1
|
Wilhelm K, Longman J, Standish CD, De Kock T. The Historic Built Environment As a Long-Term Geochemical Archive: Telling the Time on the Urban "Pollution Clock". ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:12362-12375. [PMID: 37436401 PMCID: PMC10448721 DOI: 10.1021/acs.est.3c00153] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 06/27/2023] [Accepted: 06/27/2023] [Indexed: 07/13/2023]
Abstract
This study introduces a novel methodology for utilizing historic built environments as reliable long-term geochemical archives, addressing a gap in the reconstruction of past anthropogenic pollution levels in urban settings. For the first time, we employ high-resolution laser ablation mass spectrometry for lead isotope (206Pb/207Pb and 208Pb/206Pb) analysis on 350-year-old black crust stratigraphies found on historic built structures, providing insights into past air pollution signatures. Our findings reveal a gradual shift in the crust stratigraphy toward lower 206Pb/207Pb and higher 208Pb/206Pb isotope ratios from the older to the younger layers, indicating changes in lead sources over time. Mass balance analysis of the isotope data shows black crust layers formed since 1669 primarily contain over 90% Pb from coal burning, while other lead sources from a set of modern pollution including but not limited to leaded gasoline (introduced after 1920) become dominant (up to 60%) from 1875 onward. In contrast to global archives such as ice cores that provide integrated signals of long-distance pollution, our study contributes to a deeper understanding of localized pollution levels, specifically in urban settings. Our approach complements multiple sources of evidence, enhancing our understanding of air pollution dynamics and trends, and the impact of human activities on urban environments.
Collapse
Affiliation(s)
- Katrin Wilhelm
- Oxford
Resilient Buildings and Landscapes Laboratory (OxRBL), School of Geography
and the Environment, University of Oxford, South Parks Road, Oxford, OX1 3QY, U.K.
| | - Jack Longman
- Marine
Isotope Geochemistry, Institute for Chemistry and Biology of the Marine
Environment (ICBM), University of Oldenburg, Carl-von-Ossietzky-Str. 9-11, 26129 Oldenburg, Germany
- Department
of Geography and Environmental Sciences, Northumbria University, Newcastle-upon-Tyne, NE1 8ST, United
Kingdom
| | - Christopher D. Standish
- School
of Ocean & Earth Sciences, University
of Southampton, National Oceanography Centre, European Way, Southampton, SO14 3ZH, U.K.
| | - Tim De Kock
- Antwerp
Cultural Heritage Sciences (ARCHES), Faculty of Design, University of Antwerp Blindestraat 9, 2000 Antwerp, Belgium
| |
Collapse
|
2
|
Astolfi ML, Massimi L, Rapa M, Plà RR, Jasan RC, Tudino MB, Canepari S, Conti ME. A multi-analytical approach to studying the chemical composition of typical carbon sink samples. Sci Rep 2023; 13:7971. [PMID: 37198446 DOI: 10.1038/s41598-023-35180-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 05/14/2023] [Indexed: 05/19/2023] Open
Abstract
Peatlands in southern South America (Tierra del Fuego region, TdF) play a key role in the ecological dynamics of Patagonia. It is, therefore, necessary to increase our knowledge and awareness of their scientific and ecological value to ensure their conservation. This study aimed to assess the differences in the distribution and accumulation of elements in peat deposits and Sphagnum moss from the TdF. Chemical and morphological characterization of the samples was carried out using various analytical techniques, and total levels of 53 elements were determined. Furthermore, a chemometric differentiation based on the elemental content of peat and moss samples was performed. Some elements (Cs, Hf, K, Li, Mn, Na, Pb, Rb, Si, Sn, Ti and Zn) showed significantly higher contents in moss samples than in peat samples. In contrast, only Mo, S and Zr were significantly higher in peat samples than in moss samples. The results obtained highlight the ability of moss to accumulate elements and to act as a means to facilitate the entry of elements into peat samples. The valuable data obtained in this multi-methodological baseline survey can be used for more effective conservation of biodiversity and preservation of the ecosystem services of the TdF.
Collapse
Affiliation(s)
- Maria Luisa Astolfi
- Department of Chemistry, Sapienza University of Rome, P.le Aldo Moro 5, 00185, Rome, Italy.
- CIABC, Sapienza University of Rome, P.le Aldo Moro 5, 00185, Rome, Italy.
| | - Lorenzo Massimi
- Department of Environmental Biology, Sapienza University of Rome, P.le Aldo Moro 5, 00185, Rome, Italy
- C.N.R. Institute of Atmospheric Pollution Research, Via Salaria, Km 29,300, Monterotondo St., 00015, Rome, Italy
| | - Mattia Rapa
- Department of Management, Sapienza University of Rome, Via del Castro Laurenziano 9, 00161, Rome, Italy
| | - Rita Rosa Plà
- Departamento Química Nuclear, Gerencia Química Nuclear y Ciencias de la Salud (GAATN), Centro Atómico Ezeiza, Comisión Nacional de Energía Atómica (CNEA), Av. Presbítero J. González y Aragón 15 (CP B1802AYA), Ezeiza, Buenos Aires, Argentina
| | - Raquel Clara Jasan
- Departamento Química Nuclear, Gerencia Química Nuclear y Ciencias de la Salud (GAATN), Centro Atómico Ezeiza, Comisión Nacional de Energía Atómica (CNEA), Av. Presbítero J. González y Aragón 15 (CP B1802AYA), Ezeiza, Buenos Aires, Argentina
| | - Mabel Beatriz Tudino
- INQUIMAE, Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Silvia Canepari
- Department of Environmental Biology, Sapienza University of Rome, P.le Aldo Moro 5, 00185, Rome, Italy
- C.N.R. Institute of Atmospheric Pollution Research, Via Salaria, Km 29,300, Monterotondo St., 00015, Rome, Italy
| | - Marcelo Enrique Conti
- Department of Management, Sapienza University of Rome, Via del Castro Laurenziano 9, 00161, Rome, Italy
| |
Collapse
|
3
|
Newman JE, Levasseur PA, Beckett P, Watmough SA. The impact of severe pollution from smelter emissions on carbon and metal accumulation in peatlands in Ontario, Canada. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 320:121102. [PMID: 36669721 DOI: 10.1016/j.envpol.2023.121102] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 12/13/2022] [Accepted: 01/16/2023] [Indexed: 06/17/2023]
Abstract
Peatlands are unique habitats that function as a carbon (C) sink and an archive of atmospheric metal deposition. Sphagnum mosses are key components of peatlands but can be adversely impacted by air pollution potentially affecting rates of C and metal accumulation in peat. In this study we evaluate how the loss of Sphagnum in peatlands close to a copper (Cu) and nickel (Ni) smelter in Sudbury, Ontario affected C accumulation and metal profiles. The depth of accumulated peat formed during the 100+ year period of smelter activities also increased with distance from the smelter. Concurrently, peat bulk density decreased with distance from the smelter, which resulted in relatively similar average rates of apparent C accumulation (32-46 g/m2/yr). These rates are within the range of published values despite the historically high pollution loadings. Surface peat close to the smelters was greatly enriched in Cu and Ni, and Cu profiles in dated peat cores generally coincide with known pollution histories much better than Ni that increased well before the beginning of smelter activities likely a result of post-deposition mobility in peat cores.
Collapse
Affiliation(s)
- Jodi E Newman
- Environmental and Life Sciences, Trent University, Peterborough, ON, K9L 0G2, Canada.
| | - Patrick A Levasseur
- Environmental and Life Sciences, Trent University, Peterborough, ON, K9L 0G2, Canada
| | - Peter Beckett
- School of Natural Sciences and the Vale Living with Lakes Centre, Laurentian University, Sudbury, ON, P3E 2C6, Canada
| | - Shaun A Watmough
- School of the Environment, Trent University, Peterborough, ON, K9L 0G2, Canada
| |
Collapse
|
4
|
Vejvodová K, Vaněk A, Spasić M, Mihaljevič M, Ettler V, Vaňková M, Drahota P, Teper L, Vokurková P, Pavlů L, Zádorová T, Drábek O. Effect of peat organic matter on sulfide weathering and thallium reactivity: Implications for organic environments. CHEMOSPHERE 2022; 299:134380. [PMID: 35318025 DOI: 10.1016/j.chemosphere.2022.134380] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/14/2022] [Accepted: 03/18/2022] [Indexed: 06/14/2023]
Abstract
Weathering of Tl-containing sulfides in a model (12-week) peat pot trial was studied to better understand their geochemical stability, dissolution kinetics, alteration products and the associated release and mobility of anthropogenic Tl in organic environments. We also present the effect of industrial acid rainwater on sulfide degradation and Tl migration in naturally acidic peat. Sphalerite (ZnS) was much less stable in peat than other Tl-containing sulfides (galena and pyrite), and thus acted as a major phase responsible for Tl mobilization. Furthermore, Tl incongruently leached out over Zn from ZnS, and accumulated considerably more in the peat solutions (≤5 μg Tl/L) and the peat samples (≤0.4 mg Tl/kg) that were subjected to acid rain watering compared to a deionized H2O regime. This finding was in good agreement with the absence of secondary Tl-containing phases, which could potentially control the Tl flux into the peat. The behavior of Tl was not as conservative as Pb throughout the trial, since a higher peat mobility and migration potential of Tl was observed compared to Pb. In conclusion, industrial acid precipitations can significantly affect the stability of ZnS even in acidic peat/organic environments, making it susceptible to enhanced weathering and Tl release in the long term.
Collapse
Affiliation(s)
- Kateřina Vejvodová
- Department of Soil Science and Soil Protection, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 00, Praha 6, Czech Republic
| | - Aleš Vaněk
- Department of Soil Science and Soil Protection, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 00, Praha 6, Czech Republic.
| | - Marko Spasić
- Department of Soil Science and Soil Protection, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 00, Praha 6, Czech Republic
| | - Martin Mihaljevič
- Institute of Geochemistry, Mineralogy and Mineral Resources, Faculty of Science, Charles University, Albertov 6, 128 00, Praha 2, Czech Republic
| | - Vojtěch Ettler
- Institute of Geochemistry, Mineralogy and Mineral Resources, Faculty of Science, Charles University, Albertov 6, 128 00, Praha 2, Czech Republic
| | - Maria Vaňková
- Institute of Geochemistry, Mineralogy and Mineral Resources, Faculty of Science, Charles University, Albertov 6, 128 00, Praha 2, Czech Republic
| | - Petr Drahota
- Institute of Geochemistry, Mineralogy and Mineral Resources, Faculty of Science, Charles University, Albertov 6, 128 00, Praha 2, Czech Republic
| | - Leslaw Teper
- Institute of Earth Sciences, Faculty of Natural Sciences, University of Silesia, Bedzinska 60, 41-200, Sosnowiec, Poland
| | - Petra Vokurková
- Department of Soil Science and Soil Protection, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 00, Praha 6, Czech Republic
| | - Lenka Pavlů
- Department of Soil Science and Soil Protection, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 00, Praha 6, Czech Republic
| | - Tereza Zádorová
- Department of Soil Science and Soil Protection, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 00, Praha 6, Czech Republic
| | - Ondřej Drábek
- Department of Soil Science and Soil Protection, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 00, Praha 6, Czech Republic
| |
Collapse
|
5
|
Vaněk A, Vejvodová K, Mihaljevič M, Ettler V, Trubač J, Vaňková M, Goliáš V, Teper L, Sutkowska K, Vokurková P, Penížek V, Zádorová T, Drábek O. Thallium and lead variations in a contaminated peatland: A combined isotopic study from a mining/smelting area. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 290:117973. [PMID: 34428701 DOI: 10.1016/j.envpol.2021.117973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 07/08/2021] [Accepted: 08/12/2021] [Indexed: 06/13/2023]
Abstract
Vertical profiles of Tl, Pb and Zn concentrations and Tl and Pb isotopic ratios in a contaminated peatland/fen (Wolbrom, Poland) were studied to address questions regarding (i) potential long-term immobility of Tl in a peat profile, and (ii) a possible link in Tl isotopic signatures between a Tl source and a peat sample. Both prerequisites are required for using peatlands as archives of atmospheric Tl deposition and Tl isotopic ratios as a source proxy. We demonstrate that Tl is an immobile element in peat with a conservative pattern synonymous to that of Pb, and in contrast to Zn. However, the peat Tl record was more affected by geogenic source(s), as inferred from the calculated element enrichments. The finding further implies that Tl was largely absent from the pre-industrial emissions (>~250 years BP). The measured variations in Tl isotopic ratios in respective peat samples suggest a consistency with anthropogenic Tl (ε205Tl between ~ -3 and -4), as well as with background Tl isotopic values in the study area (ε205Tl between ~0 and -1), in line with detected 206Pb/207Pb ratios (1.16-1.19). Therefore, we propose that peatlands can be used for monitoring trends in Tl deposition and that Tl isotopic ratios can serve to distinguish its origin(s). However, given that the studied fen has a particularly complicated geochemistry (attributed to significant environmental changes in its history), it seems that ombrotrophic peatlands could be better suited for this type of Tl research.
Collapse
Affiliation(s)
- Aleš Vaněk
- Department of Soil Science and Soil Protection, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 00, Praha 6, Czech Republic.
| | - Kateřina Vejvodová
- Department of Soil Science and Soil Protection, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 00, Praha 6, Czech Republic
| | - Martin Mihaljevič
- Institute of Geochemistry, Mineralogy and Mineral Resources, Faculty of Science, Charles University, Albertov 6, 128 00, Praha 2, Czech Republic
| | - Vojtěch Ettler
- Institute of Geochemistry, Mineralogy and Mineral Resources, Faculty of Science, Charles University, Albertov 6, 128 00, Praha 2, Czech Republic
| | - Jakub Trubač
- Institute of Geochemistry, Mineralogy and Mineral Resources, Faculty of Science, Charles University, Albertov 6, 128 00, Praha 2, Czech Republic
| | - Maria Vaňková
- Institute of Geochemistry, Mineralogy and Mineral Resources, Faculty of Science, Charles University, Albertov 6, 128 00, Praha 2, Czech Republic
| | - Viktor Goliáš
- Institute of Geochemistry, Mineralogy and Mineral Resources, Faculty of Science, Charles University, Albertov 6, 128 00, Praha 2, Czech Republic
| | - Leslaw Teper
- Institute of Earth Sciences, Faculty of Natural Sciences, University of Silesia, Bedzinska 60, 41-200, Sosnowiec, Poland
| | - Katarzyna Sutkowska
- Institute of Earth Sciences, Faculty of Natural Sciences, University of Silesia, Bedzinska 60, 41-200, Sosnowiec, Poland
| | - Petra Vokurková
- Department of Soil Science and Soil Protection, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 00, Praha 6, Czech Republic
| | - Vít Penížek
- Department of Soil Science and Soil Protection, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 00, Praha 6, Czech Republic
| | - Tereza Zádorová
- Department of Soil Science and Soil Protection, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 00, Praha 6, Czech Republic
| | - Ondřej Drábek
- Department of Soil Science and Soil Protection, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 00, Praha 6, Czech Republic
| |
Collapse
|
6
|
Longman J, Ersek V, Veres D. High variability between regional histories of long-term atmospheric Pb pollution. Sci Rep 2020; 10:20890. [PMID: 33262534 PMCID: PMC7708465 DOI: 10.1038/s41598-020-77773-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 11/13/2020] [Indexed: 11/10/2022] Open
Abstract
The advent of metal processing was one of the key technological evolutions presaging the development of modern society. However, the interplay between metal use and the long-term changes it induced in the development and functioning of past societies remains unclear. We present a compilation of global records of anthropogenic atmospheric lead (Pb) spanning the last 4000 years, an effective indirect proxy for reliably assessing Pb emissions directly linked to human activities. Separating this global Pb pollution signal into regionally representative clusters allows identification of regional differences in pollution output that reflect technological innovations, market demands, or demise of various human cultures for last 4000 years. Our European reconstruction traces well periods of intensive metal production such as the Roman and Medieval periods, in contrast to clusters from the Americas, which show low levels of atmospheric Pb until the Industrial Revolution. Further investigation of the European synthesis results displays clear regional variation in the timing and extent of past development of polluting activities. This indicates the challenges of using individual reconstructions to infer regional or global development in Pb output and related pollution.
Collapse
Affiliation(s)
- Jack Longman
- Marine Isotope Geochemistry, Institute for Chemistry and Biology of the Marine Environment (ICBM), University of Oldenburg, 26129, Oldenburg, Germany.
- School of Geography and the Environment, University of Oxford, South Parks Road, Oxford, OX1 3QY, UK.
| | - Vasile Ersek
- Department of Geography and Environmental Sciences, Northumbria University, Newcastle-upon-Tyne, NE1 8ST, UK
| | - Daniel Veres
- Institute of Speleology, Romanian Academy, Clinicilor 5, 400006, Cluj-Napoca, Romania.
- EDYTEM, Université Savoie Mont-Blanc, CNRS, Le Bourget du Lac, France.
| |
Collapse
|
7
|
Twardowska I, Steinnes E, Miszczak E. Reply to the comments on "A novel approach to peatlands as archives of total cumulative spatial pollution loads from atmospheric deposition of airborne elements complementary to EMEP data: Priority pollutants (Pb, Cd, Hg)" by V. De Vleeschouwer et al. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 737:139153. [PMID: 32402463 DOI: 10.1016/j.scitotenv.2020.139153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 04/29/2020] [Indexed: 06/11/2023]
Abstract
In the comments by De Vleeschouwer et al. (2020) on a recent paper by Miszczak et al. (2020), two major issues were critically discussed: (1) the behavior of lead in ombrotrophic peatlands, with particular regard to the possible lead vertical mobility/immobility; (2) lead data use to accurately reconstruct historical contamination. The authors stated that "some of the conclusions reached by Miszczak et al. (2020) are based on misinterpretation or incorrect sampling and data analyses approaches". A reply to comments emphasises that these topics are not an issue of the paper. Its major idea was to use the unique natural systems (that are ombrotrophic peat bogs) as complete and reliable inventories for the assessment of cumulative loads of airborne element deposition independently upon its chronology. The results of a study conducted on ten ombrotrophic peat bogs in Norway and Poland showed a striking quantitative precision of such assessment. This has led to the idea of including ombrotrophic peat bogs into the EMEP network as tools for the completion of spatial distribution data on the fugitive element deposition. It would be helpful if a bigger number of experienced and widely recognized researchers take part in such project. Simultaneously, the analysis of source data, own results and case studies makes clear that the information regarding ombrotrophic peat properties is still insufficient to reconstruct precisely the chronology of metal contamination records, despite the development of high resolution sampling and analytical techniques and interpretational approaches. The clarification of some seemingly biased records would help to elucidate unexplained or unusual lead behavior in some outstanding cases. These cases demonstrate also that despite over 40 years of studies there are still the substantial gaps in our knowledge that need to be filled up.
Collapse
Affiliation(s)
- I Twardowska
- Institute of Environmental Engineering of the Polish Academy of Sciences, M. Skłodowskiej-Curie St. 34, 41-819 Zabrze, Poland.
| | - E Steinnes
- Department of Chemistry, Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim, Norway
| | - E Miszczak
- Institute of Environmental Engineering of the Polish Academy of Sciences, M. Skłodowskiej-Curie St. 34, 41-819 Zabrze, Poland
| |
Collapse
|