1
|
Peña-Galindo I, Bernales-Santolaya B, Montalva F, Gutiérrez J, Quesada-Alvarado F, Navarrete-Quintanilla S, Robbins V, Perez-Venegas DJ, Cortés-Hinojosa G, Seguel M, Chiang G. Pups on mercury: Tracking early life exposure on South American fur seals (Arctocephalus australis) and South American sea lions (Otaria byronia) in the Southeastern Pacific. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2025; 282:107325. [PMID: 40117900 DOI: 10.1016/j.aquatox.2025.107325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 03/11/2025] [Accepted: 03/13/2025] [Indexed: 03/23/2025]
Abstract
Mercury exists in three forms: elemental, inorganic, and organic, with methylmercury (MeHg) being the most concerning due to its ability to cross cellular barriers and bioaccumulate, particularly in marine mammals, where over 90 % of total mercury is in the MeHg form. Despite its importance, there is limited data on mercury bioaccumulation in marine mammals and maternal transfer mechanisms in the Southern Hemisphere. Pinnipeds, as ocean sentinels, are valuable for monitoring contaminants due to their ecological and biological traits. This study investigates mercury burdens and maternal transfer of mercury in South American sea lions (SASL) and South American fur seals (SAFS). Samples of clots and vibrissae from SASL pups and clots and milk from SAFS pups and females were analyzed. Total mercury (THg) levels in SASL ranged from 8.36 to 305.43 μg/Kg w.w. in clots and from 3071.8 to 28,034.5 μg/Kg d.w. in vibrissae. In SAFS, THg levels in clots ranged from 0.40 to 358.77 μg/Kg w.w. and in milk from 3.4 to 14.1 μg/Kg w.w. Significant differences were observed between newborn pups of both species, with a positive correlation between THg levels in clots from SAFS pups and females and between clots and vibrissae in SASL pups, indicating maternal transfer during gestation. Additionally, THg levels in SAFS pups decreased over time, suggesting biodilution. These species allow us to have a long term monitoring in both colonies and two different areas in Chile and are relevant findings to food security and the treatment of heavy metal contamination.
Collapse
Affiliation(s)
- I Peña-Galindo
- Programa de Doctorado en Medicina de la Conservación, Facultad de Ciencias de la Vida, Universidad Andrés Bello. Avenida República 440, Santiago 8320000, Santiago de Chile, Región Metropolitana, Chile; Escuela de Medicina Veterinaria, Facultad de Agronomía e Ingeniería Forestal, Facultad de Ciencias Biológicas, Facultad de Medicina, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, Macul, Santiago de Chile 7820244, Región Metropolitana, Chile
| | - B Bernales-Santolaya
- Programa de Doctorado en Salud Ambiental y Biomedicina, Universidad Mayor, Av. Alemania 281, 4801043 Temuco, Araucanía Chile
| | - F Montalva
- Guafo Science Research Group, Punta Weather, Isla Guafo s/n, Quellón, Región de los Lagos, Chile
| | - J Gutiérrez
- Guafo Science Research Group, Punta Weather, Isla Guafo s/n, Quellón, Región de los Lagos, Chile; Programa de Doctorado en Ciencias mención Ecología y Evolución, Facultad de Ciencias, Universidad Austral de Chile. Calle Independencia 631, Valdivia, 5110566, Región de los Ríos, Chile
| | - F Quesada-Alvarado
- Programa de Doctorado en Medicina de la Conservación, Facultad de Ciencias de la Vida, Universidad Andrés Bello. Avenida República 440, Santiago 8320000, Santiago de Chile, Región Metropolitana, Chile
| | - S Navarrete-Quintanilla
- Programa de doctorado en Ciencias Silvoagropecuarias y Veterinarias. Universidad de Chile. Av. Sta. Rosa 11735, La Pintana, Santiago de Chile 8820000, Región Metropolitana, Chile
| | - V Robbins
- Avian and Exotic Pet Clinic of Roanoke, 3959 Electric Road, Suite 155, Roanoke VA 24018, USA
| | - D J Perez-Venegas
- Guafo Science Research Group, Punta Weather, Isla Guafo s/n, Quellón, Región de los Lagos, Chile; Centro de Investigación y Gestión de Recursos Naturales (CIGREN), Instituto de Biología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile; Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile. Avenida República 440, Santiago 8320000, Santiago de Chile, Región Metropolitana, Chile
| | - G Cortés-Hinojosa
- Escuela de Medicina Veterinaria, Facultad de Agronomía e Ingeniería Forestal, Facultad de Ciencias Biológicas, Facultad de Medicina, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, Macul, Santiago de Chile 7820244, Región Metropolitana, Chile
| | - M Seguel
- Guafo Science Research Group, Punta Weather, Isla Guafo s/n, Quellón, Región de los Lagos, Chile; Pathobiology Department, School of Veterinary Medicine, St. George's University, True Blue, St. George's, Grenada
| | - G Chiang
- Centro de Investigación para la Sustentabilidad & Departamento de Ecología y Biodiversidad, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Avenida República 440, Santiago 8320000, Santiago de Chile, Región Metropolitana, Chile; Centro para la Resiliencia, Adaptación y Mitigación (CReAM), Universidad Mayor, Temuco, Av. Alemania 281, 4801043 Temuco, Araucanía Chile; Escuela de Agronomía, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Temuco P.O. Box 54-D, Chile.
| |
Collapse
|
2
|
Yin B, Wang X, Liu Y, Fang J, Wang WX. How fish intestinal cells responded to dietary methylmercury exposure? A single-cell transcriptomic analysis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 371:125967. [PMID: 40043872 DOI: 10.1016/j.envpol.2025.125967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 01/26/2025] [Accepted: 03/02/2025] [Indexed: 03/15/2025]
Abstract
Fish intestine is not only an important digestive and immune organ, but also serves as the first barrier to defend against methylmercury (MeHg) toxicity. Numerous studies have examined the responses of intestine to MeHg, whereas the heterogeneous responses of intestinal cells have not been addressed. In this study, the gilthead seabream were exposed to dietary MeHg, and the gene expression profiles of different intestinal cell populations were examined using scRNA-seq technique. We demonstrated that among the 14 cell types identified, enterocytes, macrophages, T cells and goblet cells were the primary target cell populations exhibiting specific responses to MeHg. Enterocytes appeared to play the most important role in the MeHg transport across the intestinal epithelium as well as intracellular storage. The immune pathways of macrophages and T cells were suppressed by MeHg, which also interfered with the mucus production and secretion in the goblet cells. Furthermore, MeHg not only affected the cell-cell adhesion of the target cells, but also resulted in disorder of lipid metabolism and immune function, thereby leading to increased susceptibility to pathogenic infections. This study provides an important understanding of the specific responses of intestinal cells to MeHg exposure at the cellular level.
Collapse
Affiliation(s)
- Bingxin Yin
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China; Research Centre for the Oceans and Human Health, City University of Hong Kong, Shenzhen Research Institute, Shenzhen, 518057, China
| | - Xun Wang
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China.
| | - Yong Liu
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China
| | - Junhao Fang
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Wen-Xiong Wang
- Research Centre for the Oceans and Human Health, City University of Hong Kong, Shenzhen Research Institute, Shenzhen, 518057, China
| |
Collapse
|
3
|
Chandler SD, Rea LD, O'Hara TM, Loomis TM, Breed GA. Biogeochemical patterns in prey species reveal complex mercury exposure pathways from the environment to Aleutian Steller sea lions. MARINE POLLUTION BULLETIN 2025; 212:117500. [PMID: 39740520 DOI: 10.1016/j.marpolbul.2024.117500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 12/20/2024] [Accepted: 12/22/2024] [Indexed: 01/02/2025]
Abstract
Several wildlife species exhibit marked spatial variation in toxicologically relevant tissue concentrations of mercury across the Aleutian Islands of Alaska, most notably the endangered Steller sea lion (Eumetopias jubatus). To unravel potential environmental and trophic pathways driving mercury variation in this species of concern, we investigated spatiotemporal and ecological patterns in total mercury concentrations and stable isotope ratios of carbon and nitrogen from muscle tissues of twelve mid-trophic level prey species of the region (n = 1461). Dividing samples into island groups explained biogeochemical variation better than larger spatial resolutions, with Amchitka Pass and Buldir Pass acting as strong geographic break points. Species-specific relationships between muscle biogeochemistry and length were common, and benthic feeding and increased trophic position were associated with higher total mercury concentrations. Considered together, tissue biogeochemical markers in this region are dependent on location and the species upon which they forage in remarkably nuanced manners.
Collapse
Affiliation(s)
- Scott D Chandler
- Department of Biology and Wildlife, University of Alaska Fairbanks, 2090 Koyukuk Dr, Fairbanks, AK 99775, USA; Institute of Arctic Biology, University of Alaska Fairbanks, 2140 Koyukuk Dr, Fairbank, AK 99775, USA; Water and Environmental Research Center, Institute of Northern Engineering, 306 Tanana Loop, Fairbanks, AK 99775, USA.
| | - Lorrie D Rea
- Water and Environmental Research Center, Institute of Northern Engineering, 306 Tanana Loop, Fairbanks, AK 99775, USA
| | - Todd M O'Hara
- Department of Veterinary Medicine, University of Alaska Fairbanks, 2141 Koyukuk Dr, Fairbanks, AK 99775, USA; Veterinary Integrative Biosciences, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, 402 Raymond Stotzer Pkwy, College Station, TX 77843, USA
| | - Todd M Loomis
- Ocean Peace Inc., 4201 21st Avenue West, Seattle, WA 98199, USA
| | - Greg A Breed
- Department of Biology and Wildlife, University of Alaska Fairbanks, 2090 Koyukuk Dr, Fairbanks, AK 99775, USA; Institute of Arctic Biology, University of Alaska Fairbanks, 2140 Koyukuk Dr, Fairbank, AK 99775, USA
| |
Collapse
|
4
|
Liu Y, Wang X, Lan Y. Label-free detection of ConA-induced T-lymphocyte activation at single-cell level by microfluidics. Electrophoresis 2024; 45:2125-2131. [PMID: 39119740 DOI: 10.1002/elps.202400060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/22/2024] [Accepted: 07/29/2024] [Indexed: 08/10/2024]
Abstract
Lymphocyte activation is critical in regulating immune responses. The resulting T-cell proliferation has been implicated in the pathogenesis of a variety of autoimmune diseases, such as SLE and rheumatoid arthritis. ConA (concanavalin A)-induced activation has been widely used in the T lymphocytes model of immune-mediated liver injury, autoimmune hepatitis, and so on. In those works, it usually requires fluorescent labeling or cell staining to confirm whether the cells are transformed successfully after medicine treatment to figure out efficacy/pharmacology. The detection preparation steps are time-consuming and have limitations for further proteomic/genomic identifications. Here, a label-free microfluidic method is established to detect lymphocyte activation degree. The lymphocyte and ConA-activated lymphocyte were investigated by a microfluidic device. According to where single cells in the sample were captured in the designed channel, lymphocyte and ConA-activated samples are differentiated and characterized by population electric field factors, 2.08 × 104 and 2.21 × 104 V/m, respectively. Furthermore, salidroside, a herbal medicine that was documented to promote the transformation, was used to treat lymphocyte cells, and the treated cell population is detected to be 2.67 × 104 V/m. The characterization indicates an increasing trend with the activation degree. The result maintains a high consistency with traditional staining methods with transformed cells of 15.8%, 28.8%, and 48.3% in each cell population. Dielectrophoresis is promising to work as a tool for detecting lymphocyte transformation and medical efficacy detection.
Collapse
Affiliation(s)
- Yameng Liu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiaohu Wang
- Intelligent Manufacturing College, Tianjin Sino-German University of Applied Sciences, Tianjin, China
| | - Yuxia Lan
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
5
|
Murillo Cisneros DA, Bishop AM, Zenteno-Savín T, Rea L, Fadely B, Rosado-Berrios CA, Taylor RJ, O'Hara TM. Regional variations and drivers of essential and non-essential elements in Steller sea lion pups from the Aleutian Islands, Alaska. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 953:176103. [PMID: 39245392 DOI: 10.1016/j.scitotenv.2024.176103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 09/03/2024] [Accepted: 09/05/2024] [Indexed: 09/10/2024]
Abstract
Exposure and resulting tissue concentrations of various elements from natural and anthropogenic sources are influenced by multiple factors, such as geographic location, age, diet, and metabolic rate, that can influence wildlife health. Essential and non-essential elements were assessed in lanugo and whole blood collected in 2019 from 102 Steller sea lion (Eumetopias jubatus) pups from two rookeries from the western and central Aleutian Islands: Agattu (WAI, n = 54) and Ulak Islands (CAI, n = 48). Rookery, sex, dorsal standard length, and trophic ecology (ẟ15N, ẟ13C values) effects on element concentration were evaluated. Significant differences in element concentrations of lanugo were exhibited across rookeries (p < 0.05), except for zinc (Zn). For example, higher mercury (Hg) and selenium (Se) concentrations were observed in WAI than CAI, while other elements were lower in WAI. Whole blood showed higher sulfur (S) and Se concentrations in CAI compared to WAI, while WAI had elevated strontium (Sr) and Hg concentrations relative to CAI. Trophic ecology significantly influenced most element concentrations, possibly due to regional variations in adult female feeding and food web dynamics. Interactions between elements were found in lanugo across both rookeries, with varying strengths. Whole blood displayed less pronounced yet consistent associations, with variable intensities. Essential elements sodium (Na), potassium (K), and calcium (Ca) formed a distinct group whose interaction is crucial for nervous system function and muscle contraction. Another group comprised zinc (Zn), iron (Fe), manganese (Mn), magnesium (Mg), phosphorous (P), S, and Se, which are known for indirectly interacting with enzyme function and metabolic pathways. Hg and Se formed a distinct group probably due to their known chemical interactions and physiological protective interactions.
Collapse
Affiliation(s)
- Daniela A Murillo Cisneros
- Centro de Investigaciones Biológicas del Noroeste, S.C. Planeación Ambiental y Conservación, Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz, Baja California Sur C.P. 23096, Mexico
| | - Amanda M Bishop
- Department of Biological Sciences, University of Alaska Anchorage, Anchorage, AK 99508, USA; Institute of Northern Engineering, Water and Environmental Research Center, University of Alaska Fairbanks, Fairbanks, AK 99775, USA
| | - Tania Zenteno-Savín
- Centro de Investigaciones Biológicas del Noroeste, S.C. Planeación Ambiental y Conservación, Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz, Baja California Sur C.P. 23096, Mexico.
| | - Lorrie Rea
- Institute of Northern Engineering, Water and Environmental Research Center, University of Alaska Fairbanks, Fairbanks, AK 99775, USA
| | - Brian Fadely
- Marine Mammal Laboratory, Alaska Fisheries Science Center, National Marine Fisheries Service, NOAA, Seattle, WA 98115, USA
| | - Carlos A Rosado-Berrios
- Veterinary Integrative Biosciences, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Robert J Taylor
- Veterinary Integrative Biosciences, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Todd M O'Hara
- Institute of Northern Engineering, Water and Environmental Research Center, University of Alaska Fairbanks, Fairbanks, AK 99775, USA; Veterinary Integrative Biosciences, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
6
|
Jeong H, Ali W, Zinck P, Souissi S, Lee JS. Toxicity of methylmercury in aquatic organisms and interaction with environmental factors and coexisting pollutants: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 943:173574. [PMID: 38823721 DOI: 10.1016/j.scitotenv.2024.173574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/20/2024] [Accepted: 05/25/2024] [Indexed: 06/03/2024]
Abstract
Mercury is a hazardous heavy metal that is distributed worldwide in aquatic ecosystems. Methylmercury (MeHg) poses significant toxicity risks to aquatic organisms, primarily through bioaccumulation and biomagnification, due to its strong affinity for protein thiol groups, which results in negative effects even at low concentrations. MeHg exposure can cause various physiological changes, oxidative stress, neurotoxicity, metabolic disorders, genetic damage, and immunotoxicity. To assess the risks of MeHg contamination in actual aquatic ecosystems, it is important to understand how MeHg interacts with environmental factors such as temperature, pH, dissolved organic matter, salinity, and other pollutants such as microplastics and organic compounds. Complex environmental conditions can cause potential toxicity, such as synergistic, antagonistic, and unchanged effects, of MeHg in aquatic organisms. This review focuses on demonstrating the toxic effects of single MeHg exposure and the interactive relationships between MeHg and surrounding environmental factors or pollutants on aquatic organisms. Our review also recommends further research on biological and molecular responses in aquatic organisms to better understand the potential toxicity of combinational exposure.
Collapse
Affiliation(s)
- Haksoo Jeong
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Wajid Ali
- Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide, F-59000 Lille, France; Univ. Lille, CNRS, Univ. Littoral Côte d'Opale, IRD, UMR-8187-LOG, Laboratoire d'Océanologie et de Géosciences, Station Marine de Wimereux, F-59000 Lille, France
| | - Philippe Zinck
- Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide, F-59000 Lille, France
| | - Sami Souissi
- Univ. Lille, CNRS, Univ. Littoral Côte d'Opale, IRD, UMR-8187-LOG, Laboratoire d'Océanologie et de Géosciences, Station Marine de Wimereux, F-59000 Lille, France; Center of Excellence for Ocean Engineering, National Taiwan Ocean University, Keelung 20224, Taiwan; Operation Center for Enterprise Academia Networking, National Taiwan Ocean University, Keelung 20224, Taiwan
| | - Jae-Seong Lee
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea.
| |
Collapse
|
7
|
Kang B, Wang J, Guo S, Yang L. Mercury-induced toxicity: Mechanisms, molecular pathways, and gene regulation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 943:173577. [PMID: 38852866 DOI: 10.1016/j.scitotenv.2024.173577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/01/2024] [Accepted: 05/25/2024] [Indexed: 06/11/2024]
Abstract
Mercury is a well-known neurotoxicant for humans and wildlife. The epidemic of mercury poisoning in Japan has clearly demonstrated that chronic exposure to methylmercury (MeHg) results in serious neurological damage to the cerebral and cerebellar cortex, leading to the dysfunction of the central nervous system (CNS), especially in infants exposed to MeHg in utero. The occurrences of poisoning have caused a wide public concern regarding the health risk emanating from MeHg exposure; particularly those eating large amounts of fish may experience the low-level and long-term exposure. There is growing evidence that MeHg at environmentally relevant concentrations can affect the health of biota in the ecosystem. Although extensive in vivo and in vitro studies have demonstrated that the disruption of redox homeostasis and microtube assembly is mainly responsible for mercurial toxicity leading to adverse health outcomes, it is still unclear whether we could quantitively determine the occurrence of interaction between mercurial and thiols and/or selenols groups of proteins linked directly to outcomes, especially at very low levels of exposure. Furthermore, intracellular calcium homeostasis, cytoskeleton, mitochondrial function, oxidative stress, neurotransmitter release, and DNA methylation may be the targets of mercury compounds; however, the primary targets associated with the adverse outcomes remain to be elucidated. Considering these knowledge gaps, in this article, we conducted a comprehensive review of mercurial toxicity, focusing mainly on the mechanism, and genes/proteins expression. We speculated that comprehensive analyses of transcriptomics, proteomics, and metabolomics could enhance interpretation of "omics" profiles, which may reveal specific biomarkers obviously correlated with specific pathways that mediate selective neurotoxicity.
Collapse
Affiliation(s)
- Bolun Kang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, 100012 Beijing, China
| | - Jinghan Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, 100012 Beijing, China
| | - Shaojuan Guo
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, 100012 Beijing, China
| | - Lixin Yang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, 100012 Beijing, China.
| |
Collapse
|
8
|
Huang Y, Sun J, Cui X, Li X, Hu Z, Ji Q, Bao G, Liu Y. Enhancing protective immunity against bacterial infection via coating nano-Rehmannia glutinosa polysaccharide with outer membrane vesicles. J Extracell Vesicles 2024; 13:e12514. [PMID: 39315589 PMCID: PMC11420661 DOI: 10.1002/jev2.12514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 08/28/2024] [Indexed: 09/25/2024] Open
Abstract
With the coming of the post-antibiotic era, there is an increasingly urgent need for safe and efficient antibacterial vaccines. Bacterial outer membrane vesicles (OMVs) have received increased attention recently as a potential subunit vaccine. OMVs are non-replicative and contain the principle immunogenic bacterial antigen, which circumvents the safety concerns of live-attenuated vaccines. Here, we developed a novel nano-vaccine by coating OMVs onto PEGylated nano-Rehmannia glutinosa polysaccharide (pRL) in a structure consisting of concentric circles, resulting in a more stable vaccine with improved immunogenicity. The immunological function of the pRL-OMV formulation was evaluated in vivo and in vitro, and the underlying mechanism was studied though transcriptomic analysis. The pRL-OMV formulation significantly increased dendritic cell (DC) proliferation and cytokine secretion. Efficient phagocytosis of the formulation by DCs was accompanied by DC maturation. Further, the formulation demonstrated superior lymph node targeting, contributing to a potent mixed cellular response and bacterial-specific antibody response against Bordetella bronchiseptica infection. Specifically, transcriptomic analysis revealed that the immune protection function correlated with T-cell receptor signalling and Th1/Th2/Th17 differentiation, among other markers of enhanced immunological activity. These findings have implications for the future application of OMV-coated nano-carriers in antimicrobial immunotherapy.
Collapse
Affiliation(s)
- Yee Huang
- Institute of Animal Husbandry and Veterinary ScienceZhejiang Academy of Agricultural SciencesHangzhouZhejiangChina
| | - Jiaying Sun
- Institute of Animal Husbandry and Veterinary ScienceZhejiang Academy of Agricultural SciencesHangzhouZhejiangChina
- College of Life SciencesChina Jiliang UniversityHangzhouZhejiangChina
| | - Xuemei Cui
- Institute of Animal Husbandry and Veterinary ScienceZhejiang Academy of Agricultural SciencesHangzhouZhejiangChina
| | - Xuefeng Li
- Institute of Animal Husbandry and Veterinary ScienceZhejiang Academy of Agricultural SciencesHangzhouZhejiangChina
| | - Zizhe Hu
- Institute of Animal Husbandry and Veterinary ScienceZhejiang Academy of Agricultural SciencesHangzhouZhejiangChina
| | - Quanan Ji
- Institute of Animal Husbandry and Veterinary ScienceZhejiang Academy of Agricultural SciencesHangzhouZhejiangChina
| | - Guolian Bao
- Institute of Animal Husbandry and Veterinary ScienceZhejiang Academy of Agricultural SciencesHangzhouZhejiangChina
| | - Yan Liu
- Institute of Animal Husbandry and Veterinary ScienceZhejiang Academy of Agricultural SciencesHangzhouZhejiangChina
| |
Collapse
|
9
|
Keenan M, Misarti N, Horstmann L, Crawford SG, O'Hara T, Rea LD, Avery JP. Total mercury concentrations in Steller sea lion bone: Variability among locations and elements. MARINE POLLUTION BULLETIN 2024; 203:116471. [PMID: 38754323 DOI: 10.1016/j.marpolbul.2024.116471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/03/2024] [Accepted: 05/04/2024] [Indexed: 05/18/2024]
Abstract
Mercury is a global contaminant that bioaccumulates in a tissue-specific manner in long-lived predators such as Steller sea lions (SSL). Bone is a well-preserved material amenable for studying millennial scale trends; however, little is known about the distribution and variability of total mercury concentrations ([THg]) within individual bones and among bone elements in SSL. We assessed SSL bone [THg] variability with respect to physiologic age, bone type, longitudinally within a bone, and among bone elements. Pup bones (mean ± SD; 31.4 ± 13.58 ppb) had greater [THg] than adults (7.9 ± 1.91 ppb). There were greater and more variable [THg] within individual long bones near epiphyses compared to mid-diaphysis. Pup spongy bone in ribs (62.7 ± 44.79 ppb) had greater [THg] than long bones (23.5 ± 8.83 ppb) and phalanges (19.6 ± 10.78 ppb). These differences are likely due to variability in bone composition, growth, and turnover rate. This study informs standardized sampling procedures for [THg] in bone to improve interpretations of mercury variability over time and space.
Collapse
Affiliation(s)
- Mary Keenan
- Water and Environmental Research Center, Institute of Northern Engineering, University of Alaska, 1764 Tanana Loop, PO Box 75 5910, Fairbanks, AK 99775, USA; College of Fisheries and Ocean Sciences, University of Alaska, 2150 Koyukuk Drive, PO Box 757220, Fairbanks, AK 99775, USA.
| | - Nicole Misarti
- Water and Environmental Research Center, Institute of Northern Engineering, University of Alaska, 1764 Tanana Loop, PO Box 75 5910, Fairbanks, AK 99775, USA
| | - Lara Horstmann
- College of Fisheries and Ocean Sciences, University of Alaska, 2150 Koyukuk Drive, PO Box 757220, Fairbanks, AK 99775, USA
| | - Stephanie G Crawford
- Water and Environmental Research Center, Institute of Northern Engineering, University of Alaska, 1764 Tanana Loop, PO Box 75 5910, Fairbanks, AK 99775, USA
| | - Todd O'Hara
- Veterinary Integrative Biosciences, School of Veterinary Medicine & Biomedical Sciences, Texas A&M University, 402 Raymond Stotzer Pkwy, College Station, TX 77843, USA
| | - Lorrie D Rea
- Water and Environmental Research Center, Institute of Northern Engineering, University of Alaska, 1764 Tanana Loop, PO Box 75 5910, Fairbanks, AK 99775, USA
| | - Julie P Avery
- Water and Environmental Research Center, Institute of Northern Engineering, University of Alaska, 1764 Tanana Loop, PO Box 75 5910, Fairbanks, AK 99775, USA
| |
Collapse
|
10
|
Symon TE, Murillo-Cisneros DA, Hernández-Camacho CJ, O'Hara TM, Taylor RJ, Rosado-Berrios CA, Vázquez-Medina JP, Zenteno-Savín T. Mercury and selenium concentrations in lanugo of free-ranging California sea lions in the southern Gulf of California, Mexico. MARINE POLLUTION BULLETIN 2023; 197:115712. [PMID: 37922756 DOI: 10.1016/j.marpolbul.2023.115712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/19/2023] [Accepted: 10/23/2023] [Indexed: 11/07/2023]
Abstract
Total mercury ([THg]) and selenium ([TSe]) concentrations were determined in California sea lion (Zalophus californianus) lanugo from the Gulf of California in 2021 and 2022. Relationships with sex, morphometrics, and year were evaluated. Following toxicological thresholds of concern for piscivorous mammals, most pups had a [THg] < 10 ppm, one pup (2021) had a [THg] > 20 ppm, no pups had a [THg] > 30 ppm. Females had significantly higher [TSe] than males; sex did not influence [THg]. [THg] and [TSe] in 2022 were significantly higher in the general population and male cohorts compared to 2021. Significant negative correlations were observed between [THg], [TSe], and morphometrics (2021). These results indicate that, compared to other pinniped species, regional California sea lions may have a decreased likelihood of experiencing Hg-related adverse health effects. Year-related changes in element concentrations suggest continued monitoring of this population to assess pinniped, environmental, and potentially, human health.
Collapse
Affiliation(s)
- T E Symon
- Centro de Investigaciones Biológicas del Noroeste, S. C (CIBNOR), 23096 La Paz, Mexico.
| | - D A Murillo-Cisneros
- Centro de Investigaciones Biológicas del Noroeste, S. C (CIBNOR), 23096 La Paz, Mexico.
| | - C J Hernández-Camacho
- Centro Interdisciplinario de Ciencias Marinas, Instituto Politécnico Nacional, 23096 La Paz, Mexico.
| | - T M O'Hara
- School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station 77843, United States of America.
| | - R J Taylor
- School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station 77843, United States of America.
| | - C A Rosado-Berrios
- School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station 77843, United States of America.
| | - J P Vázquez-Medina
- Department of Integrative Biology, University of California, Berkeley, 94720 Berkeley, United States of America.
| | - T Zenteno-Savín
- Centro de Investigaciones Biológicas del Noroeste, S. C (CIBNOR), 23096 La Paz, Mexico.
| |
Collapse
|
11
|
Pavithra KG, SundarRajan P, Kumar PS, Rangasamy G. Mercury sources, contaminations, mercury cycle, detection and treatment techniques: A review. CHEMOSPHERE 2023; 312:137314. [PMID: 36410499 DOI: 10.1016/j.chemosphere.2022.137314] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 11/01/2022] [Accepted: 11/17/2022] [Indexed: 06/16/2023]
Abstract
Mercury is considered a toxic pollutant harmful to our human health and the environment. Mercury is highly persistent, volatile and bioaccumulated and enters into the food chain, destroying our ecosystem. The levels of mercury in the water bodies as well as in the atmosphere are affected by anthropogenic and natural activities. In this review, the mercury species as well as the mercury contamination towards water, soil and air are discussed in detail. In addition to that, the sources of mercury and the mercury cycle in the aquatic system are also discussed. The determination of mercury with various methods such as with modified electrodes and nanomaterials was elaborated in brief. The treatment in the removal of mercury such as adsorption, electrooxidation and photocatalysis were explained with recent ideologies and among them, adsorption was considered one of the efficient techniques in terms of cost and mercury removal.
Collapse
Affiliation(s)
- K Grace Pavithra
- Department of Environmental and Water Resource Engineering, Saveetha School of Engineering, Chennai, 602 105, Tamil Nadu, India
| | - P SundarRajan
- Department of Chemical Engineering, Saveetha Engineering College, Chennai, 602 105, Tamil Nadu, India
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, 603 110, Tamil Nadu, India; Centre of Excellence in Water Research (CEWAR) Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, 603 110, Tamil Nadu, India; School of Engineering, Lebanese American University, Byblos, Lebanon.
| | - Gayathri Rangasamy
- School of Engineering, Lebanese American University, Byblos, Lebanon; University Centre for Research and Development & Department of Civil Engineering, Chandigarh University, Gharuan, Mohali, Punjab, 140413, India
| |
Collapse
|
12
|
Vannuci-Silva M, Manhães BMR, Guari EB, Botta S, Colosio AC, Barbosa LA, Bertozzi CP, Azevedo AF, Cunha HA, Bisi TL, Lailson-Brito J. Spatial trends of trace elements bioaccumulation in the most endangered dolphin from the Southwestern Atlantic Ocean: The franciscana (Pontoporia blainvillei). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 308:119655. [PMID: 35764182 DOI: 10.1016/j.envpol.2022.119655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 06/15/2022] [Accepted: 06/16/2022] [Indexed: 06/15/2023]
Abstract
Trace elements bioaccumulation patterns can be an important tool to assess differences among cetaceans' populations. In this work, their use as potential chemical markers to differentiate franciscanas (Pontoporia blainvillei) populations was evaluated. Franciscanas were collected from three states in southeastern Brazil, which comprise three different Franciscana Management Areas (FMAs): Espírito Santo (FMA Ia), southern Rio de Janeiro (FMA IIa), and central São Paulo (FMA IIb). The concentrations of As, Cd, Cu, Fe, Hg, Mn and Zn were determined in the muscle, liver and kidney of the animals. Cadmium was the most valuable chemical marker to differentiate stocks, separating at least FMA IIa from the others. The higher Cd levels in FMA IIa, along with dietary information, indicate that the predominant consumption of cephalopods by this population is the main reason for the differences found. Additionally, environmental characteristics of the areas should also be considered as divergent sources of trace elements. Our findings suggest that non-essential trace elements, such as Cd, can be successful markers to differentiate populations. The Mn concentrations in FMA Ia raised concern and must be carefully monitored, as well as other elements that compose the iron ore tailings that have impacted the Espírito Santo coastal area. Additionally, this is the first study to report trace element concentration in the franciscanas from FMA IIa (southern Rio de Janeiro). Trace element concentrations found in franciscanas may represent different contamination levels in their preys and environments, which might pose specific threats to distinct populations. Therefore, our findings are important to characterize and differentiate franciscana populations and to guide precise management and conservation actions for the distinct stocks of this endangered species.
Collapse
Affiliation(s)
- M Vannuci-Silva
- Laboratório de Mamíferos Aquáticos e Bioindicadores, Faculdade de Oceanografia, Universidade Do Estado Do Rio de Janeiro (UERJ), Rua São Francisco Xavier, 524, Rio de Janeiro, CEP: 20550-013, Brazil; Programa de Pós-Graduação Em Oceanografia, Faculdade de Oceanografia, Universidade Do Estado Do Rio de Janeiro (UERJ), Rua São Francisco Xavier, 524, Rio de Janeiro, CEP: 20550-013, Brazil.
| | - B M R Manhães
- Laboratório de Mamíferos Aquáticos e Bioindicadores, Faculdade de Oceanografia, Universidade Do Estado Do Rio de Janeiro (UERJ), Rua São Francisco Xavier, 524, Rio de Janeiro, CEP: 20550-013, Brazil; Programa de Pós-Graduação Em Oceanografia, Faculdade de Oceanografia, Universidade Do Estado Do Rio de Janeiro (UERJ), Rua São Francisco Xavier, 524, Rio de Janeiro, CEP: 20550-013, Brazil
| | - E B Guari
- Laboratório de Mamíferos Aquáticos e Bioindicadores, Faculdade de Oceanografia, Universidade Do Estado Do Rio de Janeiro (UERJ), Rua São Francisco Xavier, 524, Rio de Janeiro, CEP: 20550-013, Brazil
| | - S Botta
- Laboratório de Ecologia e Conservação da Megafauna Marinha (ECOMEGA), Instituto de Oceanografia, Universidade Federal Do Rio Grande (FURG), Brazil
| | - A C Colosio
- Instituto Baleia Jubarte (IBJ), Caravelas, Brazil
| | - L A Barbosa
- Organização Consciência Ambiental (Instituto ORCA), Vila Velha, Brazil
| | - C P Bertozzi
- Laboratório de Biologia e Conservação de Organismos Pelágicos (LABCOP), Instituto de Biociências, Universidade Estadual Paulista (UNESP), Campus Do Litoral Paulista, São Vicente, SP, Brazil
| | - A F Azevedo
- Laboratório de Mamíferos Aquáticos e Bioindicadores, Faculdade de Oceanografia, Universidade Do Estado Do Rio de Janeiro (UERJ), Rua São Francisco Xavier, 524, Rio de Janeiro, CEP: 20550-013, Brazil; Programa de Pós-Graduação Em Oceanografia, Faculdade de Oceanografia, Universidade Do Estado Do Rio de Janeiro (UERJ), Rua São Francisco Xavier, 524, Rio de Janeiro, CEP: 20550-013, Brazil
| | - H A Cunha
- Laboratório de Mamíferos Aquáticos e Bioindicadores, Faculdade de Oceanografia, Universidade Do Estado Do Rio de Janeiro (UERJ), Rua São Francisco Xavier, 524, Rio de Janeiro, CEP: 20550-013, Brazil; Programa de Pós-Graduação Em Oceanografia, Faculdade de Oceanografia, Universidade Do Estado Do Rio de Janeiro (UERJ), Rua São Francisco Xavier, 524, Rio de Janeiro, CEP: 20550-013, Brazil; Departamento de Genética, Instituto de Biologia Roberto Alcântara Gomes, Universidade Do Estado Do Rio de Janeiro, Brazil
| | - T L Bisi
- Laboratório de Mamíferos Aquáticos e Bioindicadores, Faculdade de Oceanografia, Universidade Do Estado Do Rio de Janeiro (UERJ), Rua São Francisco Xavier, 524, Rio de Janeiro, CEP: 20550-013, Brazil; Programa de Pós-Graduação Em Oceanografia, Faculdade de Oceanografia, Universidade Do Estado Do Rio de Janeiro (UERJ), Rua São Francisco Xavier, 524, Rio de Janeiro, CEP: 20550-013, Brazil
| | - J Lailson-Brito
- Laboratório de Mamíferos Aquáticos e Bioindicadores, Faculdade de Oceanografia, Universidade Do Estado Do Rio de Janeiro (UERJ), Rua São Francisco Xavier, 524, Rio de Janeiro, CEP: 20550-013, Brazil; Programa de Pós-Graduação Em Oceanografia, Faculdade de Oceanografia, Universidade Do Estado Do Rio de Janeiro (UERJ), Rua São Francisco Xavier, 524, Rio de Janeiro, CEP: 20550-013, Brazil.
| |
Collapse
|
13
|
Castellini JM, Rea LD, Avery JP, O’Hara TM. Total Mercury, Total Selenium, and Monomethylmercury Relationships in Multiple Age Cohorts and Tissues of Steller Sea Lions (Eumetopias jubatus). ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2022; 41:1477-1489. [PMID: 35274766 PMCID: PMC9433051 DOI: 10.1002/etc.5329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 11/24/2021] [Accepted: 03/07/2022] [Indexed: 06/03/2023]
Abstract
Steller sea lion (Eumetopias jubatus) tissue mercury concentrations increasingly above thresholds of concern occur in regions of Alaska where lack of population recovery is noted. Selenium-monomethylmercury interactions may mitigate toxicosis but may also result in functional selenium deficiency, impacting essential selenium-dependent processes. Physiologically driven differences in tissue concentrations (organotropism) of total mercury ([THg]), total selenium ([TSe]), and monomethylmercury ([MeHg+ ]) confound interpretation for various age cohorts. Archived tissues from Alaska Steller sea lions (2002-2016) were used to compare [THg], [MeHg+ ], and [TSe] across age cohorts and tissue types. Liver [THg] ranged from 0.05 to 63.7 µg/g. Fetal and pup livers had significantly lower [THg] and [TSe], higher percentage MeHg+ , and greater range of molar TSe:THg than subadult and adult livers. Molar Se:MeHg+ ratios, including Se in excess of nonmethylmercury, were dependent on [MeHg+ ] in fetuses and pups. While [THg] varied significantly by muscle type (heart vs. skeletal) and anatomical location, concentrations were strongly correlated. Biomagnification and/or bioaccumulation of THg in liver of older animals confounded comparison with other tissues; however, in fetal and pup liver [THg] correlated with other tissues. In contrast, liver [MeHg+ ] correlated with other tissues across all age classes. Fetal and pup tissues, which reflect in utero exposure and are subject to limited bioaccumulation, are ideal for assessing mercury exposure related to dam diet, including intertissue comparison, and represent key cohorts of concern. Evaluating [MeHg+ ] and [TSe] in tissues from multiple age cohorts allows better intertissue comparison, providing insight into time courses, routes of exposure, and potential for adverse effects. Environ Toxicol Chem 2022;41:1477-1489. © 2022 SETAC.
Collapse
Affiliation(s)
- J. Margaret Castellini
- Department of Veterinary Medicine, College of Natural Sciences and Mathematics, University of Alaska Fairbanks, Fairbanks, Alaska, USA
| | - Lorrie D. Rea
- Water and Environmental Research Center, Institute of Northern Engineering, University of Alaska Fairbanks, Fairbanks, Alaska, USA
| | - Julie P. Avery
- Water and Environmental Research Center, Institute of Northern Engineering, University of Alaska Fairbanks, Fairbanks, Alaska, USA
| | - Todd M. O’Hara
- Department of Veterinary Medicine, College of Natural Sciences and Mathematics, University of Alaska Fairbanks, Fairbanks, Alaska, USA
- Water and Environmental Research Center, Institute of Northern Engineering, University of Alaska Fairbanks, Fairbanks, Alaska, USA
- Veterinary Integrative Biosciences, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
14
|
Murillo-Cisneros DA, McHuron EA, Zenteno-Savín T, Castellini JM, Field CL, O'Hara TM. Fetal mercury concentrations in central California Pacific harbor seals: Associated drivers and outcomes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 820:153246. [PMID: 35065116 DOI: 10.1016/j.scitotenv.2022.153246] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 01/12/2022] [Accepted: 01/14/2022] [Indexed: 06/14/2023]
Abstract
Mercury (Hg) is a well-known toxicant in wildlife and humans. High total Hg concentrations ([THg]) have been reported in central California harbor seals Phoca vitulina richardii. We evaluated the effects of presence/absence of early natal coat (lanugo), year (2012 to 2017), sex, stranding location, and trophic ecology (ẟ13C and ẟ15N values) on hair [THg] along coastal central California. Also examined were [THg] effects on growth rates of pups in rehabilitation and probability of release (e.g., successful rehabilitation). The [THg] ranged from 0.46-81.98 mg kg-1 dw, and ẟ15N and ẟ13C ranged from 13.6-21.5‰, and -17.2 to -13.0‰, respectively. Stranding location, year, and presence of lanugo coat were important factors explaining variation in [THg]. Seals from Sonoma and San Mateo County had higher [THg] than other locations. Seals with full or partial lanugo coat had lower [THg]. Seals from 2016 and 2017 had higher [THg] than those from 2015. Hair [THg] exceeded lower and upper toxicological thresholds (>20 mg kg-1 by year (5.88% to 23.53%); >30 mg kg-1 (0% to 12.31%)) with a pronounced increase from 2015 to 2016. Pups in 2017 had significantly higher odds ratio of [THg] above 20 mg kg-1 than pups of 2015, and pups in 2016 had significantly higher odds ratio than those from 2013 and 2015 (similar when using 30 mg kg-1). Pups in Sonoma County had the highest odds ratio for [THg] in lanugo above 20 mg kg-1. ẟ15N values were higher in 2015-2017, particularly relative to 2014, probably associated with the El Niño event. The [THg] was not a good predictor for probability of release and mass-specific growth rates in captivity. Further investigation of temporal trends of [THg] in harbor seals is warranted given the relatively high percentage of samples exceeding threshold values, particularly in the most recent sampling years.
Collapse
Affiliation(s)
- Daniela A Murillo-Cisneros
- Centro de Investigaciones Biológicas del Noroeste, S.C. Planeación Ambiental y Conservación, Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz, Baja California Sur C.P. 23096, Mexico
| | - Elizabeth A McHuron
- Cooperative Institute for Climate, Ocean, and Ecosystem Studies, University of Washington, 3737 Brooklyn Avenue NE, Seattle, WA 98195-5672, USA
| | - Tania Zenteno-Savín
- Centro de Investigaciones Biológicas del Noroeste, S.C. Planeación Ambiental y Conservación, Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz, Baja California Sur C.P. 23096, Mexico.
| | - J Margaret Castellini
- Department of Veterinary Medicine, University of Alaska Fairbanks, 2141 Koyokuk Dr, Fairbanks, AK 99775-7750, USA
| | - Cara L Field
- The Marine Mammal Center, 2000 Bunker Road, Fort Cronkhite, Sausalito, CA 94965, USA
| | - Todd M O'Hara
- Bilingual Laboratory of Toxicology, Veterinary Integrative Biosciences, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
15
|
Huang Y, Nan L, Xiao C, Dong J, Li K, Cheng J, Ji Q, Wei Q, Bao G, Liu Y. Outer Membrane Vesicles Coating Nano-Glycyrrhizic Acid Confers Protection Against Borderella bronchiseptica Through Th1/Th2/Th17 Responses. Int J Nanomedicine 2022; 17:647-663. [PMID: 35177904 PMCID: PMC8846627 DOI: 10.2147/ijn.s350846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 01/20/2022] [Indexed: 11/25/2022] Open
Abstract
Purpose Outer membrane vesicles (OMVs) are spherical nano-sized proteolipids secreted by numerous pathogenic Gram-negative bacteria. Due to the immunostimulatory properties and protective efficacy, OMVs have received increasing attention as a candidate for the vaccine to prevent and treat bacterial infections. However, the immune response remains elusive due to the low structural stability and poor size homogeneity of the vesicles. In this study, OMVs were used to coat self-assembled glycyrrhizic acid nanoparticles (GANs) and obtain a stable OMV vaccine. The immunoprotective effects and anti-infection efficacy were evaluated in vivo and in vitro. Methods The OMVs were prepared by ultrafiltration method and fused with GAN through mechanical extrusion. The characteristics, including morphology, hydrodynamic size, zeta potential, and stability were evaluated. The in vitro immunological function of GAN-OMV on the macrophages and in vivo immune efficacy and anti-infection effect were examined and compared. Results The results showed that the GAN-OMV were homogenous with a size of 130 nm and a stable core-shell structure. Micropinocytosis-dependent and clathrin-mediated endocytotic pathways effectively internalized the GAN-OMV into the macrophages and promoted cell proliferation, cytokine secretion, and M1 polarization. Furthermore, subcutaneous GAN-OMV vaccination contributed to significantly higher Borderella bronchiseptica (Bb)-specific antibody production and lymphocyte proliferation. The splenic lymphocytes of mice immunized with GAN-OMVs displayed a higher ratio of CD4+/CD8+ T cells and CD19+ B cells and produced significantly higher levels of Th1/Th2/Th17 cytokines. GAN-OMV also effectively prevented Bb reinfection. Conclusion In this study, GAN-OMV was developed successfully to stimulate Th1/Th2/Th17 immune responses against Bb and provide a promising strategy for novel vaccine development against the microbial pathogen.
Collapse
Affiliation(s)
- Yee Huang
- Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Science, Hangzhou, 310021, People’s Republic of China
| | - Li Nan
- Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Science, Hangzhou, 310021, People’s Republic of China
| | - Chenwen Xiao
- Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Science, Hangzhou, 310021, People’s Republic of China
| | - Jie Dong
- Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Science, Hangzhou, 310021, People’s Republic of China
| | - Ke Li
- Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Science, Hangzhou, 310021, People’s Republic of China
| | - Jvfen Cheng
- Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Science, Hangzhou, 310021, People’s Republic of China
| | - Quanan Ji
- Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Science, Hangzhou, 310021, People’s Republic of China
| | - Qiang Wei
- Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Science, Hangzhou, 310021, People’s Republic of China
| | - Guolian Bao
- Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Science, Hangzhou, 310021, People’s Republic of China
- Correspondence: Guolian Bao; Yan Liu, Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Science, Hangzhou, 310021, People’s Republic of China, Email ;
| | - Yan Liu
- Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Science, Hangzhou, 310021, People’s Republic of China
| |
Collapse
|
16
|
Han B, García‐Mendoza D, van den Berg H, van den Brink NW. Modulatory Effects of Mercury (II) Chloride (HgCl 2 ) on Chicken Macrophage and B-Lymphocyte Cell Lines with Viral-Like Challenges In Vitro. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2021; 40:2813-2824. [PMID: 34288095 PMCID: PMC9291928 DOI: 10.1002/etc.5169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 06/28/2021] [Accepted: 07/14/2021] [Indexed: 06/13/2023]
Abstract
Mercury (Hg) is a toxic trace metal ubiquitously distributed in the environment. Inorganic mercury (as HgCl2 ) can cause immunotoxicity in birds, but the mechanisms of action are still not fully resolved, especially with respect to responses to viral infections. To investigate the potential immunomodulatory effects of Hg2+ on specific cell types of the avian immune system, chicken macrophage (HD-11) and B-lymphocyte (DT40) cell lines were applied as in vitro models for the innate and adaptive immune systems, respectively. The cells were stimulated with synthetic double-stranded RNA, which can be recognized by toll-like receptor-3 to mimic a viral infection. The Hg2+ showed concentration-dependent cytotoxicity in both cell lines, with similar median effect concentrations at 30 µM. The cytotoxicity of Hg2+ was closely related to glutathione (GSH) depletion and reactive oxygen species induction, whereas the de novo synthesis of GSH acted as a primary protective strategy. Nitric oxide produced by activated macrophages was strongly inhibited by Hg2+ , and was also influenced by cellular GSH levels. Cell proliferation, gene expression of microRNA-155, and cellular IgM levels in B cells were decreased at noncytotoxic Hg2+ concentrations. The secretion of antiviral interferon-α was induced by Hg2+ in both cell lines. Overall, our results suggest that Hg2+ exposure can cause immunomodulatory effects in birds by disrupting immune cell proliferation and cytokine production, and might result in disorders of the avian immune system. Environ Toxicol Chem 2021;40:2813-2824. © 2021 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Biyao Han
- Division of Toxicology, Wageningen University and ResearchWageningenThe Netherlands
| | - Diego García‐Mendoza
- Division of Toxicology, Wageningen University and ResearchWageningenThe Netherlands
| | - Hans van den Berg
- Division of Toxicology, Wageningen University and ResearchWageningenThe Netherlands
| | | |
Collapse
|
17
|
Kennedy SN, Keogh M, Levin M, Castellini JM, Lian M, Fadely BS, Rea LD, O'Hara TM. Regional variations and relationships among cytokine profiles, white blood cell counts, and blood mercury concentrations in Steller sea lion (Eumetopias jubatus) pups. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 775:144894. [PMID: 33631572 DOI: 10.1016/j.scitotenv.2020.144894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/23/2020] [Accepted: 12/27/2020] [Indexed: 06/12/2023]
Abstract
The Steller sea lion (SSL) population west of 144°W longitude experienced a significant population decline. While there appears to be a stable or increasing population trend in rookeries in the Gulf of Alaska (GOA) and Southeast Alaska (SEA), some rookeries within the Aleutian Islands (AI) have failed to recover. Previous studies found regional differences in whole blood total mercury concentrations ([THg]) showing more than 20% of AI pups had [THg] above critical thresholds for increased risk of immunological effects and other adverse outcomes. Measurements of immune cell-signaling proteins can be used to evaluate the immune status of marine mammals in relation to [THg]. We compared serum cytokine and chemokine concentrations in pups among regions (AI, eastern GOA, SEA), and examined associations among cytokines, chemokines, white blood cell (WBC) counts, and [THg]. Considering liver is an important target organ for mercury and immune protein synthesis we additionally examined the relationship of [THg] with liver-related enzymes serum aspartate (AST) and alanine aminotransferase (ALT). We observed regional differences in cytokine and chemokine measurements and immune protein associations. There was a positive association between total WBC counts and [THg] in AI pups, whereas a negative association between lymphocytes and [THg] in SEA pups. These findings may indicate regional variation in proliferation and differentiation of hematopoietic cells, differences in immune system development, and/or a difference in antigenic stimuli. No associations between [THg] and cytokines, chemokines, AST or ALT were found. Observed regional differences in cytokine and chemokine milieu during gestational and early development in SSL pups could lead to an imbalance in cell differentiation that could impact immunological resiliency in juvenile and adult life stages. We report concentration ranges of a suite of cytokines and chemokines which may prove to be a useful metric for ecotoxicology and risk assessment studies in SSLs and other wildlife.
Collapse
Affiliation(s)
- Stephanie N Kennedy
- Department of Chemistry and Biochemistry, University of Alaska Fairbanks, Fairbanks, AK, USA; Harvard Medical School and Division of Gastroenterology, Boston Children's Hospital, Boston, MA, USA.
| | - Mandy Keogh
- Alaska Department of Fish and Game, Division of Wildlife Conservation, Juneau, AK, USA.
| | - Milton Levin
- Department of Veterinary Medicine, University of Connecticut, Storrs, CT, USA.
| | - J Margaret Castellini
- Department of Veterinary Medicine, University of Alaska Fairbanks, Fairbanks, AK, USA.
| | - Marianne Lian
- Department of Chemistry and Biochemistry, University of Alaska Fairbanks, Fairbanks, AK, USA; Department of Veterinary Medicine, University of Alaska Fairbanks, Fairbanks, AK, USA.
| | - Brian S Fadely
- Marine Mammal Laboratory, Alaska Fisheries Science Center, National Marine Fisheries Service, NOAA, Seattle, WA, USA.
| | - Lorrie D Rea
- Institute of Northern Engineering, University of Alaska Fairbanks, Fairbanks, AK, USA.
| | - Todd M O'Hara
- Department of Veterinary Medicine, University of Alaska Fairbanks, Fairbanks, AK, USA; Veterinary Integrative Biosciences, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
18
|
Manhães BMR, Santos-Neto EB, Tovar LR, Guari EB, Flach L, Kasper D, Galvão PMA, Malm O, Gonçalves RA, Bisi TL, Azevedo AF, Lailson-Brito J. Changes in mercury distribution and its body burden in delphinids affected by a morbillivirus infection: Evidences of methylmercury intoxication in Guiana dolphin. CHEMOSPHERE 2021; 263:128286. [PMID: 33297230 DOI: 10.1016/j.chemosphere.2020.128286] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 08/27/2020] [Accepted: 09/06/2020] [Indexed: 06/12/2023]
Abstract
An unusual mortality event (UME) attributed to morbillivirus infection was identified in two Guiana dolphin populations from the Southeastern Brazilian coast. The aim of this study was to characterize total mercury (THg), methylmercury (MeHg) and selenium (Se) bioaccumulation and body burden in Guiana dolphins from Sepetiba Bay (RJ) collected before (n = 61) and during the UME (n = 20). Significantly lower Se concentrations were found in the livers of individuals collected during the UME (Mann-Whitney test; p = 0.03), probably due to impairment of the detoxification process in the liver. There were differences in THg and Se concentrations in the organs and tissues of individuals (Kruskal-Wallis test, p < 0.05), but not MeHg (Kruskal-Wallis test, p = 0.07). For THg, the liver showed the higher concentrations and differed among organs and tissues analyzed such as blubber (Tukey's test for unequal N; p = 0.003). For Se concentrations, the skin and kidney presented the higher concentrations and varied among other tissues/organs, like muscle (Tukey's test for unequal N; p = 0.02). Differences in body burdens were observed among specimens collected previously and during the UME probably due to the remobilization and transport of the muscle-stored MeHg to other tissues/organs. This abrupt input of MeHg into the bloodstream may cause serious health damage. Indeed, evidences of methylmercury intoxication was observed in Guiana dolphins in Sepetiba Bay. In conclusion, bioaccumulation patterns, the detoxification process and body burden were affected by morbillivirus.
Collapse
Affiliation(s)
- B M R Manhães
- Laboratório de Mamíferos Aquáticos e Bioindicadores ''Prof(a). Izabel Gurgel'' (MAQUA), Faculdade de Oceanografia, Universidade Do Estado Do Rio de Janeiro, Rua São Francisco Xavier, 524, Sala 4002, CEP 20550-013, Maracanã, Rio de Janeiro, RJ, Brazil; Programa de Pós-Graduação Em Ciências Biológicas (Biofísica), Universidade Federal Do Rio de Janeiro, Av. Carlos Chagas Filho, 373, CEP 21941-902, Rio de Janeiro, RJ, Brazil.
| | - E B Santos-Neto
- Laboratório de Mamíferos Aquáticos e Bioindicadores ''Prof(a). Izabel Gurgel'' (MAQUA), Faculdade de Oceanografia, Universidade Do Estado Do Rio de Janeiro, Rua São Francisco Xavier, 524, Sala 4002, CEP 20550-013, Maracanã, Rio de Janeiro, RJ, Brazil
| | - L R Tovar
- Laboratório de Mamíferos Aquáticos e Bioindicadores ''Prof(a). Izabel Gurgel'' (MAQUA), Faculdade de Oceanografia, Universidade Do Estado Do Rio de Janeiro, Rua São Francisco Xavier, 524, Sala 4002, CEP 20550-013, Maracanã, Rio de Janeiro, RJ, Brazil
| | - E B Guari
- Laboratório de Mamíferos Aquáticos e Bioindicadores ''Prof(a). Izabel Gurgel'' (MAQUA), Faculdade de Oceanografia, Universidade Do Estado Do Rio de Janeiro, Rua São Francisco Xavier, 524, Sala 4002, CEP 20550-013, Maracanã, Rio de Janeiro, RJ, Brazil
| | - L Flach
- Instituto Boto Cinza, Mangaratiba, Rio de Janeiro, Av. Do Canal, 141, Brasilinha, CEP 23860-000, Itacuruçá, Mangaratiba, RJ, Brazil
| | - D Kasper
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal Do Rio de Janeiro, Av. Carlos Chagas Filho, 373 Sala G0-61, CEP 21941-902, Rio de Janeiro, RJ, Brazil
| | - P M A Galvão
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal Do Rio de Janeiro, Av. Carlos Chagas Filho, 373 Sala G0-61, CEP 21941-902, Rio de Janeiro, RJ, Brazil
| | - O Malm
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal Do Rio de Janeiro, Av. Carlos Chagas Filho, 373 Sala G0-61, CEP 21941-902, Rio de Janeiro, RJ, Brazil
| | - R A Gonçalves
- Departamento de Química, Pontifícia Universidade Catolica Do Rio de Janeiro, Rua Marquês de São Vicente 225, CEP 22451-900, Gávea, Rio de Janeiro, RJ, Brazil
| | - T L Bisi
- Laboratório de Mamíferos Aquáticos e Bioindicadores ''Prof(a). Izabel Gurgel'' (MAQUA), Faculdade de Oceanografia, Universidade Do Estado Do Rio de Janeiro, Rua São Francisco Xavier, 524, Sala 4002, CEP 20550-013, Maracanã, Rio de Janeiro, RJ, Brazil
| | - A F Azevedo
- Laboratório de Mamíferos Aquáticos e Bioindicadores ''Prof(a). Izabel Gurgel'' (MAQUA), Faculdade de Oceanografia, Universidade Do Estado Do Rio de Janeiro, Rua São Francisco Xavier, 524, Sala 4002, CEP 20550-013, Maracanã, Rio de Janeiro, RJ, Brazil
| | - J Lailson-Brito
- Laboratório de Mamíferos Aquáticos e Bioindicadores ''Prof(a). Izabel Gurgel'' (MAQUA), Faculdade de Oceanografia, Universidade Do Estado Do Rio de Janeiro, Rua São Francisco Xavier, 524, Sala 4002, CEP 20550-013, Maracanã, Rio de Janeiro, RJ, Brazil; Programa de Pós-Graduação Em Ciências Biológicas (Biofísica), Universidade Federal Do Rio de Janeiro, Av. Carlos Chagas Filho, 373, CEP 21941-902, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
19
|
Rea LD, Castellini JM, Avery JP, Fadely BS, Burkanov VN, Rehberg MJ, O'Hara TM. Regional variations and drivers of mercury and selenium concentrations in Steller sea lions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 744:140787. [PMID: 32717470 DOI: 10.1016/j.scitotenv.2020.140787] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 07/01/2020] [Accepted: 07/04/2020] [Indexed: 06/11/2023]
Abstract
Mercury (Hg) can be neurotoxic to mammals and impact reproduction, whereas selenium (Se) is an important antioxidant known to ameliorate some adverse effects of Hg. Total Hg concentrations ([THg]) were measured in lanugo (pelage grown in utero) of 812 Steller sea lion (Eumetopias jubatus) pups across Alaska and Russia to assess fetal exposure during late gestation. The molar ratio of total Se to THg (TSe:THg) was determined in whole blood collected from 291 pups. Stable isotope ratios of carbon and nitrogen were measured in sections of vibrissae (whiskers, n = 498) and in lanugo (n = 480) of pups grown during late gestation to track diet variations among adult females that can drive Hg and Se exposure during this critical fetal development period. Lanugo [THg] ranged from 1.4 to 73.7 μg/g dry weight with the lowest median [THg] in Southeast Alaska. Pups from the Western Aleutian Islands had higher median lanugo [THg] than pups from other metapopulations in Alaska. Over 25% of pups in the Western Aleutian Islands had [THg] above published risk thresholds (20 μg/g) for other mammals. Whole blood molar TSe:THg was significantly lower in the Western Aleutian Islands and in some parts of the Central Aleutian Islands with higher molar ratios found in the Eastern Aleutian Islands and Central Gulf of Alaska. This suggests a limitation on potential protective functions of Se in the western regions with the highest relative [THg]. The Central Aleutian Island pups with [THg] over 20 μg/g had higher δ15N ratios than pups with lower [THg] suggesting dams consuming higher trophic level prey is a key driver for Hg exposure. However, regional differences likely reflect variability in diet of the dam during gestation and in Hg food web dynamics between oceanic regimes east and west of key passes in the Aleutian Islands.
Collapse
Affiliation(s)
- L D Rea
- Institute of Northern Engineering, Water and Environmental Research Center, University of Alaska Fairbanks, Fairbanks, AK 99775, USA; Alaska Department of Fish and Game, Division of Wildlife Conservation, Anchorage, AK 99518, USA.
| | - J M Castellini
- Department of Veterinary Medicine, College of Natural Sciences and Mathematics, University of Alaska Fairbanks, Fairbanks, AK 99775, USA.
| | - J P Avery
- Institute of Northern Engineering, Water and Environmental Research Center, University of Alaska Fairbanks, Fairbanks, AK 99775, USA.
| | - B S Fadely
- Marine Mammal Laboratory, Alaska Fisheries Science Center, National Marine Fisheries Service, NOAA, Seattle, WA 98115, USA.
| | - V N Burkanov
- Marine Mammal Laboratory, Alaska Fisheries Science Center, National Marine Fisheries Service, NOAA, Seattle, WA 98115, USA; Kamchatka Branch of the Pacific Geographical Institute, Far East Branch of Russian Academy of Sciences, 6 Partizanskaya Street, Petropavlovsk-Kamchatsky 683000, Russia.
| | - M J Rehberg
- Alaska Department of Fish and Game, Division of Wildlife Conservation, Anchorage, AK 99518, USA.
| | - T M O'Hara
- Department of Veterinary Medicine, College of Natural Sciences and Mathematics, University of Alaska Fairbanks, Fairbanks, AK 99775, USA; Veterinary Integrative Biosciences, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA.
| |
Collapse
|
20
|
Skalny AV, Lima TRR, Ke T, Zhou JC, Bornhorst J, Alekseenko SI, Aaseth J, Anesti O, Sarigiannis DA, Tsatsakis A, Aschner M, Tinkov AA. Toxic metal exposure as a possible risk factor for COVID-19 and other respiratory infectious diseases. Food Chem Toxicol 2020; 146:111809. [PMID: 33069759 PMCID: PMC7563920 DOI: 10.1016/j.fct.2020.111809] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/25/2020] [Accepted: 10/01/2020] [Indexed: 01/08/2023]
Abstract
Multiple medical, lifestyle, and environmental conditions, including smoking and particulate pollution, have been considered as risk factors for COronaVIrus Disease 2019 (COVID-19) susceptibility and severity. Taking into account the high level of toxic metals in both particulate matter (PM2.5) and tobacco smoke, the objective of this review is to discuss recent data on the role of heavy metal exposure in development of respiratory dysfunction, immunotoxicity, and severity of viral diseases in epidemiological and experimental studies, as to demonstrate the potential crossroads between heavy metal exposure and COVID-19 severity risk. The existing data demonstrate that As, Cd, Hg, and Pb exposure is associated with respiratory dysfunction and respiratory diseases (COPD, bronchitis). These observations corroborate laboratory findings on the role of heavy metal exposure in impaired mucociliary clearance, reduced barrier function, airway inflammation, oxidative stress, and apoptosis. The association between heavy metal exposure and severity of viral diseases, including influenza and respiratory syncytial virus has been also demonstrated. The latter may be considered a consequence of adverse effects of metal exposure on adaptive immunity. Therefore, reduction of toxic metal exposure may be considered as a potential tool for reducing susceptibility and severity of viral diseases affecting the respiratory system, including COVID-19.
Collapse
Affiliation(s)
- Anatoly V Skalny
- IM Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia; Federal Research Centre of Biological Systems and Agro-technologies of the Russian Academy of Sciences, Orenburg, Russia.
| | - Thania Rios Rossi Lima
- São Paulo State University - UNESP, Center for Evaluation of Environmental Impact on Human Health (TOXICAM), Botucatu, SP, Brazil; Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Tao Ke
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Ji-Chang Zhou
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, Guangdong Province, China
| | - Julia Bornhorst
- Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Wuppertal, Germany
| | - Svetlana I Alekseenko
- I.I. Mechnikov North-Western State Medical University, St. Petersburg, Russia; K.A. Rauhfus Children's City Multidisciplinary Clinical Center for High Medical Technologies, St. Petersburg, Russia
| | - Jan Aaseth
- IM Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia; Research Department, Innlandet Hospital Trust, Brumunddal, Norway
| | - Ourania Anesti
- Laboratory of Toxicology, Medical School, University of Crete, Voutes, Heraklion, Crete, Greece; HERACLES Research Center on the Exposome and Health, Center for Interdisciplinary Research and Innovation, Aristotle University of Thessaloniki, Thermi, Greece
| | - Dimosthenis A Sarigiannis
- HERACLES Research Center on the Exposome and Health, Center for Interdisciplinary Research and Innovation, Aristotle University of Thessaloniki, Thermi, Greece; University School of Advanced Studies IUSS, Pavia, Italy
| | - Aristides Tsatsakis
- IM Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia; Laboratory of Toxicology, Medical School, University of Crete, Voutes, Heraklion, Crete, Greece
| | - Michael Aschner
- IM Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia; Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | | |
Collapse
|
21
|
Lian M, Castellini JM, Kuhn T, Rea L, Bishop L, Keogh M, Kennedy SN, Fadely B, van Wijngaarden E, Maniscalco JM, O'Hara T. Assessing oxidative stress in Steller sea lions (Eumetopias jubatus): Associations with mercury and selenium concentrations. Comp Biochem Physiol C Toxicol Pharmacol 2020; 235:108786. [PMID: 32413494 DOI: 10.1016/j.cbpc.2020.108786] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/27/2020] [Accepted: 04/28/2020] [Indexed: 02/07/2023]
Abstract
Selenium (Se) bioavailability is required for synthesis and function of essential Se-dependent antioxidants, including the enzyme glutathione peroxidase (GPx). Strong interactions between monomethyl mercury and Se impair the critical antioxidant role of Se. Approximately 20% of Steller sea lion (Eumetopias jubatus, SSL) pups sampled in the western Aleutian Islands, Alaska, had total Hg concentrations ([THg]) measured in hair and whole blood above thresholds of concern for adverse physiologic effects in pinnipeds. Importantly, low molar ratios of TSe:THg, in some cases < 1 in several tissues (hair, liver, pelt, muscle, spleen, intestine, heart, lungs, brain) were documented for one SSL pup with [THg] above threshold of concern, which may lead to antioxidant deficiency. Our aim with this study was to evaluate the relationship between circulating [THg], [MeHg+], [TSe] and TSe:THg molar ratio status relative to oxidative stress and antioxidants measured during general anesthesia in free-ranging SSL. We captured, anesthetized and sampled newborn SSL pups at rookeries located in the Aleutian Islands or Gulf of Alaska. Biomarkers analyzed for oxidative stress included 4-hydroxynenonal and thiobarbituric acid reactive substances (4-HNE and TBARS, respectively, lipid peroxidation), protein carbonyl content (PCC, protein oxidation), and GPx activity as a key indicator for Se-dependent antioxidant defense levels. We found a negative association between TBARS and [TSe], and SSL with low [TSe] had higher concentrations of 4-HNE than those with intermediate [TSe]. These results suggest that SSL with lower [TSe] experience increased lipid peroxidation potentially associated with [THg] status.
Collapse
Affiliation(s)
- Marianne Lian
- Department of Veterinary Medicine, University of Alaska Fairbanks, 2141 Koyokuk Dr, Fairbanks, AK 99775-7750, USA; Department of Chemistry and Biochemistry, University of Alaska Fairbanks, 900 Yukon Dr Rm. 194, Fairbanks, AK 99775-6160, USA.
| | - J Margaret Castellini
- Department of Veterinary Medicine, University of Alaska Fairbanks, 2141 Koyokuk Dr, Fairbanks, AK 99775-7750, USA.
| | - Thomas Kuhn
- Department of Chemistry and Biochemistry, University of Alaska Fairbanks, 900 Yukon Dr Rm. 194, Fairbanks, AK 99775-6160, USA.
| | - Lorrie Rea
- Water and Environmental Research Center, Institute of Northern Engineering, University of Alaska Fairbanks, 1764 Tanana Loop, Fairbanks, AK 99775, USA.
| | - Louise Bishop
- Department of Biology and Wildlife, University of Alaska Fairbanks, 2090 Koyokuk Dr, Fairbanks, AK 99775, USA.
| | - Mandy Keogh
- Division of Wildlife Conservation, Alaska Department of Fish and Game, P.O. Box 110024, Douglas, AK 99811-0024, USA.
| | - Stephanie N Kennedy
- Department of Chemistry and Biochemistry, University of Alaska Fairbanks, 900 Yukon Dr Rm. 194, Fairbanks, AK 99775-6160, USA; Harvard Medical School and Division of Gastroenterology, Boston Children's Hospital, 300 Longwood Ave. Enders 6th Floor, RM 650, Boston, MA 02115, USA.
| | - Brian Fadely
- Marine Mammal Laboratory, Alaska Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 7600 Sand Point Way NE, Seattle, WA 98115, USA.
| | - Edwin van Wijngaarden
- University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Rochester, NY 14642, USA.
| | - John M Maniscalco
- Alaska SeaLife Center, 301 Railway Avenue, P.O. Box 1329, Seward, AK 99664, USA.
| | - Todd O'Hara
- Department of Veterinary Medicine, University of Alaska Fairbanks, 2141 Koyokuk Dr, Fairbanks, AK 99775-7750, USA; Veterinary Integrative Biosciences, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA.
| |
Collapse
|