1
|
Uddin MN, Saha GC, Hasanath MA, Badsha MAH, Chowdhury MH, Islam ARMT. Hexavalent chromium removal from aqueous medium by ternary nanoadsorbent: A study of kinetics, equilibrium, and thermodynamic mechanism. PLoS One 2023; 18:e0290234. [PMID: 38134202 PMCID: PMC10745142 DOI: 10.1371/journal.pone.0290234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 08/05/2023] [Indexed: 12/24/2023] Open
Abstract
Although many studies have focused on chromium removal from aqueous media by ternary Nano adsorbents, still the integrated kinetics, equilibrium, and thermodynamic mechanisms of chromium removal remain unknown. Thus in this study, we have synthesized a novel ternary oxide nanocomposite comprising iron, manganese, and stannous (Fe2O3-MnO2-SnO2) in a facile method as a promising adsorbent for the removal of Cr(VI) from an aqueous medium. The Fe2O3-MnO2-SnO2 system was firstly characterized by FTIR, XRD, TGA, BET, and SEM/EDX. The effect of parameters, for instance, pH, temperature, initial Cr(VI) intensity, and adsorbent dose, have been examined to optimize the Cr(VI) adsorption performance. The adsorption of Cr(VI) onto Fe2O3-MnO2-SnO2 nanoadsorbent is associated with an adsorption/reduction mechanism. Using an initial Cr(VI) intensity of 50 mg L-1, 200 rpm agitation, 2.5-g L-1 of adsorbent, pH 2, 90 minutes adsorption time, and 298 K temperature, a maximum adsorption capability of 69.2 mg Cr(VI) g-1 for Fe2O3-MnO2-SnO2 was obtained. Models of pseudo-2nd-order kinetics and Langmuir's isotherm were best suited to the investigated data. Besides, thermodynamic parameters show that Cr(VI) adsorption onto Fe2O3-MnO2-SnO2 was random and dominated by entropy. The reusability of Fe2O3-MnO2-SnO2 was found to be consistently high (remaining above 80% for Cr(VI)) over four adsorption-desorption cycles. Chromium adsorption from the tannery wastewater was achieved 91.89% on Fe2O3-MnO2-SnO2. Therefore, Fe2O3-MnO2-SnO2 nanoparticles, being easy to be synthesized, reusable and having improved adsorption capability with higher surface area, could be a desirable option for removing Cr(VI) from aqueous environments.
Collapse
Affiliation(s)
- Md Nashir Uddin
- Department of Civil Engineering, Dhaka University of Engineering and Technology, Gazipur, Bangladesh
| | - Ganesh Chandra Saha
- Department of Civil Engineering, Dhaka University of Engineering and Technology, Gazipur, Bangladesh
| | - Md Abul Hasanath
- Department of Civil Engineering, Indian Institute of Technology, Hyderabad, India
| | - M. A. H. Badsha
- Department of Civil and Environmental Engineering, California Polytechnic State University, San Luis Obispo, CA, United States of America
| | | | - Abu Reza Md. Towfiqul Islam
- Department of Disaster Management, Begum Rokeya University, Rangpur, Bangladesh
- Department of Development Studies, Daffodil International University, Dhaka, Bangladesh
| |
Collapse
|
2
|
He Y, Zhao Z, Wang T, An L, Zhang L. Carbon-based materials as efficient adsorbents for the removal of antibiotics: The real contributions of carbon edge sites. CHEMOSPHERE 2023; 344:140341. [PMID: 37778643 DOI: 10.1016/j.chemosphere.2023.140341] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/12/2023] [Accepted: 09/28/2023] [Indexed: 10/03/2023]
Abstract
Disclosing the effect of edge defects in carbon-based materials on antibiotic removal remains a great challenge. In this study, carbon-based adsorbents (DC-s) with different degrees of edge defects were synthesized on a large scale via a direct calcination of sodium citrate (SC) and their adsorption performance to antibiotics were explored. The experimental results suggested that the edge defects of DC-s samples were the active sites for the adsorption of tetracycline (TC) and norfloxacin (NOR). The adsorption capacity of the optimal sample DC-900 for TC and NOR was 155.8 and 168.0 mg g-1, respectively. Density functional theory (DFT) calculations further revealed that zigzag edge defects rather than armchair edge defects were crucial to the excellent adsorption performance of DC-s samples for antibiotics, and the natures for the difference in the adsorption performance of the two edge defects for antibiotics were their different electronic structures. In addition, DC-900 also showed stable adsorption efficiency for antibiotics in the interferences, dynamic adsorption, and cycle experiments, suggesting its good environmental application potential. This study provides new insight into clarifying the natures of edge defects with carbon-based adsorbents for high-efficiency removal of antibiotics, which may guide the exploration of cost-effective carbon-based adsorbents.
Collapse
Affiliation(s)
- Yujie He
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China; State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Zhongjing Zhao
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Tao Wang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China.
| | - Lichao An
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Lu Zhang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China.
| |
Collapse
|
3
|
El-Wakeel ST, Fathy NA, Tawfik ME. Porous carbons prepared from a novel hard wood composite waste for effective adsorption of Pb(ii) and Cd(ii) ions. RSC Adv 2023; 13:34935-34946. [PMID: 38035242 PMCID: PMC10687519 DOI: 10.1039/d3ra06244a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 11/24/2023] [Indexed: 12/02/2023] Open
Abstract
In our previous investigations, a hard wood composite (HWC) was formulated by adding rice straw, as a filler to the recycled polystyrene foam waste at mass ratio (50/50) at 170 °C and pressed under 40 kPa. Here, the disposed HWC product as a model scrap was applied for production of porous carbons enclosed with graphene sheets. To attain this approach, HWC was hydrothermally carbonized (S1) followed by either post-heat treatment (S2) or potassium hydroxide (KOH, S3) activation at 750 °C for 2 hours. The properties of prepared samples were evaluated using SEM, ATR-IR, and porosity measurements. The adsorption performance of the obtained porous carbons toward removal of lead (Pb(ii)) and cadmium (Cd(ii)) ions from aqueous solutions was investigated under different operating conditions like contact time, initial pH, initial metal ions concentration and adsorbent dose. Kinetic models such as pseudo-first order, pseudo-second order and intraparticle diffusion were used to analyze the adsorption data. Langmuir, Freundlich, Dubinin-Radushkevich and Redlich-Peterson isotherms were applied. Thermodynamics and regeneration studies were performed. The sample (S3) comprised a micro-mesoporous carbon structure encompassed by graphene sheets, with the largest total surface area (422 m2 g-1) and adsorption capacities for Pb(ii) and Cd(ii) ions of 207.9 and 119.6 mg g-1, respectively. The experimental adsorption data were best elucidated using Langmuir and pseudo second-order kinetic models. Thermodynamic experiments confirmed that adsorption is an endothermic and spontaneous process. Conclusively, the investigated HWC waste is a promising carbonaceous precursor for preparing effective porous graphene-carbons used in the removal heavy metals from their aqueous stream.
Collapse
Affiliation(s)
- Shaimaa T El-Wakeel
- Water Pollution Research Department, National Research Centre 33 El Buhouth St, Dokki 12622 Giza Egypt
| | - Nady A Fathy
- Physical Chemistry Department, National Research Centre 33 El Buhouth St, Dokki 12622 Giza Egypt
| | - Magda E Tawfik
- Polymers and Pigments Department, National Research Centre 33 El Buhouth St, Dokki 12622 Giza Egypt
| |
Collapse
|
4
|
Mao Y, Lin L, Chen Y, Yang M, Zhang L, Dai X, He Q, Jiang Y, Chen H, Liao J, Zhang Y, Wang Y. Preparation of site-specific Z-scheme g-C 3N 4/PAN/PANI@LaFeO 3 cable nanofiber membranes by coaxial electrospinning: Enhancing filtration and photocatalysis performance. CHEMOSPHERE 2023; 328:138553. [PMID: 37004820 DOI: 10.1016/j.chemosphere.2023.138553] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 03/26/2023] [Accepted: 03/29/2023] [Indexed: 06/19/2023]
Abstract
The coaxial electrospinning method for preparation of g-C3N4/polyacrylonitrile (PAN)/polyaniline (PANI)@LaFeO3 cable fiber membrane (PC@PL) was designed for adsorption-filtration-photodegradation of pollutants. A series of characterization results show that LaFeO3 and g-C3N4 nanoparticles (NPs) are respectively loaded in the inner and outer layers of PAN/PANI composite fibers to construct the site-specific Z-type heterojunction system with spatially separated morphologies. The PANI in cable not only possesses abundant exposed amino/imino functional groups for adsorption of contaminant molecules but also due to the excellent electrical conductivity works as a redox medium for collecting and consuming the electrons and holes from LaFeO3 and g-C3N4, which can efficiently promote photo-generated charge carriers separation and improve the catalytic performance. Further investigations demonstrate that as a photo-Fenton catalyst LaFeO3 in PC@PL catalyzes/activates the H2O2 generated in situ by LaFeO3/g-C3N4, further enhancing the decontamination efficiency of the PC@PL. The porous, hydrophilic, antifouling, flexible and reusable properties of the PC@PL membrane significantly enhance the mass transfer efficiency of reactants by filtration effect and increase the amount of dissolved oxygen, thus producing massive •OH for degradation of pollutants, which maintains the water flux (1184 L m-2. h-1 (LMH)) and the rejection rate (98.5%). Profiting from its unique synergistic effect of adsorption, photo-Fenton and filtration, PC@PL exhibits wonderful self-cleaning performance and distinguished removal rate for methylene blue (97.0%), methyl violet (94.3%), ciprofloxacin (87.6%) and acetamiprid (88.9%) within 75 min, disinfection (100% Escherichia coli (E. coli) and 80% Staphylococcus aureus (S.aureus) inactivation)) and excellent cycle stability.
Collapse
Affiliation(s)
- Yihang Mao
- College of Science, Sichuan Agricultural University, Yaan 625014, China
| | - Li Lin
- College of Science, Sichuan Agricultural University, Yaan 625014, China
| | - Yuexing Chen
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Mingrui Yang
- College of Science, Sichuan Agricultural University, Yaan 625014, China
| | - Li Zhang
- College of Science, Sichuan Agricultural University, Yaan 625014, China
| | - Xianxiang Dai
- College of Science, Sichuan Agricultural University, Yaan 625014, China
| | - Qing He
- College of Science, Sichuan Agricultural University, Yaan 625014, China
| | - Yuanyuan Jiang
- College of Science, Sichuan Agricultural University, Yaan 625014, China
| | - Hui Chen
- College of Life Science, Sichuan Agricultural University, Yaan 625014, China
| | - Jinqiu Liao
- College of Life Science, Sichuan Agricultural University, Yaan 625014, China
| | - Yunsong Zhang
- College of Science, Sichuan Agricultural University, Yaan 625014, China.
| | - Ying Wang
- College of Water Conservancy and Hydropower Engineering, Sichuan Agricultural University, Yaan 625014, China.
| |
Collapse
|
5
|
Mergbi M, Galloni MG, Aboagye D, Elimian E, Su P, Ikram BM, Nabgan W, Bedia J, Amor HB, Contreras S, Medina F, Djellabi R. Valorization of lignocellulosic biomass into sustainable materials for adsorption and photocatalytic applications in water and air remediation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27484-2. [PMID: 37227629 DOI: 10.1007/s11356-023-27484-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 05/03/2023] [Indexed: 05/26/2023]
Abstract
An exponential rise in global pollution and industrialization has led to significant economic and environmental problems due to the insufficient application of green technology for the chemical industry and energy production. Nowadays, the scientific and environmental/industrial communities push to apply new sustainable ways and/or materials for energy/environmental applications through the so-called circular (bio)economy. One of today's hottest topics is primarily valorizing available lignocellulosic biomass wastes into valuable materials for energy or environmentally related applications. This review aims to discuss, from both the chemistry and mechanistic points of view, the recent finding reported on the valorization of biomass wastes into valuable carbon materials. The sorption mechanisms using carbon materials prepared from biomass wastes by emphasizing the relationship between the synthesis route or/and surface modification and the retention performance were discussed towards the removal of organic and heavy metal pollutants from water or air (NOx, CO2, VOCs, SO2, and Hg0). Photocatalytic nanoparticle-coated biomass-based carbon materials have proved to be successful composites for water remediation. The review discusses and simplifies the most raised interfacial, photonic, and physical mechanisms that might take place on the surface of these composites under light irradiation. Finally, the review examines the economic benefits and circular bioeconomy and the challenges of transferring this technology to more comprehensive applications.
Collapse
Affiliation(s)
- Meriem Mergbi
- Faculty of Sciences of Gabes, RL Processes, Energetic, Environment and Electric Systems (PEESE), University of Gabes, 6072, Gabes, Tunisia
- Department of Chemical Engineering, Universitat Rovira I Virgili, 43007, Tarragona, Spain
| | - Melissa Greta Galloni
- Dipartimento di Chimica, Università Degli Studi Di Milano, Via Golgi 19, 20133, Milano, Italy
| | - Dominic Aboagye
- Department of Chemical Engineering, Universitat Rovira I Virgili, 43007, Tarragona, Spain
| | - Ehiaghe Elimian
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Ningbo China, Ningbo, 315100, China
- Department of Plant Biology and Biotechnology, Faculty of Life Sciences, University of Benin, PMB 1154, Benin City, Nigeria
| | - Peidong Su
- School of Chemical & Environmental Engineering, China University of Mining & Technology (Beijing), Beijing, 100083, China
| | - Belhadj M Ikram
- Department of Chemical Engineering, Universitat Rovira I Virgili, 43007, Tarragona, Spain
| | - Walid Nabgan
- Department of Chemical Engineering, Universitat Rovira I Virgili, 43007, Tarragona, Spain
- Department of Chemical and Environmental Engineering, Malaysia Japan International Institute of Technology, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, 54100, Kuala Lumpur, Malaysia
| | - Jorge Bedia
- Chemical Engineering Department, Autonomous University of Madrid, Madrid, Spain
| | - Hedi Ben Amor
- Faculty of Sciences of Gabes, RL Processes, Energetic, Environment and Electric Systems (PEESE), University of Gabes, 6072, Gabes, Tunisia
| | - Sandra Contreras
- Department of Chemical Engineering, Universitat Rovira I Virgili, 43007, Tarragona, Spain
| | - Francisco Medina
- Department of Chemical Engineering, Universitat Rovira I Virgili, 43007, Tarragona, Spain
| | - Ridha Djellabi
- Department of Chemical Engineering, Universitat Rovira I Virgili, 43007, Tarragona, Spain.
| |
Collapse
|
6
|
Gill SS, Goyal T, Goswami M, Patel P, Das Gupta G, Verma SK. Remediation of environmental toxicants using carbonaceous materials: opportunity and challenges. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27364-9. [PMID: 37160511 DOI: 10.1007/s11356-023-27364-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 04/27/2023] [Indexed: 05/11/2023]
Abstract
Adsorption and photocatalytic properties of carbonaceous materials, viz., carbon nanotubes (CNTs), fullerene, graphene, graphene oxide, carbon nanofiber nanospheres, and activated carbon, are the legitimate weapons for the remediation of emerging and persistent inorganic/organic contaminants, heavy metals, and radionucleotides from the environment. High surface area, low or non-toxic nature, ease of synthesis, regeneration, and chemical modification of carbonaceous material make them ideal for the removal of toxicants. The research techniques investigated during the last decade for the elimination of environmental toxicants using carbonaceous materials are reviewed to offer comprehensive insight into the mechanism, efficiency, applications, advantages, and shortcomings. Opportunities and challenges associated with carbon materials have been discussed to suggest future perspectives in the remediation of environmental toxicants.
Collapse
Affiliation(s)
| | - Tanish Goyal
- ISF College of Pharmacy, Moga-142 001, Punjab, India
| | - Megha Goswami
- ISF College of Pharmacy, Moga-142 001, Punjab, India
| | - Preeti Patel
- ISF College of Pharmacy, Moga-142 001, Punjab, India
| | | | | |
Collapse
|
7
|
Ali OI, Zaki ER, Abdalla MS, Ahmed SM. Mesoporous Ag-functionalized magnetic activated carbon-based agro-waste for efficient removal of Pb(II), Cd(II), and microorganisms from wastewater. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:53548-53565. [PMID: 36859644 PMCID: PMC10119269 DOI: 10.1007/s11356-023-26000-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 02/14/2023] [Indexed: 06/18/2023]
Abstract
Herein, eco-friendly mesoporous magnetic activated carbon-based agro-waste nanosorbents incorporating antimicrobial silver nanoparticles (Mag@AC1-Ag and Mag@AC1-Ag) have been prepared. Various techniques (XRD, SEM/EDX, TEM, FTIR, and BET analysis) were employed to characterize the prepared nanosorbents before being utilized as novel nanosorbents to remove Pb+2 and Cd+2 ions. Mag@AC1-Ag and Mag@AC1-Ag exhibited rapid and excellent uptake of Pb+2 and Cd+2. The pseudo-second-order kinetics and the Langmuir isotherm are more suitable for the explanation of the experimental results. The thermodynamic parameters showed that the Pb+2 and Cd+2 sorption by the nanosorbents was a spontaneous and endothermic reaction. The prepared nanosorbents can be effectively regenerated using HCl and recycled up to the fifth cycle. These nanosorbents' potential uses for eliminating Pb+2 and Cd+2 from real water samples were evaluated. Moreover, the results revealed that both Mag@AC1-Ag and Mag@AC2-Ag exhibited high antimicrobial activity against fecal coliform (gram-negative) and Bacillus subtilis (gram-positive).
Collapse
Affiliation(s)
- Omnia I Ali
- Chemistry Department, Faculty of Science, Helwan University, Cairo, 11795, Egypt.
| | - Eman R Zaki
- Soil, Water and Environment Research Institute, Agriculture Research Centre, Giza, Egypt
| | - Mohga S Abdalla
- Chemistry Department, Faculty of Science, Helwan University, Cairo, 11795, Egypt
| | - Saber M Ahmed
- Soil, Water and Environment Research Institute, Agriculture Research Centre, Giza, Egypt
| |
Collapse
|
8
|
Wei X, Pan Y, Li M, Linghu W, Guo X. Mechanism of Eu(III), La(III), Nd(III), and Th(IV) removal by g-C3N4 based on spectroscopic analyses and DFT theoretical calculations. RESEARCH ON CHEMICAL INTERMEDIATES 2023. [DOI: 10.1007/s11164-023-04954-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
9
|
Qu J, Shi J, Wang Y, Tong H, Zhu Y, Xu L, Wang Y, Zhang B, Tao Y, Dai X, Zhang H, Zhang Y. Applications of functionalized magnetic biochar in environmental remediation: A review. JOURNAL OF HAZARDOUS MATERIALS 2022; 434:128841. [PMID: 35427975 DOI: 10.1016/j.jhazmat.2022.128841] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 03/14/2022] [Accepted: 03/31/2022] [Indexed: 06/14/2023]
Abstract
Magnetic biochar (MBC) is extensively applied on contaminants removal from environmental medium for achieving environmental-friendly remediation with reduction of secondary pollution owing to its easy recovery and separation. However, the summary of MBC synthesis methods is still lack of relevant information. Moreover, the adsorption performance for pollutants by MBC is limited, and thus it is imperative to adopt modification techniques to enhance the removal ability of MBC. Unfortunately, there are few reviews to present modification methods of MBC with applications for removing hazardous contaminants. Herein, we critically reviewed (i) MBC synthetic methods with corresponding advantages and limitations; (ii) adsorption mechanisms of MBC for heavy metals and organic pollutants; (iii) various modification methods for MBC such as functional groups grafting, nanoparticles loading and element doping; (iv) applications of modified MBC for hazardous contaminants adsorption with deep insight to relevant removal mechanisms; and (v) key influencing conditions like solution pH, temperature and interfering ions toward contaminants removal. Finally, some constructive suggestions were put forward for the practical applications of MBC in the near future. This review provided a comprehensive understanding of using functionalized MBC as effective adsorbent with low-cost and high-performance characteristics for contaminated environment remediation.
Collapse
Affiliation(s)
- Jianhua Qu
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Jiajia Shi
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Yihui Wang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Hua Tong
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Yujiao Zhu
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Lishu Xu
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Yifan Wang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Bo Zhang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Yue Tao
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Xiao Dai
- Harbin ZENENG Environmental Technology Co. Ltd., China
| | - Hui Zhang
- Harbin ZENENG Environmental Technology Co. Ltd., China
| | - Ying Zhang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China; Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, 4888 Shengbei Rd, Changchun 130102, China.
| |
Collapse
|
10
|
Bilgiç A, Karapınar HS. APTMS-BCAD modified magnetic iron oxide for magnetic solid-phase extraction of Cu(II) from aqueous solutions. Heliyon 2022; 8:e09645. [PMID: 35706942 PMCID: PMC9189893 DOI: 10.1016/j.heliyon.2022.e09645] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/08/2022] [Accepted: 05/30/2022] [Indexed: 01/17/2023] Open
Abstract
Fe3O4@SiO2-3-aminopropyltrimethoxysilane-1,8-bis (3-chloropropoxy) anthracene-9,10-dione was synthesized as a new, sustainable, and environmentally friendly adsorbent for magnetic solid-phase extraction of Cu(II) from aqueous solutions. The structure of the adsorbent was characterized by FTIR, XRD, SEM, EDX, and TEM analysis. Optimum conditions for Cu(II) adsorption were determined as adsorbent dose 0.04 g, pH 5.0, contact time 120 min, and beginning concentration of 30 mg/L in the adsorption process. The adsorption capacity for Cu(II) ions was 43.67 mg/g and the removal efficiency was 84.72 percent. The Langmuir isotherm and the pseudo-second-order model fit the experimental data better. Adsorption was a spontaneous and endothermic process based on the obtained thermodynamic properties such as ΔG°, ΔH°, and ΔS°. The results showed that the sorbent has good selectivity in the presence of competing ions. The method was determined to be accurate and effective using real water samples and CRM. Magnetic Fe3O4@SiO2-3-aminopropyl-trimethoxysilane-1,8-bis(3-chloropro-poxy) anthracene-9,10-dione was synthesized as a new, sustainable, and environmentally friendly adsorbent for magnetic solid-phase extraction of Cu(II) from aqueous solutions. The results showed that the presence of competitor ions did not have a significant effect on the sorption of Cu(II) ion and the sorbent had good selectivity. Using real water samples and CRM, the method was found to be accurate and effective.
Collapse
Affiliation(s)
- Ali Bilgiç
- Vocational School of Technical Sciences, Karamanoglu Mehmetbey University, 70100, Karaman, Turkey
| | - Hacer Sibel Karapınar
- Scientific and Technological Research & Application Center, Karamanoglu Mehmetbey University, 70100, Karaman, Turkey
| |
Collapse
|
11
|
Wang T, Xue L, Liu Y, Zhang L, Xing B. N self-doped hierarchically porous carbon derived from biomass as an efficient adsorbent for the removal of tetracycline antibiotics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 822:153567. [PMID: 35114240 DOI: 10.1016/j.scitotenv.2022.153567] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 01/23/2022] [Accepted: 01/26/2022] [Indexed: 06/14/2023]
Abstract
In this study, we developed a simple strategy to synthesize a N self-doped hierarchically porous carbon adsorbent (LPC-NC) derived from biomass using potassium oxalate monohydrate and calcium carbonate and remove tetracyclines that are major antibiotics frequently measured in surface water. In the pyrolysis process, the N-enriching lotus seed pots biomass decomposed and formed a porous carbon matrix with self-doped N. The LPC-NC displayed high adsorption amount (506.6 mg/g for tetracycline (TTC) and 445.3 mg/g for oxytetracycline (OTC)), short equilibrium time (30 min) and stable reusability (the decline efficiency<8.0% after five cycles). Batch adsorption experimental and theoretical studies showed that the high adsorption capacity of LPC-NC for tetracyclines was mainly ascribed to the self-doped pyridinic-N species and the adsorption capacity of pyridinic-N species at the edge location was better than that of pyridinic-N species at the vacancy location. Importantly, we believe that the high adsorption performance of LPC-NC for tetracyclines is due to the activation of carbon π electrons by destroying the integrity of conjugation on LPC-NC, thus enhancing the π-π interaction between LPC-NC and tetracyclines. In addition, the results of solid-state nuclear magnetic resonance (NMR) confirmed that the hierarchically porous structure of LPC-NC was conducive to the adsorption of tetracyclines. These insights provide new ideas for the rational design of N-doped carbon-based adsorbents for the efficient removal of tetracyclines.
Collapse
Affiliation(s)
- Tao Wang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; College of Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Lu Xue
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yonghong Liu
- College of Science, Huazhong Agricultural University, Wuhan 430070, China.
| | - Lu Zhang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, United States
| |
Collapse
|
12
|
A critical review on graphitic carbon nitride (g-C3N4)-based composites for environmental remediation. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119769] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
13
|
Dutta S, Jana TK, Maiti R, De K, Chatterjee K. α‐Fe
2
O
3
Nanoparticles Embedded in a g‐C
3
N
4
Nanocomposite: Optical, Magnetic and Electrochemical Study. ChemistrySelect 2021. [DOI: 10.1002/slct.202102739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Shubhamita Dutta
- Department of Physics Vidyasagar University Midnapore 721102 India
| | - Tushar K. Jana
- Department of Physics Vidyasagar University Midnapore 721102 India
| | - Ramaprasad Maiti
- Department of Electronics Derozio Memorial College Rajarhat Road Kolkata 700 136 India
| | - Kalyanashis De
- School of Science and Technology The Neotia University D.H. Road, 24 Pgs (south) Sarisa 743 368 India
| | | |
Collapse
|
14
|
Li J, Li X, Wang Z, Jia Y, Xu K, Wang Z, Wang Z. Adsorption of antimony using amino-functionalized magnetic MIL-101(Cr): Optimization by response surface methodology. J INDIAN CHEM SOC 2021. [DOI: 10.1016/j.jics.2021.100204] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
15
|
Zhang X, Ren B, Li X, Liu B, Wang S, Yu P, Xu Y, Jiang G. High-efficiency removal of tetracycline by carbon-bridge-doped g-C 3N 4/Fe 3O 4 magnetic heterogeneous catalyst through photo-Fenton process. JOURNAL OF HAZARDOUS MATERIALS 2021; 418:126333. [PMID: 34118537 DOI: 10.1016/j.jhazmat.2021.126333] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 05/31/2021] [Accepted: 06/02/2021] [Indexed: 05/22/2023]
Abstract
Carbon-bridge-modified malonamide (MLD)/g-C3N4 (CN) was prepared by copolymerization of MLD with urea and melamine and loaded with Fe3O4 for the high-efficiency removal of tetracycline (TC) in water under photo-Fenton. The prepared catalysts were characterized by SEM, TEM, N2 adsorption-desorption analysis, XPS, XRD, and FTIR, which proved that the modification method successfully introduced the C bridge into the carbon nitride molecular system and increased the structural defects of the catalyst. The Carbon-bridge-modified MLD/CN/Fe3O4 also had good visible-light response and charge-separation and transport abilities in the photoelectrochemical test. Degradation results showed that the photo-Fenton degradation of TC reached 95.8%, and the mineralization rate was 55.7% within 80 min at 80 mM H2O2 dosage, 0.5 g/L catalyst dosage, and near-neutral pH by 0.8MLD/CN/Fe3O4. Moreover, the oxidation products and mineralization pathways of TC were explored by LC-MS. Toxicity analysis indicated low environmental threat of the intermediates in TC mineralization. EPR analysis and H2O2 decomposition efficiency analyses showed an improvement in the H2O2 decomposition performance of 0.8MLD/CN/Fe3O4. This work could provide a valuable insight for the application of heterogeneous photo-Fenton technology in wastewater treatment.
Collapse
Affiliation(s)
- Xiao Zhang
- School of Environmental Sciences and Engineering, Nanjing Tech University, Nanjing 211816, China; School of Biological and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Bin Ren
- School of Environmental Sciences and Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Xi Li
- School of Environmental Sciences and Engineering, Nanjing Tech University, Nanjing 211816, China; School of Biological and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Biming Liu
- School of Environmental Sciences and Engineering, Nanjing Tech University, Nanjing 211816, China; School of Biological and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Shiwen Wang
- School of Environmental Sciences and Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Peng Yu
- School of Environmental Sciences and Engineering, Nanjing Tech University, Nanjing 211816, China.
| | - Yanhua Xu
- School of Environmental Sciences and Engineering, Nanjing Tech University, Nanjing 211816, China.
| | - Guoqiang Jiang
- Jiangsu Baichuan High-Tech New Materials Co., Ltd, Nanjing, China
| |
Collapse
|
16
|
Wang T, Xue L, Zheng L, Bao S, Liu Y, Fang T, Xing B. Biomass-derived N/S dual-doped hierarchically porous carbon material as effective adsorbent for the removal of bisphenol F and bisphenol S. JOURNAL OF HAZARDOUS MATERIALS 2021; 416:126126. [PMID: 34492920 DOI: 10.1016/j.jhazmat.2021.126126] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/22/2021] [Accepted: 05/12/2021] [Indexed: 06/13/2023]
Abstract
Biomass-derived heteroatom-doped porous carbon-based materials are emerging as low-cost adsorbents for removing common pollutants, although the adsorption performance is still unsatisfactory and the main adsorption mechanisms are still controversial. Herein, we report a facile and general method for fabricating biomass-derived N/S dual-doped hierarchically porous carbon adsorbent (MZ-NSPC). The MZ-NSPC material exhibits excellent adsorption capacity (295.8 mg/g for bisphenol F (BPF), 308.7 mg/g for bisphenol S (BPS)), short equilibrium time (30 min), and good reusability (the decline efficiency < 6.15% after five times). The remarkable adsorption performance originates from a large BET surface area, hierarchically porous structure, and N/S heteroatoms dual-doping. Combined with comparative experiments and density functional theory (DFT) calculations, we revealed that the doped N, S heteroatoms played a synergistic effect which promoted the adsorption performance and adsorption sites are mainly the oxidized-S and pyridinic-N. Importantly, for BPF, the proportion contribution of different mechanisms followed the order of hydrophobic interaction > π-π interaction > hydrogen bonding interaction. However, adsorption mechanism of BPS was mainly controlled by π-π interaction. This work not only promotes the development of low-cost and sustainable heteroatom-doped carbon-based materials, but also systematically studies adsorption mechanism of heteroatom-doped carbon-based materials for bisphenols.
Collapse
Affiliation(s)
- Tao Wang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lu Xue
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lewen Zheng
- School of Natural and Applied Sciences, Northwestern Polytechnical University, Xi'an 710129, China
| | - Shaopan Bao
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| | - Yonghong Liu
- College of Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Tao Fang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, United States
| |
Collapse
|
17
|
Tang J, Zhao B, Lyu H, Li D. Development of a novel pyrite/biochar composite (BM-FeS 2@BC) by ball milling for aqueous Cr(VI) removal and its mechanisms. JOURNAL OF HAZARDOUS MATERIALS 2021; 413:125415. [PMID: 33626470 DOI: 10.1016/j.jhazmat.2021.125415] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 01/27/2021] [Accepted: 02/10/2021] [Indexed: 06/12/2023]
Abstract
As a natural reduction mineral, pyrite (FeS2), was combined with biochar by simply ball milling technology to synthesize FeS2@biochar composite (BM-FeS2@BC) and applied for the removal of hexavalent chromium (Cr(VI)) in aqueous solution. SEM, XRD, FTIR, and XPS characterization results showed that the FeS2 and biochar were successfully combined and biochar suppressed the agglomeration of FeS2. Batch sorption experiments showed that the BM-FeS2@BC700 composite (mass ratio of FeS2-to-biochar = 3:1) had enhanced Cr(VI) removal capacity of 134 mg·g-1, which were 3-25 times higher than those of the corresponding pristine and ball-milled biochar and FeS2. The removal of Cr(VI) by BM-FeS2@BC700 was dosage and pH dependent. The addition of oxalic acid (OA) exhibited a promotion effect on the removal of Cr(VI) by increasing the removal rate of Cr(VI) from 56% to 100%. Reduction, adsorption, and surface complexation were the dominate mechanisms for Cr(VI) removal by BM-FeS2@BC700. At the equilibrium Cr(VI) concentration of 15.7 mg·L-1, 92.25% of Cr(VI) was removed through reduction/precipitation and 8.75% was removed by adsorption/surface complexation. The fitting results of the Langmuir model proved that the removal of Cr(VI) by BM-FeS2@BC700 composite was chemical surface monolayer adsorption. This work demonstrates the potential of ball milling for the preparation of FeS2@BC composite to remove Cr(VI) from water and wastewater.
Collapse
Affiliation(s)
- Jingchun Tang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Beibei Zhao
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Honghong Lyu
- Tianjin Key Laboratory of Clean Energy and pollution control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China.
| | - Ding Li
- BCIG Environmental Remediation Co., Ltd, Tianjin 300042, China
| |
Collapse
|
18
|
Zhou T, Liang Q, Zhou X, Luo H, Chen W. Enhanced removal of toxic hexavalent chromium from aqueous solution by magnetic Zr-MOF@polypyrrole: performance and mechanism. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:13084-13096. [PMID: 33496945 DOI: 10.1007/s11356-021-12341-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 01/02/2021] [Indexed: 06/12/2023]
Abstract
Magnetic Zr-based metal organic framework (UiO-66) @Polypyrrole (magnetic UiO-66@Ppy) was prepared to eliminate Cr(VI) from water. SEM and TEM results clearly revealed that the magnetic UiO-66@Ppy was a core-double-shell structure with the core of Fe3O4, inner shell UiO-66, and outer shell Ppy. The introduction of zirconium MOFs UiO-66 effectively prevented the agglomeration of polypyrrole and provided more available adsorption sites, the surface area increased from 9.57 m2/g (Ppy) to 10.57 m2/g (Fe3O4@Ppy) and 52.49 m2/g (magnetic UiO-66@Ppy). The magnetic UiO-66@Ppy possessed a high adsorption capacity of 259.1 mg/g in removing Cr(VI) from water. Adsorption kinetics followed the pseudo-second-order model. The removal of Cr(VI) involved the following mechanisms: (1) electrostatic attraction and ions exchange, the HCrO4- was adsorbed on the surface of magnetic UiO-66@Ppy by the protonated N(PpyN+) and Cl-; (2) reduction, Cr(VI) was reduced to Cr(III) by the reductive functional group(-NH-); (3) chelation, Cr(III) was immobilized on adsorbent by amine groups.
Collapse
Affiliation(s)
- Tingting Zhou
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, People's Republic of China
- The Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters of Ministry of Education, Guangzhou, 510006, People's Republic of China
| | - Qianwei Liang
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, People's Republic of China
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641, People's Republic of China
| | - Xin Zhou
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, People's Republic of China
- The Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters of Ministry of Education, Guangzhou, 510006, People's Republic of China
| | - HanJin Luo
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, People's Republic of China.
- The Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters of Ministry of Education, Guangzhou, 510006, People's Republic of China.
- Guangdong Engineering and Technology Research Center for Environmental Nanomaterials, Guangzhou, 510006, People's Republic of China.
| | - Wei Chen
- Chongqing Key Laboratory of Environmental Materials & Remediation Technologies, Chongqing University of Art and Science, Chongqing, 402160, People's Republic of China
| |
Collapse
|
19
|
Zhang Z, Wang T, Zhang H, Liu Y, Xing B. Adsorption of Pb(II) and Cd(II) by magnetic activated carbon and its mechanism. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 757:143910. [PMID: 33310569 DOI: 10.1016/j.scitotenv.2020.143910] [Citation(s) in RCA: 120] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/31/2020] [Accepted: 11/17/2020] [Indexed: 05/28/2023]
Abstract
Magnetized activated carbons (MAC) were prepared by activating rape straw powder, and pyrolyzing at different temperatures, then magnetizing activated carbon by hydrothermal method. MAC-300 had the largest adsorption capacity of Pb(II) (253.2 mg/g) and Cd(II) (73.3 mg/g). The adsorption isotherms and kinetics could conform to the Freundlich model and pseudo-second-order kinetic model, respectively, indicating that the adsorptive behavior of the adsorbent mainly depends on the non-uniform active points on the surface of the material. Meanwhile, the thermodynamic parameters showed that the adsorption of Pb(II) and Cd(II) by MAC-300 was a spontaneous and endothermic reaction. The adsorption capacity of MAC-300 could be improved by properly increasing the pH of the original solution. There was competitive adsorption when high-valent ions were present in solution. In combination with various characterizations and comparison tests of samples after adsorption, the adsorption mechanisms include surface electrostatic attraction, surface complexation, and co-precipitation. The results indicated that the MAC material was a potential material to remove heavy metal ions from the aqueous solution.
Collapse
Affiliation(s)
- Zhen Zhang
- College of Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Tao Wang
- College of Science, Huazhong Agricultural University, Wuhan 430070, China; Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Huixue Zhang
- College of Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Yonghong Liu
- College of Science, Huazhong Agricultural University, Wuhan 430070, China; Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, United States.
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, United States
| |
Collapse
|
20
|
Zhao W, Tian Y, Chu X, Cui L, Zhang H, Li M, Zhao P. Preparation and characteristics of a magnetic carbon nanotube adsorbent: Its efficient adsorption and recoverable performances. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.117917] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
21
|
Bahador F, Foroutan R, Esmaeili H, Ramavandi B. Enhancement of the chromium removal behavior of Moringa oleifera activated carbon by chitosan and iron oxide nanoparticles from water. Carbohydr Polym 2021; 251:117085. [DOI: 10.1016/j.carbpol.2020.117085] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/08/2020] [Accepted: 09/08/2020] [Indexed: 12/27/2022]
|