1
|
Marinsek GP, de Oliveira ICCDS, Ribeiro CC, Gusso-Choueri PK, Choueri RB, Abessa DMDS, Mari RDB. Multiple biomarkers in pufferfish as a proxy of environmental health in brazilian marine protected areas. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 914:169742. [PMID: 38163587 DOI: 10.1016/j.scitotenv.2023.169742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 12/23/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024]
Abstract
Marine Protected Areas (MPAs) are designed to conserve biodiversity and vulnerable ecosystems. This study aimed to assess the environmental quality of three Brazilian MPAs, based on the integrated analysis of biomarkers in pufferfish. The MPAs are differentiated by the degree of anthropogenic influences. The Barra do Una Estuary sustainable reserve (JUR) is a reference area due to its low levels of contamination and species diversity. The Cananéia Estuarine System (CAN) has been recognized as a biosphere reserve by UNESCO, as well as a Ramsar wetland. This MPA was influenced by upstream mining activities, resulting in the introduction of metals in the estuarine waters and the discharge of untreated urban sewage. The São Vicente estuary (SSV) lacks proper sanitation infrastructure. All collections were conducted during winter season, and, after collection, the animals were euthanized, their soft tissues were removed, and multiple biomarkers were analyzed in the gills and liver, as biometric, genotoxic, biochemical, and morphological. A one-factor multivariate analysis was applied to evaluate the differences between the data sets, and the matrices were analyzed using PERMANOVA to evaluate the "estuary" factor. The results were integrated using PCA with a 0.4 cut value and an Enhanced Integrated Biomarker Response (EIBR) was calculated. PCA was correlated with biochemical, genotoxic, and morphological biomarkers. In general, SVV differed from CAN and JUR as shown by both univariate and multivariate analyses. SVV also showed the highest EIBR, followed by CAN. Organisms from SSV showed greater gill pathology, elevated AChE activity and lipoperoxidation (LPO), and micronuclei frequency. CAN present intermediate EIBR, with severe pathologies in the liver. CAN seems to present an intermediate environmental quality between SSV and JUR indicating the importance of the existence of MPAs for environmental conservation and the need to monitor such areas, to maintain their suitable environmental quality.
Collapse
Affiliation(s)
| | | | - Caio César Ribeiro
- São Paulo State University (Unesp), Institute of Biosciences, São Vicente, Brazil
| | | | | | | | - Renata de Britto Mari
- São Paulo State University (Unesp), Institute of Biosciences, São Vicente, Brazil; São Paulo State University (Unesp), Institute for Advanced Studies of Ocean, São Vicente, Brazil
| |
Collapse
|
2
|
Roubeix V, Wessel N, Akcha F, Aminot Y, Briaudeau T, Burgeot T, Chouvelon T, Izagirre U, Munschy C, Mauffret A. Differences in biomarker responses and chemical contamination among three flatfish species in the Bay of Seine (NE Atlantic). MARINE POLLUTION BULLETIN 2023; 197:115674. [PMID: 39491290 DOI: 10.1016/j.marpolbul.2023.115674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/09/2023] [Accepted: 10/13/2023] [Indexed: 11/05/2024]
Abstract
To assess the potential of the sole as sentinel species for ecotoxicological monitoring, the present study compares contaminant levels and biological responses with two closely related flatfish species: the common dab and European flounder. Trace metals, organic contaminants and biomarkers were measured in the three flatfish species collected during the same oceanographic cruise in the Bay of Seine (France). Overall, sole showed lower concentrations of Hg, met-Hg, Cd, Zn and PBDE (lw), higher concentrations of Ag, Cu, PFOS (ww), PCBs, p,p'-DDE (lw) and OH-pyrene, a higher ability to metabolize PBDEs and higher genotoxic (Comet, Micronuclei) and neurotoxic (AChE inhibition) alterations. Sole was the species most frequently occurring in the bay and appeared sensitive to chemical contamination. We therefore recommend promoting the use of the common sole for ecotoxicological monitoring.
Collapse
Affiliation(s)
- Vincent Roubeix
- Ifremer, Contamination Chimique des Écosystèmes Marins, F-44000 Nantes, France
| | - Nathalie Wessel
- UMR6197 Biologie et Écologie des Ecosystèmes Marins Profonds, University Brest, CNRS, Ifremer. Laboratoire Evironnement Profond, 29280 Plouzané, France.
| | - Farida Akcha
- Ifremer, Contamination Chimique des Écosystèmes Marins, F-44000 Nantes, France
| | - Yann Aminot
- Ifremer, Contamination Chimique des Écosystèmes Marins, F-44000 Nantes, France
| | - Tifanie Briaudeau
- CBET Research Group, Department of Zoology and Animal Cell Biology, University of the Basque Country (UPV/EHU), Leioa, Basque country, Spain; Research Centre for Experimental Marine Biology and Biotechnology (Plentzia Marine Station; PiE-UPV/EHU), University of the Basque Country, Plentzia, Basque Country, Spain
| | - Thierry Burgeot
- Ifremer, Contamination Chimique des Écosystèmes Marins, F-44000 Nantes, France
| | - Tiphaine Chouvelon
- Observatoire Pelagis, UAR 3462 La Rochelle Université-CNRS, F-17000 La Rochelle, France
| | - Urtzi Izagirre
- CBET Research Group, Department of Zoology and Animal Cell Biology, University of the Basque Country (UPV/EHU), Leioa, Basque country, Spain; Research Centre for Experimental Marine Biology and Biotechnology (Plentzia Marine Station; PiE-UPV/EHU), University of the Basque Country, Plentzia, Basque Country, Spain
| | - Catherine Munschy
- Ifremer, Contamination Chimique des Écosystèmes Marins, F-44000 Nantes, France
| | - Aourell Mauffret
- Ifremer, Contamination Chimique des Écosystèmes Marins, F-44000 Nantes, France
| |
Collapse
|
3
|
Briaudeau T, Alves Dos Santos LA, Zorita I, Izagirre U, Marigómez I. Biological responses and toxicopathic effects elicited in Solea senegalensis juveniles by waterborne exposure to benzo[a]pyrene. MARINE ENVIRONMENTAL RESEARCH 2021; 170:105351. [PMID: 34015608 DOI: 10.1016/j.marenvres.2021.105351] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 04/29/2021] [Accepted: 05/02/2021] [Indexed: 06/12/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are priority contaminants in coastal and estuarine ecosystems under anthropogenic pressure. Although PAHs tend to accumulate in the sediment, toxicity for benthic flat fish such as soles may be caused by PAHs released from the sediment to the water column. Within this context, the present investigation aims at recognizing toxicopathic effects elicited after waterborne exposure to benzo[a]pyrene B[a]P, a model individual PAH compound, in juvenile Solea senegalensis. Sole juveniles were exposed to various concentrations of waterborne B[a]P for 3 and 7 days. Brain, liver, gills and gonad were the target tissues selected to determine biochemical and lysosomal biomarkers, and histopathology. Biological responses and toxicopathic effects were consistent with B[a]P concentration and exposure time. From day 3, hepatic catalase inhibition indicated potential oxidative effects of B[a]P. At day 7, contaminant exposure produced hepatic glutathione-S-transferase induction at low concentrations and inhibition at higher levels, evidencing a bell-shaped response. A clear gradient in lysosomal membrane destabilisation was observed in relation with B[a]P concentrations. Histopathological lesions were more frequent at day 7 and at higher contaminant levels. It seems that environmentally relevant waterborne concentrations of B[a]P (1000 ng/l) would suffice to cause toxicopathic effects on sole juveniles in relatively short exposure times. In agreement, the Integrative Biological Response index (IBR/n) indicated a dose-dependent decline in health condition upon exposure to B[a]P (IBR/nHighB[a]P > IBR/nMidB[a]P > IBR/nLowB[a]P > IBR/nDMSO > IBR/nControl). Overall, changes in antioxidant enzymes activity, lysosomal biomarkers and gill and liver histopathology are responsive early-warning signs of health disturbance in sole juveniles exposed to waterborne PAHs.
Collapse
Affiliation(s)
- Tifanie Briaudeau
- Cell Biology in Environmental Toxicology Research Group, Department of Zoology and Animal Cell Biology, Faculty of Science and Technology and Research Centre for Experimental Marine Biology and Biotechnology (PiE-UPV/EHU), University of the Basque Country(UPV/EHU), Basque Country, Spain
| | - Luis Alejandro Alves Dos Santos
- Cell Biology in Environmental Toxicology Research Group, Department of Zoology and Animal Cell Biology, Faculty of Science and Technology and Research Centre for Experimental Marine Biology and Biotechnology (PiE-UPV/EHU), University of the Basque Country(UPV/EHU), Basque Country, Spain
| | - Izaskun Zorita
- AZTI, Herrera Kaia, Portualdea z/g, 20110, Pasaia-Gipuzkoa, Basque Country, Spain
| | - Urtzi Izagirre
- Cell Biology in Environmental Toxicology Research Group, Department of Zoology and Animal Cell Biology, Faculty of Science and Technology and Research Centre for Experimental Marine Biology and Biotechnology (PiE-UPV/EHU), University of the Basque Country(UPV/EHU), Basque Country, Spain
| | - Ionan Marigómez
- Cell Biology in Environmental Toxicology Research Group, Department of Zoology and Animal Cell Biology, Faculty of Science and Technology and Research Centre for Experimental Marine Biology and Biotechnology (PiE-UPV/EHU), University of the Basque Country(UPV/EHU), Basque Country, Spain.
| |
Collapse
|