1
|
Gigena ML, Xiao D, Li F, Wu C, Zhang Y. Methodological study on coal-based microbial modification of mineral black clay to overcome plant growth challenges on open-pit mine dumps in cold regions. MethodsX 2025; 14:103138. [PMID: 39866195 PMCID: PMC11758207 DOI: 10.1016/j.mex.2024.103138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 12/26/2024] [Indexed: 01/28/2025] Open
Abstract
A critical challenge in ecological restoration of open-pit mine dumps in cold regions with limited topsoil resources is how to rapidly mitigate the plant growth-inhibitory effects of mineral black clay, thereby converting it into arable soil. Leveraging the high degradation capacity of coal seam-associated microorganisms on fossil carbon materials, combined with soil conditioning techniques, this study developed a microbial-based approach for modifying black clay. Seed germination experiments informed both laboratory and field trial designs. This approach focused on removing germination-inhibiting compounds, establishing a plant-compatible soil ecological environment, and employing composite strategies to reduce soil viscosity. Field experiments demonstrated that in-situ microbial modification of black clay effectively supports ecological restoration, enhances plant growth. To refine and implement this microbial-based bioremediation strategy in practical ecological restoration efforts, two key technical methods were employed:•A comprehensive experimental protocol was established for black clay bioremediation, covering both laboratory-scale and field test procedures, ensuring the approach can be readily adapted to diverse environmental conditions.•By incorporating the characteristics of local species, employing representative seed germination tests to assess plant compatibility can facilitate a rapid evaluation of the bioconversion of mineral substrates into arable soils.
Collapse
Affiliation(s)
- María Laura Gigena
- CUMT-UCASAL Joint Research Center for Biomining and Soil Ecological Restoration, State Key Laboratory for Fine Exploration and Intelligent Development of Coal Resources, China University of Mining and Technology, Xuzhou, Jiangsu province, 221116, PR China
- Key Laboratory of Xinjiang Coal Resources Green Mining, Ministry of Education, Xinjiang Institute of Engineering, Urumqi, 830023, PR China
- CUMT-UCASAL Joint Research Center for Biomining and Soil Ecological Restoration, Universidad Católica de Salta, Salta, A4400EDD, Argentina
| | - Dong Xiao
- CUMT-UCASAL Joint Research Center for Biomining and Soil Ecological Restoration, State Key Laboratory for Fine Exploration and Intelligent Development of Coal Resources, China University of Mining and Technology, Xuzhou, Jiangsu province, 221116, PR China
| | - Fangzhou Li
- CUMT-UCASAL Joint Research Center for Biomining and Soil Ecological Restoration, Universidad Católica de Salta, Salta, A4400EDD, Argentina
| | - Chengyu Wu
- CUMT-UCASAL Joint Research Center for Biomining and Soil Ecological Restoration, State Key Laboratory for Fine Exploration and Intelligent Development of Coal Resources, China University of Mining and Technology, Xuzhou, Jiangsu province, 221116, PR China
| | - Yuhong Zhang
- CUMT-UCASAL Joint Research Center for Biomining and Soil Ecological Restoration, State Key Laboratory for Fine Exploration and Intelligent Development of Coal Resources, China University of Mining and Technology, Xuzhou, Jiangsu province, 221116, PR China
- Key Laboratory of Xinjiang Coal Resources Green Mining, Ministry of Education, Xinjiang Institute of Engineering, Urumqi, 830023, PR China
| |
Collapse
|
2
|
Ren Z, Gao H, Martyniuk N, Ren H, Xiong X, Luo W. Dual-Domain Primary Succession of Bacteria in Glacier Forefield Streams and Soils of a Maritime and Continental Glacier. MICROBIAL ECOLOGY 2025; 88:5. [PMID: 39954056 PMCID: PMC11829940 DOI: 10.1007/s00248-024-02486-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Accepted: 12/23/2024] [Indexed: 02/17/2025]
Abstract
Glaciers retreat rapidly and create newly exposed terrestrial and aquatic habitats in glacier forefields, where primary succession proceeds synchronously in glacier forefields. Here, we introduced the "Dual-Domain Primary Succession" concept to examine the parallel yet distinct primary succession processes in soil and stream ecosystems within glacier forefields, by focusing on Hailuogou Glacier and Urumqi Glacier No.1 in China. Findings showed that soil bacterial communities exhibited higher α-diversity with a decreasing pattern in Hailuogou Glacier, in contrast to Urumqi Glacier No.1, which displayed lower and unimodally distributed α-diversity along the glacier forefield chronosequence (GFC). A similar pattern emerged in streams, except for an increasing α-diversity trend in Urumqi Glacier No.1 stream along the GFC. Additionally, α-diversity in streams changed more rapidly than in soils for Hailuogou Glacier, but more slowly for Urumqi Glacier No.1. Along GFC, both soil and stream bacterial communities experienced spatial variations, primarily due to species turnover. The succession of community composition was evident at the OTU level, with each module in the co-occurrence network consisting of OTUs enriched at specific successional stages. A substantial number of OTUs shared between paired soil and stream samples showed a decreasing trend along the GFC, while β-diversity increased. The results suggested that bacterial communities have a similar succession pattern but in different pace between soil and stream while having distinct successional trajectories between the studied glaciers. This study highlighted the "Dual-Domain Primary Succession" in glacier forefields, but further studies with more glaciers are necessary to make broader generalizations.
Collapse
Affiliation(s)
- Ze Ren
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China.
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China.
| | - Hongkai Gao
- Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, Shanghai, 200241, China
| | - Nicolas Martyniuk
- Laboratorio de Limnología, INIBIOMA, CONICET-Universidad Nacional del Comahue, Quintral 1250, 8400, Bariloche, Argentina
| | - Heng Ren
- Linze Inland River Basin Research Station, Key Laboratory of Ecohydrology of Inland River Basin, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, Gansu, China
| | - Xiong Xiong
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Wei Luo
- Key Laboratory of Polar Science, Ministry of Natural Resources, Polar Research Institute of China, Shanghai, 200136, China.
- School of Oceanography, Shanghai Jiao Tong University, Shanghai, 200030, China.
- The Technology and Equipment Engineering Centre for Polar Observations, Zhejiang University, Zhoushan, 316000, China.
| |
Collapse
|
3
|
Ran F, Zhou C, Wang J. Distribution characteristics of soil active organic carbon at different elevations and its effects on microbial communities in southeast Tibet. Front Microbiol 2024; 15:1458750. [PMID: 39507336 PMCID: PMC11537981 DOI: 10.3389/fmicb.2024.1458750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 10/07/2024] [Indexed: 11/08/2024] Open
Abstract
Global mountain ecosystems have garnered significant attention due to their rich biodiversity and crucial ecological functions; however, there is a dearth of research on the variations in soil active organic carbon across altitudinal gradients and their impacts on microbial communities. In this study, soil samples at an altitude of 3,800 m to 4,400 m were collected from Sejira Mountain in the southeast Tibet, and soil active organic carbon components, soil microbial community diversity, composition and structure distribution and their relationships were systematically analyzed. The results revealed a non-linear relationship between the elevation and the contents of soil organic carbon (SOC) and easily oxidized organic carbon (ROC), with an initial increase followed by a subsequent decrease, reaching their peak at an altitude of 4,200 m. The Shannon diversity of bacteria exhibited a significant decrease with increasing altitude, whereas no significant change was observed in the diversity of fungi. The bacterial community primarily comprised Acidobacteria, Proteobacteria, Chloroflexi, and Actinobacteriota. Among them, the relative abundance of Proteobacteria exhibited a negative correlation with increasing altitude, whereas Actinobacteriota demonstrated a positive correlation with elevation. The fungal communities primarily consisted of Basidiomycota, Ascomycota, and Mortierellomycota, with Ascomycota prevailing at lower altitudes and Basidiomycota dominating at higher altitudes. The diversity and composition of bacterial communities were primarily influenced by altitude, SOC, ROC, and POC (particulate organic carbon). Soil carbon-to-nitrogen ratio (C/N), dissolved organic carbon (DOC), and available phosphorus (AP) emerged as key factors influencing fungal community diversity, while POC played a pivotal role in shaping the composition and structure of the fungal community. In conclusion, we believe that soil active organic carbon components had a greater impact on the bacterial community in the primary forest ecosystem in southeast Tibet with the elevation gradient increasing, which provided a theoretical basis for further understanding of the relationship between the microbial community and soil carbon cycle in the plateau mountain ecosystem under the background of climate change.
Collapse
Affiliation(s)
- Fanglin Ran
- Research Institute of Tibet Plateau Ecology, Tibet Agriculture and Animal Husbandry University, Nyingchi, China
- Key Laboratory of Forest Ecology in Tibet Plateau, Ministry of Education, Nyingchi, China
- National Key Station of Field Scientific Observation and Experiment, Nyingchi, China
- Key Laboratory of Alpine Vegetation Ecological Security in Tibet, Nyingchi, China
- Institute of Highland Forest Science, Chinese Academy of Forestry, Kunming, China
| | - Chenni Zhou
- Research Institute of Tibet Plateau Ecology, Tibet Agriculture and Animal Husbandry University, Nyingchi, China
- Key Laboratory of Forest Ecology in Tibet Plateau, Ministry of Education, Nyingchi, China
- National Key Station of Field Scientific Observation and Experiment, Nyingchi, China
- Key Laboratory of Alpine Vegetation Ecological Security in Tibet, Nyingchi, China
- Institute of Highland Forest Science, Chinese Academy of Forestry, Kunming, China
- Research Center of Agricultural Economy, School of Economics, Sichuan University of Science and Engineering, Yibin, China
| | - Jianke Wang
- Research Institute of Tibet Plateau Ecology, Tibet Agriculture and Animal Husbandry University, Nyingchi, China
- Key Laboratory of Forest Ecology in Tibet Plateau, Ministry of Education, Nyingchi, China
- National Key Station of Field Scientific Observation and Experiment, Nyingchi, China
- Key Laboratory of Alpine Vegetation Ecological Security in Tibet, Nyingchi, China
- Institute of Highland Forest Science, Chinese Academy of Forestry, Kunming, China
| |
Collapse
|
4
|
Ma N, Han L, Hou S, Gui L, Yuan Z, Sun S, Wang Z, Yang B, Yang C. Insights into the effects of saline forage on the meat quality of Tibetan sheep by metabolome and multivariate analysis. Food Chem X 2024; 22:101411. [PMID: 38756473 PMCID: PMC11096943 DOI: 10.1016/j.fochx.2024.101411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/21/2024] [Accepted: 04/22/2024] [Indexed: 05/18/2024] Open
Abstract
This work aimed to investigate how two different types of forage (saline and alkaline) impact the meat quality and muscle metabolism of Tibetan sheep. An integrative multi-omics analysis of meat quality and different metabolites was performed using untargeted and targeted metabolomics approaches. The research results indicated that GG grass (saline and alkaline forage) possessed superior characteristics in terms of apparent quality and secondary metabolite content compared with HG grass (Non saline alkali forage), regardless of the targeted metabolites or non-targeted ones. Simultaneously, under stress conditions, the carbohydrates-rich salt-alkali grass play a significant role in slowing down the decline in pH, increasing the unsaturated fatty acid content and reducing the thawing loss in Tibetan sheep. This study provides an understanding of the impact of different salt-alkali grass on the quality of Tibetan sheep meat, while providing a scientific basis for the future development of salt-alkali livestock industry.
Collapse
Affiliation(s)
- Nana Ma
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, China
| | - Lijuan Han
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, China
| | - Shengzhen Hou
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, China
| | - Linsheng Gui
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, China
| | - Zhenzhen Yuan
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, China
| | - Shengnan Sun
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, China
| | - Zhiyou Wang
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, China
| | - Baochun Yang
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, China
| | - Chao Yang
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, China
| |
Collapse
|
5
|
Song Y, Song T, An Y, Shan L, Su X, Yu S. Soil ecoenzyme activities coupled with soil properties and plant biomass strongly influence the variation in soil organic carbon components in semi-arid degraded wetlands. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 922:171361. [PMID: 38428614 DOI: 10.1016/j.scitotenv.2024.171361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 02/17/2024] [Accepted: 02/27/2024] [Indexed: 03/03/2024]
Abstract
Wetland degradation can induce alterations in plant biomass, soil properties, and soil ecoenzyme activities, consequently influencing soil organic carbon components. Despite extensive investigations into the relationships among plant characteristics, soil properties, and soil organic carbon components, the enzymatic mechanisms underlying changes in soil organic carbon components, particularly the impact and contribution of ecoenzyme activities, remain poorly understood. This study compared the soil organic carbon components at a depth of 0-20 cm in wetlands in the semi-arid western Songnen Plain under different degradation levels and explored plant biomass, soil properties, and soil ecoenzyme activities. The results showed that the soil total organic carbon, labile organic carbon, and recalcitrant organic carbon contents in the degraded wetlands were generally lower than those in the non-degraded wetlands. Furthermore, the soil nutrient contents and soil β-1,4-glucosidase, L-leucine aminopeptidase, and acid phosphatase activities were also lower in the degraded wetlands than in the non-degraded wetlands. Vector analysis of enzymatic stoichiometry revealed that wetland degradation did not increase microbial carbon limitation. The soil organic carbon components showed significant positive correlations with plant biomass, soil water content, soil total nitrogen, soil total phosphorus, as well as soil ecoenzyme activities. Variation partitioning analysis revealed that plant biomass, soil properties, soil ecoenzyme activities collectively accounted for 78.5 % variation in soil organic carbon components, among which plant biomass, soil properties, soil ecoenzyme activities, and their interactions explaining 4.2 %, 8.0 %, 7.9 %, and 24.5 % of the variation, respectively. Therefore, the impact of soil ecoenzyme activities and soil properties on soil organic carbon component changes was greater than that of plant biomass, with the interaction of these three factors playing a crucial role in soil organic carbon formation. This study provides a theoretical basis for scientifically evaluating the carbon sink function of degraded wetland soil and preserving the wetland soil carbon pool.
Collapse
Affiliation(s)
- Yazhi Song
- Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, Changchun 130026, China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun 130026, China
| | - Tiejun Song
- Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, Changchun 130026, China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun 130026, China.
| | - Yu An
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Liping Shan
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Xiaosi Su
- Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, Changchun 130026, China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun 130026, China
| | - Shuiduo Yu
- Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, Changchun 130026, China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun 130026, China
| |
Collapse
|
6
|
Wang L, Arif M, Zheng J, Li C. Patterns and drivers of plant carbon, nitrogen, and phosphorus stoichiometry in a novel riparian ecosystem. FRONTIERS IN PLANT SCIENCE 2024; 15:1354222. [PMID: 38654903 PMCID: PMC11036011 DOI: 10.3389/fpls.2024.1354222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 03/26/2024] [Indexed: 04/26/2024]
Abstract
Carbon (C), nitrogen (N), and phosphorus (P) stoichiometry serve as valuable indices for plant nutrient utilization and biogeochemical cycling within ecosystems. However, the allocation of these nutrients among different plant organs and the underlying drivers in dynamic riparian ecosystems remain inadequately understood. In this study, we gathered plant samples from diverse life forms (annuals and perennials) and organs (leaves, stems, and roots) in the riparian zone of the Three Gorges Reservoir Region (TGRR) in China-a novel ecosystem subject to winter flooding. We used random forest analysis and structural equation modeling to find out how flooding, life forms, plant communities, and soil variables affect organs C, N, and P levels. Results showed that the mean concentrations of plant C, N, and P in the riparian zone of the TGRR were 386.65, 19.31, and 5.27 mg/g for leaves respectively, 404.02, 11.23, and 4.81 mg/g for stems respectively, and 388.22, 9.32, and 3.27 mg/g for roots respectively. The C:N, C:P and N:P ratios were 16.15, 191.7 and 5.56 for leaves respectively; 26.98, 273.72 and 4.6 for stems respectively; and 16.63, 223.06 and 4.77 for roots respectively. Riparian plants exhibited nitrogen limitation, with weak carbon sequestration, low nutrient utilization efficiency, and a high capacity for nutrient uptake. Plant C:N:P stoichiometry was significantly different across life forms and organs, with higher N and P concentrations in leaves than stems and roots, and higher in annuals than perennials. While flooding stress triggered distinct responses in the C, N, and P concentrations among annual and perennial plants, they maintained similar stoichiometric ratios along flooding gradients. Furthermore, our investigation identified soil properties and life forms as more influential factors than plant communities in shaping variations in C:N:P stoichiometry in organs. Flooding indirectly impacts plant C:N:P stoichiometry primarily through alterations in plant community composition and soil factors. This study underscores the potential for hydrologic changes to influence plant community composition and soil nutrient dynamics, and further alter plant ecological strategies and biogeochemical cycling in riparian ecosystems.
Collapse
Affiliation(s)
- Lei Wang
- Key Laboratory of Eco-Environments in the Three Gorges Reservoir Region (Ministry of Education), School of Life Sciences, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Plant Ecology and Resources Research in the Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing, China
| | - Muhammad Arif
- Key Laboratory of Eco-Environments in the Three Gorges Reservoir Region (Ministry of Education), School of Life Sciences, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Plant Ecology and Resources Research in the Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing, China
- Biological Science Research Center, Academy for Advanced Interdisciplinary Studies, Southwest University, Chongqing, China
| | - Jie Zheng
- Key Laboratory of Eco-Environments in the Three Gorges Reservoir Region (Ministry of Education), School of Life Sciences, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Plant Ecology and Resources Research in the Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing, China
- Biological Science Research Center, Academy for Advanced Interdisciplinary Studies, Southwest University, Chongqing, China
| | - Changxiao Li
- Key Laboratory of Eco-Environments in the Three Gorges Reservoir Region (Ministry of Education), School of Life Sciences, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Plant Ecology and Resources Research in the Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing, China
- Biological Science Research Center, Academy for Advanced Interdisciplinary Studies, Southwest University, Chongqing, China
| |
Collapse
|
7
|
Song Z, Zuo X, Zhao X, Qiao J, Ya H, Li X, Yue P, Chen M, Wang S, Medina-Roldán E. Plant functional traits mediate the response magnitude of plant-litter-soil microbial C: N: P stoichiometry to nitrogen addition in a desert steppe. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 915:169915. [PMID: 38190901 DOI: 10.1016/j.scitotenv.2024.169915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 01/02/2024] [Accepted: 01/02/2024] [Indexed: 01/10/2024]
Abstract
Global nitrogen deposition is significantly altering the carbon (C), nitrogen (N) and phosphorus (P) stoichiometry in terrestrial ecosystems, yet how N deposition simultaneously affects plant-litter-soil-soil microbial stoichiometry in arid grassland is still unclear. In a five-year experimental study conducted in a desert steppe in Northern China, we investigated the effects of N addition on the C:N:P stoichiometry of plants, litter, soil, and soil microbes. We also used structural equation modelling (SEM) exploring the direct or indirect effects of N addition, plant species diversity, functional traits and diversity, soil microbial diversity, soil pH, soil electrical conductivity (EC) and moisture on the stoichiometry in plant-soil system. The results showed that N addition increased the N, P concentrations and N:P in plants, the N concentration and N:P in litter, and the C, N concentrations, C:P and N:P in microbes. Conversely, it decreased the C:N and C:P in plants, and litter C:N. Functional traits, functional dispersion (FDis), soil pH and EC accounted for a substantial proportion of the observed variations in elemental concentrations (from 42 % to 69 %) and stoichiometry (from 9 % to 73 %) across different components. SEM results showed that N addition decreased C:N and C:P in plants and litter by increasing FDis and leaf N content, while increased plant and litter N:P by decreasing leaf C content and increasing specific leaf area, respectively. Furthermore, N addition increased microbial C:P by increasing leaf thickness. We also found the mediating effects of soil pH and EC on C:N, C:P of litter and microbial N:P. Overall, our research suggests that plant functional traits as key predictors of nutrient cycling responses in desert steppes under N addition. This study extends the application of plant functional traits, enhances our understanding of C and nutrient cycling and facilitates predicting the response of desert steppes to N deposition.
Collapse
Affiliation(s)
- Zhaobin Song
- Urat Desert-grassland Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Science, Lanzhou 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China; Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions, Lanzhou 730000, China
| | - Xiaoan Zuo
- Urat Desert-grassland Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Science, Lanzhou 730000, China; Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions, Lanzhou 730000, China; Naiman Desertification Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Tongliao 028300, China.
| | - Xueyong Zhao
- Urat Desert-grassland Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Science, Lanzhou 730000, China; Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions, Lanzhou 730000, China; Naiman Desertification Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Tongliao 028300, China
| | - Jingjuan Qiao
- Urat Desert-grassland Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Science, Lanzhou 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China; Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions, Lanzhou 730000, China
| | - Hu Ya
- Urat Desert-grassland Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Science, Lanzhou 730000, China; Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions, Lanzhou 730000, China
| | - Xiangyun Li
- Urat Desert-grassland Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Science, Lanzhou 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China; Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions, Lanzhou 730000, China
| | - Ping Yue
- Urat Desert-grassland Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Science, Lanzhou 730000, China; Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions, Lanzhou 730000, China
| | - Min Chen
- Urat Desert-grassland Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Science, Lanzhou 730000, China; Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions, Lanzhou 730000, China
| | - Shaokun Wang
- Urat Desert-grassland Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Science, Lanzhou 730000, China; Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions, Lanzhou 730000, China
| | - Eduardo Medina-Roldán
- Institute of BioEconomy-National Research Council (IBE-CNR), Sesto Fiorentino 50019, Italy
| |
Collapse
|
8
|
Cui H, He C, Zheng W, Jiang Z, Yang J. Effects of nitrogen addition on rhizosphere priming: The role of stoichiometric imbalance. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 914:169731. [PMID: 38163589 DOI: 10.1016/j.scitotenv.2023.169731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 12/24/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024]
Abstract
Nitrogen (N) input has a significant impact on the availability of carbon (C), nitrogen (N), and phosphorus (P) in the rhizosphere, leading to an imbalanced stoichiometry in microbial demands. This imbalance can result in energy or nutrient limitations, which, in turn, affect C dynamics during plant growth. However, the precise influence of N addition on the C:N:P imbalance ratio and its subsequent effects on rhizosphere priming effects (RPEs) remain unclear. To address this gap, we conducted a 75-day microcosm experiment, varying N addition rates (0, 150, 300 kg N ha-1), to examine how microbes regulate RPE by adapting to stoichiometry and maintaining homeostasis in response to N addition, using the 13C natural method. Our result showed that N input induced a stoichiometric imbalance in C:N:P, leading to P or C limitation for microbes during plant growth. Microbes responded by adjusting enzymatic stoichiometry and functional taxa to preserve homeostasis, thereby modifying the threshold element ratios (TERs) to cope with the C:N:P imbalance. Microbes adapted to the stoichiometric imbalance by reducing TER, which was attributed to a reduction in carbon use efficiency. Consequently, we observed higher RPE under P limitation, whereas the opposite trend was observed under C or N limitation. These results offer novel insights into the microbial regulation of RPE variation under different soil nutrient conditions and contribute to a better understanding of soil C dynamics.
Collapse
Affiliation(s)
- Hao Cui
- Institute of Environment Pollution Control and Treatment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Chao He
- Institute of Environment Pollution Control and Treatment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Weiwei Zheng
- Institute of Environment Pollution Control and Treatment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Zhenhui Jiang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, Zhejiang, China.
| | - Jingping Yang
- Institute of Environment Pollution Control and Treatment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China.
| |
Collapse
|
9
|
Jiang X, Qu Y, Zeng H, Yang J, Liu L, Deng D, Ma Y, Chen D, Jian B, Guan L, He L. Long-term ecological restoration increased plant diversity and soil total phosphorus content of the alpine flowing sand land in northwest Sichuan, China. Heliyon 2024; 10:e24035. [PMID: 38268836 PMCID: PMC10803908 DOI: 10.1016/j.heliyon.2024.e24035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 12/19/2023] [Accepted: 01/02/2024] [Indexed: 01/26/2024] Open
Abstract
The ecological restoration techniques that combine grazing, sand barriers with willows, fertilization, artificial planting, and continuous management are increasingly adopted in the management of flowing sandy land in high-altitude and cold regions. However, few studies have focused on the long-term ecological restoration effects of such technologies. This study systematically compared the vegetation and soil characteristics under different ecological restoration durations (0 (CK), 3 (F1), 14 (F2), 26 (F3), and 46 (F4) years) in the alpine sandy land of northwest Sichuan. The results showed that, with the increase of ecological restoration durations, (1) the aboveground and underground biomass of plants, and species number significantly increased, while the shannon-wiener index, margalef index, and simpson index dramatically decreased; (2) in the early stage of ecological restoration (0-3 yr), Cyperaceae accounted for the main groups, while in the late stage of ecological restoration (14-46 yr), Leguminosae and Forb groups predominated; (3) ecological restoration durations significantly influenced the total phosphorus (TP) content at a soil depth of 0-60 cm, but soil organic carbon and C/P ratio were only significantly impacted at 40-60 cm; (4) the plant and soil characteristics of F1, F2, and F3 treatments were more similar, and CK and F4 treatments were clearly distinguished on PC1 of principal component analysis; (5) there was no significant correlation between Leguminosae groups and environmental factors. Instead, a correlation between total nitrogen (TN) and Forb groups, Gramineae groups, and Cyperaceae groups was revealed. TN was very significantly positively correlated with species diversity and TP. Long-term ecological restoration improved plants biomass, plant species diversity, functional plant groups, and increased soil TP content in the alpine sandy land of northwest Sichuan.
Collapse
Affiliation(s)
- Xue Jiang
- Engineering Research Center for Forest and Grassland Disaster Prevention and Reduction, Mianyang Normal University, Mianyang, 621000, China
- Ecological and Security Key laboratory of Sichuan Province, Mianyang Normal University, Mianyang, 621000, China
| | - Yanping Qu
- College of Life Science and Biotechnology, Mianyang Normal University, Mianyang, 621000, China
| | - Houyuan Zeng
- College of Life Science and Biotechnology, Mianyang Normal University, Mianyang, 621000, China
| | - Jingtian Yang
- Ecological and Security Key laboratory of Sichuan Province, Mianyang Normal University, Mianyang, 621000, China
| | - Lei Liu
- Engineering Research Center for Forest and Grassland Disaster Prevention and Reduction, Mianyang Normal University, Mianyang, 621000, China
- Ecological and Security Key laboratory of Sichuan Province, Mianyang Normal University, Mianyang, 621000, China
| | - Dongzhou Deng
- Sichuan Academy of Forestry Sciences, Chengdu, 610081, China
| | - Yunlong Ma
- Engineering Research Center for Forest and Grassland Disaster Prevention and Reduction, Mianyang Normal University, Mianyang, 621000, China
| | - Dechao Chen
- Sichuan Academy of Forestry Sciences, Chengdu, 610081, China
| | - Banghong Jian
- College of Life Science and Biotechnology, Mianyang Normal University, Mianyang, 621000, China
| | - Lingliang Guan
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571737, China
| | - Li He
- Sichuan Academy of Forestry Sciences, Chengdu, 610081, China
| |
Collapse
|
10
|
Daunoras J, Kačergius A, Gudiukaitė R. Role of Soil Microbiota Enzymes in Soil Health and Activity Changes Depending on Climate Change and the Type of Soil Ecosystem. BIOLOGY 2024; 13:85. [PMID: 38392304 PMCID: PMC10886310 DOI: 10.3390/biology13020085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/25/2024] [Accepted: 01/27/2024] [Indexed: 02/24/2024]
Abstract
The extracellular enzymes secreted by soil microorganisms play a pivotal role in the decomposition of organic matter and the global cycles of carbon (C), phosphorus (P), and nitrogen (N), also serving as indicators of soil health and fertility. Current research is extensively analyzing these microbial populations and enzyme activities in diverse soil ecosystems and climatic regions, such as forests, grasslands, tropics, arctic regions and deserts. Climate change, global warming, and intensive agriculture are altering soil enzyme activities. Yet, few reviews have thoroughly explored the key enzymes required for soil fertility and the effects of abiotic factors on their functionality. A comprehensive review is thus essential to better understand the role of soil microbial enzymes in C, P, and N cycles, and their response to climate changes, soil ecosystems, organic farming, and fertilization. Studies indicate that the soil temperature, moisture, water content, pH, substrate availability, and average annual temperature and precipitation significantly impact enzyme activities. Additionally, climate change has shown ambiguous effects on these activities, causing both reductions and enhancements in enzyme catalytic functions.
Collapse
Affiliation(s)
- Jokūbas Daunoras
- Life Sciences Center, Vilnius University, Sauletekis Av. 7, LT-10257 Vilnius, Lithuania
| | - Audrius Kačergius
- Lithuanian Research Centre for Agriculture and Forestry, Kedainiai Distr., LT-58344 Akademija, Lithuania
| | - Renata Gudiukaitė
- Life Sciences Center, Vilnius University, Sauletekis Av. 7, LT-10257 Vilnius, Lithuania
| |
Collapse
|
11
|
Zhou X, Wang X, Ma Y, Wang Y, Ma Y, Xie L. Fertilization can accelerate the pace of soil microbial community response to rest-grazing duration in the three-river source region of China. Ecol Evol 2023; 13:e10734. [PMID: 38020678 PMCID: PMC10680436 DOI: 10.1002/ece3.10734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 10/25/2023] [Accepted: 10/31/2023] [Indexed: 12/01/2023] Open
Abstract
Overgrazing leads to grassland degradation and productivity decline. Rest-grazing during the regreen-up period can quickly restore grassland and fertilization is a common restoration strategy. However, the effects of rest-grazing time and fertilization on soil microorganisms are unclear in the alpine grasslands. Therefore, the experiment of rest-grazing time and fertilization was carried out to explore the response of soil microorganisms to rest-grazing time and fertilization measures. A field control experiment with rest-grazing time and fertilization as factors have been conducted from the time when grass returned to green till the livestock moved to the summer pasture in Dawu Town of Maqin County of China. The primary treatment we established was the five rest-grazing time, including rest-grazing time of 20 days, 30 days, 40 days, 50 days, and traditional grazing was used as a check group. At the same time, the secondary treatment was nitrogen addition of 300 kg·hm-2 in each primary treatment. The results showed that the total phospholipid fatty acid (total PLFA), actinomyces (Act), and arbuscular mycorrhizal fungi (AMF) showed an ever-increasing biomass with the increase of rest-grazing time and the highest was at 50 days of rest-grazing, and they were all significantly higher than CK. In addition, soil microbial biomass carbon-nitrogen ratio (MBC/MBN) had great influence on the change of microbial community. Applying nitrogen fertilizer can increase the maximum value of biomass of all PLFA groups and the biomass of all PLFA groups changed in an "inverted V" shape with the increase of rest-grazing time. Besides, instead of MBC/MBN, NO3 --N was positively correlated with the biomass of all PLFA groups, which actively regulated the trend of microbial functions. The longer rest-grazing time is more conducive to the biomass of all PLFA groups. However, applying nitrogen fertilizer could break this pattern, namely, the 30 days rest-grazing would be beneficial to the biomass of all PLFA groups. These findings provide key information that rest-grazing during the regreen-up period is benefiscial to the all PLFA groups and fertilization could change the response of microorganisms to rest-grazing, which provide reference measures for the restoration of degraded alpine meadows.
Collapse
Affiliation(s)
- Xuanbo Zhou
- Academy of Animal Husbandry and Veterinary Sciences, Key Laboratory of Alpine Grassland Ecosystem in the Three‐River‐Source (Qinghai University), Ministry of Education, Qinghai Provincial Key Laboratory of Adaptive Management on Alpine GrasslandQinghai UniversityXiningQinghaiChina
| | - Xiaoli Wang
- Academy of Animal Husbandry and Veterinary Sciences, Key Laboratory of Alpine Grassland Ecosystem in the Three‐River‐Source (Qinghai University), Ministry of Education, Qinghai Provincial Key Laboratory of Adaptive Management on Alpine GrasslandQinghai UniversityXiningQinghaiChina
| | - Yushou Ma
- Academy of Animal Husbandry and Veterinary Sciences, Key Laboratory of Alpine Grassland Ecosystem in the Three‐River‐Source (Qinghai University), Ministry of Education, Qinghai Provincial Key Laboratory of Adaptive Management on Alpine GrasslandQinghai UniversityXiningQinghaiChina
| | - Yanlong Wang
- Academy of Animal Husbandry and Veterinary Sciences, Key Laboratory of Alpine Grassland Ecosystem in the Three‐River‐Source (Qinghai University), Ministry of Education, Qinghai Provincial Key Laboratory of Adaptive Management on Alpine GrasslandQinghai UniversityXiningQinghaiChina
| | - Yuan Ma
- Academy of Animal Husbandry and Veterinary Sciences, Key Laboratory of Alpine Grassland Ecosystem in the Three‐River‐Source (Qinghai University), Ministry of Education, Qinghai Provincial Key Laboratory of Adaptive Management on Alpine GrasslandQinghai UniversityXiningQinghaiChina
| | - Lele Xie
- Academy of Animal Husbandry and Veterinary Sciences, Key Laboratory of Alpine Grassland Ecosystem in the Three‐River‐Source (Qinghai University), Ministry of Education, Qinghai Provincial Key Laboratory of Adaptive Management on Alpine GrasslandQinghai UniversityXiningQinghaiChina
| |
Collapse
|
12
|
Ren Z, Ye S, Li H, Huang X, Chen L, Cao S, Chen T. Biological Interactions and Environmental Influences Shift Microeukaryotes in Permafrost Active Layer Soil Across the Qinghai-Tibet Plateau. MICROBIAL ECOLOGY 2023; 86:2756-2769. [PMID: 37542537 DOI: 10.1007/s00248-023-02280-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 07/27/2023] [Indexed: 08/07/2023]
Abstract
Permafrost active layer soils are harsh environments with thaw/freeze cycles and sub-zero temperatures, harboring diverse microorganisms. However, the distribution patterns, assembly mechanism, and driving forces of soil microeukaryotes in permafrost remain largely unknown. In this study, we investigated microeukaryotes in permafrost active layer across the Qinghai-Tibet Plateau (QTP) using 18S rRNA gene sequencing. The results showed that the microbial eukaryotic communities were dominated by Nematozoa, Ciliophora, Ascomycota, Cercozoa, Arthropoda, and Basidiomycota in terms of relative abundance and operational taxonomic unit (OTU) richness. Nematozoa had the highest relative abundance, while Ciliophora had the highest OTU richness. These phyla had strong interactions between each other. Their alpha diversity and community structure were differently influenced by the factors associated to location, climate, and soil properties, particularly the soil properties. Significant but weak distance-decay relationships with different slopes were established for the communities of these dominant phyla, except for Basidiomycota. According to the null model, community assemblies of Nematozoa and Cercozoa were dominated by heterogeneous selection, Ciliophora and Ascomycota were dominated by dispersal limitation, while Arthropoda and Basidiomycota were highly dominated by non-dominant processes. The assembly mechanisms can be jointly explained by biotic interactions, organism treats, and environmental influences. Modules in the co-occurrence network of the microeukaryotes were composed by members from different taxonomic groups. These modules also had interactions and responded to different environmental factors, within which, soil properties had strong influences on these modules. The results suggested the importance of biological interactions and soil properties in structuring microbial eukaryotic communities in permafrost active layer soil across the QTP.
Collapse
Affiliation(s)
- Ze Ren
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 73 Beijing East Road, Nanjing, 210008, China.
- Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai, 519087, China.
| | - Shudan Ye
- Faculty of Arts and Sciences, Beijing Normal University, Zhuhai, 519087, China
| | - Hongxuan Li
- Faculty of Arts and Sciences, Beijing Normal University, Zhuhai, 519087, China
| | - Xilei Huang
- Faculty of Arts and Sciences, Beijing Normal University, Zhuhai, 519087, China
| | - Luyao Chen
- Faculty of Arts and Sciences, Beijing Normal University, Zhuhai, 519087, China
| | - Shengkui Cao
- School of Geographical Science, Qinghai Normal University, Xining, 810008, China
| | - Tao Chen
- Center for Grassland Microbiome, State Key Laboratory of Grassland Agro-ecosystems, Lanzhou University, 768 Jiayuguan W Road, Lanzhou, 730020, China.
| |
Collapse
|
13
|
Hu T, Xiong K, Yu Y, Wang J, Wu Y. Ecological stoichiometry and homeostasis characteristics of plant-litter-soil system with vegetation restoration of the karst desertification control. FRONTIERS IN PLANT SCIENCE 2023; 14:1224691. [PMID: 37868323 PMCID: PMC10587587 DOI: 10.3389/fpls.2023.1224691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 09/22/2023] [Indexed: 10/24/2023]
Abstract
It is of great significance to clarify the ecologically chemical stoichiometric characteristics of plant-litter-soil in vegetation restoration process for elucidating the nutrient cycling law and soil nutrient management of karst ecosystem. The carbon (C), nitrogen (N) and phosphorus (P) contents of leaves, litter and soil and their stoichiometry were determined in loquat (Eribotrya japonica) plantations in a karst plateau canyon after 3, 6, 10 and 15 years of restoration. The homeostasis characteristics of leaf N, P, and N:P with the change in soil nutrients during restoration were revealed. The results showed that leaf C, N, and P contents initially increased and then decreased with increasing years of restoration at the same sampling time. The contents of nutrients in soil and litter varied with increasing restoration years, with the highest values mostly appearing in May and July. This could be due to greater moisture in May and July, which helps with nutrient absorption and transformation. The leaf N:P ratio of loquat with different restoration years was 35.76-47.39, with an average of 40.06. Therefore, loquat leaves may experience P limitation in the growth process. The relationships between N, P and N:P in leaves and soil indexes could be simulated by a homeostasis model. Except for the weak sensitivity of loquat leaf N in 10 years, the other indexes and treatments had a certain homeostasis. Plants maintain homeostasis by regulating physiological responses in vivo in response to soil nutrient changes, indicating that loquat has good adaptability in karst desertification environments, but attention should focus on the management of soil P in the field as part of the vegetation restoration process. Therefore, in future research, we should combine the soil water and fertilizer conditions of different growing seasons in karst rocky desertification areas and provide scientific field management to ensure that the results of rocky desertification management can play a role in rural revitalization.
Collapse
Affiliation(s)
- Tinghui Hu
- School of Karst Science, Guizhou Engineering Laboratory for Karst Desertification Control and Eco-industry, Guizhou Normal University, Guiyang, Guizhou, China
- Guizhou Oil Research Institute, Guizhou Academy of Agricultural Sciences, Guiyang, Guizhou, China
| | - Kangning Xiong
- School of Karst Science, Guizhou Engineering Laboratory for Karst Desertification Control and Eco-industry, Guizhou Normal University, Guiyang, Guizhou, China
| | - Yanghua Yu
- School of Karst Science, Guizhou Engineering Laboratory for Karst Desertification Control and Eco-industry, Guizhou Normal University, Guiyang, Guizhou, China
| | - Jun Wang
- Guizhou Oil Research Institute, Guizhou Academy of Agricultural Sciences, Guiyang, Guizhou, China
| | - Yawei Wu
- Institute of Pomology Science, Guizhou Academy of Agricultural Sciences, Guiyang, Guizhou, China
| |
Collapse
|
14
|
Lin G, Hua L, Shen Y, Zhao Y. Change characteristics and influencing factors of grassland degradation in adjacent areas of the Qinghai-Tibet Plateau and suggestions for grassland restoration. PeerJ 2023; 11:e16084. [PMID: 37719111 PMCID: PMC10503501 DOI: 10.7717/peerj.16084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 08/21/2023] [Indexed: 09/19/2023] Open
Abstract
Natural grasslands are being progressively degraded around the world due to climate change and socioeconomic factors. Most of the drivers, processes, and consequences of grassland degradation are studied separately, and it is not yet clear whether the change characteristics and influence factors of adjacent areas of grassland are identical. We analyzed changes in grassland area and quality, and the influences of climate changes and socioeconomic factors from 1980-2018 in Maqu County, Xiahe County and Luqu County on the eastern Qinghai-Tibet Plateau (QTP). We found that areas with high and medium coverage grassland in Maqu County and Luqu County decreased continuously with time, while low coverage grassland areas increased in three counties. In Xiahe County, the medium coverage grassland area reduced with time (except for 2010), while the high and low coverage grassland areas increased. The actual net primary productivity of the three counties showed a downward trend. In Maqu County, the total grassland area had an extremely significant positive correlation with number of livestock going to market, commodity rate, gross domestic product (GDP), primary industry, tertiary industry, household density, and levels of junior middle school education and university education in the area. In Luqu County, the total grassland area high coverage grassland area were significantly negatively correlated with total number of livestock, secondary industry, levels of primary school education, and temperature. Ecological education was positively correlated with high coverage grassland, and negatively correlated with low coverage grassland in all three areas. The results of this study suggest that the best ways to restore the area and quality of grasslands in these areas would be to reduce the local cultivated land area and slow down the development of the primary and tertiary industries in Maqu County, and to control industry development and the total number of livestock in Luqu County. This study also suggests that improving education level and strengthening the level of ecological education are conducive to the restoration of grasslands.
Collapse
Affiliation(s)
- Gang Lin
- College of Pratacultural Science, Gansu Agricultural University, Lanzhou, No. 1 Yingmen Village, China
- Department of Gansu Natural Resources Planning and Research Institute, Lanzhou, China
| | - Limin Hua
- College of Pratacultural Science, Gansu Agricultural University, Lanzhou, No. 1 Yingmen Village, China
| | - Yanze Shen
- College of Pratacultural Science, Gansu Agricultural University, Lanzhou, No. 1 Yingmen Village, China
| | - Yajiao Zhao
- College of Pratacultural Science, Gansu Agricultural University, Lanzhou, No. 1 Yingmen Village, China
| |
Collapse
|
15
|
Ke W, Li C, Zhu F, Luo X, Feng J, Li X, Jiang Y, Wu C, Hartley W, Xue S. Effect of potentially toxic elements on soil multifunctionality at a lead smelting site. JOURNAL OF HAZARDOUS MATERIALS 2023; 454:131525. [PMID: 37146323 DOI: 10.1016/j.jhazmat.2023.131525] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/16/2023] [Accepted: 04/26/2023] [Indexed: 05/07/2023]
Abstract
Contaminated soil at smelting sites affects land utilization and environmental regulation, resulting in soil degradation. However, the extent to which potentially toxic elements (PTEs) contribute to site soil degradation and the relationship between soil multifunctionality and microbial diversity in the process remains poorly understood. In this study, we investigated changes in soil multifunctionality and the correlation between soil multifunctionality and microbial diversity under the influence of PTEs. The change in microbial community diversity was closely related to changes in soil multifunctionality caused by PTEs. Microbial diversity, not richness, drives the delivery of ecosystem services in smelting site PTEs-stressed environments. Structural equation modeling identified that soil contamination, microbial taxonomic profile and microbial functional profile could explain 70% of the variance in soil multifunctionality. Furthermore, our findings demonstrate that PTEs limit soil multifunctionality by affecting soil microbial communities and functionality, whilst the positive effect of microorganisms on soil multifunctionality was mainly driven by the fungal diversity and biomass. Finally, specific fungal genera closely related to soil multifunctionality were identified, with saprophytic fungi being particularly important for maintaining multiple soil functions. The results of the study provide potential guidance for the remediation, pollution control practices and mitigation of degraded soils at smelting sites.
Collapse
Affiliation(s)
- Wenshun Ke
- School of Metallurgy and Environment, Central South University, Changsha 410083, PR China
| | - Chuxuan Li
- School of Metallurgy and Environment, Central South University, Changsha 410083, PR China
| | - Feng Zhu
- School of Metallurgy and Environment, Central South University, Changsha 410083, PR China; Chinese National Engineering Research Center for Control and Treatment of Heavy Metal Pollution, Central South University, Changsha 410083, PR China
| | - Xinghua Luo
- School of Metallurgy and Environment, Central South University, Changsha 410083, PR China
| | - Jingpei Feng
- School of Metallurgy and Environment, Central South University, Changsha 410083, PR China
| | - Xue Li
- School of Metallurgy and Environment, Central South University, Changsha 410083, PR China
| | - Yifan Jiang
- School of Metallurgy and Environment, Central South University, Changsha 410083, PR China
| | - Chuan Wu
- School of Metallurgy and Environment, Central South University, Changsha 410083, PR China
| | - William Hartley
- School of Metallurgy and Environment, Central South University, Changsha 410083, PR China
| | - Shengguo Xue
- School of Metallurgy and Environment, Central South University, Changsha 410083, PR China; Chinese National Engineering Research Center for Control and Treatment of Heavy Metal Pollution, Central South University, Changsha 410083, PR China.
| |
Collapse
|
16
|
Qin J, Jiang X, Yan Z, Zhao H, Zhao P, Yao Y, Chen X. Heavy metal content and microbial characteristics of soil plant system in Dabaoshan mining area, Guangdong Province. PLoS One 2023; 18:e0285425. [PMID: 37294818 PMCID: PMC10256142 DOI: 10.1371/journal.pone.0285425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 04/21/2023] [Indexed: 06/11/2023] Open
Abstract
The disordered mining of Dabaoshan lead-zinc mineral resources in Shaoguan has brought serious harm to the regional ecological environment. In order to investigate the heavy metal pollution status and microbial characteristics of soil plant system in mining area, The distribution of heavy metals in the soil, the activity of soil microorganisms and the accumulation characteristics of heavy metals in the dominant plant Miscanthus floridulus were studied. The results indicated that metal element contents of Miscanthus floridulus in sequence were: Zn>Pb>Cu> Cd. This study demonstrated that the elemental content of the Miscanthus floridulus plant showed Zn>Pb>Cu>Cd, with Zn being the most significantly correlated with soil elements, followed by Pb. Compared with the control group, the Miscanthus floridulus-soil system possessed obviously different soil microbial features: intensiver in microbial basal respiration strength, and higher microbial eco-physiological parameters Cmic/Corg and qCO2, but lower in soil microbial biomass. The results showed the soil enzymatic activities decreased significantly with increase of contamination of heavy metals, especially dehydrogenase and urease activities. With the increase of the content of heavy metals in the mining area soil, the intensity of soil biochemical action in the mining area (Q1, Q2) soil decreased significantly, and the biochemical action showed a significant negative correlation with the content of heavy metals in the soil. Compared with the non mining area (Q8) soil, the intensity of soil ammonification, nitrification, N fixation and cellulose decomposition decreased by 43.2%~71.1%, 70.1%~92.1%, 58.7%~87.8% and 55.3%~79.8% respectively. The decrease of soil microbial activity weakened the circulation rate and energy flow of C and N nutrients in the soil of the mining area.
Collapse
Affiliation(s)
- Jianqiao Qin
- Guangdong Provincial Key Laboratory of Environmental Health and Land Resource, School of Environmental and Chemical Engineering, Zhaoqing University, Zhaoqing, 526061, China
| | - Xueding Jiang
- School of Environmental and Chemical Engineering, Foshan University, Foshan, 528000, China
| | | | - Huarong Zhao
- School of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China
| | - Peng Zhao
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment of the People’s Republic of China, Guangzhou, 510655, China
| | - Yibo Yao
- Guangdong Provincial Academy of Environmental Scienc, Guangzhou, 510045, China
| | - Xi Chen
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, Guangdong 510275, China
| |
Collapse
|
17
|
Yang C, Zhang H, Zhao X, Liu P, Wang L, Wang W. A functional metagenomics study of soil carbon and nitrogen degradation networks and limiting factors on the Tibetan plateau. Front Microbiol 2023; 14:1170806. [PMID: 37228377 PMCID: PMC10203874 DOI: 10.3389/fmicb.2023.1170806] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 04/10/2023] [Indexed: 05/27/2023] Open
Abstract
Introduction The Three-River Source Nature Reserve is located in the core area of the Qinghai-Tibetan Plateau, with the alpine swamp, meadow and steppe as the main ecosystem types. However, the microbial communities in these alpine ecosystems, and their carbon and nitrogen degrading metabolic networks and limiting factors remain unclear. Methods We sequenced the diversity of bacteria and fungi in alpine swamps, meadows, steppes, and their degraded and artificially restored ecosystems and analyzed soil environmental conditions. Results The results indicated that moisture content had a greater influence on soil microbial community structure compared to degradation and restoration. Proteobacteria dominated in high moisture alpine swamps and alpine meadows, while Actinobacteria dominated in low moisture alpine steppes and artificial grasslands. A metabolic network analysis of carbon and nitrogen degradation and transformation using metagenomic sequencing revealed that plateau microorganisms lacked comprehensive and efficient enzyme systems to degrade organic carbon, nitrogen, and other biological macromolecules, so that the short-term degradation of alpine vegetation had no effect on the basic composition of soil microbial community. Correlation analysis found that nitrogen fixation was strong in meadows with high moisture content, and their key nitrogen-fixing enzymes were significantly related to Sphingomonas. Denitrification metabolism was enhanced in water-deficient habitats, and the key enzyme, nitrous oxide reductase, was significantly related to Phycicoccus and accelerated the loss of nitrogen. Furthermore, Bacillus contained a large number of amylases (GH13 and GH15) and proteases (S8, S11, S26, and M24) which may promote the efficient degradation of organic carbon and nitrogen in artificially restored grasslands. Discussion This study illustrated the irrecoverability of meadow degradation and offered fundamental information for altering microbial communities to restore alpine ecosystems.
Collapse
Affiliation(s)
- Chong Yang
- School of Geographical Sciences, Qinghai Normal University, Xining, China
- School of Life Sciences, Qinghai Normal University, Xining, China
| | - Hong Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Xinquan Zhao
- Northwest Plateau Institute of Biology, Chinese Academy of Sciences, Xining, China
| | - Pan Liu
- School of Geographical Sciences, Qinghai Normal University, Xining, China
| | - Lushan Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Wenying Wang
- School of Life Sciences, Qinghai Normal University, Xining, China
| |
Collapse
|
18
|
Zhang C, Li Q, Feng R, Zhang Z, Yang Y, Liu J. C:N:P stoichiometry of plant-soil-microbe in the secondary succession of zokor-made mounds on Qinghai-Tibet Plateau. ENVIRONMENTAL RESEARCH 2023; 222:115333. [PMID: 36706900 DOI: 10.1016/j.envres.2023.115333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/14/2023] [Accepted: 01/18/2023] [Indexed: 06/18/2023]
Abstract
The knowledge of ecological stoichiometry and stoichiometric homeostasis could contribute to exploring the balance of chemical elements in ecological recovery. However, it is largely unknown how the carbon (C), nitrogen (N), phosphorus (P), and stoichiometric characteristics in the plant-soil-microbe continuum system respond to the spontaneous secondary succession of degraded alpine grasslands. Therefore, we investigated the spontaneous secondary successional recovery of grasslands disturbed by zokor (Myospalax fontanierii) on the Qinghai-Tibetan Plateau, China, via a strategy of substituting space for time. Based on plant richness, biomass, and coverage, plant importance value was employed to assess the recovery degree of zokor-made mounds (ZMMs, large and bare patch areas constructed by zokors). Multiple statistical methods, including stoichiometric homeostatic model, network, and redundancy analysis, were conducted to decipher the stoichiometric patterns. The results indicated that plant C, C:N, and C:P increased with the recovery of ZMMs, contrary to the decrease of plant N and P. In addition, soil C, N, C:N, C:P, and N:P increased with the recovery degree, and the soil became relatively more N rich by increasing organic N under the revegetation of legumes. Meanwhile, soil microbial biomass C, N, and P increased with the recovery of ZMMs, but microbial biomass C:N:P ratios were highly constrained. Soil accessible inorganic nitrogen played an important role in driving plant and microbial nutrient and stoichiometry. Our results demonstrated that the different responses of C, N, and P contents in plant-soil-microbe lead to shifts in C:N:P stoichiometric ratio. Nevertheless, plants and soil microbes exhibited strong stoichiometric homeostasis. Collectively, our study provides new insight into biogeochemical responses to the successional recovery of degraded alpine grassland on the Qinghai-Tibetan Plateau from a stoichiometric perspective.
Collapse
Affiliation(s)
- Chunping Zhang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Center for Grassland Microbiome, Collaborative Innovation Center for Western Ecological Safety, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| | - Qi Li
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Center for Grassland Microbiome, Collaborative Innovation Center for Western Ecological Safety, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| | - Runqiu Feng
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Center for Grassland Microbiome, Collaborative Innovation Center for Western Ecological Safety, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| | - Zhenhua Zhang
- Qinghai Haibei National Field Research Station of Alpine Grassland Ecosystem and Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, China
| | - Yunfeng Yang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Jie Liu
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Center for Grassland Microbiome, Collaborative Innovation Center for Western Ecological Safety, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China; Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Nankai University, Tianjin, 300350, China.
| |
Collapse
|
19
|
Ren Z, Ma K, Jia X, Wang Q, Zhang C, Li X. Metagenomics Unveils Microbial Diversity and Their Biogeochemical Roles in Water and Sediment of Thermokarst Lakes in the Yellow River Source Area. MICROBIAL ECOLOGY 2023; 85:904-915. [PMID: 35650293 DOI: 10.1007/s00248-022-02053-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 05/25/2022] [Indexed: 05/04/2023]
Abstract
Thermokarst lakes have long been recognized as biogeochemical hotspots, especially as sources of greenhouse gases. On the Qinghai-Tibet Plateau, thermokarst lakes are experiencing extensive changes due to faster warming. For a deep understanding of internal lake biogeochemical processes, we applied metagenomic analyses to investigate the microbial diversity and their biogeochemical roles in sediment and water of thermokarst lakes in the Yellow River Source Area (YRSA). Sediment microbial communities (SMCs) had lower species and gene richness than water microbial communities (WMCs). Bacteria were the most abundant component in both SMCs and WMCs with significantly different abundant genera. The functional analyses showed that both SMCs and WMCs had low potential in methanogenesis but strong in aerobic respiration, nitrogen assimilation, exopolyphosphatase, glycerophosphodiester phosphodiesterases, and polyphosphate kinase. Moreover, SMCs were enriched in genes involved in anaerobic carbon fixation, aerobic carbon fixation, fermentation, most nitrogen metabolism pathways, dissimilatory sulfate reduction, sulfide oxidation, polysulfide reduction, 2-phosphonopropionate transporter, and phosphate regulation. WMCs were enriched in genes involved in assimilatory sulfate reduction, sulfur mineralization, phosphonoacetate hydrolase, and phosphonate transport. Functional potentials suggest the differences of greenhouse gas emission, nutrient cycling, and living strategies between SMCs and WMCs. This study provides insight into the main biogeochemical processes and their properties in thermokarst lakes in YRSA, improving our understanding of the roles and fates of these lakes in a warming world.
Collapse
Affiliation(s)
- Ze Ren
- Research and Development Center for Watershed Environmental Eco-Engineering, Advanced Institute of Natural Sciences, Beijing Normal University, 18 Jinfeng Road, Xiangzhou Distract, Zhuhai, 519087, Guangdong, China.
- School of Environment, Beijing Normal University, Beijing, 100875, China.
| | - Kang Ma
- School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Xuan Jia
- College of Education for the Future, Beijing Normal University, Zhuhai, 519087, China
| | - Qing Wang
- Research and Development Center for Watershed Environmental Eco-Engineering, Advanced Institute of Natural Sciences, Beijing Normal University, 18 Jinfeng Road, Xiangzhou Distract, Zhuhai, 519087, Guangdong, China
- School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Cheng Zhang
- Research and Development Center for Watershed Environmental Eco-Engineering, Advanced Institute of Natural Sciences, Beijing Normal University, 18 Jinfeng Road, Xiangzhou Distract, Zhuhai, 519087, Guangdong, China
- School of Engineering Technology, Beijing Normal University, Zhuhai, 519087, China
| | - Xia Li
- Research and Development Center for Watershed Environmental Eco-Engineering, Advanced Institute of Natural Sciences, Beijing Normal University, 18 Jinfeng Road, Xiangzhou Distract, Zhuhai, 519087, Guangdong, China
- School of Environment, Beijing Normal University, Beijing, 100875, China
| |
Collapse
|
20
|
Rare Bacteria Can Be Used as Ecological Indicators of Grassland Degradation. Microorganisms 2023; 11:microorganisms11030754. [PMID: 36985327 PMCID: PMC10058834 DOI: 10.3390/microorganisms11030754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/10/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023] Open
Abstract
Grassland degradation is a major ecological problem at present, leading to changes in the grassland environment and the soil microbial community. Here, based on full-length 16S rRNA gene sequencing, we highlight the importance of small-scale environmental changes on the Qinghai-Tibet Plateau grassland for the composition and assembly processes of abundant and rare bacterial taxa. The results showed that grassland vegetation coverage affected the taxonomic and phylogenetic composition of rare bacterial taxa more than abundant bacterial taxa. The taxonomic composition and phylogenetic composition of rare bacterial taxa were also affected by soil nutrients. The relative contribution of deterministic processes (variable selection and homogeneous selection) to rare bacterial taxa was higher than that of the abundant bacterial taxa. The competitive potential within rare bacterial taxa was lower than that of the competitive potential between rare and non-rare bacterial taxa or within non-rare bacterial taxa. The assembly of rare bacterial taxa was more susceptible to environmental changes caused by grassland degradation than the abundant bacterial taxa. Furthermore, the distribution of rare bacterial taxa in the different degraded grassland soil was more local than that of abundant bacterial taxa. Thus, rare bacterial taxa could be considered an ecological indicator of grassland degradation. These findings help to improve our understanding of the composition and assembly mechanism of the bacterial communities in degraded grassland and provide a basis for the establishment of the grassland degradation management strategy.
Collapse
|
21
|
Mao Z, Wang Y, Li Q, Li W, Wang H, Li Y, Yue M. Deep mowing rather than fire restrains grassland Miscanthus growth via affecting soil nutrient loss and microbial community redistribution. FRONTIERS IN PLANT SCIENCE 2023; 13:1105718. [PMID: 36714760 PMCID: PMC9880543 DOI: 10.3389/fpls.2022.1105718] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 12/28/2022] [Indexed: 06/18/2023]
Abstract
Fire and mowing are crucial drivers of grass growth. However, their effects on soil properties, microbial communities, and plant productivity in dry-alkaline grasslands have not been well investigated. This study evaluated the effects of mowing (slightly and deeply) and fire on vegetation traits (Tiller number per cluster and plant height) and biomass (plant dry weight), and soil availability of N, P, and K, as well as soil microorganism abundance in a Miscanthus system. We designed one control and three experimental grass plots (slightly and deeply mowed, and burned) in 2020-2021 in the Xi'an Botanical Garden of Shaanxi Province, Xi'an, China. Tiller number, plant height per cluster, and soil N, P, and K availability during Miscanthus growth decreased significantly (p < 0.05) in all treatments compared to the control. However, this effect was much greater in the deep-mowing plot than in the other plots. After harvest, deep mowing induced the greatest effect on biomass among all treatments, as it induced a 5.2-fold decrease in dry biomass relative to the control. In addition, both fire and mowing slightly redistributed the community and diversity of the soil bacteria and fungi. This redistribution was significantly greater in the deep-mowing plot than in other plots. In particular, relative to the control, deep mowing increased the abundance of Firmicutes and especially Proteobacteria among soil bacterial communities, but significantly (p < 0.05) decreased Basidiomycota and increased Ascomycota abundance among soil fungal communities. We conclude that nutrient limitation (N, P, and K) is crucial for Miscanthus growth in both mowing and fire grasslands, whereas deep mowing can induce soil nutrient loss and microorganism redistribution, further restraining grass sustainability in dry-alkaline grasslands.
Collapse
Affiliation(s)
- Zhuxin Mao
- Xi’an Botanical Garden of Shaanxi Province/Institute of Botany of Shaanxi Province, Xi’an, China
| | - Yuchao Wang
- Xi’an Botanical Garden of Shaanxi Province/Institute of Botany of Shaanxi Province, Xi’an, China
| | - Qian Li
- Xi’an Botanical Garden of Shaanxi Province/Institute of Botany of Shaanxi Province, Xi’an, China
| | - Weimin Li
- Xi’an Botanical Garden of Shaanxi Province/Institute of Botany of Shaanxi Province, Xi’an, China
| | - Hong Wang
- Xi’an Botanical Garden of Shaanxi Province/Institute of Botany of Shaanxi Province, Xi’an, China
| | - Yang Li
- Xi’an Botanical Garden of Shaanxi Province/Institute of Botany of Shaanxi Province, Xi’an, China
| | - Ming Yue
- Xi’an Botanical Garden of Shaanxi Province/Institute of Botany of Shaanxi Province, Xi’an, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Northwest University, Xi’an, China
| |
Collapse
|
22
|
Wang W, Zhao J, Xing Z, Wang X. Characteristics and drivers of plant C, N, and P stoichiometry in Northern Tibetan Plateau grassland. FRONTIERS IN PLANT SCIENCE 2023; 14:1092872. [PMID: 37089650 PMCID: PMC10118023 DOI: 10.3389/fpls.2023.1092872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 03/14/2023] [Indexed: 05/03/2023]
Abstract
Understanding vegetation C, N, and P stoichiometry helps us not only to evaluate biogeochemical cycles and ecosystem functions but also to predict the potential impact of environmental change on ecosystem processes. The foliar C, N, and P stoichiometry in Northern Tibetan grasslands, especially the controlling factors, has been highlighted in recent years. In this study, we have collected 340 plant samples and 162 soil samples from 54 plots in three grassland types, with the purpose of evaluating the foliar C, N, and P stoichiometry and underlying control factors in three grassland types along a 1,500-km east-to-west transect in the Northern Tibetan Plateau. Our results indicated that the averaged foliar C, N, and P concentrations were 425.9 ± 15.8, 403.4 ± 22.2, and 420.7 ± 30.7 g kg-1; 21.7 ± 2.9, 19.0 ± 2.3, and 21.7 ± 5.2 g kg-1; and 1.71 ± 0.29, 1.19 ± 0.16, and 1.59 ± 0.6 g kg-1 in the alpine meadow (AM), alpine steppe (AS), and desert steppe (DS) ecosystems, respectively. The foliar C and N ratios were comparable, with values of 19.8 ± 2.8, 20.6 ± 1.9, and 19.9 ± 5.8 in the AM, AS, and DS ecosystems, respectively. Both the C/P and N/P ratios are the lowest in the AM ecosystem, with values of 252.2 ± 32.6 and 12.8 ± 1.3, respectively, whereas the highest values of 347.3 ± 57.0 and 16.2 ± 3.2 were obtained in the AS ecosystem. In contrast, the soil C, N, C/P, and N/P values decreased from the AM to DS ecosystem. Across the whole transects, leaf C, N, and P stoichiometry showed no obvious trend, but soil C and N concentrations showed an increasing trend, and soil P concentrations showed a decreasing trend with the increasing longitude. Based on the general linear model analysis, the vegetation type was the dominant factor controlling the leaf C, N, and P stoichiometry, accounting for 42.8% for leaf C, 45.1% for leaf N, 35.2% for leaf P, 52.9% for leaf C/N, 39.6% for leaf C/P, and 48.0% for leaf N/P; the soil nutrients and climate have relatively low importance. In conclusion, our results supported that vegetation type, rather than climatic variation and soil nutrients, are the major determinants of north Tibet grassland leaf stoichiometry.
Collapse
Affiliation(s)
- Wei Wang
- College of Resources and Environmental Sciences, Tibet Agriculture and Animal Husbandry University, Nyingchi, Tibet, China
- Key Laboratory of Forest Ecology in Tibet, Ministry of Education, Xizang Agriculture and Animal Husbandry College, Nyingchi, Tibet, China
- *Correspondence: Wei Wang,
| | - Jiamin Zhao
- College of Resources and Environmental Sciences, Tibet Agriculture and Animal Husbandry University, Nyingchi, Tibet, China
- Key Laboratory of Forest Ecology in Tibet, Ministry of Education, Xizang Agriculture and Animal Husbandry College, Nyingchi, Tibet, China
| | - Zhen Xing
- College of Resources and Environmental Sciences, Tibet Agriculture and Animal Husbandry University, Nyingchi, Tibet, China
| | - Xiangtao Wang
- Tibet Agricultural and Animal Husbandry University, College of Animal Science, Nyingchi, Tibet, China
| |
Collapse
|
23
|
Sheng Z, Du J, Li L, Li E, Sun B, Mao J, Zhang Y, Zhang J, Diao Z. Grazing alters ecosystem multifunctionality via changes in taxonomic diversity and functional identity in temperate grassland, China. Glob Ecol Conserv 2023. [DOI: 10.1016/j.gecco.2022.e02323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
|
24
|
Wang C, Liu Z, Yu W, Ye X, Ma L, Wang R, Huang Z, Liu G. Grassland Degradation Has Stronger Effects on Soil Fungal Community Than Bacterial Community across the Semi-Arid Region of Northern China. PLANTS (BASEL, SWITZERLAND) 2022; 11:3488. [PMID: 36559600 PMCID: PMC9782112 DOI: 10.3390/plants11243488] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/26/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
Soil microbes play crucial roles in grassland ecosystem functions, such as soil carbon (C) pool and nutrient cycle. Soil microbes in grasslands are susceptible to the degradation mediated by climate change and anthropogenic disturbance. However, research on how the degradation influences the diversity and community structure of different soil microbial taxa is relatively scarce. We conducted a large-scale field survey to describe the effects of four degradation levels (PD: potential degradation, LD: light degradation, MD: moderate degradation, and SD: severe degradation) on soil bacterial and fungal community in the semi-arid grasslands of northern China. We found that soil moisture, nutrients, and clay content decreased, but soil sand content increased along the increasing degradation gradient. However, the degradation had no effects on soil pH and the C:N ratio. Grassland degradation had non-significant effect on soil bacterial diversity, but it significantly affected soil bacterial community structure. The degradation decreased soil fungal diversity and had a relatively larger influence on the community structure of soil fungi than that of bacteria. The community composition and structure of soil fungi were mainly affected by soil nutrients and texture, while those of soil bacteria were mainly affected by soil pH. These results indicate that changes in soil properties induced by grassland degradation mainly drive the variation in the soil fungal community and have less effect on the soil bacterial community. This study reveals the sensitivity of soil fungal community to grassland degradation, highlighting the priority of soil fungal community for the management and restoration of degraded grasslands.
Collapse
Affiliation(s)
- Congwen Wang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijng 100093, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijng 100049, China
| | - Zhangkai Liu
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijng 100093, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijng 100049, China
| | - Wanying Yu
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijng 100093, China
- Key Laboratory of Vegetation Ecology of the Ministry of Education, Institute of Grassland Science, Northeast Normal University, Changchun 130024, China
| | - Xuehua Ye
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijng 100093, China
| | - Linna Ma
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijng 100093, China
| | - Renzhong Wang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijng 100093, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijng 100049, China
| | - Zhenying Huang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijng 100093, China
| | - Guofang Liu
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijng 100093, China
| |
Collapse
|
25
|
Classification of desert grassland species based on a local-global feature enhancement network and UAV hyperspectral remote sensing. ECOL INFORM 2022. [DOI: 10.1016/j.ecoinf.2022.101852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
26
|
Du J, Tan T, Jiang S. Divergent responses of plant and soil microbial community to short-term nutrient addition in alpine grassland on the Qinghai-Tibetan Plateau. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.1056111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Nitrogen (N) and phosphorus (P) are the main restrictive elements in terrestrial ecosystems, which have an important role in determining the community composition of plants and soil microorganisms. However, there is still a lack of understanding about whether plant and soil microbes respond synchronously to external N and P addition deposition, particularly on a short time scale (< 1 year). Here, we conducted a short-term experiment (3 months) involving control, N addition, P addition, and N + P addition in an alpine grassland on the Qinghai-Tibetan Plateau. Responses of plant and soil microbial (bacterial and fungal) communities were analyzed using the quadrat method and high-throughput sequencing, respectively. N addition significantly increased aboveground biomass and changed the plant community composition, but had no significant effect on soil microbes. Thus, microbial and plant processes were asynchronous following the resource availability in this alpine meadow. According to our research, the plant community may react to short-term nutrient deposition more quickly than the soil microbial community.
Collapse
|
27
|
Li J, Chen Y, Cai K, Fu J, Ting T, Chen Y, Folberth C, Liu Y. A high-resolution nutrient emission inventory for hotspot identification in the Yangtze River Basin. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 321:115847. [PMID: 35981504 DOI: 10.1016/j.jenvman.2022.115847] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/05/2022] [Accepted: 07/21/2022] [Indexed: 06/15/2023]
Abstract
A high-resolution nutrient emission inventory can provide reliable and accurate identification of priority control areas, which is crucial for efficient decisions on water quality restoration. However, the inventories widely used in large-scale modeling are usually based on provincial inputs, which induce the challenges of lacking localized parameters and missing localized characteristic when provincial scale inputs are converted to finer scales with the down-scale methods. Based on elaborate investigations and statistical data at the county scale with multi-scale data conversion, the China Emission Inventory of Nutrients (CEIN) was developed with a spatial resolution of a 0.1° grid and sub-basin scales. The Yangtze River Basin was used as a case study to illustrate the potential applications of CEIN. The emissions of total nitrogen (TN) and total phosphorus (TP) of Yangtze River Basin is 0.43 Mt and 0.04 Mt for point sources, 11.09 Mt and 4.64 Mt for diffuse sources in 2017. The hotspot analysis for 2606 sub-basins indicated that cropland is the key source of nutrient emissions, accounting for 58.88% and 79.15% of TN and TP, respectively. Industrial sewage and freshwater aquaculture accounted for 27.39% (TN) and 21.98% (TP) of the point sources, which is substantial due to their direct discharge into surface waters. The current results also reveal that, in contrast to CEIN, the previously used common emission factors based on GDP per capita produced considerable overestimations of 2.37 and 2.65 times the actual TN and TP emissions, respectively. Additional advantages of the CEIN have been demonstrated in identifying priority control areas more accurately with reduced bias and quantifying the effects of policies at much smaller scales. For example, the CEIN helps to distinguish hotspots, which was neglected when identifying sources at the level-III sub-basin scale, and indicates that the management of fractional areas (TN: 16.97%; TP: 13.44%) provides the highest nutrient emissions control (TN: 44.34%; TP: 48.65%) for the entire basin. The evaluation of China's toilet revolution policy demonstrates that achieving equitable access to safe sanitation has resulted in a reduction of 7240 t of TN and 833 t of TP, which is extremely critical for rural water quality and health.
Collapse
Affiliation(s)
- Jincheng Li
- College of Environmental Sciences and Engineering, State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Peking University, Beijing, 100871, China
| | - Yan Chen
- United Center for Eco-Environment in Yangtze River Economic Belt, Chinese Academy for Environmental Planning, Beijing, 100012, China
| | - Kaikui Cai
- College of Environmental Sciences and Engineering, State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Peking University, Beijing, 100871, China
| | - Jiaxing Fu
- College of Environmental Sciences and Engineering, State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Peking University, Beijing, 100871, China
| | - Tang Ting
- International Institute for Applied Systems Analysis (IIASA), Schlossplatz 1 - A-2361, Laxenburg, Austria.
| | - Yihui Chen
- Yunnan Key Laboratory of Pollution Process and Management of Plateau Lake-Watershed, Kunming, 650034, China
| | - Christian Folberth
- International Institute for Applied Systems Analysis (IIASA), Schlossplatz 1 - A-2361, Laxenburg, Austria
| | - Yong Liu
- College of Environmental Sciences and Engineering, State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Peking University, Beijing, 100871, China.
| |
Collapse
|
28
|
Jing X, Su W, Fan S, Luo H, Chu H. Ecological strategy of Phyllostachys heteroclada oliver in the riparian zone based on ecological stoichiometry. FRONTIERS IN PLANT SCIENCE 2022; 13:974124. [PMID: 36388549 PMCID: PMC9659970 DOI: 10.3389/fpls.2022.974124] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/31/2022] [Indexed: 06/16/2023]
Abstract
The abnormality of seasonal water level fluctuation in the riparian zone causes various ecological and environmental problems, such as vegetation degradation, biodiversity reduction, soil erosion, and landscape transformation, thereby critically modifying the ecosystem structure and functions. This necessitates the development of a dominant vegetation zone with competitive potential. In this study, we investigated the content and distribution pattern of nutrient elements in each organ of the dominant bamboo species, Phyllostachys heteroclada, in the riparian zone. We also analyzed the morphological characteristics, root aeration tissue structure, root oxygen exchange capacity, ATP supply situation, and leaf PSII photosynthetic mechanism of two bamboo species (P. heteroclada and P. nigra) in the riparian zone. Compared with P. nigra, the roots of P. heteroclada formed well-developed oxygen storage and transport structure, i.e., aeration tissue, and exhibited root oxygen secretion in the waterlogging environment of the riparian zone, whereas the roots maintained a high ATP content through energy metabolism, thus benefiting mineral absorption and transport. Moreover, the accumulation of N, P, Ca, Mg, and Fe in the leaves of P. heteroclada was greater under waterlogging conditions than under non-waterlogging conditions, which is the basis for the efficient operation of the photosynthetic mechanism of the leaves. Compared with waterlogged P. nigra, the PSII electron acceptor QA of P. heteroclada leaves had a vigorous reducing ability and showed higher efficiency of light uptake energy as well as higher quantum yield indexes ϕ(Eo) and ϕ(Po). This study demonstrates that the ecological adaptive regulation strategies of P. heteroclada in the riparian zone are intrinsic driving factors affecting their stoichiometric characteristics, including changes in the absorption and transport of minerals caused by root aeration structure and energy metabolism. Moreover, carbon production and allocation may be caused by the stable photosynthetic mechanism and source-sink relationship of leaves. Through the synergistic regulation of different organs realizing their roles and functions, P. heteroclada developed ecological stoichiometry characteristics adapted to the riparian zone.
Collapse
|
29
|
Xiong L, Pei J, Wang X, Guo S, Guo X, Yan P. Lipidomics and Transcriptome Reveal the Effects of Feeding Systems on Fatty Acids in Yak’s Meat. Foods 2022; 11:foods11172582. [PMID: 36076769 PMCID: PMC9455248 DOI: 10.3390/foods11172582] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/19/2022] [Accepted: 08/19/2022] [Indexed: 11/24/2022] Open
Abstract
The differences of fatty acids in yak’s meat under graze feeding (GF) and stall feeding (SF) regimes and the regulation mechanism of the feeding system on the fatty acids content in yak ’s meat was explored in this study. First, the fatty acids in yak’s longissimus dorsi (LD) muscle were detected by gas liquid chromatography (GLC). Compared with GF yaks, the absolute content of ΣSFAs, ΣMUFAs, ΣUFAs, ΣPUFAs and Σn-6PUFAs in SF yak’s LD were higher, whereas Σn-3PUFAs was lower; the relative content of ΣMUFAs, ΣPUFAs, Σn-3PUFAs and ΣUFAs in SF yak’s LD were lower, whereas ΣSFAs was higher. The GF yak’s meat is healthier for consumers. Further, the transcriptomic and lipidomics profiles in yak’s LD were detected by mRNA-Sequencing (mRNA-Seq) and ultra-high performance liquid chromatography-mass spectrometry (UHPLC-MS), respectively. The integrated transcriptomic and lipidomics analysis showed the differences in fatty acids were caused by the metabolism of fatty acids, amino acids, carbohydrates and phospholipids, and were mainly regulated by the FASN, FABP3, PLIN1, SLC16A13, FASD6 and SCD genes in the PPAR signaling pathway. Moreover, the SCD gene was the candidate gene for the high content of ΣMUFA, and FADS6 was the candidate gene for the high content of Σn-3PUFAs and the healthier ratio of Σn-6/Σn-3PUFAs in yak meat. This study provides a guidance to consumers in the choice of yak’s meat, and also established a theoretical basis for improving yak’s meat quality.
Collapse
Affiliation(s)
- Lin Xiong
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
- Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Lanzhou 730050, China
| | - Jie Pei
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
- Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Lanzhou 730050, China
| | - Xingdong Wang
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
- Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Lanzhou 730050, China
| | - Shaoke Guo
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
- Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Lanzhou 730050, China
| | - Xian Guo
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
- Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Lanzhou 730050, China
- Correspondence: ; Tel.: +86-0931-2115271
| | - Ping Yan
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
- Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Lanzhou 730050, China
| |
Collapse
|
30
|
Ren Z, Luo W, Zhang C. Rare bacterial biosphere is more environmental controlled and deterministically governed than abundant one in sediment of thermokarst lakes across the Qinghai-Tibet Plateau. Front Microbiol 2022; 13:944646. [PMID: 35958159 PMCID: PMC9358708 DOI: 10.3389/fmicb.2022.944646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 06/29/2022] [Indexed: 11/13/2022] Open
Abstract
Thermokarst lakes are widely distributed in cold regions as a result of ice-rich permafrost thaw. Disentangling the biogeography of abundant and rare microbes is essential to understanding the environmental influences, assembly mechanisms, and responses to climate change of bacterial communities in thermokarst lakes. In light of this, we assessed the abundant and rare bacterial subcommunities in sediments from thermokarst lakes across the Qinghai-Tibet Plateau (QTP). The operational taxonomic unit (OTU) richness was more strongly associated with location and climate factors for abundant subcommunities, while more strongly associated with physicochemical variables for rare subcommunities. The relative abundance of abundant and rare taxa showed opposite patterns with abundant taxa having greater relative abundance at higher latitude and pH, but at lower mean annual precipitation and nutrients. Both the abundant and rare subcommunities had a clear distribution pattern along the gradient of latitude and mean annual precipitation. Abundant subcommunities were dominantly shaped by dispersal limitation processes (80.9%), while rare subcommunities were shaped almost equally by deterministic (47.3%) and stochastic (52.7%) processes. The balance between stochastic and deterministic processes was strongly environmentally adjusted for rare subcommunities, while not associated with environmental changes for abundant subcommunities. The results shed light on biogeography patterns and structuring mechanisms of bacterial communities in thermokarst lakes, improving our ability to predict the influences of future climate change on these lakes.
Collapse
Affiliation(s)
- Ze Ren
- Research and Development Center for Watershed Environmental Eco-Engineering, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai, China
- School of Environment, Beijing Normal University, Beijing, China
- *Correspondence: Ze Ren
| | - Wei Luo
- Key Laboratory for Polar Science, Polar Research Institute of China, Ministry of Natural Resources, Shanghai, China
- School of Oceanography, Shanghai Jiao Tong University, Shanghai, China
- Wei Luo
| | - Cheng Zhang
- Research and Development Center for Watershed Environmental Eco-Engineering, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai, China
- School of Engineering Technology, Beijing Normal University, Zhuhai, China
| |
Collapse
|
31
|
Shen R, Yang H, Rinklebe J, Bolan N, Hu Q, Huang X, Wen X, Zheng B, Shi L. Seasonal flooding wetland expansion would strongly affect soil and sediment organic carbon storage and carbon-nutrient stoichiometry. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 828:154427. [PMID: 35288135 DOI: 10.1016/j.scitotenv.2022.154427] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 02/04/2022] [Accepted: 03/05/2022] [Indexed: 06/14/2023]
Abstract
In the past few decades, many non-flooding uplands (NF) and permanent flooding waters (PF) have been turned into seasonal flooding wetlands (SF) at the global scale. This trend could severely threaten global climate system by changing carbon cycling in terrestrial and aquatic ecosystems. However, the effects of SF expansion on soil and sediment organic carbon (SOC) storage and carbon-nutrient stoichiometry are far from clearly understood. Therefore, we explored SOC storage and carbon-nutrient stoichiometry among adjacent NF, SF and PF using 817 samples at 0-100 cm depth increment at Poyang Lake and Shengjin Lake in the middle-lower Yangtze River floodplain, China. The SFs of the two lakes were both Carex lakeshore wetlands. The NF of Shengjin Lake was a near-natural forest, while the NF of Poyang Lake was a disturbed grassland. The results showed that SOC storage at SFs of Poyang Lake and Shengjin Lake was 75.61 and 98.01 Mg C/ha at 0-100 cm depth increment. The difference in SOC storage among nearby NF, SF and PF depended on depth and disturbance. SOC storage at SF was equivalent to that at near-natural NF, but was much higher than that at disturbed NF. SOC storage at SF was 12.62%-24.50% higher than that at PF at 0-30 cm depth increment, but was 15.16%-25.87% lower than that at PF at 0-100 cm depth increment. Edaphic carbon and nutrients followed allometric relationships at most sites and C increased faster than N and P along the depth gradients. Carbon-nutrient stoichiometric relationships at SF and PF were similar, and were more coupled than those at near-natural NF. This research illustrates the strong effects of seasonal flooding on SOC sequestration in terrestrial and aquatic ecosystems, and expands our understanding of carbon cycling in these two ecosystems.
Collapse
Affiliation(s)
- Ruichang Shen
- Jiangxi Province Key Laboratory of Watershed Ecosystem Change and Biodiversity, Center for Watershed Ecology, Institute of Life Science and School of Life Science, Nanchang University, Nanchang 330031, China; Jiangxi Poyang Lake Wetland Conservation and Restoration National Permanent Scientific Research Base, National Ecosystem Research Station of Jiangxi Poyang Lake Wetland, Nanchang University, Nanchang 330031, China; Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Nanchang University, Nanchang 330031, China; Jiangxi Institute of Ecological Civilization, School of Resources and Environment, Nanchang University, Nanchang 330031, China.
| | - Hong Yang
- Department of Geography and Environmental Science, University of Reading, Reading RG6 6AB, UK
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water and Waste Management, Laboratory of Soil and Groundwater Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany; Department of Environment, Energy and Geoinformatics, Sejong University, 98 Gunja-Dong, Guangjin-Gu, Seoul 05006, Republic of Korea
| | - Nanthi Bolan
- School of Agriculture and Environment, The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6001, Australia
| | - Qiwu Hu
- School of Geography and Environment, Jiangxi Normal University, Nanchang 330022, China
| | - Xinyun Huang
- Jiangxi Province Key Laboratory of Watershed Ecosystem Change and Biodiversity, Center for Watershed Ecology, Institute of Life Science and School of Life Science, Nanchang University, Nanchang 330031, China
| | - Xiuting Wen
- Jiangxi Institute of Ecological Civilization, School of Resources and Environment, Nanchang University, Nanchang 330031, China
| | - Bofu Zheng
- Jiangxi Institute of Ecological Civilization, School of Resources and Environment, Nanchang University, Nanchang 330031, China
| | - Lei Shi
- Jiangxi Institute of Ecological Civilization, School of Resources and Environment, Nanchang University, Nanchang 330031, China
| |
Collapse
|
32
|
Ren Z, Gao H. Abundant and rare soil fungi exhibit distinct succession patterns in the forefield of Dongkemadi glacier on the central Qinghai-Tibet Plateau. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 828:154563. [PMID: 35302033 DOI: 10.1016/j.scitotenv.2022.154563] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 03/09/2022] [Accepted: 03/10/2022] [Indexed: 06/14/2023]
Abstract
Glaciers are retreating rapidly, exposing extensive new soil habitats in glacier forefields and providing unique areas for studying primary succession. However, understanding the variation patterns and assembly mechanisms of abundant and rare fungi subcommunities along the glacier-retreating chronosequence remains a knowledge gap, especially true for the vast Qinghai-Tibet Plateau (QTP). Here, we investigated fungal communities in the glacier forefield in Dongkemadi Glaicer on the central QTP. The results showed that fungal alpha diversity exhibited a clear increasing pattern in response to increasing of distance to glacier. The percentage of abundant OTUs decreased while the percentage of rare OTUs increased, suggesting that soil development is more beneficial to the rare taxa. The distributions of both abundant and rare subcommunities exhibited a clear spatial pattern along the distance to glacier, and might be strongly controlled by multiple environmental variables, including pH, soil moisture, vegetation status, soil organic carbon, total nitrogen, and soluble reactive phosphorus. Abundant and rare fungal subcommunities were structured in different assembly regimes. Dispersal limitation processes were dominant for both abundant and rare subcommunities but with a stronger contribution to abundant subcommunity assembly. Heterogeneous selection processes contributed higher and non-dominant processes contributed lower to abundant subcommunities than to rare subcommunities. The modular structure of the fungal co-occurrence network was highly localized along the soil chronosequence. By revealing distinct diversity patterns and community assembly mechanisms of abundant and rare fungal subcommunities, our study improved our understanding of ecological succession along the glacier-retreating chronosequence.
Collapse
Affiliation(s)
- Ze Ren
- Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai 519087, China; School of Environment, Beijing Normal University, Beijing 100875, China
| | - Hongkai Gao
- Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, Shanghai 200241, China; School of Geographic Sciences, East China Normal University, Shanghai 200241, China.
| |
Collapse
|
33
|
Dynamics of Soil Carbon Fractions and Carbon Stability in Relation to Grassland Degradation in Xinjiang, Northwest China. SUSTAINABILITY 2022. [DOI: 10.3390/su14105860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Grassland degradation usually results in significant shifts in vegetation species composition and plant biomass, thus altering the soil organic carbon (SOC) content and stability. Dynamics of labile carbon fractions after grassland degradation were well addressed; however, the changes in stable carbon fractions were poorly quantified. Soil samples at 0–10 cm and 10–20 cm depth were collected from a native grassland (NA), a lightly degraded grassland (LD), a moderately degraded grassland (MD), and a severely degraded grassland (SD) in northwest China to assess the influence of grassland degradation on the total SOC content, four SOC fractions (very labile carbon, CF1; labile carbon, CF2; less labile carbon, CF3; non-labile carbon, CF4), and SOC stability. Compared with the NA, the contents under LD, MD, and SD at 0–20 cm depth reduced by 20.58%, 29.22%, and 64.58% for total SOC, 21.38%, 23.00%, and 63.66% for CF1, 13.81%, 20.58%, and 62.26% for CF2, 24.30%, 35.05%, and 68.63% for CF3, and 22.17%, 38.80%, and 63.82% for CF4, respectively. The linear relationships between the total SOC and the four fractions of CF1, CF2, CF3, and CF4 were significant in this study. The lability index of SOC under the NA, LD, MD, and SD was 1.57, 1.59, 1.67, and 1.57, respectively, and no significant difference was found among the four grasslands. To conclude, grassland degradation changes the contents of total SOC and its labile and stable fractions but did not change the SOC stability in northwest China.
Collapse
|
34
|
Ren Z, Zhang Y, Li X, Zhang C. Biogeography of Micro-Eukaryotic Communities in Sediment of Thermokarst Lakes Are Jointly Controlled by Spatial, Climatic, and Physicochemical Factors Across the Qinghai-Tibet Plateau. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.901107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Thermokarst lakes are formed following ice-rich permafrost thaw and widely distribute in the cold regions with high latitude and elevation. However, the micro-eukaryotic communities (MECs) in thermokarst lakes are not well studied. Employing 18S rRNA gene sequencing, we assessed the biogeography of MECs and their driving factors in sediments of thermokarst lakes across the Qinghai-Tibet Plateau (QTP). Results showed that Diatom, Gastrotricha, Nematozoa, Ciliophora, and Cercozoa were dominant lineages in relative abundance and OTU richness. MECs varied substantially across the lakes in terms of diversity and composition. Structural equation modeling and mantel test showed that both OTU richness and community structure of MECs had close relationships with spatial factors, climatic factors, and sediment properties, particularly with latitude, mean annual precipitation, pH, as well as nutrient concentrations and stoichiometric ratios. Moreover, different groups of microbial eukaryotes (taxonomic groups and co-occurrence modules) responded differentially to the measured environmental variables. The results suggested that the biogeography of sediment MECs of thermokarst lakes on the QTP were jointly controlled by spatial and climatic factors as well as sediment properties. This study provides the first view of the composition, diversity, and underlying drivers of MECs dynamic in surface sediments of thermokarst lakes across the QTP.
Collapse
|
35
|
Qian D, Li Q, Fan B, Guo X, Du Y, Cao G. Landscape pattern changes across alpine shrub meadows gradient in warm-season pastures on the Qinghai-Tibet Plateau. ECOLOGICAL COMPLEXITY 2022. [DOI: 10.1016/j.ecocom.2022.100979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
36
|
Abstract
While the alpine grassland ecosystems on the Tibetan Plateau (TP) have generally improved in recent years, some grasslands still suffer from varying degrees of degradation. Studying the restoration potential (R) of the grasslands on the TP is crucial to the conservation and restoration of its alpine grassland ecosystems. Few studies have assessed the restoration value of the alpine grasslands on the TP. We attempt to estimate the actual (ANPP) and potential net primary productivity (PNPP) of the grasslands on the TP. On this basis, we defined R as the “gap” between the current and highest achievable levels of restoration of a grassland. Then, R estimates were yielded for the alpine grasslands on the TP, which we used to analyze the restoration value of these grasslands. Specifically, based on the meteorological data for the period 2001–2019, in conjunction with remote-sensing imagery acquired by a moderate-resolution imaging spectroradiometer for the same period, the Carnegie–Ames–Stanford approach model was selected to produce ANPP estimates for the grasslands on the TP. Then, the Thornthwaite memorial model, the principle of similar habitats, and the Chikugo model, were employed to generate PNPP estimates for these grasslands. In addition, the R of these grasslands was then assessed based on the difference between their PNPP and ANPP. The main results are summarized as follows. (1) A multiyear mean R of 332.33 g C·m–2 (81.59% of the ANPP) was determined for the grasslands on the TP over the period 2001–2019. A notable spatial distribution pattern of high Rs in the southwestern, eastern and middle parts of the TP, and low Rs in the northwestern part of the TP were also identified. Most of the grasslands in areas such as the southern part of Nagqu, the southwestern part of Ngari, Xigaze, Garze Tibetan Autonomous Prefecture, Aba Tibetan and Qiang Autonomous Prefecture, Gannan Tibetan Autonomous Prefecture, Huangnan Tibetan Autonomous Prefecture, Haibei Tibetan Autonomous Prefecture, Guoluo Tibetan Autonomous Prefecture and Yushu Tibetan Autonomous Prefecture were found to have high restoration value. (2) Grasslands with a stable R account were the highest proportion (76.13%) of all the grasslands on the TP, followed by those with a decreasing R (19.62%) and those with an increasing R (4.24%). Grasslands with an increasing R were mainly concentrated in the southern part of Xigaze, and parts of Yushu Tibetan Autonomous Prefecture, Guoluo Tibetan Autonomous Prefecture and Garze Tibetan Autonomous Prefecture. (3) Analysis based on the local conditions of the TP revealed a high restoration value for three types of grassland (i.e., alpine meadows, mountain meadows, and temperate meadow steppes), the grasslands distributed at altitudes of 3000–4000 m, and the grasslands located in the warm temperate zone. The results of this study are expected to provide scientific and theoretical support for the formulation of policies and measures aimed at conserving grasslands, as well as restoring ecosystems and degraded grasslands on the TP.
Collapse
|
37
|
A Long-Term Ecological Vulnerability Analysis of the Tibetan Region of Natural Conditions and Ecological Protection Programs. SUSTAINABILITY 2021. [DOI: 10.3390/su131910598] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The combined impacts of drastic natural environment change and increasing human interference are making the uncertainty of the Tibetan Plateau’s ecological vulnerability the world’s largest. In this study, an ecological vulnerability index (EVI) of Tibet in the core area of the Tibetan Plateau was assessed using a selected set of ecological, social, and economic indicators and using a spatial principal component analysis (SPCA) to calculate their weights. The data included Landsat images and socio-economic data from 1990 to 2015 in five-year intervals. The results showed that the total EVI remained at a high vulnerability level, with drastic fluctuation from 1990 to 2000 (a peak in 1995, when there was a sudden increase in light vulnerability, which moved to extreme vulnerability in the next period), and minor fluctuations after 2000, gradually increasing from southeast to northwest. In addition, the spatial analysis showed a distinct positive correlation between the EVI and grassland area (0.33), land use degree (0.15), NDVI (0.14), livestock husbandry output, and a negative correlation in terms of desertification area. The artificial afforestation program (AAP) had a positive significant correlation with NDVI (R2 = 0.88), preventing the environment from becoming more vulnerable. The results provide practical information and suggestions for planners to improve the land use degree in urban areas and the vegetation coverage in pastoral regions of the Tibetan Plateau based on the spatial–temporal heterogeneity patterns of the EVI of Tibet.
Collapse
|
38
|
|
39
|
Liu Y, Liu S, Wang F, Sun Y, Li M, Wang Q, Yu L. Responses of Habitat Quality and Animal Biodiversity to Grazing Activities on the Qinghai-Tibet Plateau. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.681775] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Grazing activities perhaps lead to habitat quality degradation and animal biodiversity loss while the effects on the Qinghai-Tibet Plateau (QTP) is still relatively poorly studied. Based on the Integrated Valuation of Ecosystem Services and Tradeoffs model, geographical detector model and generalized linear mixed model, the responses of habitat quality and animal biodiversity to grazing activities at 5 km grid scale were analyzed. Results showed that the overall habitat quality on the QTP was high with 76.43% of the total area, and poor level accounted for 19.56%. High level habitat was mainly distributed in the southern part, while the poor level in the northern part. The mean grazing activity explanatory ability to habitat quality, bird species richness and mammal richness were 0.346, 0.430, and 0.354. The interaction effects between slope and grazing activities on habitat quality, bird species richness and mammal richness were the most important interaction effects, and the area affected by the interaction was 73.82, 46.00, and 46.17% of habitat quality, bird species richness and mammal richness, respectively. The interaction effects on habitat quality, bird species richness and mammal richness all showed “low in the northwest and high in the southeast”. Grazing activities and habitat quality had a positive correlation while bird species richness, and mammal richness negative correlations. The spatial relationship of grazing activities of habitat quality was “higher in the middle and lower around the periphery”, while the spatial distribution of grazing activities of bird species richness and mammal richness was “higher in the east and lower in the west”. This study explicitly revealed the responses of habitat quality and animal biodiversity to grazing activities, thus providing references for biodiversity conservation on the QTP.
Collapse
|
40
|
Dong L, Li J, Sun J, Yang C. Soil degradation influences soil bacterial and fungal community diversity in overgrazed alpine meadows of the Qinghai-Tibet Plateau. Sci Rep 2021; 11:11538. [PMID: 34079022 PMCID: PMC8172827 DOI: 10.1038/s41598-021-91182-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 05/17/2021] [Indexed: 01/10/2023] Open
Abstract
Over half of the alpine meadows in the Qinghai-Tibet Plateau (QTP) are degraded due to human activities. Soil degradation from overgrazing is the most direct cause of grassland degradation. It is thus important to synthesize the effects of multiple soil degradation indicators on the belowground biomass of plants and soil microorganisms in the degraded QTP. We studied the diversities and structures of soil bacterial and fungal communities using soil bacterial 16S rRNA and the fungal ITS gene under four degradation gradients, D1: lightly degraded, D2: moderately degraded, D3: highly degraded, and a non-degraded control site (CK). The bacterial Shannon diversity in D3 was significantly lower than that in D1 (p < 0.001), and the bacterial richness index in D3 was significantly lower than that in D1 (p < 0.001). There was no difference in soil fungal diversity among the different degradation levels; however, soil fungal richness decreased significantly from CK to D3. The phyla Actinobacteria, Acidobacteria and the genus Mortierella were differed significantly under the four degradation gradients. Plant litter mass and root C/N ratio were important factors associated with bacterial and fungal diversity and richness. These results indicated that alpine meadow degradation can lead to variations in both microbial diversity and the potential functioning of micro-organisms in the QTP.
Collapse
Affiliation(s)
- Lin Dong
- Grassland Agri-Husbandry Research Center, College of Grassland Science, Qingdao Agricultural University, Qingdao, 266109, China
| | - Jingjing Li
- Grassland Agri-Husbandry Research Center, College of Grassland Science, Qingdao Agricultural University, Qingdao, 266109, China
| | - Juan Sun
- Grassland Agri-Husbandry Research Center, College of Grassland Science, Qingdao Agricultural University, Qingdao, 266109, China
| | - Chao Yang
- Grassland Agri-Husbandry Research Center, College of Grassland Science, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
41
|
Natural and Political Determinants of Ecological Vulnerability in the Qinghai–Tibet Plateau: A Case Study of Shannan, China. ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION 2021. [DOI: 10.3390/ijgi10050327] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Changing land-use patterns in the Qinghai–Tibet Plateau (QTP) due to natural factors and human interference have led to higher ecological vulnerability and even more underlying issues related to time and space in this alpine area. Ecological vulnerability assessment provides not only a solution to surface-feature-related problems but also insight into sustainable eco-environmental planning and resource management as a response to potential climate changes if driving factors are known. In this study, the ecological vulnerability index (EVI) of Shannan City in the core area of the QTP was assessed using a selected set of ecological, social, and economic indicators and spatial principal component analysis (SPCA) to calculate their weights. The data included Landsat images and socio-economic data from 1990 to 2015, at five-year intervals. The results showed that the total EVI remains at a medium vulnerability level, with minor fluctuations over 25 years (peaks in 2000, when there was a sudden increase in slight vulnerability, which switched to extreme vulnerability), and gradually increases from east to west. In addition, spatial analysis showed a distinct positive correlation between the EVI and land-use degree, livestock husbandry output, desertification area, and grassland area. The artificial afforestation program (AAP) has a positive effect by preventing the environment from becoming more vulnerable. The results provide practical information and suggestions for planners to take measures to improve the land-use degree in urban and pastoral areas in the QTP based on spatial-temporal heterogeneity patterns of the EVI of Shannan City.
Collapse
|
42
|
Quantitative Analysis of the Research Trends and Areas in Grassland Remote Sensing: A Scientometrics Analysis of Web of Science from 1980 to 2020. REMOTE SENSING 2021. [DOI: 10.3390/rs13071279] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Grassland remote sensing (GRS) is an important research topic that applies remote sensing technology to grassland ecosystems, reflects the number of grassland resources and grassland health promptly, and provides inversion information used in sustainable development management. A scientometrics analysis based on Science Citation Index-Expanded (SCI-E) was performed to understand the research trends and areas of focus in GRS research studies. A total of 2692 papers related to GRS research studies and 82,208 references published from 1980 to 2020 were selected as the research objects. A comprehensive overview of the field based on the annual documents, research areas, institutions, influential journals, core authors, and temporal trends in keywords were presented in this study. The results showed that the annual number of documents increased exponentially, and more than 100 papers were published each year since 2010. Remote sensing, environmental sciences, and ecology were the most popular Web of Science research areas. The journal Remote Sensing was one of the most popular for researchers to publish documents and shows high development and publishing potential in GRS research studies. The institution with the greatest research documents and most citations was the Chinese Academy of Sciences. Guo X.L., Hill M.J., and Zhang L. were the most productive authors across the 40-year study period in terms of the number of articles published. Seven clusters of research areas were identified that generated contributions to this topic by keyword co-occurrence analysis. We also detected 17 main future directions of GRS research studies by document co-citation analysis. Emerging or underutilized methodologies and technologies, such as unmanned aerial systems (UASs), cloud computing, and deep learning, will continue to further enhance GRS research in the process of achieving sustainable development goals. These results can help related researchers better understand the past and future of GRS research studies.
Collapse
|
43
|
Liu Y, Liu S, Sun Y, Li M, An Y, Shi F. Spatial differentiation of the NPP and NDVI and its influencing factors vary with grassland type on the Qinghai-Tibet Plateau. ENVIRONMENTAL MONITORING AND ASSESSMENT 2021; 193:48. [PMID: 33415495 DOI: 10.1007/s10661-020-08824-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 12/27/2020] [Indexed: 06/12/2023]
Abstract
Grasslands are the dominant ecosystem of the Qinghai-Tibet Plateau (QTP), and they play an important role in climate regulation and represent an important ecological barrier in China. However, the spatial differentiation characteristics of net primary productivity (NPP) and normalized differential vegetation index (NDVI) and the main influencing factors that vary with grassland type on the QTP are not clear. In this study, standardized precipitation evapotranspiration index (SPEI), digital elevation model (DEM), precipitation, temperature, slope, photosynthetically active radiation (PAR) and grazing intensity were considered the driving factors. First, a grey relational degree analysis was performed to test for the quantitative relationships between NPP, NDVI and factors. Then, the geographical detector method was applied to analyze the interaction relationships of the factors. Finally, based on the geographically weighted regression (GWR) model, the influence of factors varied with grassland type on the NPP and NDVI was revealed from the perspective of spatial differentiation. The results were as follows: (1) The NPP and NDVI had roughly the same degrees of correlation with each impact factor by the grey relational degree analysis, each factor was closely related to the NPP and NDVI, and the relational degree between grazing intensity and NPP was greater than that between grazing intensity and NDVI. (2) The interaction relationships between influencing factors and NPP and NDVI varied with the grassland type and presented bivariate enhancement and nonlinear enhancement, and the interaction effects between grazing intensity and any factor on each grassland type had a greater impact on NPP. (3) The main influencing factors of the spatial heterogeneity of NPP were grazing intensity and PAR, which were "high from northeast to southwest, low from northwest to southeast" and "low in the middle and high around". The main influencing factors on the NDVI were precipitation and PAR, which were "low in the middle and high around" and "high in the north, low in the south".
Collapse
Affiliation(s)
- Yixuan Liu
- School of Environment, Beijing Normal University, No.19 Xinjiekouwai Street, Beijing, 100875, China
| | - Shiliang Liu
- School of Environment, Beijing Normal University, No.19 Xinjiekouwai Street, Beijing, 100875, China.
| | - Yongxiu Sun
- School of Environment, Beijing Normal University, No.19 Xinjiekouwai Street, Beijing, 100875, China
| | - Mingqi Li
- School of Environment, Beijing Normal University, No.19 Xinjiekouwai Street, Beijing, 100875, China
| | - Yi An
- School of Environment, Beijing Normal University, No.19 Xinjiekouwai Street, Beijing, 100875, China
| | - Fangning Shi
- School of Environment, Beijing Normal University, No.19 Xinjiekouwai Street, Beijing, 100875, China
| |
Collapse
|
44
|
Ren Z, Niu D, Ma P, Wang Y, Wang Z, Fu H, Elser JJ. Bacterial Communities in Stream Biofilms in a Degrading Grassland Watershed on the Qinghai-Tibet Plateau. Front Microbiol 2020; 11:1021. [PMID: 32582054 PMCID: PMC7290132 DOI: 10.3389/fmicb.2020.01021] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 04/27/2020] [Indexed: 11/13/2022] Open
Abstract
Grassland is among the largest terrestrial biomes and is experiencing serious degradation, especially on the Qinghai-Tibet Plateau (QTP). However, the influences of grassland degradation on microbial communities in stream biofilms are largely unknown. Using 16S rRNA gene sequencing, we investigated the bacterial communities in stream biofilms in sub-basins with different grassland status in the Qinghai Lake watershed. Grassland status in the sub-basins was quantified using the normalized difference vegetation index (NDVI). Proteobacteria, Bacteroidetes, Cyanobacteria, and Verrucomicrobia were the dominant bacterial phyla. OTUs, 7,050, were detected in total, within which 19 were abundant taxa, and 6,922 were rare taxa. Chao 1, the number of observed OTUs, and phylogenetic diversity had positive correlations with carbon (C), nitrogen (N), and/or phosphorus (P) in biofilms per se. The variation of bacterial communities in stream biofilms was closely associated with the rate of change in NDVI, pH, conductivity, as well as C, N, P, contents and C:N ratio of the biofilms. Abundant subcommunities were more influenced by environmental variables relative to the whole community and to rare subcommunities. These results suggest that the history of grassland degradation (indicated as the rate of change in NDVI) influences bacterial communities in stream biofilms. Moreover, the bacterial community network showed high modularity with five major modules (>50 nodes) that responded differently to environmental variables. According to the module structure, only one module connector and 12 module hubs were identified, suggesting high fragmentation of the network and considerable independence of the modules. Most of the keystone taxa were rare taxa, consistent with fragmentation of the network and with adverse consequences for bacterial community integrity and function in the biofilms. By documenting the properties of bacterial communities in stream biofilms in a degrading grassland watershed, our study adds to our knowledge of the potential influences of grassland degradation on aquatic ecosystems.
Collapse
Affiliation(s)
- Ze Ren
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China.,Flathead Lake Biological Station, University of Montana, Polson, MT, United States.,Division of Biological Sciences, University of Montana, Missoula, MT, United States.,Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai, China
| | - Decao Niu
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Panpan Ma
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Ying Wang
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Zhaomin Wang
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Hua Fu
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - James J Elser
- Flathead Lake Biological Station, University of Montana, Polson, MT, United States.,Division of Biological Sciences, University of Montana, Missoula, MT, United States
| |
Collapse
|