qiu
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China.
| | - Tong Zhu
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China.
| |
Collapse
|
15
|
Yao Y, Chen X, Chen W, Han Y, Xue T, Wang J, Qiu X, Que C, Zheng M, Zhu T. Differences in transcriptome response to air pollution exposure between adult residents with and without chronic obstructive pulmonary disease in Beijing: A panel study. JOURNAL OF HAZARDOUS MATERIALS 2021; 416:125790. [PMID: 33862484 DOI: 10.1016/j.jhazmat.2021.125790] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 02/28/2021] [Accepted: 03/29/2021] [Indexed: 06/12/2023]
Abstract
Ambient air pollution is a major risk factor for the prevalence and exacerbation of chronic obstructive pulmonary disease (COPD). Based on the COPDB (COPD in Beijing) panel study, whole-blood transcriptomes were repeatedly measured in 48 COPD patients and 62 healthy participants. Ambient mass concentrations of fine particulate matter (PM2.5), temperature, and relative humidity were continuously monitored at a monitoring station. The linear mixed-effects models were applied to estimate the associations between logarithmically transformed transcript levels and 1-day (d), 7-d, and 14-d average concentrations of PM2.5 before the start of follow-up visits. MetaCore™ was used to conduct the pathway enrichment analyses. Exposure to 1-, 7-, and 14-d average concentrations of PM2.5 was significantly associated with the transcriptome responses in both groups. The top 10, top 100, and top 1000 PM2.5-associated transcripts differed greatly between the two groups. Among COPD patients, role of alpha-6/beta-4 integrins in carcinoma progression, Notch signaling in breast cancer, and ubiquinone metabolism were the most significantly enriched PM2.5-associated biological pathways in the three time windows, respectively. In healthy participants, pro-opiomelanocortin processing was the most significant PM2.5-associated biological pathway in all three time windows. Our findings provide novel insights into the adverse health effects of air pollution exposure.
Collapse
Affiliation(s)
- Yuan Yao
- SKL-ESPC and BIC-ESAT, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Xi Chen
- SKL-ESPC and BIC-ESAT, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; GRiC, Shenzhen Institute of Building Research Co., Ltd., Shenzhen 518049, China
| | - Wu Chen
- SKL-ESPC and BIC-ESAT, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Yiqun Han
- SKL-ESPC and BIC-ESAT, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; Department of Epidemiology and Biostatistics, MRC Centre for Environment and Health, Imperial College London, London W12 0BZ, UK
| | - Tao Xue
- SKL-ESPC and BIC-ESAT, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; Institute of Reproductive and Child Health/Ministry of Health Key Laboratory of Reproductive Health and Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, China
| | - Junxia Wang
- SKL-ESPC and BIC-ESAT, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Xinghua Qiu
- SKL-ESPC and BIC-ESAT, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Chengli Que
- Department of Respiratory Disease, Peking University First Hospital, Peking University, Beijing 100034, China
| | - Mei Zheng
- SKL-ESPC and BIC-ESAT, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Tong Zhu
- SKL-ESPC and BIC-ESAT, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China.
| |
Collapse
|
16
|
Nutrition transition and chronic diseases in China (1990-2019): industrially processed and animal calories rather than nutrients and total calories as potential determinants of the health impact. Public Health Nutr 2021; 24:5561-5575. [PMID: 34376266 DOI: 10.1017/s1368980021003311] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
OBJECTIVE To extend analyses of nutrition transition in developed countries to China within the framework of the 3Vs rule considering degree of processing starting with plant/animal calorie ratio (Rule 1), industrially processed foods (IPFs, Rule 2), and food diversity through nutrient intakes (Rule 3). DESIGN Total and main food group (n 13) calorie intakes, percentages of animal and IPF calories, adequacy of the Dietary Reference Intake (DRI) and prevalence of chronic diseases were retrieved from scientific literature and international databases. SETTING China, 1990–2019. PARTICIPANTS Overall population. RESULTS The total calorie intake decreased by 9 % over 30 years while the prevalence of chronic diseases substantially increased. Percentages of IPFs (Rule 1) and animal (Rule 2) calorie intake shifted from 9 to 30 % and 2 to 30 %, respectively. Meanwhile, the overall DRI adequacy (Rule 3) did not improve, with calcium and retinol deficiencies in 2019, and, although remaining above DRI, iron, copper, magnesium, and vitamins E, C and B1–B9 intakes regularly decreased. Notably, the prevalence of obesity increased five-fold, paralleling the exponential increase in IPF calorie intake. Both sources of calories were highly correlated with prevalence of main chronic diseases. CONCLUSIONS Despite a slight decreased of total calorie consumption and small variations of adequacy with DRI, the farther the Chinese population moved away from the 3Vs rule during the 1990–2019 period, the more the prevalence of chronic diseases increased. Further analyses on foods’ transitions will be better assessed when advocating sources/quality of calories (Rules 1/2), rather than only nutrient composition (Rule 3).
Collapse
|
17
|
Liu J, Chen X, Qiu X, Zhang H, Lu X, Li H, Chen W, Zhang L, Que C, Zhu T. Association between exposure to polycyclic aromatic hydrocarbons and lipid peroxidation in patients with chronic obstructive pulmonary disease. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 780:146660. [PMID: 34030292 DOI: 10.1016/j.scitotenv.2021.146660] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/14/2021] [Accepted: 03/17/2021] [Indexed: 06/12/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are toxic airborne pollutants and may cause adverse effects at high level of oxidative stress. Here we hypothesized that individuals with impaired lung function are susceptible to PAHs associated oxidative damage. Hence, we carried out a panel study and conducted four follow-up visits on 40 chronic obstructive pulmonary disease (COPD) patients and 75 healthy controls. Hydroxylated PAHs (OH-PAHs) and malonaldehyde (MDA) were measured in urine as exposure and oxidative stress markers, respectively, which showed significant association in all participants. Quantitatively, a 1-fold increase in OH-PAHs was associated with a 4.1-15.1% elevation of MDA. The association between OH-PAHs and MDA levels became stronger in participants with impaired lung function. For 1% decrease of FEV1/FVC, the increase of MDA associated with a 1-fold increase in OH-PAHs was up to 0.49%, suggesting an increased susceptibility to PAH-induced oxidative damage in individuals with worse lung function. This study observed that impaired lung function modified the association between PAH exposure and oxidative damage, which might accelerate the aggravation of COPD, and therefore highlighted the necessity of protection measures to decrease the additional adverse effects of air pollution exposure. CAPSULE: Individuals with worse lung function may be more susceptible to PAH-induced lipid peroxidation.
Collapse
Affiliation(s)
- Jinming Liu
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Center for Environment and Health, Peking University, Beijing 100871, PR China
| | - Xi Chen
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Center for Environment and Health, Peking University, Beijing 100871, PR China
| | - Xinghua Qiu
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Center for Environment and Health, Peking University, Beijing 100871, PR China.
| | - Hanxiyue Zhang
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Center for Environment and Health, Peking University, Beijing 100871, PR China
| | - Xinchen Lu
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Center for Environment and Health, Peking University, Beijing 100871, PR China
| | - Haonan Li
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Center for Environment and Health, Peking University, Beijing 100871, PR China
| | - Wu Chen
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Center for Environment and Health, Peking University, Beijing 100871, PR China
| | - Lina Zhang
- Shichahai Community Health Center, Xicheng District, Beijing 100035, PR China
| | - Chengli Que
- Peking University First Hospital, Peking University, Beijing 100034, PR China
| | - Tong Zhu
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Center for Environment and Health, Peking University, Beijing 100871, PR China
| |
Collapse
|
18
|
Cao D, Li D, Wu Y, Qian ZM, Liu Y, Liu Q, Sun J, Guo Y, Zhang S, Jiao G, Yang X, Wang C, McMillin SE, Zhang X, Lin H. Ambient PM 2.5 exposure and hospital cost and length of hospital stay for respiratory diseases in 11 cities in Shanxi Province, China. Thorax 2021; 76:thoraxjnl-2020-215838. [PMID: 34088786 DOI: 10.1136/thoraxjnl-2020-215838] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 04/09/2021] [Accepted: 05/04/2021] [Indexed: 11/03/2022]
Abstract
BACKGROUND Few studies have examined the effects of ambient particulate matter with an aerodynamic diameter less than or equal to 2.5 μm (PM2.5) on hospital cost and length of hospital stay for respiratory diseases in China. METHODS We estimated ambient air pollution exposure for respiratory cases through inverse distance-weighted averages of air monitoring stations based on their residential address and averaged at the city level. We used generalised additive models to quantify city-specific associations in 11 cities in Shanxi and a meta-analysis to estimate the overall effects. We further estimated respiratory burden attributable to PM2.5 using the standards of WHO (25 µg/m3) and China (75 µg/m3) as reference. RESULTS Each 10 µg/m3 increase in lag03 PM2.5 corresponded to 0.53% (95% CI: 0.33% to 0.73%) increase in respiratory hospitalisation, an increment of 3.75 thousand RMB (95% CI: 1.84 to 5.670) in hospital cost and 4.13 days (95% CI: 2.51 to 5.75) in length of hospital stay. About 9.7 thousand respiratory hospitalisations, 132 million RMB in hospital cost and 145 thousand days of hospital stay could be attributable to PM2.5 exposures using WHO's guideline as reference. We estimated that 193 RMB (95% CI: 95 to 292) in hospital cost and 0.21 days (95% CI: 0.13 to 0.30) in hospital stay could be potentially avoidable for an average respiratory case. CONCLUSION Significant respiratory burden could be attributable to PM2.5 exposures in Shanxi Province, China. The results need to be factored into impact assessment of air pollution policies to provide a more complete indication of the burden addressed by the policies.
Collapse
Affiliation(s)
- Dawei Cao
- Department of Respiration, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Dongyan Li
- Department of Respiration, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yinglin Wu
- Department of Epidemiology, School of Public Health, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Zhengmin Min Qian
- Department of Epidemiology and Biostatistics, College for Public Health and Social Justice, Saint Louis University, Saint Louis, Missouri, USA
| | - Yi Liu
- Department of Respiration, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Qiyong Liu
- Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jimin Sun
- Key Laboratory of Vaccine, Prevention and Control of Infectious Disease of Zhejiang Province, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang, China
| | - Yuming Guo
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - Shiyu Zhang
- Department of Epidemiology, School of Public Health, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Guangyuan Jiao
- Department of Ideological and Political Education, School of Marxism, Capital Medical University, Beijing, China
| | - Xiaoran Yang
- Department of Standards and Evaluation, Beijing Municipal Health Commission Policy Research Center, Beijing Municipal health Commission Information Center, Beijing, China
| | - Chongjian Wang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Stephen Edward McMillin
- School of Social Work, College for Public Health and Social Justice, Saint Louis University, Saint Louis, Missouri, USA
| | - Xinri Zhang
- Department of Respiration, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Hualiang Lin
- Department of Epidemiology, School of Public Health, Sun Yat-Sen University, Guangzhou, Guangdong, China
| |
Collapse
|
19
|
Zhang W, Li H, Pan L, Xu J, Yang X, Dong W, Shan J, Wu S, Deng F, Chen Y, Guo X. Chemical constituents and sources of indoor PM 2.5 and cardiopulmonary function in patients with chronic obstructive pulmonary disease: Estimation of individual and joint effects. ENVIRONMENTAL RESEARCH 2021; 197:111191. [PMID: 33905705 DOI: 10.1016/j.envres.2021.111191] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/08/2021] [Accepted: 04/13/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND The cardiopulmonary effects of chemical constituents and sources of indoor fine particulate matter (PM2.5) remain unclear. OBJECTIVES To examine the individual and joint effects of constituents of indoor PM2.5 on cardiopulmonary function of patients with chronic obstructive pulmonary disease (COPD) and the role of identified sources. METHODS This panel study recruited 43 stable COPD patients from November 2015 to May 2016 in Beijing, China. Daily indoor and outdoor PM2.5 were collected for five consecutive days simultaneously. Twenty-four elements were measured and principal component analysis was used for source appointment. Pulmonary function and blood pressure (BP) were also measured at daily visit. The linear mixed-effect models were used to estimate the effect of each constituent and source. Bayesian kernel machine regression (BKMR) models were used to estimate the overall effect of all measured constituents. RESULTS The combustion, indoor soil/dust and road dust sources were identified as the main sources of indoor PM2.5 and combustion sources contributed over 40% during the heating season. Most constituents were significantly associated with elevated BP of COPD patients and the joint effects of mixed exposures were also significant especially during the heating season. Most associations of chemical constituents with pulmonary function were negative but not statistically significant during the heating season, as was the joint effect. Few associations were observed during the non-heating season. Further, we observed combustion sources throughout the study period and road dust sources during the heating season were significantly associated with increased BP but not decreased pulmonary function. CONCLUSION The combustion and road dust sources and their related constituents of indoor PM2.5 could cause adverse effects on cardiovascular function of COPD patients especially during the heating season, but the effect on pulmonary function still needs to be further studied.
Collapse
Affiliation(s)
- Wenlou Zhang
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, China
| | - Hongyu Li
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, China
| | - Lu Pan
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, China
| | - Junhui Xu
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, China
| | - Xuan Yang
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, China
| | - Wei Dong
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, China
| | - Jiao Shan
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, China
| | - Shaowei Wu
- Department of Occupational and Environmental Health Sciences, School of Public Health, Xi'an Jiaotong University, Xi'an, China
| | - Furong Deng
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, China.
| | - Yahong Chen
- Department of Pulmonary and Critical Care Medicine, Peking University Third Hospital, Beijing, China.
| | - Xinbiao Guo
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, China
| |
Collapse
|
20
|
Yao Y, Chen X, Chen W, Wang Q, Fan Y, Han Y, Wang T, Wang J, Qiu X, Zheng M, Que C, Zhu T. Susceptibility of individuals with chronic obstructive pulmonary disease to respiratory inflammation associated with short-term exposure to ambient air pollution: A panel study in Beijing. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 766:142639. [PMID: 33069482 DOI: 10.1016/j.scitotenv.2020.142639] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 09/24/2020] [Accepted: 09/26/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Chronic obstructive pulmonary disease (COPD) is a leading cause of death worldwide. There is no clear evidence of whether COPD patients are more susceptible to respiratory inflammation associated with short-term exposure to air pollutants than those without COPD. OBJECTIVES This study directly compared air pollutant-associated respiratory inflammation between COPD patients and healthy controls. METHODS This study is based on the COPDB panel study (COPD in Beijing). Fractional exhaled nitric oxide (FeNO) was repeatedly measured in 53 COPD patients and 82 healthy controls at up to four clinical visits. Concentrations of carbon monoxide (CO), nitrogen monoxide, nitrogen dioxide (NO2), sulfur dioxide (SO2), fine particulate matter (PM2.5), black carbon (BC), ultrafine particles (UFPs), and accumulated-mode particles (Acc) were monitored continuously at a fixed-site monitoring station. Linear mixed-effects models were used to compare the associations between ln-transformed FeNO and average 1-23 h concentrations of air pollutants before the clinical visits. RESULTS FeNO was positively associated with interquartile range (IQR) increases in average concentrations of CO, NO2, SO2, BC, UFPs, and Acc in all participants, with the strongest associations in different time-windows (range from 6.6% for average 1 h NO2 exposure to 32.1% for average 7 h SO2 exposure). Associations between FeNO and average 13-23 h PM2.5 exposure differed significantly according to COPD status. Increases in FeNO associated with average 1-2 h NO exposure were significant in COPD patients (range 8.9-10.2%), while the associations were nonsignificant in healthy controls. Associations between FeNO and average 1-23 h CO and SO2 exposure tended to be higher in COPD patients than in healthy controls, although the differences were not significant. UFPs-associated respiratory inflammation was robust in both subgroups. CONCLUSIONS COPD patients are more susceptible to respiratory inflammation following PM2.5, NO, CO, and SO2 exposure than individuals without COPD.
Collapse
Affiliation(s)
- Yuan Yao
- SKL-ESPC and BIC-ESAT, College of Environmental Sciences and Engineering, Peking University, Beijing, China.
| | - Xi Chen
- SKL-ESPC and BIC-ESAT, College of Environmental Sciences and Engineering, Peking University, Beijing, China; GRiC, Shenzhen Institute of Building Research Co., Ltd., Shenzhen, China.
| | - Wu Chen
- SKL-ESPC and BIC-ESAT, College of Environmental Sciences and Engineering, Peking University, Beijing, China.
| | - Qi Wang
- SKL-ESPC and BIC-ESAT, College of Environmental Sciences and Engineering, Peking University, Beijing, China.
| | - Yunfei Fan
- SKL-ESPC and BIC-ESAT, College of Environmental Sciences and Engineering, Peking University, Beijing, China.
| | - Yiqun Han
- SKL-ESPC and BIC-ESAT, College of Environmental Sciences and Engineering, Peking University, Beijing, China; Department of Epidemiology and Biostatistics, MRC Centre for Environment and Health, Imperial College London, London, UK.
| | - Teng Wang
- SKL-ESPC and BIC-ESAT, College of Environmental Sciences and Engineering, Peking University, Beijing, China.
| | - Junxia Wang
- SKL-ESPC and BIC-ESAT, College of Environmental Sciences and Engineering, Peking University, Beijing, China.
| | - Xinghua Qiu
- SKL-ESPC and BIC-ESAT, College of Environmental Sciences and Engineering, Peking University, Beijing, China.
| | - Mei Zheng
- SKL-ESPC and BIC-ESAT, College of Environmental Sciences and Engineering, Peking University, Beijing, China.
| | - Chengli Que
- Peking University First Hospital, Peking University, Beijing, China.
| | - Tong Zhu
- SKL-ESPC and BIC-ESAT, College of Environmental Sciences and Engineering, Peking University, Beijing, China.
| |
Collapse
|
21
|
Chen J, Shi C, Li Y, Ni H, Zeng J, Lu R, Zhang L. Effects of short-term exposure to ambient airborne pollutants on COPD-related mortality among the elderly residents of Chengdu city in Southwest China. Environ Health Prev Med 2021; 26:7. [PMID: 33435864 PMCID: PMC7805042 DOI: 10.1186/s12199-020-00925-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 12/20/2020] [Indexed: 11/10/2022] Open
Abstract
Background Chronic obstructive pulmonary disease (COPD) has become a severe global burden in terms of both health and the economy. Few studies, however, have thoroughly assessed the influence of air pollution on COPD-related mortality among elderly people in developing areas in the hinterland of southwestern China. This study is the first to examine the association between short-term exposure to ambient airborne pollutants and COPD-related mortality among elderly people in the central Sichuan Basin of southwestern China. Methods Data on COPD-related mortality among elderly people aged 60 and older were obtained from the Population Death Information Registration and Management System (PDIRMS). Data on airborne pollutants comprised of particulate matter < 2.5 μm in aerodynamic diameter (PM2.5), sulfur dioxide (SO2), nitrogen dioxide (NO2), carbon monoxide (CO), and ozone (O3) were derived from 23 municipal environmental monitoring sites. Data on weather conditions, including daily mean temperature and relative humidity, were obtained from the Chengdu Meteorological Bureau. All data were collected from January 1, 2015, to December 31, 2018. A quasi-Poisson general additive model (GAM) was utilized to assess the effects of short-term exposure to airborne pollutants on COPD-related mortality among elderly people. Results A total of 61,058 COPD-related deaths of people aged 60 and older were obtained. Controlling the influences of daily temperature and relative humidity, interquartile range (IQR) concentration increases of PM2.5 (43 μg/m3), SO2 (8 μg/m3), NO2 (18 μg/m3), CO (0.4 mg/m3), and O3 (78 μg/m3) were associated with 2.7% (95% CI 1.0–4.4%), 4.3% (95% CI 2.1–6.4%), 3.6% (95% CI 1.7–5.6%), 2.7% (95% CI 0.6–4.8%), and 7.4% (95% CI 3.6–11.3%) increases in COPD-related mortality in people aged 60 and older, respectively. The exposure-response curves between each pollutant and the log-relative risk of COPD-related mortality exhibited linear relationships. Statistically significant differences in the associations between pollutants and COPD-related mortality were not observed among sociodemographic factors including age, gender, and marital status. The effects of O3 remained steady after adjusting for PM2.5, SO2, NO2, and CO each time in the two-pollutant models. Conclusions Increased concentrations of ambient airborne pollutants composed of PM2.5, SO2, NO2, O3, and CO were significantly and positively associated with COPD-related mortality in the central Sichuan Basin, which is located in the hinterland of southwestern China. The adverse effects of O3 were stable, a finding that should receive more attention. Supplementary Information The online version contains supplementary material available at 10.1186/s12199-020-00925-x.
Collapse
Affiliation(s)
- Jianyu Chen
- Sichuan Provincial Center for Disease Control and Prevention, No.6, Zhongxue Road, Wuhou District, Chengdu, 610041, People's Republic of China.
| | - Chunli Shi
- Sichuan Provincial Center for Disease Control and Prevention, No.6, Zhongxue Road, Wuhou District, Chengdu, 610041, People's Republic of China
| | - Yang Li
- Sichuan Provincial Center for Disease Control and Prevention, No.6, Zhongxue Road, Wuhou District, Chengdu, 610041, People's Republic of China
| | - Hongzhen Ni
- Sichuan Provincial Center for Disease Control and Prevention, No.6, Zhongxue Road, Wuhou District, Chengdu, 610041, People's Republic of China
| | - Jie Zeng
- Sichuan Provincial Center for Disease Control and Prevention, No.6, Zhongxue Road, Wuhou District, Chengdu, 610041, People's Republic of China
| | - Rong Lu
- Sichuan Provincial Center for Disease Control and Prevention, No.6, Zhongxue Road, Wuhou District, Chengdu, 610041, People's Republic of China
| | - Li Zhang
- Sichuan Provincial Center for Disease Control and Prevention, No.6, Zhongxue Road, Wuhou District, Chengdu, 610041, People's Republic of China.
| |
Collapse
|
22
|
González E, Casanova-Chafer J, Romero A, Vilanova X, Mitrovics J, Llobet E. LoRa Sensor Network Development for Air Quality Monitoring or Detecting Gas Leakage Events. SENSORS 2020; 20:s20216225. [PMID: 33142820 PMCID: PMC7672618 DOI: 10.3390/s20216225] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 10/28/2020] [Accepted: 10/30/2020] [Indexed: 12/18/2022]
Abstract
During the few last years, indoor and outdoor Air Quality Monitoring (AQM) has gained a lot of interest among the scientific community due to its direct relation with human health. The Internet of Things (IoT) and, especially, Wireless Sensor Networks (WSN) have given rise to the development of wireless AQM portable systems. This paper presents the development of a LoRa (short for long-range) based sensor network for AQM and gas leakage events detection. The combination of both a commercial gas sensor and a resistance measurement channel for graphene chemoresistive sensors allows both the calculation of an Air Quality Index based on the concentration of reducing species such as volatile organic compounds (VOCs) and CO, and it also makes possible the detection of NO2, which is an important air pollutant. The graphene sensor tested with the LoRa nodes developed allows the detection of NO2 pollution in just 5 min as well as enables monitoring sudden changes in the background level of this pollutant in the atmosphere. The capability of the system of detecting both reducing and oxidizing pollutant agents, alongside its low-cost, low-power, and real-time monitoring features, makes this a solution suitable to be used in wireless AQM and early warning systems.
Collapse
Affiliation(s)
- Ernesto González
- Electronic Engineering, Uiversitat Rovira i Virgili, MINOS, 43007 Tarragona, Spain; (E.G.); (J.C.-C.); (A.R.); (E.L.)
| | - Juan Casanova-Chafer
- Electronic Engineering, Uiversitat Rovira i Virgili, MINOS, 43007 Tarragona, Spain; (E.G.); (J.C.-C.); (A.R.); (E.L.)
| | - Alfonso Romero
- Electronic Engineering, Uiversitat Rovira i Virgili, MINOS, 43007 Tarragona, Spain; (E.G.); (J.C.-C.); (A.R.); (E.L.)
| | - Xavier Vilanova
- Electronic Engineering, Uiversitat Rovira i Virgili, MINOS, 43007 Tarragona, Spain; (E.G.); (J.C.-C.); (A.R.); (E.L.)
- Correspondence: ; Tel.: +34-977-558-502
| | | | - Eduard Llobet
- Electronic Engineering, Uiversitat Rovira i Virgili, MINOS, 43007 Tarragona, Spain; (E.G.); (J.C.-C.); (A.R.); (E.L.)
| |
Collapse
|
23
|
Marquès M, Domingo JL, Nadal M, Schuhmacher M. Health risks for the population living near petrochemical industrial complexes. 2. Adverse health outcomes other than cancer. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 730:139122. [PMID: 32388111 DOI: 10.1016/j.scitotenv.2020.139122] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 04/28/2020] [Accepted: 04/28/2020] [Indexed: 05/12/2023]
Affiliation(s)
- Montse Marquès
- Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Universitat Rovira i Virgili, Sant Llorenç 21, 43201 Reus, Catalonia, Spain
| | - José L Domingo
- Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Universitat Rovira i Virgili, Sant Llorenç 21, 43201 Reus, Catalonia, Spain.
| | - Martí Nadal
- Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Universitat Rovira i Virgili, Sant Llorenç 21, 43201 Reus, Catalonia, Spain
| | - Marta Schuhmacher
- Departament d'Enginyeria Química, Universitat Rovira i Virgili, Av. Països Catalans 26, 43007 Tarragona, Catalonia, Spain
| |
Collapse
|