1
|
Ma G, Gao Q, Yuan L, Chen Y, Cai Z, Zhang L, Hu J, Wang Y, Wu S, Sun Y. Spirulina (Arthrospira) cultivation in photobioreactors: From biochemistry and physiology to scale up engineering. BIORESOURCE TECHNOLOGY 2025; 423:132259. [PMID: 39971103 DOI: 10.1016/j.biortech.2025.132259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 02/16/2025] [Accepted: 02/17/2025] [Indexed: 02/21/2025]
Abstract
Spirulina (Arthrospira) has been extensively applied in CO2 biofixation, wastewater purification, and value-added bioproducts preparation. Light availability plays a pivotal role in Spirulina photoautotrophic cultivation, which is primary determined by characteristics of incident light and distribution of light within photobioreactors (PBRs). To clarify the role of light in Spirulina photoautotrophic cultivation, this review first analyzes the processes of light delivery and conversion in suspended PBRs. Then, effects of key light characteristics, including light intensity, spectrum, and photoperiod, on Spirulina growth and intracellular biochemical components synthesis are comprehensively summarized. Recent advancements in innovative PBR designs aimed at enhancing light utilization efficiency and promoting Spirulina growth are also highlighted. Finally, potential future research directions in the field of Spirulina photoautotrophic cultivation are outlined. Overall, this work provides a theoretical foundation and technical guidance for improving Spirulina production and specific target products synthesis from prespectives of light conditions regulation and PBRs design.
Collapse
Affiliation(s)
- Guoyu Ma
- School of Energy and Mechanical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Qiping Gao
- Tongwei Research Institute, Tongwei Agriculture Development Co., Ltd., Chengdu 610093, China
| | - Lu Yuan
- School of Energy and Mechanical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Yu Chen
- Tongwei Research Institute, Tongwei Agriculture Development Co., Ltd., Chengdu 610093, China
| | - Zhongzhen Cai
- Tongwei Research Institute, Tongwei Agriculture Development Co., Ltd., Chengdu 610093, China
| | - Liang Zhang
- Tongwei Research Institute, Tongwei Agriculture Development Co., Ltd., Chengdu 610093, China
| | - Jun Hu
- School of Energy and Mechanical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Yunjun Wang
- School of Energy and Mechanical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Shusong Wu
- College of Animal Science and Technology, Yuelushan Laboratory, Hunan Agricultural University, Changsha 410128, China
| | - Yahui Sun
- School of Energy and Mechanical Engineering, Nanjing Normal University, Nanjing 210023, China.
| |
Collapse
|
2
|
Kumar S, Kubar AA, Hu X, Zhu F, Mehmood S, Schagerl M, Zhang Y, Shah MAR, Zou B, Rehman OU, Huo S. Enhancement of microalgal CO 2 fixation in photobioreactors by means of spiral flow vortices. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2025; 18:47. [PMID: 40301932 PMCID: PMC12042547 DOI: 10.1186/s13068-025-02650-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Accepted: 04/15/2025] [Indexed: 05/01/2025]
Abstract
Microalgae have received a lot of interest as a sustainable solution for carbon dioxide fixation due to their great efficiency in capturing CO2 and converting it into valuable biomass, making them a promising tool for mitigating climate change and expanding carbon capture technology. This study examines the efficacy of fixed shaped portable conical helix baffles (PCHB) in enhancing gas-liquid mixing to promote microalgal growth in column photobioreactors (PBRs). Flat (90° angle from cone surface), round, and inclined (60° angle from cone surface) baffles were compared for performance. Modeling the gas flow indicated that round PCHB produced more spiral vortices and achieved better mixing performance than flat and inclined designs. Increasing the baffle size from 3 to 7 cm resulted in a 21% higher mass transfer coefficient. The simulation was verified by experiments. Notably, the implementation of a PCHB with a round helix-shaped structure (5 cm) led to a 33% (2.102 ± 0.08 g/L) and 17% (2.419 ± 0.07 g/L) dry mass increase of Limnospira fusiformis when compared to flat and incline-shaped baffles, respectively. Our study revealed that using a round-shaped PCHB resulted to higher spiral movement, which in turn increases CO2 utilization and cell proliferation. Our approach demonstrates high potential to further optimize industrial PBRs, thereby facilitating CO2 sequestration during microalgal cultivation to combat global warming.
Collapse
Affiliation(s)
- Santosh Kumar
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Ameer Ali Kubar
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Xinjuan Hu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Feifei Zhu
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, China
- University of Natural Resources and Life Sciences, Vienna (BOKU), Gregor-Mendel-Straße 33, 1180, Vienna, Austria
| | - Shahid Mehmood
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, China
| | - Michael Schagerl
- Department of Functional and Evolutionary Ecology, University of Vienna, Djerassiplatz 1, 1030, Vienna, Austria.
| | - Yajie Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China
| | | | - Bin Zou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Obaid Ur Rehman
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Shuhao Huo
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China.
| |
Collapse
|
3
|
Aoki J, Koshikawa R, Asayama M. Recent progress in the cyanobacterial products and applications of phycocyanins. World J Microbiol Biotechnol 2025; 41:84. [PMID: 40011288 DOI: 10.1007/s11274-025-04297-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 02/16/2025] [Indexed: 02/28/2025]
Abstract
Recent developments in the research on cyanobacterial products have drawn increasing attention, especially in the production and application of phycocyanin, which has shown great potential in various fields. Cyanobacteria are photosynthetic prokaryotes that live on Earth and are the ancestors of plant chloroplasts. They have a compact genome size compared to other eukaryotic photosynthesizing microorganisms; some species are genetically engineered and have high growth potential in indoor culture, and some strainscan maintain high growth potential even in outdoor culture. Cyanobacteria are valuable because they can selectively and effectively produce and recover useful substances that are poorly produced by other microalgae, although this depends on the algal species. However, the social implementation of biorefineries using cyanobacteria involves issues such as setting up useful products in addition to the culture methods and strains to be used. This review aims to present research trends over the last 20 years on the production of useful substances such as biodegradable plastics, lipids, polysaccharides, and pigment proteins (phycocyanins) from cyanobacteria. Phycocyanin is mainly recovered and purified by filamentous cyanobacteria and has contributed to the research field, especially in the food and beverage industry. Additionally, the production and functions of phycocyanin are summarized to provide a better understanding of these possibilities. Their potential applications as environmentally friendly materials are also described to further contribute to the research field and social implementation.
Collapse
Affiliation(s)
- Jinichi Aoki
- College of Agriculture, Ibaraki University, 3-21-1 Ami, Inashiki, 300-0393, Ibaraki, Japan
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho Fuchu-shi, Tokyo, 183-8509, Japan
| | - Runa Koshikawa
- College of Agriculture, Ibaraki University, 3-21-1 Ami, Inashiki, 300-0393, Ibaraki, Japan
| | - Munehiko Asayama
- College of Agriculture, Ibaraki University, 3-21-1 Ami, Inashiki, 300-0393, Ibaraki, Japan.
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho Fuchu-shi, Tokyo, 183-8509, Japan.
| |
Collapse
|
4
|
Hosny S, Elshobary ME, El-Sheekh MM. Unleashing the power of microalgae: a pioneering path to sustainability and achieving the sustainable development goals. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025:10.1007/s11356-025-35885-8. [PMID: 39920498 DOI: 10.1007/s11356-025-35885-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 12/30/2024] [Indexed: 02/09/2025]
Abstract
This study explores the remarkable potential of algae in addressing global sustainability challenges. Microalgae, in particular, emerge as sustainability champions. Their applications span an impressive array of industries and processes, including food and feed production, biofuels, cosmetics, pharmaceuticals, and environmental remediation. This versatility positions algae as key players in achieving over 50% of UN Sustainable Development Goals (SDGs) simultaneously, addressing issues such as climate action, clean water and sanitation, affordable and clean energy, and zero hunger. From sequestering carbon, purifying wastewater, and producing clean energy to combating malnutrition, algae demonstrates unparalleled potential. Their ability to flourish in extreme conditions and their rapid growth rates further enhance their appeal for large-scale cultivation. As research advances, innovative applications continue to emerge, such as algae-based bioplastics and dye-sensitized solar cells, promising novel solutions to pressing global issues. This study illuminates how harnessing the power of algae can drive us towards a more resilient, sustainable world. By leveraging algae's multifaceted capabilities, we can tackle climate change, resource scarcity, and economic development concurrently. The research highlights the critical role of algae in promoting circular economy principles and achieving a harmonious balance between human needs and environmental preservation, paving the way for a greener, more sustainable future.
Collapse
Affiliation(s)
- Shimaa Hosny
- National Institute of Oceanography and Fisheries (NIOF), Alexandria, Egypt
| | - Mostafa E Elshobary
- Botany and Microbiology Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt.
- Aquaculture Research, Alfred Wegener Institute (AWI) - Helmholtz Centre for Polar and Marine Research, Am Handelshafen, Bremerhaven, 27570, Germany.
| | - Mostafa M El-Sheekh
- Botany and Microbiology Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| |
Collapse
|
5
|
Kumar S, Ali Kubar A, Sobhi M, Cui Y, Liu W, Hu X, Zhu F, Huo S. Regulation of microclimate and shading effects of microalgal photobioreactors on rooftops: Microalgae as a promising emergent for green roof technology. BIORESOURCE TECHNOLOGY 2024; 394:130209. [PMID: 38135224 DOI: 10.1016/j.biortech.2023.130209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/30/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023]
Abstract
Urban areas remarkably affect global public health due to their emissions of greenhouse gases and poor air quality. Although urban areas only cover 2% of the Earth's surface, they are responsible for 80% of greenhouse gas emissions. Dense buildings limit vegetation, leading to increased air pollution and disruption of the local and regional carbon cycle. The substitution of urban gray roofs with microalgal green roofs has the potential to improve the carbon cycle by sequestering CO2 from the atmosphere. Microalgae can fix 15-50 times more CO2 than other types of vegetation. Advanced microalgal-based green roof technology may significantly accelerate the reduction of atmospheric CO2 in a more effective way. Microalgal green roofs also enhance air quality, oxygen production, acoustic isolation, sunlight absorption, and biomass production. This endeavor yields the advantage of simultaneously generating protein, lipids, vitamins, and a spectrum of valuable bioactive compounds, including astaxanthin, carotenoids, polysaccharides, and phycocyanin, thus contributing to a green economy. The primary focus of the current work is on analyzing the ecological advantages and CO2 bio-fixation efficiency attained through microalgal cultivation on urban rooftops. This study also briefly examines the idea of green roofs, clarifies the ecological benefits associated with them, discusses the practice of growing microalgae on rooftops, identifies the difficulties involved, and the positive aspects of this novel strategy.
Collapse
Affiliation(s)
- Santosh Kumar
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Ameer Ali Kubar
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Mostafa Sobhi
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yi Cui
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Wei Liu
- Qilu University of Technology (Shandong Academy of Sciences), Shandong Analysis and Test Center, Jinan 250014, China
| | - Xinjuan Hu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Feifei Zhu
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Shuhao Huo
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
6
|
Wang J, Qin S, Lin J, Wang Q, Li W, Gao Y. Phycobiliproteins from microalgae: research progress in sustainable production and extraction processes. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:170. [PMID: 37941077 PMCID: PMC10634026 DOI: 10.1186/s13068-023-02387-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 08/27/2023] [Indexed: 11/10/2023]
Abstract
Phycobiliproteins (PBPs), one of the functional proteins from algae, are natural pigment-protein complex containing various amino acids and phycobilins. It has various activities, such as anti-inflammatory and antioxidant properties. And are potential for applications in food, cosmetics, and biomedicine. Improving their metabolic yield is of great interest. Microalgaes are one of the important sources of PBPs, with high growth rate and have the potential for large-scale production. The key to large-scale PBPs production depends on accumulation and recovery of massive productive alga in the upstream stage and the efficiency of microalgae cells breakup and extract PBPs in the downstream stage. Therefore, we reviewed the status quo in the research and development of PBPs production, summarized the advances in each stage and the feasibility of scaled-up production, and demonstrated challenges and future directions in this field.
Collapse
Affiliation(s)
- Jinxin Wang
- College of Life Sciences, Yantai University, Yantai, 264005, China
| | - Song Qin
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China
| | - Jian Lin
- College of Life Sciences, Yantai University, Yantai, 264005, China
| | - Qi Wang
- Shandong University of Traditional Chinese Medicine, Ji'nan, 250355, China
| | - Wenjun Li
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China.
- Shandong University of Traditional Chinese Medicine, Ji'nan, 250355, China.
| | - Yonglin Gao
- College of Life Sciences, Yantai University, Yantai, 264005, China.
| |
Collapse
|
7
|
Ahangar AK, Yaqoubnejad P, Divsalar K, Mousavi S, Taghavijeloudar M. Design a novel internally illuminated mirror photobioreactor to improve microalgae production through homogeneous light distribution. BIORESOURCE TECHNOLOGY 2023; 387:129577. [PMID: 37517708 DOI: 10.1016/j.biortech.2023.129577] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 08/01/2023]
Abstract
In this study, a novel internally illuminated mirror photobioreactor (IIM-PBR) was designed to improve microalgae biomass production through providing a homogenous light distribution in cultivation medium. The performance of the IIM-PBR was compared with internally illuminated control photobioreactor (IIC-PBR) and externally illuminated control photobioreactor (EIC-PBR) in terms of cell growth, wastewater treatment and bioproducts generation. Compared with the IIC-PBR and EIC-PBR, the IIM-PBR increased microalgae growth rate up to 60 % and 30%, respectively. Municipal wastewater treatment revealed that the IIM-PBR could significantly improve nutrients removal as the final removal efficiencies of 90%, 95% and 90% were obtained for nitrate, phosphate and COD, respectively. Moreover, the IIM-PBR increased the total bioproducts production by 89% and 46% compared to in the IIC-PBR and EIC-PBR, respectively. Based on the energy consumption calculation, the mirror's light-reflective properties of the IIM-PBR resulted in a significant reduction of total energy consumption (∼10 times).
Collapse
Affiliation(s)
- Alireza Khaleghzadeh Ahangar
- Department of Environmental Engineering, Faculty of Civil Engineering, Babol Noshirvani University of Technology, 47148-71167 Babol, Iran
| | - Poone Yaqoubnejad
- Department of Environmental Engineering, Faculty of Civil Engineering, Babol Noshirvani University of Technology, 47148-71167 Babol, Iran
| | - Keyhan Divsalar
- Faculty of Chemical Engineering, Babol Noshirvani University of Technology, 47148-71167 Babol, Iran
| | - Shokouh Mousavi
- Faculty of Chemical Engineering, Babol Noshirvani University of Technology, 47148-71167 Babol, Iran
| | - Mohsen Taghavijeloudar
- Department of Civil and Environmental Engineering, Seoul National University, 151-744 Seoul, South Korea.
| |
Collapse
|
8
|
Kumar S, Ali Kubar A, Zhu F, Shao C, Cui Y, Hu X, Ni J, Abdur Rehman Shah M, Ding S, Mehmood S, Huo S. Sunlight filtered via translucent-colored polyvinyl chloride sheets enhanced the light absorption capacity and growth of Arthrospira platensis cultivated in a pilot-scale raceway pond. BIORESOURCE TECHNOLOGY 2023; 386:129501. [PMID: 37468013 DOI: 10.1016/j.biortech.2023.129501] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/13/2023] [Accepted: 07/16/2023] [Indexed: 07/21/2023]
Abstract
In this research, the effects of filtered sunlight traveling through translucent-colored polyvinyl chloride (PVC) sheets on the photoconversion efficiency of Arthrospira platensis are investigated. Filtered sunlight improves the phycobilisome's capacity to completely absorb and transport it to intracellular photosystems. Findings indicated that filtered sunlight via orange-colored PVC sheet increased biomass dry weight by 21% (2.80 g/L), while under blue-colored PVC sheet decreased by 32% (1.49 g/L), when compared with translucent-colored (control) PVC sheet (2.19 g/L) after 120 h of culture. The meteorological conditions during the 1st week of cultivation reported higher light flux than the subsequent weeks. Furthermore, sunlight filtered through orange PVC sheet enhanced protein, allophycocyanin, phycocyanin, chlorophyll-a and carotenoids synthesis by 13%, 15%, 13%, 22%, and 27%, respectively. This practical and inexpensive solar radiation filtration system supports large-scale production of tailored bioactive compounds from microalgae with high growth rate.
Collapse
Affiliation(s)
- Santosh Kumar
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Ameer Ali Kubar
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Feifei Zhu
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Cong Shao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yi Cui
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xinjuan Hu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Jiheng Ni
- School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, China
| | | | - Shengjie Ding
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Shahid Mehmood
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Shuhao Huo
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
9
|
Kubar AA, Kumar S, Liu W, Cui Y, Zhu F, Xu X, Shao C, Hu X, Prempeh NYA, Huo S. Numerical simulation of vortex flow field generated in a novel nested-bottled photobioreactor to improve Arthrospira platensis growth. BIORESOURCE TECHNOLOGY 2023; 373:128710. [PMID: 36754237 DOI: 10.1016/j.biortech.2023.128710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 02/03/2023] [Accepted: 02/04/2023] [Indexed: 06/18/2023]
Abstract
In this study, computational fluid dynamics were employed to examined clockwise and anticlockwise vortexes in the rising and down coming sections of novel nested-bottle photobioreactor. The radial velocity was increased by four times which significantly reduced dead zones compared to traditional PBR. The (NB-PBR) comprised of integrated bottles connected by curved tubes (d = 4 cm) that generated dominant vortices as the microalgae solution flows through each section (h = 10 cm). The (NB-PBR) was independent of the inner and outer sections which increased the mixing time and mass-transfer coefficient by 13.33 % and 42.9 %, respectively. Furthermore, the results indicated that the (NB-PBR) showed higher photosynthesis efficiency preventing self-shading and photo-inhibition, resulting in an increase in biomass yield and carbon dioxide fixation by 35 % and 35.9 %, respectively.
Collapse
Affiliation(s)
- Ameer Ali Kubar
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Santosh Kumar
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Wei Liu
- Qilu University of Technology (Shandong Academy of Sciences), Shandong Analysis and Test Centre, Jinan 250014, China.
| | - Yi Cui
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Feifei Zhu
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China.
| | - Xiangru Xu
- School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Cong Shao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Xinjuan Hu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| | | | - Shuhao Huo
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
10
|
Saleh HM, Hassan AI. Green Conversion of Carbon Dioxide and Sustainable Fuel Synthesis. FIRE 2023; 6:128. [DOI: 10.3390/fire6030128] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/10/2025]
Abstract
Carbon capture and use may provide motivation for the global problem of mitigating global warming from substantial industrial emitters. Captured CO2 may be transformed into a range of products such as methanol as renewable energy sources. Polymers, cement, and heterogeneous catalysts for varying chemical synthesis are examples of commercial goods. Because some of these components may be converted into power, CO2 is a feedstock and excellent energy transporter. By employing collected CO2 from the atmosphere as the primary hydrocarbon source, a carbon-neutral fuel may be created. The fuel is subsequently burned, and CO2 is released into the atmosphere like a byproduct of the combustion process. There is no net carbon dioxide emitted or withdrawn from the environment during this process, hence the name carbon-neutral fuel. In a world with net-zero CO2 emissions, the anthroposphere will have attained its carbon hold-up capacity in response to a particular global average temperature increase, such as 1.5 °C. As a result, each carbon atom removed from the subsurface (lithosphere) must be returned to it, or it will be expelled into the atmosphere. CO2 removal technologies, such as biofuels with carbon sequestration and direct air capture, will be required to lower the high CO2 concentration in the atmosphere if the Paris Agreement’s ambitious climate targets are to be realized. In a carbon-neutral scenario, CO2 consumption with renewable energy is expected to contribute to the displacement of fossil fuels. This article includes a conceptual study and an evaluation of fuel technology that enables a carbon-neutral chemical industry in a net-zero-CO2-emissions environment. These are based on the use of collected CO2 as a feedstock in novel chemical processes, along with “green” hydrogen, or on the use of biomass. It will also shed light on innovative methods of green transformation and getting sustainable, environmentally friendly energy.
Collapse
Affiliation(s)
- Hosam M. Saleh
- Radioisotope Department, Nuclear Research Center, Egyptian Atomic Energy Authority, Cairo 11787, Egypt
| | - Amal I. Hassan
- Radioisotope Department, Nuclear Research Center, Egyptian Atomic Energy Authority, Cairo 11787, Egypt
| |
Collapse
|
11
|
Song Y, Cheng J, Yang Y, Gao Z. Irradiance penetration distribution and flashing light frequency simultaneously affected with microalgal cell absorption and CO 2 bubble scattering in a raceway pond. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 864:160988. [PMID: 36535475 DOI: 10.1016/j.scitotenv.2022.160988] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/13/2022] [Accepted: 12/13/2022] [Indexed: 06/17/2023]
Abstract
In order to investigate light penetration and flashing light frequency for microalgal cell-CO2 bubble culture system in a raceway pond, user-defined function for CO2 mass transfer and bubble scattering models coupled with discrete ordinates radiation model were adopted to clarify simultaneous effects of microalgal cell absorption and CO2 bubble scattering. Light intensity along the microalgal suspension depth attenuated more rapidly with increased biomass concentration, decreased bubble generation diameter, increased CO2 gas content and incident light intensity. Ratio of light zone decreased from 81.13 % to 20.00 % when biomass concentration increased from 0 to 0.4 g/L because of light absorption and shading effects of microalgae. When bubble generation diameter increased from 0.1 to 1.6 mm, ratio of light zone increased from 37.95 % to 42.64 %, while microalgal flashing light cycle first decreased to a valley of 1.81 s at 0.8 mm and then increased. Local light intensity in the upper layers was more enhanced due to lots of CO2 bubbles gathering and reflecting more light with decreased bubble diameter and increased gas content. Light attenuated more rapidly in microalgal suspension with decreased bubble generation diameter and increased CO2 gas content because of increased bubble diffraction coefficient and contact area. When initial CO2 volume fraction increased from 0.02 to 0.2, flashing light frequency of microalgal cells decreased from 0.55 to 0.29 Hz and light zone time ratio φ decreased from 36.90 % to 18.40 %. At a biomass concentration of 0.1 g/L and a bubble flow rate of 0.1 m/s, the maximum light penetration and microalgal growth rate was achieved when bubble diameter, incident light intensity and gas content were optimally at 0.8 mm, 200 W/m2 and 0.02, respectively. This work provides data support and theoretical guidance for photobioreactor design and optimization of light energy utilization.
Collapse
Affiliation(s)
- Yanmei Song
- China Huaneng Group Clean Energy Research Institute, Beijing 102209, China; State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
| | - Jun Cheng
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems of Ministry of Education, Chongqing University, Chongqing 400044, China; State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China.
| | - Yusen Yang
- China Huaneng Group Clean Energy Research Institute, Beijing 102209, China
| | - Zhigang Gao
- Dongtai Cibainian Bioengineering Company Limited, Yancheng 224200, China
| |
Collapse
|
12
|
Ye Q, Shen Y, Zhang Q, Wu X, Guo W. Life-cycle assessment of flue gas CO 2 fixation from coal-fired power plant and coal chemical plant by microalgae. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 848:157728. [PMID: 35917957 DOI: 10.1016/j.scitotenv.2022.157728] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 07/01/2022] [Accepted: 07/26/2022] [Indexed: 06/15/2023]
Abstract
The technology of flue gas CO2 fixation by microalgae is highly attractive in the era of CO2 neutrality. However, CO2 emission along the whole process has yet to be sufficiently evaluated. Here, a life-cycle assessment was performed to evaluate the energy conversion characteristics and environmental impacts of flue gas CO2 fixation from coal-fired power plant (Case 1) and coal chemical plant (Case 2) by microalgae. The results show that total energy consumption and CO2 gas emissions for Case 1 are 27.5-38.0 MJ/kg microalgae power (MP) and 5.7-7.7 kg CO2 equiv/kg MP, respectively, which are lower than that for Case 2 (122.5-181.3 MJ/kg MP and 32.7-48.6 kg CO2 equiv/kg MP). The CO2 gas aeration rate and microalgae growth rate are the two most sensitive parameters for the energy conversion and net CO2 emission. Therefore, increasing the CO2 aeration efficiency and microalgae growth rate are key to advance the technology of flue gas CO2 fixation by microalgae which will contribute to carbon naturality.
Collapse
Affiliation(s)
- Qing Ye
- College of Energy, Soochow University, Suzhou 215006, China
| | - Yu Shen
- College of Energy, Soochow University, Suzhou 215006, China
| | - Qi Zhang
- College of Energy, Soochow University, Suzhou 215006, China
| | - Xi Wu
- College of Energy, Soochow University, Suzhou 215006, China
| | - Wangbiao Guo
- Microbial Sciences Institute, Department of Microbial Pathogenesis, Yale University, New Haven, CT 06511, USA.
| |
Collapse
|
13
|
Sun Y, Hu D, Chang H, Li S, Ho SH. Recent progress on converting CO 2 into microalgal biomass using suspended photobioreactors. BIORESOURCE TECHNOLOGY 2022; 363:127991. [PMID: 36262000 DOI: 10.1016/j.biortech.2022.127991] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/13/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
Inhomogeneous light distribution and poor CO2 transfer capacity are two critical concerns impeding microalgal photosynthesis in practical suspended photobioreactors (PBRs). To provide valuable guidance on designing high-performance PBRs, recent progress on enhancing light and CO2 availabilities is systematically summarized in this review. Particularly, for the first time, the strategies on elevating light availability are classified and discussed from the perspectives of increasing incident light intensity, introducing internal illumination, optimizing flow field, regulating biomass concentrations, and enlarging illumination surface areas. Meanwhile, the strategies on enhancing CO2 light availability are outlined from the aspects of generating smaller bubbles, extending bubbles residence time, and facilitating CO2 dissolution using extra additives. Given the microalgal biomass production using current PBRs are still suffering from low productivity and economic feasibility, the possible future directions for PBRs implementation and development are presented. Altogether, this review is beneficial to furthering development of PBRs as a practical technology.
Collapse
Affiliation(s)
- Yahui Sun
- School of Energy and Mechanical Engineering, Nanjing Normal University, Nanjing 210023, China; Hebei Provincial Lab of Water Environmental Sciences, Hebei Provincial Academy of Ecological and Environmental Sciences, Shijiazhuang 050037, China
| | - Deshen Hu
- School of Energy and Mechanical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Haixing Chang
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China
| | - Shengnan Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Shih-Hsin Ho
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
14
|
Kumar S, Jia D, Kubar AA, Zou X, Huang Z, Rao M, Kuang C, Ye J, Chen C, Chu F, Cheng J. Butterfly Baffle-Enhanced Solution Mixing and Mass Transfer for Improved Microalgal Growth in Double-Column Photobioreactor. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c02994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Santosh Kumar
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
| | - Dongwei Jia
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
| | - Ameer Ali Kubar
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
| | - Xiangbo Zou
- Guangdong Energy Group Science and Technology Research Institute Co., Ltd., Guangzhou 510630, China
| | - Zhimin Huang
- Guangdong Yudean Zhanjiang Biomass Power Co., Ltd., Zhanjiang 524300, China
| | - Mumin Rao
- Guangdong Energy Group Science and Technology Research Institute Co., Ltd., Guangzhou 510630, China
| | - Cao Kuang
- Guangdong Energy Group Science and Technology Research Institute Co., Ltd., Guangzhou 510630, China
| | - Ji Ye
- Guangdong Energy Group Science and Technology Research Institute Co., Ltd., Guangzhou 510630, China
| | - Chuangting Chen
- Guangdong Energy Group Science and Technology Research Institute Co., Ltd., Guangzhou 510630, China
| | - Feifei Chu
- College of Standardization, China Jiliang University, Hangzhou 310018, China
| | - Jun Cheng
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
15
|
Kubar AA, Cheng J, Kumar S, Liu S, Tian J. Developing a Zigzag-baffled column photobioreactor to increase mass-transfer, CO2 fixation and biomass yield during A. platensis cultivation. J CO2 UTIL 2022. [DOI: 10.1016/j.jcou.2022.102126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
16
|
Kumar S, Cheng J, Jia D, Ali Kubar A, Yang W. Enhancing microalgae production by installing concave walls in plate photobioreactors. BIORESOURCE TECHNOLOGY 2022; 345:126479. [PMID: 34864173 DOI: 10.1016/j.biortech.2021.126479] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/28/2021] [Accepted: 11/29/2021] [Indexed: 06/13/2023]
Abstract
In order to optimize light distribution for promoting biomass growth rate of Chlorella pyrenoidosa, concave walls were installed in plate photobioreactors (PBR) to generate rotational flow field of microalgal solution circulated from top inlets to bottom outlets. Flow vortices in four corners of concave-wall PBR resulted in decreased mixing time and increased mass transfer coefficient. The CO2 bio-fixation by C. pyrenoidosa increased by 27% and chlorophyll-a concentration enhanced by 18.5% in concave-wall PBR compared to those in control (flat-wall) PBR. The concave walls diverge light rays to enhance frontal light exposure and supply more light photons into interior regions of PBRs. The promotion in light distribution and vortex flow field with concave walls enhanced light and nutrients utilization by microalgal cells, leading to an increased biomass growth rate by 21%.
Collapse
Affiliation(s)
- Santosh Kumar
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
| | - Jun Cheng
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China.
| | - Dongwei Jia
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
| | - Ameer Ali Kubar
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
| | - Weijuan Yang
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
17
|
Shen Y, Zhang Y, Zhang Q, Ye Q, Cai Q, Wu X. Enhancing the flow field in parallel spiral-flow column photobioreactor to improve CO 2 fixation with Spirulina sp. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 799:149314. [PMID: 34358739 DOI: 10.1016/j.scitotenv.2021.149314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 07/03/2021] [Accepted: 07/23/2021] [Indexed: 06/13/2023]
Abstract
A parallel spiral-flow column photobioreactor (PSCP) composed of eight spiral-flow columns, and two pipe headers was designed for scale-up cultivation of microalgae to capture CO2. To solve the disturbance of spiral flow fields among parallel columns, computational fluid dynamics (CFD) simulation was used to optimize the main structural parameters, such as the number and the height of microalgae solution outlet (MSO), to improve flow field structure and enhance the cells' light/dark cycle. The horizontal velocity in the direction of optical path and the turbulent kinetic energy (TKE) reached the peak values of 0.214 m/s and 5.28 m2/s2 when MSO number was four and MSO height was 1.05 m. Meanwhile, the disturbance of the spiral flow field among parallel columns are minimum, and microalgae light/dark cycle frequency was 33.3% higher than that of conventional bubble column photobioreactor. Therefore, the biomass yield and CO2 fixation rate of microalgae increased by 81.5% and 100.5%, respectively.
Collapse
Affiliation(s)
- Yu Shen
- College of Energy, Soochow University, Suzhou 215006, China
| | - Yingshi Zhang
- College of Energy, Soochow University, Suzhou 215006, China
| | - Qi Zhang
- College of Energy, Soochow University, Suzhou 215006, China
| | - Qing Ye
- College of Energy, Soochow University, Suzhou 215006, China.
| | - Qilin Cai
- School of Rail Transportation, Soochow University, Suzhou 215131, China
| | - Xi Wu
- College of Energy, Soochow University, Suzhou 215006, China.
| |
Collapse
|
18
|
Bio-conversion of CO 2 into biofuels and other value-added chemicals via metabolic engineering. Microbiol Res 2021; 251:126813. [PMID: 34274880 DOI: 10.1016/j.micres.2021.126813] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 06/28/2021] [Accepted: 07/04/2021] [Indexed: 11/24/2022]
Abstract
Carbon dioxide (CO2) occurs naturally in the atmosphere as a trace gas, which is produced naturally as well as by anthropogenic activities. CO2 is a readily available source of carbon that in principle can be used as a raw material for the synthesis of valuable products. The autotrophic organisms are naturally equipped to convert CO2 into biomass by obtaining energy from sunlight or inorganic electron donors. This autotrophic CO2 fixation has been exploited in biotechnology, and microbial cell factories have been metabolically engineered to convert CO2 into biofuels and other value-added bio-based chemicals. A variety of metabolic engineering efforts for CO2 fixation ranging from basic copy, paste, and fine-tuning approaches to engineering and testing of novel synthetic CO2 fixing pathways have been demonstrated. In this paper, we review the current advances and innovations in metabolic engineering for bio-conversion of CO2 into bio biofuels and other value-added bio-based chemicals.
Collapse
|
19
|
Rabaia MKH, Abdelkareem MA, Sayed ET, Elsaid K, Chae KJ, Wilberforce T, Olabi AG. Environmental impacts of solar energy systems: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 754:141989. [PMID: 32920388 DOI: 10.1016/j.scitotenv.2020.141989] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 08/22/2020] [Accepted: 08/24/2020] [Indexed: 06/11/2023]
Abstract
The annual increases in global energy consumption, along with its environmental issues and concerns, are playing significant roles in the massive sustainable and renewable global transmission of energy. Solar energy systems have been grabbing most attention among all the other renewable energy systems throughout the last decade. However, even renewable energies can have some adverse environmental repercussions; therefore, further attention and proper precautional procedures should be given. This paper discusses in detail the environmental impacts of several commercial and emerging solar energy systems at both small- and utility-scales. The study expands to some of the related advances, as well as some of the essential elements in their systems. The approach follows all the stages, starting with the designs, then throughout their manufacturing, materials, construction or installation phases, and over operation lifetime and decommissioning. Specific solutions for most systems such as waste minimization and recycling are discussed, alongside with some technically and ecologically favorable recommendations for mitigating the impacts.
Collapse
Affiliation(s)
- Malek Kamal Hussien Rabaia
- Department of Sustainable and Renewable Energy Engineering, University of Sharjah, 27272 Sharjah, United Arab Emirates
| | - Mohammad Ali Abdelkareem
- Department of Sustainable and Renewable Energy Engineering, University of Sharjah, 27272 Sharjah, United Arab Emirates; Center for Advanced Materials Research, University of Sharjah, 27272 Sharjah, United Arab Emirates; Chemical Engineering Department, Faculty of Engineering, Minia University, Egypt.
| | - Enas Taha Sayed
- Center for Advanced Materials Research, University of Sharjah, 27272 Sharjah, United Arab Emirates; Chemical Engineering Department, Faculty of Engineering, Minia University, Egypt
| | - Khaled Elsaid
- Chemical Engineering Department, Texas A&M University, College Station, TX 77843-3122, USA
| | - Kyu-Jung Chae
- Department of Environmental Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Republic of Korea.
| | - Tabbi Wilberforce
- Mechanical Engineering and Design, Aston University, School of Engineering and Applied Science, Aston Triangle, Birmingham, B4 7ET, UK
| | - A G Olabi
- Department of Sustainable and Renewable Energy Engineering, University of Sharjah, 27272 Sharjah, United Arab Emirates; Center for Advanced Materials Research, University of Sharjah, 27272 Sharjah, United Arab Emirates; Mechanical Engineering and Design, Aston University, School of Engineering and Applied Science, Aston Triangle, Birmingham, B4 7ET, UK.
| |
Collapse
|
20
|
Kumar S, Cheng J, Ali Kubar A, Guo W, Song Y, Liu S, Chen S, Tian J. Orange light spectra filtered through transparent colored polyvinyl chloride sheet enhanced pigment content and growth of Arthrospira cells. BIORESOURCE TECHNOLOGY 2021; 319:124179. [PMID: 33038649 DOI: 10.1016/j.biortech.2020.124179] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 09/22/2020] [Accepted: 09/23/2020] [Indexed: 06/11/2023]
Abstract
Microalgae are significantly affected by the spectra composition with various wavelengths. The development of light harvesting pigments can be controlled with specific wavelength of filtered light received by microalgae. Coverage of open raceway pond using transparent colored polyvinyl chloride sheets (PVCS) to filter light spectra, was assessed for the capacity to enhance biomass growth rate. Results showed that orange PVCS filtered light spectra at wavelengths from 480 to 665 nm, increased biomass dry weight (3.3 g/L) by 61% compared with control condition (white PVCS = 350-750 nm). Light spectra filtered through orange PVCS were more easily absorbed by the light harvesting pigment protein complex (phycobilisome) of Arthrospira platensis cells and subsequently transferred to intracellular photosynthesis reaction centers. Therefore, A. platensis cells cultivated with light spectra filtered through orange PVCS contained 62.7 mg/L chlorophyll-a and 23.5 mg/L carotenoid, which were 40% and 29% higher than control condition (with white PVCS).
Collapse
Affiliation(s)
- Santosh Kumar
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
| | - Jun Cheng
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China.
| | - Ameer Ali Kubar
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
| | - Wangbiao Guo
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
| | - Yanmei Song
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
| | - Shuzheng Liu
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
| | - Shutong Chen
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
| | - Jianglei Tian
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
21
|
Kubar AA, Cheng J, Kumar S, Liu S, Chen S, Tian J. Strengthening mass transfer with the Tesla-valve baffles to increase the biomass yield of Arthrospira platensis in a column photobioreactor. BIORESOURCE TECHNOLOGY 2021; 320:124337. [PMID: 33157436 DOI: 10.1016/j.biortech.2020.124337] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/24/2020] [Accepted: 10/24/2020] [Indexed: 06/11/2023]
Abstract
In this study, the Tesla-valve (TV) baffles were used to optimize the flow field in a column photobioreactor (PBR) in order to promote mass transfer of CO2 gas in the solution. The TV baffles were composed of many tilted plates with central holes and curved arcs facing downwards, installed along inner rising section of the column PBR. Many clockwise and anti-clockwise vortices were generated during the rising flow while passing through proposed TV baffles. An optimum TV baffle structure (30° plate angle, 8 cm arc width) decreased mixing time by 36.4% and increased the mass transfer coefficient by 50%. The TV baffles supported the movement of the A.platensis cells between light and dark regions to enhance their photochemical efficiency ϕPSII by 24.6% and Fv/Fm by 12.7%. Therefore, the biomass yield increased by 28.1% and exhibited an increased helix pitch and trichome length in comparison with traditional column PBR without baffles.
Collapse
Affiliation(s)
- Ameer Ali Kubar
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
| | - Jun Cheng
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China.
| | - Santosh Kumar
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
| | - Shuzheng Liu
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
| | - Shutong Chen
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
| | - Jianglei Tian
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|