1
|
Enjavinezhad SM, Naghibi SJ, Shirazi MP, Baghernejad M, Fernández-Raga M, Rodrigo-Comino J. From fields to cities: Innovating assessment of soil quality in Southern Iran's Urban areas. PLoS One 2025; 20:e0321312. [PMID: 40344008 PMCID: PMC12063871 DOI: 10.1371/journal.pone.0321312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 03/04/2025] [Indexed: 05/11/2025] Open
Abstract
Evaluation of soil quality in urban and peri-urban areas using comparable and reproducible indexes is a necessary step to assess the soil management status and its potential for different uses. The application of quantitative indexes guarantees neutrality and reliability of results, allowing comparisons between areas with similar environmental soil conditions. However, there is no consensus on the application of specific indexes. Therefore, in this research, three indexes (Integrated, Weighted Integrated, and Nemoro´s quality indexes) and two approaches (linear and non-linear methods) were compared to select the most relevant soil properties for evaluating soil quality for different land uses (e.g., agriculture, gardening, parking, rangelands, or bare areas). To this end, an experimental area was selected with a total dataset of 25 physicochemical and biological properties in the Shiraz urban watershed (southern Iran). Nine soil properties were selected using the principal component analysis method as the most informative factors, forming the minimum dataset. The results showed that gardens and bare land had the highest (SQI = 0.34-0.55 across different approaches) and lowest soil quality index (SQI = 0.25-0.44 across different approaches), respectively. The non-linear index calculation approach had better efficiency than the linear one. According to the coefficients of determination (R2 = 0.81-0.89), these key soil variables were suggested as a solution to reduce both the cost and time required for projects carried out by experts and watershed decision-makers to assess soil quality in urban and peri-urban areas.
Collapse
Affiliation(s)
| | - Seyed Javad Naghibi
- Department of Soil Sciences, School of Agriculture, Shiraz University, Shiraz, Iran
- Head of Research & Extension Office, Landscape & Green Spaces Organization of Shiraz Municipality, Shiraz, 45366-78, Iran
| | - Morteza Poozesh Shirazi
- Department of Soil and Water Research, Fars Agricultural and Natural Resources Research and Education Center, AREEO, Shiraz, Iran
| | - Majid Baghernejad
- Department of Soil Sciences, School of Agriculture, Shiraz University, Shiraz, Iran
| | - María Fernández-Raga
- Department of Applied Physics and Chemistry, Industrial Engineering School, University of León, León, Spain
| | - Jesús Rodrigo-Comino
- Departamento de Análisis Geográfico Regional y Geografía Física, Facultad de Filosofía y Letras, Universidad de Granada, Granada, Spain
- Andalusian Research Institute in Data Science and Computational Intelligence (DaSCI), University of Granada, Granada, Spain
| |
Collapse
|
2
|
Li B, Wang J, Zhang J, Jin Q, Wang H, Li W. Biobased hydrophobic liquid mulch film from soybean oil and starch for enhanced terraced field cultivation. Int J Biol Macromol 2024; 283:137490. [PMID: 39549798 DOI: 10.1016/j.ijbiomac.2024.137490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 11/03/2024] [Accepted: 11/08/2024] [Indexed: 11/18/2024]
Abstract
Terraced agriculture faces soil loss during rainstorms leading to natural disasters and crop growth impediments. This study describes a novel biobased hydrophobic liquid mulch film comprised of waste soybean oil, starch, and acrylate monomers that can be used to enhance terraced field cultivation. The novel film, optimized at a 3:7 soybean oil to acrylate monomers ratio, exhibited superior spray ability, reduced wicking, and excellent film formation, which are crucial for its effectiveness as a water erosion barrier. The wet state of the SOSA film demonstrated optimal impact resistance, with increased elongation at break and reduced breaking strength compared to its dry state, facilitating seedling emergence. It significantly improved soil moisture retention (4.8-5.7 %) and temperature (0.9-5.6 °C) and boosted maize seed germination by 28 %. Under extreme conditions of a 24° slope and 90 mm/h rainfall, the SOSA film achieved an 80.6 % reduction in soil loss and a 57.4 % increase in pakchoi yield over bare soil. This study's comprehensive analyses confirmed the film's formation mechanism and provided a scientific basis for its practical application performance, highlighting the film's unprecedented success in using waste materials for sustainable terrace farming and its potential as a transformative approach to soil conservation and crop productivity.
Collapse
Affiliation(s)
- Bo Li
- Department of Chemistry and Material Science, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Ju Wang
- Department of Chemistry and Material Science, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Jiabo Zhang
- Department of Chemistry and Material Science, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Qidong Jin
- Department of Chemistry and Material Science, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Haoyu Wang
- Department of Chemistry and Material Science, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Wenzhuo Li
- Department of Chemistry and Material Science, Nanjing Forestry University, Nanjing 210037, People's Republic of China.
| |
Collapse
|
3
|
Du Y, Wei Y, Zhou Y, Wang Y, Zhang A, Wang T, Li Z. Temporal variation of microbial nutrient limitation in citrus plantations: Insights from soil enzyme stoichiometry. ENVIRONMENTAL RESEARCH 2024; 258:119275. [PMID: 38821463 DOI: 10.1016/j.envres.2024.119275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 05/15/2024] [Accepted: 05/28/2024] [Indexed: 06/02/2024]
Abstract
Soil enzyme carbon (C): nitrogen (N): phosphorous (P) stoichiometry and their vector model has been widely used to elucidate the balance between microbial nutrient requirements and soil nutrient availability. However, limited knowledge is available on the dynamics of soil enzyme stoichiometry and microbial nutrient limitation following afforestation, especially in the economic forest. In this study, the effects of citrus plantation on C: N: P stoichiometry were assessed through a comparative study between cropland and citrus plantations with varying durations of afforestation (i.e., 3, 15, 25, and 35 years). It was found that the C, N, and P contents in the soil (SOC, STN, and STP), microbial biomass (MBC, MBN, and MBP), as well as the activities of C-, N-, and P-acquiring enzymes (BG, NAG, and AP), were 1.02-2.51 times higher than those in cropland. Additionally, C, N, and P contents in soil and microbial biomass increased consistently with increasing afforestation time. While the activities of C-, N-, and P-acquiring enzymes increased from 3 years to 25 years and then significantly decreased. In addition to NAG: AP, the stoichiometry of C, N, and P in soil (SOC: STN, SOC: STP, and STN: STP) and microbial biomass (MBC: MBN, MBC: MBP, and MBN: MBP), along with BG: NAG, exhibited a decline of 7.69-27.38% compared to cropland. Moreover, the majority of the C: N: P stoichiometry in soil, microbial biomass, and enzymes consistently decreased with increasing afforestation time, except for SOC: STN and NAG: AP, which exhibited an opposite trend. Furthermore, a significant decrease in microbial carbon limitation and an increase in microbial nitrogen limitation were observed with increasing afforestation time. Collectively, the dynamic of microbial nutrient limitation was primarily influenced by the interaction between soil nutrients and edaphic factors. The findings suggest that with the increasing duration of citrus plantation, it is crucial to focus on nitrogen (N) fertilization while maintaining a delicate balance between fertilization strategies and soil acidity levels.
Collapse
Affiliation(s)
- Yingni Du
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yujie Wei
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Yiwen Zhou
- Ecological Environment Monitoring and Scientific Research Center, Huaihe Valley Ecology and Environment Administration, Ministry of Ecology and Environment, Bengbu, 233000, China
| | - Yundong Wang
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Aiqun Zhang
- College of Life Science and Technology, Hubei Engineering University, Xiaogan, 432000, China; Hubei Key Laboratory of Quality Control of Characteristic Fruits and Vegetables, Hubei Engineering University, Xiaogan, 432000, Hubei, China
| | - Tianwei Wang
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhaoxia Li
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
4
|
Li T, Zhang B, Du A, Yang S, Huang K, Peng F, Xiao Y. Dynamic Monitoring of Nutrition Inputs and Fertility Evaluation during a Decade in the Main Peach-Producing Areas of Shandong Province, China. PLANTS (BASEL, SWITZERLAND) 2023; 12:1725. [PMID: 37111948 PMCID: PMC10145419 DOI: 10.3390/plants12081725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/09/2023] [Accepted: 04/15/2023] [Indexed: 06/19/2023]
Abstract
The main peach-producing area in Shandong is an important peach fruit-producing area in China. Understanding the nutritional properties of the soil in peach orchards helps us to understand the evolution of soil properties and adjust management methods in a timely manner. This study focuses on 52 peach orchards in the main peach-producing area in Shandong as the research object. The spatiotemporal changes in soil traits and their influential factors were studied in depth, and the changes in soil fertility were effectively evaluated. The results showed that the input of nitrogen, phosphorus and potassium from organic fertilizer in 2021 was significantly higher than that in 2011, while the input of fertilizer in 2011 was significantly higher than that in 2021. Compared with traditional parks, both organic fertilizer inputs and chemical fertilizer inputs in demonstration parks showed a significant downwards trend. There was no significant change in pH values between 2011 and 2021. In 2021, the soil organic matter (SOM) contents of the 0-20 cm and 20-40 cm layers were 24.17 g·kg-1 and 23.38 g·kg-1, respectively, an increase of 29.3% and 78.47% over the values measured in 2011. Compared with 2011, the content of soil alkaloid nitrogen (AN) decreased significantly in 2021, and the contents of available phosphorus (AP) and available potassium (AK) in the soil increased significantly. According to the calculation results of the comprehensive fertility index (IFI) value, we found that in 2021, compared with 2011, the quality of soil fertility improved, most of which was at the medium and high levels. The research results show that the fertilizer-saving and synergistic approach in peach orchards in China significantly improved the soil nutrition. In the future, research on suitable comprehensive technologies should be strengthened in the management of peach orchards.
Collapse
Affiliation(s)
| | | | | | | | | | - Futian Peng
- Correspondence: (F.P.); (Y.X.); Tel.: +86-135-6382-1651 (F.P.); +86-151-6387-3786 (Y.X.)
| | - Yuansong Xiao
- Correspondence: (F.P.); (Y.X.); Tel.: +86-135-6382-1651 (F.P.); +86-151-6387-3786 (Y.X.)
| |
Collapse
|
5
|
Zhou H, Luo X, Wang S, Wang Z, Chen Y, Li X, Tan Z. Findings on agricultural cleaner production in the three Gorges Reservoir Area. Heliyon 2023; 9:e14477. [PMID: 36994411 PMCID: PMC10040507 DOI: 10.1016/j.heliyon.2023.e14477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 03/05/2023] [Accepted: 03/08/2023] [Indexed: 03/18/2023] Open
Abstract
The 'rural revitalization strategy' is important to achieve sustainable development in the Three Gorges Reservoir Area (TGRA), the largest reservoir in China, located in the poverty alleviation region of the Qinling-Daba mountains, and characterized as mountainous and hilly dominated by backwards resettlements. Pig farming around the reservoir area is a key industry, accounting for 0.90% of the arable land area in the country, while the annual pig market represents a 1.37% share of the national figure. Here, 12 study sites were investigated on-site for understanding agricultural green development in the TGRA. We found two main prevailing models: one of ecological circulation (EC), based on animal husbandry and recycling. Of the 12 site, six cases of the ecological circulation model relied on pig husbandry, combined with cropping (grains/fruits/vegetables) by eco-industrial chains, such as pig-biogas-fruit (grain/vegetables), to prevent environmental pollution, while promoting agricultural economic growth by recycling fecal residues and wastewater (FSW) from pig-husbandry facilities to the fields. Our analysis predicted that a farm holding 10,000 pigs may save inorganic nitrogen and phosphorus fertilizers by as much as 74.36 and 11.15 ton·a-1, respectively. On the other hand, five cases of ecological models oriented towards agritourism provided tourists with high-quality ecological products while coordinating environment protection with economic development. In addition, 11 research points applied water and fertilizer integration system for the purpose of saving water. However, lack of sufficient supporting arable land made intensive pig farming a risk of ecological degradation. Green control technologies are rarely used leading to an increase in the type and amount of pesticides. Our study has theoretical and practical significance for decision-makers to promote agricultural cleaner production (ACP).
Collapse
Affiliation(s)
- Houzhen Zhou
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, PR China
| | - Xiaolan Luo
- Institute of Safety, Environmental Protection and Technical Supervision, PetroChina Southwest Oil & Gas Field Company, Chengdu, Sichuan, 610041, China
| | - Shuai Wang
- Chongqing Agricultural Technology Extension Station, Chongqing, 401121, China
| | - Zhaoli Wang
- Chengdu Pollution Resource Monitoring Center, Chengdu, 610011, China
| | - Yangwu Chen
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, PR China
| | - Xin Li
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, PR China
| | - Zhouliang Tan
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, PR China
- Corresponding author.
| |
Collapse
|
6
|
Zhang X, Guo P, Wang Y, Guo S. Impacts of droughts on agricultural and ecological systems based on integrated model in shallow groundwater area. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 851:158228. [PMID: 36007645 DOI: 10.1016/j.scitotenv.2022.158228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 07/17/2022] [Accepted: 08/19/2022] [Indexed: 06/15/2023]
Abstract
Agricultural and ecological developments are increasingly paid attention in light of climate change. It is expected to comprehensively macroscopically control agricultural and ecological developments in shallow groundwater area that ecology is closely related to agricultural development. This study synthesizes multi models, including process-based crop growth model, water status model of shelterbelt, and vegetation-soil-groundwater interactions to identify responses of crops, shelterbelt, and natural vegetation to different level droughts. Obtained results show that the rank of vulnerabilities to droughts is: maize (the most vulnerable crop) > wheat > sunflower > shelterbelt (the least vulnerable vegetation). Under three drought scenarios, the natural vegetation biomass is all in stable states that fluctuations of groundwater salinity and precipitation cannot largely change the natural vegetation biomass. The natural vegetation biomass in equilibrium states is decreased by 4.08 % and 9.19 % respectively when available irrigation water is reduced to 70 % and 50 % levels. The results indicate that controlling and decreasing initial soil salt content before crop growth may be an effective way to avoid the decrease in the yield loss caused by salinization. It is suggested that vulnerable crops and the possible evolution of natural vegetation towards degradation in extreme droughts should be concerned and taken certain measures. This study also implies that optimizing planting structure is a possible strategy to improve adaptabilities to droughts and decrease economic losses. The established model contributes to provide an effective approach to handle large-scale decision-making problems about comprehensively developing agriculture and ecology in changing environments. Obtained results can provide reference strategies for managers to achieve sustainable development.
Collapse
Affiliation(s)
- Xiaoxing Zhang
- Center for Agricultural Water Research in China, China Agricultural University, Beijing 10083, China
| | - Ping Guo
- Center for Agricultural Water Research in China, China Agricultural University, Beijing 10083, China; National Observation and Research Station of Oasis Agricultural Ecosystem, Wuwei, Gansu Province 733000, China.
| | - Youzhi Wang
- Yellow River Institute of Hydraulic Research, Yellow River Conservancy Commission, Zhengzhou 450003, China; Key Laboratory of Water and Soil Conservation in the Loess Plateau, MWR, Zhengzhou 450003, China
| | - Shanshan Guo
- Center for Agricultural Water Research in China, China Agricultural University, Beijing 10083, China
| |
Collapse
|
7
|
Optimization of Reclamation Measures in a Mining Area by Analysis of Variations in Soil Nutrient Grades under Different Types of Land Usage—A Case Study of Pingshuo Coal Mine, China. LAND 2022. [DOI: 10.3390/land11030321] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The development of reclaimed mine soils is normally spatially heterogeneous, making the fine management and utilization of reclaimed mined lands difficult. Soil nutrient grading can provide a scientific basis for the precise regulation of soil nutrients, but few related studies are available in reclaimed mined areas. This study aimed to quantify the spatiotemporal variations in soil nutrient grades under different land-use types in a reclaimed mined area on the Loess Plateau, China. The study area was graded by four soil nutrients (soil available potassium (SAK), soil available phosphorus (SAP), soil total nitrogen (STN), and soil organic matter (SOM)), and the variation features of soil nutrient grades in the initial stage of reclamation under four land-use types (i.e., cultivated land, grassland, forestland, and barren land) were systematically characterized by geostatistical analysis, pedodiversity analysis, and correspondence analysis. The results show that during the initial five years after reclamation, the soil nutrient grades of most reclaimed areas increased from Grade V and VI to Grade I–IV, while the improvements were significantly heterogeneous. Notably, the four land-use types had distinct variation characteristics. The barren land had the lowest SAP level, whereas it had the highest proportion, and medium–high grades of SAK, STN, and SOM (88.3, 100.0, and 100.0%, respectively). In terms of quantitative structure, it had the lowest richness index (S′, 2.5) and Shannon’s entropy index (H′, 0.7) and the highest evenness index (E′, 0.8). These results suggest that the barren land had relatively high and balanced nutrients, with the highest homogeneity among the four land-use types. The grassland had considerable improvement in all nutrients (especially SAP; 95.6% of the area had high SAP grades); however, its improvement was the most heterogeneous (S′ = 4.5, E′ = 0.7). As the second-most heterogeneous land-use type (S′ = 4.0, E′ = 0.8), the forestland had relatively low STN, SAP, and SAK levels due to high nutrient uptake and storage by tree species, but it had the highest proportion of area that reached high SOM grades (36.4%) and medium to high SOM grades (100.0%) due to its high community productivity. The cultivated land, which received fertilization for an additional three years, was the most imbalanced in terms of nutrients. It had the highest proportion of area that reached high SAP grades (98.0%); in contrast, its area proportions of low-grade SAK and SOM (69.0 and 32.9%, respectively) were the highest among the four land-use types. Based on the above comprehensive characterization of soil nutrient grade variation, guidance was given for fine management of reclaimed mined land and the optimization of reclamation measures.
Collapse
|
8
|
Niu YH, Wang L, Wang Z, Yu SX, Zheng JY, Shi ZH. High-frequency monitoring of neonicotinoids dynamics in soil-water systems during hydrological processes. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 292:118219. [PMID: 34626917 DOI: 10.1016/j.envpol.2021.118219] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 09/03/2021] [Accepted: 09/21/2021] [Indexed: 06/13/2023]
Abstract
Neonicotinoids pollution poses a serious threat to aquatic ecosystems. However, there is currently little knowledge about how neonicotinoids are transferred from the agricultural environment to the aquatic environment. Here, we conducted in situ high-frequency monitoring of neonicotinoids in soil-water systems along the hydrological flow path during rainfall to explore the horizontal and vertical transport mechanisms of neonicotinoids. The collected samples included 240 surface runoff, 128 subsurface runoff, 60 eroded sediment, 120 soil and 144 soil solution, which were used to analyse neonicotinoids concentrations. Surface runoff, subsurface runoff and eroded sediment were the three main paths for the horizontal migration of neonicotinoids. In the CK (citrus orchards without grass cover) and grass-covered citrus orchards, there are 15.89% and 2.29% of the applied neonicotinoids were transported with surface runoff, respectively. While in the CK and grass-covered citrus orchards, there are only 1.23% and 0.19% of the applied neonicotinoids were transported with eroded sediment and subsurface runoff. Although the amount of neonicotinoids lost along with eroded sediment was small, the concentration of neonicotinoids in eroded sediment was two orders of magnitude higher than the concentration of neonicotinoids in sediments of the surface water. Meanwhile, neonicotinoids migrated vertically in soil due to water infiltration. In the CK and grass-covered citrus orchards, there are 57.64% and 24.36% of the applied neonicotinoids were retained in soil and soil solution, respectively, and their concentration decreased as soil depth increased. Another noteworthy phenomenon is that more neonicotinoids migrated to deeper soil layers under grass cover compared with no grass cover because grass roots promoted the formation of cracks and vertical preferential flow. Our results are expected to improve the accuracy of neonicotinoids pollution prediction by considering migration paths, including surface and subsurface runoff and eroded sediment.
Collapse
Affiliation(s)
- Y H Niu
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Huazhong Agricultural University, Wuhan, 430072, China
| | - L Wang
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Huazhong Agricultural University, Wuhan, 430072, China.
| | - Z Wang
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Huazhong Agricultural University, Wuhan, 430072, China
| | - S X Yu
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Huazhong Agricultural University, Wuhan, 430072, China
| | - J Y Zheng
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Huazhong Agricultural University, Wuhan, 430072, China
| | - Z H Shi
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Huazhong Agricultural University, Wuhan, 430072, China; CAS Center for Excellence in Quaternary Science and Global Change, Xi'an, 710061, China
| |
Collapse
|
9
|
Huang K, Shen Y, Wang X, Song X, Yuan W, Xie J, Wang S, Bai J, Wang J. Choline-based deep eutectic solvent combined with EDTA-2Na as novel soil washing agent for lead removal in contaminated soil. CHEMOSPHERE 2021; 279:130568. [PMID: 34134409 DOI: 10.1016/j.chemosphere.2021.130568] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 04/07/2021] [Accepted: 04/11/2021] [Indexed: 06/12/2023]
Abstract
Lead-contaminated soil was cleaned through ethylene-diamine-teraacetic acid disodium salt (EDTA-2Na) combined with diluted deep eutectic solvent (DES) which was prepared by mixing choline chloride with ethylene glycol. The influences of leaching temperature, leaching time, liquid-solid (L/S) ratio, concentration of EDTA-2Na, water-DES ratio, and the molar ratio of choline chloride-ethylene glycol (Ch-E) on the leaching rate of lead were investigated. The mineral phases of the soil and DES before and after washing were analyzed using scanning electron microscopy (SEM), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FT-IR). The changes to the DESs before and after dissolving lead nitrate (Pb(NO3)2) were analyzed by high resolution mass spectrometry (HRMS) and nuclear magnetic resonance (NMR). Hydrogen bonds and EDTA-2Na in the Ch-M system resulted in the conversion of Pb(NO3)2 to other complex ions such as [Pb·Ch-E]- and [Pb·EDTA-2Na]- and other complex ions due to the dissolution of the washing agent. The results showed that the soil mineral phase did not change significantly and up to 95.79% of Pb could be washed under temperature, time, L/S ratio, EDTA-2Na concentration, DES/water ratio, Ch-E molar ratio, and stirring speed conditions of 40 °C, 2 h, 6, 0.02 M, 2, 0.75 and 300 rpm, respectively. The hydrogen bonds and EDTA-2Na may play a key role in the remediation of lead-contaminated soil by a washing agent. This research describes a rapid, efficient, and environmentally friendly method for remediation of lead-contaminated soil.
Collapse
Affiliation(s)
- Kaiyou Huang
- School of Environmental and Materials Engineering, Shanghai Polytechnic University, Shanghai, 201209, China
| | - Yingjie Shen
- School of Environmental and Materials Engineering, Shanghai Polytechnic University, Shanghai, 201209, China
| | - Xiaoyan Wang
- School of Environmental and Materials Engineering, Shanghai Polytechnic University, Shanghai, 201209, China
| | - Xiaolong Song
- Shanghai Collaborative Innovation Centre for WEEE Recycling, Shanghai Polytechnic University, Shanghai, 201209, China.
| | - Wenyi Yuan
- Shanghai Collaborative Innovation Centre for WEEE Recycling, Shanghai Polytechnic University, Shanghai, 201209, China.
| | - Junying Xie
- School of Environmental and Materials Engineering, Shanghai Polytechnic University, Shanghai, 201209, China
| | - Shenyang Wang
- School of Environmental and Materials Engineering, Shanghai Polytechnic University, Shanghai, 201209, China
| | - Jianfeng Bai
- Shanghai Collaborative Innovation Centre for WEEE Recycling, Shanghai Polytechnic University, Shanghai, 201209, China
| | - Jingwei Wang
- Shanghai Collaborative Innovation Centre for WEEE Recycling, Shanghai Polytechnic University, Shanghai, 201209, China
| |
Collapse
|
10
|
Assessment of Potato Farmland Soil Nutrient Based on MDS-SQI Model in the Loess Plateau. SUSTAINABILITY 2021. [DOI: 10.3390/su13073957] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Soil nutrients are essential nutrients provided by soil for plant growth. Most researchers focus on the coupling effect of nutrients with potato yield and quality. There are few studies on the evaluation of soil nutrients in potato fields. The purpose of this study is to investigate the soil nutrients of potato farmland and the soil vertical nutrient distributions, and then to provide a theoretical and experimental basis for the fertilizer management practices for potatoes in Loess Plateau. Eight physical and chemical soil indexes were selected in the study area, and 810 farmland soil samples from the potato agriculture product areas were analyzed in Northern Shaanxi. The paper established the minimum data set (MDS) for the quality diagnosis of the cultivated layer for farmland by principal component analysis (PCA), respectively, and furthermore, analyzed the soil nutrient characteristics of the cultivated layer adopted soil quality index (SQI). The results showed that the MDS on soil quality diagnosis of the cultivated layer for farmland soil included such indicators as the soil organic matter content, soil available potassium content, and soil available phosphorus content. The comprehensive index value of the soil quality was between 0.064 and 0.302. The SPSS average clustering process used to classify SQI was divided into three grades: class I (36.2%) was defined as suitable soil fertility (SQI < 0.122), class II (55.6%) was defined as moderate soil fertility (0.122 < SQI < 0.18), and class III (8.2%) was defined as poor soil fertility (SQI > 0.186). The comprehensive quality of the potato farmland soils was generally low. The proportion of soil nutrients in the SQI composition ranged from large to small as the soil available potassium content = soil available phosphorus content > soil organic matter content, which became the limiting factor of the soil organic matter content in this area. This study revolves around the 0 to 60 cm soil layer; the soil fertility decreased gradually with the soil depth, and had significant differences between the respective soil layers. In order to improve the soil nutrient accumulation and potato yield in potato farmland in northern Shaanxi, it is suggested to increase the fertilization depth (20 to 40 cm) and further study the ratio of nitrogen, phosphorus, and potassium fertilizer.
Collapse
|
11
|
UPLC-Q-TOF/MS-based untargeted metabolomics for discrimination of navel oranges from different geographical origins of China. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110382] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|