1
|
Wang Q, Hou J, Peng L, Liu W, Luo Y. Dynamic responses in bioaugmentation of petroleum-contaminated soils using thermophilic degrading consortium HT: Hydrocarbons, microbial communities, and functional genes. JOURNAL OF HAZARDOUS MATERIALS 2025; 487:137222. [PMID: 39826458 DOI: 10.1016/j.jhazmat.2025.137222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 01/12/2025] [Accepted: 01/13/2025] [Indexed: 01/22/2025]
Abstract
Bioaugmentation offers an effective strategy for the bioremediation of petroleum-contaminated soils. However, little is known about petroleum hydrocarbons (PHs) degradation with thermophilic consortium application under high temperature. A microcosm was established to study hydrocarbons degradation, microbial communities and functional genes response using a thermophilic petroleum-degrading consortium HT. The results showed that the consortium HT significantly enhanced PHs degradation, particularly for medium (C16-C21) (87.1 %) and long-chain alkanes (C21-C40) (67.2 %) within 140 days under high temperature. Colonization of HT in the soil exhibited lagged characteristics, with a substantial increase in bacterial genera originated from the HT after 60 days. Additionally, LEfSe analysis indicated that the biomarkers of HT treatment were mainly from the HT consortium. Moreover, functional analysis revealed genes related to n-alkane degradation (AlkB, P450, LadA), alkane utilization regulator (AraC, TetR, GntR), as well as several thermotolerance genes were significantly increased in HT treatment. Additionally, network analysis demonstrated distinct co-occurrence patterns induced by nutrient addition and exogenous consortium, with the latter strengthening interactions and stability of bacterial networks under high temperature. This study represents pioneering investigation into the effects of exogenous thermophilic consortium on petroleum degradation, bacterial communities, functional genes and ecological interactions in application of petroleum remediation under thermophilic conditions.
Collapse
Affiliation(s)
- Qingling Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinyu Hou
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, China
| | - Li Peng
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, China
| | - Wuxing Liu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, China.
| | - Yongming Luo
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, China
| |
Collapse
|
2
|
Wang Y, Sun H, Ji Y, Feng Y, Chen S, Ding S, Ma Y, Wang B, Feng Y, Xie H, Xue L. Co-application of hydrothermal carbonization aqueous phase and biogas slurry reduced ammonia volatilization in paddy. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 373:123946. [PMID: 39754797 DOI: 10.1016/j.jenvman.2024.123946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 12/08/2024] [Accepted: 12/27/2024] [Indexed: 01/06/2025]
Abstract
Application of biogas slurry (BS) can promote ammonia (NH3) volatilization. Algae sludge and Quercus acutissima leaves are rich in resources and nutrients, and can be effectively converted into valuable products. Hydrothermal carbonization technology (HTC) is a sustainable method for the treatment of wet biomass. However, the large amount of hydrothermal carbonization aqueous products (HAP) contains harmful substances that require effective management. The combined application of HAP and BS can mitigate NH3 emissions and facilitate resource recovery, presenting an eco-friendly approach to both nutrient recycling and pollution mitigation. This study explored the joint application of HAP and BS in paddy to decrease NH3 volatilization and the factors influencing NH3 volatilization. In this study, the HAP prepared from algae sludge and Quercus acutissima leaves at 180 °C and 220 °C was mixed with BS at a 1:1 total nitrogen content ratio, and the mixture was used instead of 25% or 50% urea. The experimental results indicated that the rice yield with the application of HAP and BS was equivalent to the control treatment only with urea (CK). Compared to the CK, HAP and BS treatments reduced soil NH3 volatilization by 6.9%-55.5% and increased soil dissolved organic matter (DOM) by 2.7%-59.4%. The treatments using algae sludge and Quercus acutissima leaves prepared at 220 °C as substitutes for 50% of urea reduced NH3 volatilization by 43.9% and 55.5%, respectively. Ammonium nitrogen, pH, total organic carbon, urease, and DOM were important factors influencing NH3 volatilization. This study showed that substituting part of urea with HAP and BS for field application reduced NH3 volatilization and increased soil organic matter content.
Collapse
Affiliation(s)
- Yimeng Wang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, PR China; Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, PR China
| | - Haijun Sun
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry and Grassland, Nanjing Forestry University, Nanjing, 210037, PR China
| | - Yahui Ji
- Institute of Environmental Processes and Pollution Control, and School of Environment and Civil Engineering, Jiangnan University, Wuxi, Jiangsu, 214122, PR China
| | - Yuanyuan Feng
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry and Grassland, Nanjing Forestry University, Nanjing, 210037, PR China
| | - Sen Chen
- Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, PR China; Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry and Grassland, Nanjing Forestry University, Nanjing, 210037, PR China
| | - Shudong Ding
- Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, PR China; College of Chemical Engineering, Nanjing Forestry University, 210037, Nanjing, PR China
| | - Yaxin Ma
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, PR China; Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, PR China
| | - Bingyu Wang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, PR China
| | - Yanfang Feng
- Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, PR China.
| | - Huifang Xie
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, PR China.
| | - Lihong Xue
- Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, PR China
| |
Collapse
|
3
|
Shen X, Dong W, Su X, Wan Y, Zhang Q, Rao C, Wang S, Lyu H, Song T. Overload of dissolved organic matter (DOM) in riparian infiltration zone increasing the pollution risk of naphthalene, insight from the competitive inhibition of naphthalene biodegradation by DOM. WATER RESEARCH 2024; 264:122251. [PMID: 39146851 DOI: 10.1016/j.watres.2024.122251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 08/07/2024] [Accepted: 08/10/2024] [Indexed: 08/17/2024]
Abstract
Riparian infiltration zones are crucial for maintaining water quality by reducing the aqueous concentrations of polycyclic aromatic hydrocarbons (PAHs) through adsorption and biodegradation within the aquatic ecosystem. Dissolved organic matter (DOM) are ubiquitous in riparian infiltration zones where they extensively engage in the adsorption and biodegradation of PAHs, thereby influencing PAHs natural attenuation potential within riparian infiltration zones. Few studies have explored the natural attenuation mechanisms of PAHs influenced by DOM in riparian infiltration zones. In this study, the natural attenuation mechanisms of naphthalene (a typical PAHs component), under the influence of DOM, were explored, based on a case riverside source area. Analysis of microbial community structures, and the electron acceptor (e.g., Fe(III), DO/NO3-, SO42-)/electron donor (naphthalene and DOM) concentration changes within the riparian infiltration zone revealed a competitive inhibition relationship between DOM and naphthalene during microbial metabolism. Biodegradation experiments showed that when the concentration of DOM is higher than 4.0 mg·L-1, it inhibits the biodegradation of naphthalene. DOM competitively inhibits the biodegradation of naphthalene through the following mechanisms: (i) triggering microbial antioxidative defense mechanisms, diminishing the available resources for microbial participation in naphthalene degradation; (ii) altering microbial community structure; (iii) modulating microbial EPS composition, reducing the efficiency of microorganisms in utilizing carbon sources; and (iv) inhibiting the expression levels of downstream genes involved in naphthalene degradation. The competitive inhibition constants of DOM with concentrations of 1.0, 2.0, 4.0, 8.0, and 16.0 mg·L-1 on naphthalene biodegradation are -2.0 × 10-3, -5.0 × 10-3,1.0 × 10-3, 4.0 × 10-4, and 1.0 × 10-4, respectively. These findings enhance understanding of PAHs attenuation in riparian infiltration zone, providing a basis for assessing and managing PAHs pollution risks during riparian extraction.
Collapse
Affiliation(s)
- Xiaofang Shen
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, Jilin 130021, China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun, Jilin 130021, China; Institute of Water Resources and Environment, Jilin University, Changchun, Jilin 130021, China
| | - Weihong Dong
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, Jilin 130021, China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun, Jilin 130021, China; Institute of Water Resources and Environment, Jilin University, Changchun, Jilin 130021, China.
| | - Xiaosi Su
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, Jilin 130021, China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun, Jilin 130021, China; Institute of Water Resources and Environment, Jilin University, Changchun, Jilin 130021, China
| | - Yuyu Wan
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, Jilin 130021, China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun, Jilin 130021, China; Institute of Water Resources and Environment, Jilin University, Changchun, Jilin 130021, China
| | - Qichen Zhang
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, Jilin 130021, China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun, Jilin 130021, China; Institute of Water Resources and Environment, Jilin University, Changchun, Jilin 130021, China
| | - Chenmo Rao
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, Jilin 130021, China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun, Jilin 130021, China; Institute of Water Resources and Environment, Jilin University, Changchun, Jilin 130021, China
| | - Shinian Wang
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, Jilin 130021, China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun, Jilin 130021, China; Institute of Water Resources and Environment, Jilin University, Changchun, Jilin 130021, China
| | - Hang Lyu
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, Jilin 130021, China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun, Jilin 130021, China; Institute of Water Resources and Environment, Jilin University, Changchun, Jilin 130021, China
| | - Tiejun Song
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, Jilin 130021, China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun, Jilin 130021, China; Institute of Water Resources and Environment, Jilin University, Changchun, Jilin 130021, China
| |
Collapse
|
4
|
He L, Wang Y, Xi B, Zhao X, Cai D, Sun Y, Du Y, Zhang C. Synergistic removal of total petroleum hydrocarbons and antibiotic resistance genes in Yellow River Delta wetlands contaminated soil composting regulated by biogas slurry addition. ENVIRONMENTAL RESEARCH 2024; 252:118724. [PMID: 38518917 DOI: 10.1016/j.envres.2024.118724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/29/2024] [Accepted: 03/12/2024] [Indexed: 03/24/2024]
Abstract
The interactive effects between the emerging contaminant antibiotic resistance genes (ARGs) and the traditional pollutant total petroleum hydrocarbons (TPHs) in contaminated soils remain unclear. The synergistic removal of TPHs and ARGs from composted contaminated soil, along with the microbial mechanisms driven by the addition of biogas slurry, have not yet been investigated. This study explored the impact of biogas slurry on the synergistic degradation mechanisms and bacterial community dynamics of ARGs and TPHs in compost derived from contaminated soil. The addition of biogas slurry resulted in a reduction of targeted ARGs and mobile genetic elements (MGEs) by 9.96%-95.70% and 13.32%-97.66%, respectively. Biogas slurry changed the succession of bacterial communities during composting, thereby reducing the transmission risk of ARGs. Pseudomonas, Cellvibrio, and Devosia were identified as core microorganisms in the synergistic degradation of ARGs and TPHs. According to the partial least squares path model, temperature and NO3- indirectly influenced the removal of ARGs and TPHs by directly regulating the abundance and composition of host microbes and MGEs. In summary, the results of this study contribute to the high-value utilization of biogas slurry and provide methodological support for the low-cost remediation of contaminated soils.
Collapse
Affiliation(s)
- Liangzi He
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; State Environmental Protection Key Laboratory of Hazardous Waste Identification and Risk Control, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; College of Life Science, Northeast Agricultural University, Harbin, 150030, China
| | - Yan Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; State Environmental Protection Key Laboratory of Hazardous Waste Identification and Risk Control, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; School of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541000, China
| | - Beidou Xi
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; State Environmental Protection Key Laboratory of Hazardous Waste Identification and Risk Control, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Xinyu Zhao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; State Environmental Protection Key Laboratory of Hazardous Waste Identification and Risk Control, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| | - Danmei Cai
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; State Environmental Protection Key Laboratory of Hazardous Waste Identification and Risk Control, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; College of Life Science, Northeast Agricultural University, Harbin, 150030, China
| | - Yiwen Sun
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; State Environmental Protection Key Laboratory of Hazardous Waste Identification and Risk Control, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; College of Life Science, Northeast Agricultural University, Harbin, 150030, China
| | - Yuewei Du
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; State Environmental Protection Key Laboratory of Hazardous Waste Identification and Risk Control, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; College of Life Science, Northeast Agricultural University, Harbin, 150030, China
| | - Chuanyan Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; State Environmental Protection Key Laboratory of Hazardous Waste Identification and Risk Control, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; School of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541000, China
| |
Collapse
|
5
|
Proshad R, Li J, Sun G, Zheng X, Yue H, Chen G, Zhang S, Li Z, Zhao Z. Field application of hydroxyapatite and humic acid for remediation of metal-contaminated alkaline soil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:13155-13174. [PMID: 38243026 DOI: 10.1007/s11356-024-32015-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 01/10/2024] [Indexed: 01/21/2024]
Abstract
The quality of soil is essential for ensuring the safety and quality of agricultural products. However, soils contaminated with toxic metals pose a significant threat to agricultural production and human health. Therefore, remediation of contaminated soils is an urgent task, and humic acid (HA) with hydroxyapatite (HAP) materials was applied for this study in contaminated alkaline soils to remediate Cd, Pb, Cu, and Zn. Physiochemical properties, improved BCR sequential extraction, microbial community composition in soils with superoxide dismutase (SOD), peroxidase (POD), and chlorophyll content in plants were determined. Among the studied treatments, application of HAP-HA (2:1) (T7) had the most significant impact on reducing the active forms of toxic metals from soil such as Cd, Pb, Cu, and Zn decreased by 18.59%, 9.12%, 11.83%, and 3.33%, respectively, but HAP and HA had a minor impact on metal accumulation in Juncao. HAP (T2) had a beneficial impact on reducing the TCleaf/root of Cd, Cu, and Zn, whereas HAP-HA (T5) showed the best performance for reducing Cd and Cu in EFleaf/soil. HAP-HA (T5 and T7) showed higher biomass (57.3%) and chlorophyll (17.9%), whereas HAP (T4) showed better performance in POD (25.8%) than T0 in Juncao. The bacterial diversity in soil was increased after applying amendments of various treatments and enhancing metal remediation. The combined application of HAP and HA effectively reduced active toxic metals in alkaline soil. HAP-HA mixtures notably improved soil health, plant growth, and microbial diversity, advocating for their use in remediating contaminated soils.
Collapse
Affiliation(s)
- Ram Proshad
- Key Laboratory of Mountain Environment Evolvement and Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, 610041, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Jie Li
- CCTEG Chongqing Engineering (Group) Co., LTD., Chongqing, 400000, People's Republic of China
| | - Guohuai Sun
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Xu Zheng
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Haoyu Yue
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Geng Chen
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Shuangting Zhang
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Ziyi Li
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Zhuanjun Zhao
- Key Laboratory of Mountain Environment Evolvement and Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, 610041, People's Republic of China.
| |
Collapse
|
6
|
Qv M, Bao J, Wang W, Dai D, Wu Q, Li S, Zhu L. Bentonite addition enhances the biodegradation of petroleum pollutants and bacterial community succession during the aerobic co-composting of waste heavy oil with agricultural wastes. JOURNAL OF HAZARDOUS MATERIALS 2024; 462:132655. [PMID: 37827101 DOI: 10.1016/j.jhazmat.2023.132655] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 09/25/2023] [Accepted: 09/26/2023] [Indexed: 10/14/2023]
Abstract
Soil contamination with petroleum significantly threatens the ecological equilibrium and human health. In this context, aerobic co-composting of waste heavy oil with agricultural wastes was performed in the present study to remediate petroleum pollutants through four treatments: CK (control), T1 (petroleum pollutant), T2 (petroleum pollutant with bentonite), and T3 (petroleum pollutant with humic acid-modified bentonite). Comprehensive analyses were conducted to determine the physicochemical parameters, enzymatic activities, removal of petroleum pollutants, microbial community structure, and water-extractable organic matter in different composting systems. Structural equation modeling was employed to identify the key factors influencing the removal of petroleum pollutants. According to the results, petroleum pollutant removal percentages of 44.94%, 79.09%, and 79.67% could be achieved with T1, T2, and T3, respectively. In addition, the activities of polyphenol oxidase (51.21 U/g) and catalase (367.91 U/g), which are the enzymes related to petroleum hydrocarbon degradation, were the highest in T3. Moreover, bentonite addition to the treatment increased the nitrate nitrogen storage in the compost from 10.95 mg/kg in T1 to 18.63 and 17.41 mg/kg in T2 and T3, respectively. Humic acid-modified bentonite could enhance the degree of compost humification, thereby leading to a higher-quality compost product. Collectively, these findings established bentonite addition as an efficient approach to enhance the compost remediation of petroleum pollutants.
Collapse
Affiliation(s)
- Mingxiang Qv
- School of Resource and Environmental Sciences, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, and Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, Wuhan 430079, China
| | - Jianfeng Bao
- School of Resource and Environmental Sciences, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, and Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, Wuhan 430079, China
| | - Wei Wang
- School of Resource and Environmental Sciences, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, and Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, Wuhan 430079, China
| | - Dian Dai
- School of Resource and Environmental Sciences, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, and Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, Wuhan 430079, China
| | - Qirui Wu
- School of Resource and Environmental Sciences, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, and Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, Wuhan 430079, China
| | - Shuangxi Li
- School of Resource and Environmental Sciences, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, and Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, Wuhan 430079, China
| | - Liandong Zhu
- School of Resource and Environmental Sciences, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, and Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, Wuhan 430079, China; State Key Laboratory of Water Resources Engineering and Management, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
7
|
Cai D, Wang Y, Zhao X, Zhang C, Dang Q, Xi B. Regulating the biodegradation of petroleum hydrocarbons with different carbon chain structures by composting systems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166552. [PMID: 37634726 DOI: 10.1016/j.scitotenv.2023.166552] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 07/19/2023] [Accepted: 08/23/2023] [Indexed: 08/29/2023]
Abstract
Composting can decrease petroleum hydrocarbons in petroleum contaminated soils, however the microbial degradation mechanisms and regulating method for biodegradation of petroleum hydrocarbons with different carbon chain structures in the composting system have not yet been investigated. This study analyzed variations of total petroleum hydrocarbon concentrations with C ≤ 16 and C > 16, Random Forest model was applied to identify the key microorganisms for degrading the petroleum hydrocarbon components with specific structure in biomass-amended composting. Regulating method for biodegradation of petroleum hydrocarbons with different carbon chain structures was proposed by constructing the influence paths of "environmental factors-key microorganisms- total petroleum hydrocarbons". The results showed that composting improved the degradation rate of C ≤ 16 fraction and C > 16 fraction of petroleum hydrocarbons by 67.88 % and 61.87 %, respectively. Analysis of the microbial results showed that the degrading bacteria of the C ≤ 16 fraction had degradation advantages in the heating phase of the compost, while the C > 16 fraction degraded better in the cooling phase. Moreover, microorganisms that specifically degraded C > 16 fractions were significantly associated with total nitrogen and nitrate nitrogen. The biodegradation of C ≤ 16 fraction was regulated by organic matter, moisture content, and temperature. The composting system modified by biogas slurry was effective in removing of petroleum hydrocarbons with different carbon chain structures in soil by regulating the metabolic potential of the 46 key microorganisms. This study given their expected importance to achieve the purpose of treating waste with waste and contributing to soil utilization as well as pollution remediation.
Collapse
Affiliation(s)
- Danmei Cai
- State Key Laboratory of Environmental Criteria and Risk Assessment, State Environmental Protection Key Laboratory of Hazardous Waste Identification and Risk Control, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Yan Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, State Environmental Protection Key Laboratory of Hazardous Waste Identification and Risk Control, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; School of Environmental Science and Engineering, Guilin University of Technology, Guilin 541000, China
| | - Xinyu Zhao
- State Key Laboratory of Environmental Criteria and Risk Assessment, State Environmental Protection Key Laboratory of Hazardous Waste Identification and Risk Control, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Chuanyan Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, State Environmental Protection Key Laboratory of Hazardous Waste Identification and Risk Control, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; School of Environmental Science and Engineering, Guilin University of Technology, Guilin 541000, China
| | - Qiuling Dang
- State Key Laboratory of Environmental Criteria and Risk Assessment, State Environmental Protection Key Laboratory of Hazardous Waste Identification and Risk Control, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Beidou Xi
- State Key Laboratory of Environmental Criteria and Risk Assessment, State Environmental Protection Key Laboratory of Hazardous Waste Identification and Risk Control, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| |
Collapse
|
8
|
Xu S, Zhan J, Li L, Zhu Y, Liu J, Guo X. Total petroleum hydrocarbons and influencing factors in co-composting of rural sewage sludge and organic solid wastes. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 319:120911. [PMID: 36549453 DOI: 10.1016/j.envpol.2022.120911] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/08/2022] [Accepted: 12/18/2022] [Indexed: 06/17/2023]
Abstract
Co-composting is an efficient strategy for collaborative disposal of multiple organic wastes in rural areas. In this study, we explored the co-composting of rural sewage sludge and other organic solid wastes (corn stalks and kitchen waste), with a focus on the variation of total petroleum hydrocarbons (TPH) during this process. 12% corn-derived biochar was applied in the composting (BC), with no additives applied as the control treatment (CK). The TPH contents of piles after composting ranged from 0.70 to 0.74 mg/g, with overall removal efficiencies of 35.6% and 61.1% for CK and BC, respectively. The results indicate that the addition of 12% biochar increased the rate of TPH degradation and accelerated the degradation process. 16s rDNA high-throughput sequencing was applied to investigate the biodiversity and bacterial community succession during the composting process. Diverse bacterial communities with TPH degradation functions were observed in the composting process, including Acinetobacter, Flavobacterium, Paenibacillus, Pseudomonas, and Bacillus spp. These functional bacteria synergistically degraded TPH, with cooperative behavior dominating during composting. Biochar amendment enhanced the microbial activity and effectively promoted the biodegradation of TPH. The physicochemical properties of the compost piles, including environmental factors (pH and temperature), nutrients (nitrogen, phosphorus, potassium), and humic substances produced in composting (humic acids and fulvic acids), directly and indirectly affected the variation in TPH contents. In conclusion, this work illustrates the variation in TPH content and associated influencing factors during co-composting of rural organic solid wastes, providing valuable guidance toward the further optimization of rural organic waste management.
Collapse
Affiliation(s)
- Su Xu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China.
| | - Jun Zhan
- POWERCHINA Group Environmental Engineering Co.,LTD, Hangzhou, Zhejiang, 310005, PR China.
| | - Lin Li
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China.
| | - Yingming Zhu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China.
| | - Junxin Liu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China.
| | - Xuesong Guo
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China.
| |
Collapse
|
9
|
Yousaf MTB, Nawaz MF, Gul S, Haider MS, Ahmed I, Yasin G, Farooq MZ. Application of Farmyard Manure in Sustainable Utilization of Animal Wastes to Reclaim Salt Degraded Lands. CLIMATE CHANGES MITIGATION AND SUSTAINABLE BIOENERGY HARVEST THROUGH ANIMAL WASTE 2023:333-353. [DOI: 10.1007/978-3-031-26224-1_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
10
|
Ma T, Zhan Y, Chen W, Xu S, Wang Z, Tao Y, Shi X, Sun B, Ding G, Li J, Wei Y. Impact of aeration rate on phosphorus conversion and bacterial community dynamics in phosphorus-enriched composting. BIORESOURCE TECHNOLOGY 2022; 364:128016. [PMID: 36162785 DOI: 10.1016/j.biortech.2022.128016] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/18/2022] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
This study was to investigate the effects of different aeration rates on phosphorus (P) conversion and bacterial community dynamics in P-enriched composting by 16S rRNA gene sequencing, sequential P fractionation, network analysis and structural equation model (SEM). Results indicated that Olsen P content increased by 138 %, 150 %, 121 % after composting with aeration rate (L kg-1 DM min-1) at 0.2 (AR0.2), 0.4 (AR0.4) and 0.6 (AR0.6). AR0.4 was more conducive to enhance P solubilization efficacy and available P accumulation. Redundancy analysis indicated Lactobacillus, Spartobacteria and Pseudomonas were key bacteria associated with HCl-Pi especially in AR0.2 and AR0.4. Network analysis showed that increased aeration rate enhanced the connection and function homoplasy among modules and AR0.4 had more orderly community organization for key bacteria to solubilize P in directly and indirectly biotic way. SEM suggested indirectly biotic P-solubilization had more contribution than directly biotic way mainly by phosphate-solubilizing bacteria.
Collapse
Affiliation(s)
- Tiantian Ma
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, 100193, Beijing, China
| | - Yabin Zhan
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, 100193, Beijing, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou 215128, China
| | - Wenjie Chen
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, 100193, Beijing, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou 215128, China
| | - Shaoqi Xu
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, 100193, Beijing, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou 215128, China; DBN Agriculture Science and Technology Group CO, Ltd., DBN Pig Academy, Beijing 102629, China
| | - Zhigang Wang
- DBN Agriculture Science and Technology Group CO, Ltd., DBN Pig Academy, Beijing 102629, China
| | - Yueyue Tao
- Institute of Agricultural Sciences in Taihu Lake District, Suzhou Academy of Agricultural Sciences, Suzhou 215155, China
| | - Xiong Shi
- Yangtze Eco-Environment Engineering Research Center, China Three Gorges Corporation, Beijing 100038, China
| | - Baoru Sun
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, 100193, Beijing, China
| | - Guochun Ding
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, 100193, Beijing, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou 215128, China
| | - Ji Li
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, 100193, Beijing, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou 215128, China
| | - Yuquan Wei
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, 100193, Beijing, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou 215128, China.
| |
Collapse
|
11
|
Wang Q, Huang Q, Wang J, Li H, Qin J, Li X, Gouda SG, Liu Y, Liu Q, Guo G, Khan MA, Su X, Lin L, Qin J, Lu W, Zhao Y, Hu S, Wang J. Ecological circular agriculture: A case study evaluating biogas slurry applied to rice in two soils. CHEMOSPHERE 2022; 301:134628. [PMID: 35447213 DOI: 10.1016/j.chemosphere.2022.134628] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/28/2022] [Accepted: 04/13/2022] [Indexed: 06/14/2023]
Abstract
In the context of carbon peak, neutrality, and circular agricultural economy, the use of renewable resources from agricultural processing for plant cultivation still needs to be explored to clarify material flow and its ecological effects. Paddy-upland rotation is an effective agricultural strategy to improve soil quality. This study evaluated the effects of biogas slurry application against those of chemical fertilisers in these two typical Chinese cropping soils. The application of biogas slurry increased total carbon content in paddy soil by 73.4%, and that in upland soil by 65.8%. Conversely, application of chemical fertiliser reduced total carbon in both soil types. There were significant positive correlations between total carbon and Zn, Cu, and Pb in rice husks grown in paddy soil (R2 = 0.95, 0.996, 0.95; p < 0.05). The content of amylose in biogas slurry treatment of paddy soil increased by 35.9%, while that in upland soil decreased by 19.2%. After biogas slurry was applied, the contents of fulvic acid- and humic acid-like substances in paddy soil average increased by 40.9% and 45.6%, while the contents of protein-like components were enhanced by 46.8% in upland soil. This result was consistent with predictions of microbial community function. Microorganisms in paddy soil generally preferred carbon fixation, while those in upland soil preferred hydrocarbon degradation and chemoheterotrophy. Understanding the changes in soil carbon stock and microbial function after biogas slurry application will contribute to sustainable agricultural development and food security.
Collapse
Affiliation(s)
- Qingqing Wang
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province/Center for Eco-Environmental Restoration Engineering of Hainan Province/College of Ecology & Environment/State Key Laboratory of Marine Resource Utilization in South China Sea/Key Laboratory for Environmental Toxicology of Haikou, Hainan University, Haikou, Hainan, 570228, China
| | - Qing Huang
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province/Center for Eco-Environmental Restoration Engineering of Hainan Province/College of Ecology & Environment/State Key Laboratory of Marine Resource Utilization in South China Sea/Key Laboratory for Environmental Toxicology of Haikou, Hainan University, Haikou, Hainan, 570228, China; Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China.
| | - Jiaxin Wang
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province/Center for Eco-Environmental Restoration Engineering of Hainan Province/College of Ecology & Environment/State Key Laboratory of Marine Resource Utilization in South China Sea/Key Laboratory for Environmental Toxicology of Haikou, Hainan University, Haikou, Hainan, 570228, China
| | - Huashou Li
- College of Natural Resources and Environment, South China Agricultural University/Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture of China, Guangzhou, 510642, China
| | - Junhao Qin
- College of Natural Resources and Environment, South China Agricultural University/Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture of China, Guangzhou, 510642, China
| | - Xiaohui Li
- Hainan Inspection and Detection Center for Modern Agriculture, Haikou, Hainan, 570100, China
| | - Shaban G Gouda
- Agricultural and Biosystems Engineering Department, Faculty of Agriculture, Benha University, Benha, 13736, Egypt
| | - Yin Liu
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province/Center for Eco-Environmental Restoration Engineering of Hainan Province/College of Ecology & Environment/State Key Laboratory of Marine Resource Utilization in South China Sea/Key Laboratory for Environmental Toxicology of Haikou, Hainan University, Haikou, Hainan, 570228, China
| | - Quan Liu
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province/Center for Eco-Environmental Restoration Engineering of Hainan Province/College of Ecology & Environment/State Key Laboratory of Marine Resource Utilization in South China Sea/Key Laboratory for Environmental Toxicology of Haikou, Hainan University, Haikou, Hainan, 570228, China
| | - Genmao Guo
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province/Center for Eco-Environmental Restoration Engineering of Hainan Province/College of Ecology & Environment/State Key Laboratory of Marine Resource Utilization in South China Sea/Key Laboratory for Environmental Toxicology of Haikou, Hainan University, Haikou, Hainan, 570228, China
| | - Muhammad Amjad Khan
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province/Center for Eco-Environmental Restoration Engineering of Hainan Province/College of Ecology & Environment/State Key Laboratory of Marine Resource Utilization in South China Sea/Key Laboratory for Environmental Toxicology of Haikou, Hainan University, Haikou, Hainan, 570228, China
| | - Xuesong Su
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province/Center for Eco-Environmental Restoration Engineering of Hainan Province/College of Ecology & Environment/State Key Laboratory of Marine Resource Utilization in South China Sea/Key Laboratory for Environmental Toxicology of Haikou, Hainan University, Haikou, Hainan, 570228, China
| | - Linyi Lin
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province/Center for Eco-Environmental Restoration Engineering of Hainan Province/College of Ecology & Environment/State Key Laboratory of Marine Resource Utilization in South China Sea/Key Laboratory for Environmental Toxicology of Haikou, Hainan University, Haikou, Hainan, 570228, China
| | - Jiemin Qin
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province/Center for Eco-Environmental Restoration Engineering of Hainan Province/College of Ecology & Environment/State Key Laboratory of Marine Resource Utilization in South China Sea/Key Laboratory for Environmental Toxicology of Haikou, Hainan University, Haikou, Hainan, 570228, China
| | - Wenkang Lu
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province/Center for Eco-Environmental Restoration Engineering of Hainan Province/College of Ecology & Environment/State Key Laboratory of Marine Resource Utilization in South China Sea/Key Laboratory for Environmental Toxicology of Haikou, Hainan University, Haikou, Hainan, 570228, China
| | - Yang Zhao
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province/Center for Eco-Environmental Restoration Engineering of Hainan Province/College of Ecology & Environment/State Key Laboratory of Marine Resource Utilization in South China Sea/Key Laboratory for Environmental Toxicology of Haikou, Hainan University, Haikou, Hainan, 570228, China
| | - Shan Hu
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province/Center for Eco-Environmental Restoration Engineering of Hainan Province/College of Ecology & Environment/State Key Laboratory of Marine Resource Utilization in South China Sea/Key Laboratory for Environmental Toxicology of Haikou, Hainan University, Haikou, Hainan, 570228, China
| | - Junfeng Wang
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province/Center for Eco-Environmental Restoration Engineering of Hainan Province/College of Ecology & Environment/State Key Laboratory of Marine Resource Utilization in South China Sea/Key Laboratory for Environmental Toxicology of Haikou, Hainan University, Haikou, Hainan, 570228, China
| |
Collapse
|
12
|
Bao J, Lv Y, Liu C, Li S, Yin Z, Yu Y, Zhu L. Performance evaluation of rhamnolipids addition for the biodegradation and bioutilization of petroleum pollutants during the composting of organic wastes with waste heavy oil. iScience 2022; 25:104403. [PMID: 35663019 PMCID: PMC9157225 DOI: 10.1016/j.isci.2022.104403] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 04/08/2022] [Accepted: 05/09/2022] [Indexed: 01/14/2023] Open
Abstract
Environmental pollution caused by petroleum hydrocarbons is being paid more and more attention worldwide. Surfactants are able to improve the solubility of petroleum hydrocarbons, but their effects on petroleum hydrocarbon degradation in composting systems are still unclear. In this study, the effects on microbial community succession were investigated by adding petroleum hydrocarbons and rhamnolipids during composting of organic wastes. The results showed that the compost and the addition of rhamnolipids could effectively reduce the petroleum hydrocarbon content with an efficiency of 73.52%, compared to 53.81% for the treatment without addition. Network analyses and Structural Equation Model suggested that there were multiple potential petroleum degraders microbes that might be regulated by nitrogen. The findings in this study can also provide an implication for the treatment of petroleum hydrocarbon pollutants from oil-polluted soil, and the technology can be potentially applied on an industrial scale in practice. Effects of rhamnolipids on the removal of petroleum hydrocarbons were investigated The relationship between PDM, APDM, and environmental factors was revealed There was a significant correlation between nitrogen and PDM and APDM Rhamnolipids are bio-resources for effectively removing petroleum hydrocarbons
Collapse
Affiliation(s)
- Jianfeng Bao
- School of Resources & Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, Wuhan University, Wuhan 430079, P.R. China
| | - Yuanfei Lv
- School of Resources & Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, Wuhan University, Wuhan 430079, P.R. China
| | - Chenchen Liu
- School of Resources & Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, Wuhan University, Wuhan 430079, P.R. China
| | - Shuangxi Li
- School of Resources & Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, Wuhan University, Wuhan 430079, P.R. China
| | - Zhihong Yin
- School of Resources & Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, Wuhan University, Wuhan 430079, P.R. China
| | - Yunjiang Yu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Liandong Zhu
- School of Resources & Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, Wuhan University, Wuhan 430079, P.R. China
| |
Collapse
|
13
|
Dang Q, Zhao X, Yang T, Gong T, He X, Tan W, Xi B. Coordination of bacterial biomarkers with the dominant microbes enhances triclosan biodegradation in soil amended with food waste compost and cow dung compost. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 824:153837. [PMID: 35181369 DOI: 10.1016/j.scitotenv.2022.153837] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/08/2022] [Accepted: 02/08/2022] [Indexed: 06/14/2023]
Abstract
Increasing concerns regarding the micropollutant triclosan (TCS) derive from its potential threats to human health and ecological security. Compost addition have been verified to be effective in soil remediation, however, the biodegradation of TCS under compost amendment in soil remain unclear. This study investigated the removal of TCS in soils amended with food waste compost (FS), cow dung compost (CS) and sludge compost (SS), respectively, explored the key TCS-degraders and biological mechanisms of TCS removal. Compost addition significantly enhanced the removal of TCS (p < 0.05) in the order of FS > CS > SS. The dosage of 20% (w/w) was the most efficient one and the ultimate concentrations of TCS were decreased by 76.67%, 67.90% and 56.79% compared with CK, respectively. The abundance of key dominant bacterial genus (7 in FS and 4 in CS) and fungal genus (3 in FS and CS) was stimulated due to the increase of soil nutrient factors (including dissolved organic carbon, DOC; soil organic matter, SOM; ammonium nitrogen, NH4+; nitrate nitrogen, NO3-) and the decrease of pH. A negative correlation between these dominant microbes and TCS concentration indicated their potential effect on TCS degradation. A total of four bacterial biomarkers, namely Saccharomonospora, Aequorivita, Bacillaceae and Fodinicurvataceae (both at family level) were the key TCS-degraders. Structural equation model (SEM) indicated that the improvement of soil nutrient factors in FS and CS promoted TCS biodegradation by improving the activity of bacterial biomarkers, as while, the key dominant microbes showed good tolerance to TCS stress. However, there were no significant biological effects on TCS in SS group. Network analysis further confirmed that it was the coordination of bacterial biomarkers with the dominant microbes that enhanced TCS biodegradation in soil amended with food waste compost and cow dung compost.
Collapse
Affiliation(s)
- Qiuling Dang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Hazardous Waste Identification and Risk Control, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xinyu Zhao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Hazardous Waste Identification and Risk Control, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Tianxue Yang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Hazardous Waste Identification and Risk Control, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Tiancheng Gong
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Hazardous Waste Identification and Risk Control, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xiaosong He
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Wenbing Tan
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Beidou Xi
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| |
Collapse
|
14
|
Sun S, Abdellah YAY, Miao L, Wu B, Ma T, Wang Y, Zang H, Zhao X, Li C. Impact of microbial inoculants combined with humic acid on the fate of estrogens during pig manure composting under low-temperature conditions. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127713. [PMID: 34815123 DOI: 10.1016/j.jhazmat.2021.127713] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/25/2021] [Accepted: 11/03/2021] [Indexed: 06/13/2023]
Abstract
To investigate the efficiency of psychrotrophic cellulose-degrading fungal strains (PCDFSs) and estrogen-degrading bacteria (EDBs) combined with humic acid (HA) on estrone (E1) and 17-β-estradiol (E2) degradation, five compost groups (T, HA, EDB, PCDFS, and CK) were prepared and composted for 32 days at 11-14°C. The results indicated that inoculation increased the temperature to 62.2°C and promoted E1 degradation to the lowest level of 100.1 ng/kg, while E2 was undetected from day 16. Metagenomic analysis revealed that inoculation altered the microbial community structure by increasing the abundance of cellulose-degrading fungi, especially Meyerozyma (16.7%) (among PCDFSs), and of estrogen-degrading bacteria, particularly Microbacterium (13.4%) (involved in EDBs). Moreover, inoculation increased the levels (>0.500%) of Gene Ontology (GO) associated with estrogen degradation, like 3-β-hydroxy-delta 5-steroid dehydrogenase and monooxygenase. Redundancy analysis demonstrated that temperature and Microbacterium were positively correlated with estrogen degradation. Structural equation model indicated that temperature and estrogen-degrading bacterial genera exhibited positive, significant (p < 0.001) and direct impacts on estrogen degradation. This is the first study to suggest that applying microbial inoculants and HA could accelerate estrogen degradation during composting in cold regions. The research outcomes offer a practical reference for managing compost safety, thereby decreasing its potential environmental and human health impacts.
Collapse
Affiliation(s)
- Shanshan Sun
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, Heilongjiang, PR China
| | | | - Lei Miao
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, Heilongjiang, PR China
| | - Bowen Wu
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, Heilongjiang, PR China
| | - Tian Ma
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, Heilongjiang, PR China
| | - Yue Wang
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, Heilongjiang, PR China
| | - Hailian Zang
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, Heilongjiang, PR China
| | - Xinyue Zhao
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, Heilongjiang, PR China
| | - Chunyan Li
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, Heilongjiang, PR China.
| |
Collapse
|
15
|
Gielnik A, Pechaud Y, Huguenot D, Cébron A, Esposito G, van Hullebusch ED. Functional potential of sewage sludge digestate microbes to degrade aliphatic hydrocarbons during bioremediation of a petroleum hydrocarbons contaminated soil. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 280:111648. [PMID: 33213993 DOI: 10.1016/j.jenvman.2020.111648] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 10/30/2020] [Accepted: 11/03/2020] [Indexed: 06/11/2023]
Abstract
Sewage sludge digestate is a valuable organic waste which can be used as fertilizer in soil bioremediation. Sewage sludge digestate is not only a good source of nutrients but is also rich in bacteria carrying alkB genes, which are involved in aliphatic hydrocarbons metabolism. Increase of alkB genes ratio in polluted soils has been observed to improve bioremediation efficiency. In this study, for the first time, the genetic potential of indigenous microorganisms of digestate to degrade petroleum products was assessed. The objectives were to study petroleum hydrocarbons (PHCs) removal together with shifts in soil taxa and changes in the concentration of alkB genes after digestate application. Initial alkB genes concentration in contaminated soils and digestate was 1.5% and 4.5%, respectively. During soil incubation with digestate, alkB genes percentage increased up to 11.5% and after the addition of bacteria immobilized onto biochar this value increased up to 60%. Application of digestate positively affected soil respiration and bacterial density, which was concomitant with enhanced PHCs degradation. Incubation of soil amended with digestate resulted in 74% PHCs decrease in 2 months, while extra addition of bacteria immobilized onto biochar increased this value up to 95%. The use of digestate affected the microbial community profiles by increasing initial bacterial density and diversity, including taxa containing recognized PHCs degraders. This study reveals the great potential of digestate as a soil amendment which additionally improves the abundance of alkB genes in petroleum contaminated soils.
Collapse
Affiliation(s)
- Anna Gielnik
- Université Paris-Est, Laboratoire Géomatériaux et Environnement (LGE), EA 4508, UPEM, 77454, Marne-la-Vallée, France; University of Napoli "Federico II", Department of Civil, Architectural and Environmental Engineering, 80125, Napoli, Italy.
| | - Yoan Pechaud
- Université Paris-Est, Laboratoire Géomatériaux et Environnement (LGE), EA 4508, UPEM, 77454, Marne-la-Vallée, France
| | - David Huguenot
- Université Paris-Est, Laboratoire Géomatériaux et Environnement (LGE), EA 4508, UPEM, 77454, Marne-la-Vallée, France
| | - Aurélie Cébron
- Université de Lorraine, CNRS, LIEC, F-54000, Nancy, France
| | - Giovanni Esposito
- University of Napoli "Federico II", Department of Civil, Architectural and Environmental Engineering, 80125, Napoli, Italy
| | - Eric D van Hullebusch
- IHE Delft Institute for Water Education, Department of Environmental Engineering and Water Technology, P.O. Box 3015, 2601 DA, Delft, the Netherlands; Université de Paris, Institut de Physique du Globe de Paris, CNRS, F-75005, Paris, France
| |
Collapse
|
16
|
Li J, Xu Y, Song Q, Zhang S, Xie L, Yang J. Transmembrane transport mechanism of n-hexadecane by Candida tropicalis: Kinetic study and proteomic analysis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 209:111789. [PMID: 33340957 DOI: 10.1016/j.ecoenv.2020.111789] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 11/27/2020] [Accepted: 12/08/2020] [Indexed: 06/12/2023]
Abstract
Yeasts are the most predominant petroleum hydrocarbon-degrading fungi isolated from petroleum-contaminated soil. However, information of the transmembrane transport of petroleum hydrocarbon into yeast cells is limited. The present study was designed to explore the transmembrane transport mechanisms of the typical petroleum hydrocarbon n-hexadecane in Candida tropicalis cells with petroleum hydrocarbon biodegradation potential. Yeast cells were treated with n-hexadecane in different scenarios, and the percentage of intracellular n-hexadecane and transport dynamics were investigated accordingly. The intracellular concentration of n-hexadecane increased within 15 min, and transportation was inhibited by NaN3, an ATPase inhibitor. The uptake kinetics of n-hexadecane were well fitted by the Michaelis-Menten model, and Kt values ranged from 152.49 to 194.93 mg/L. All these findings indicated that n-hexadecane might cross the yeast cells in an energy-dependent manner and exhibit an affinity with the cell transport system. Moreover, the differentially expressed membrane proteins induced by n-hexadecane were identified and quantified by tandem mass tag labeling coupled with liquid chromatography tandem mass spectrometry analysis. The proteome analysis results demonstrated that energy production and conversion accounted for a large proportion of the functional classifications of the differentially expressed proteins, providing further evidence that sufficient energy supply is essential for transmembrane transport. Protein functional analysis also suggested that differentially expressed proteins associated with transmembrane transport processes are clearly enriched in endocytosis and phagosome pathways (p < 0.05), and the analysis supported the notion that the underlying transmembrane transport mechanism might be associated with endocytosis and phagosome pathways, revealing a new mechanism of n-hexadecane internalization by Candida tropicalis.
Collapse
Affiliation(s)
- Jian Li
- Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, College of Water Sciences, Beijing Normal University, Beijing 100875, China.
| | - Ying Xu
- Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Quanwei Song
- State Key Laboratory of Petroleum Pollution Control, Beijing 102206, China
| | - Shurong Zhang
- Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Lin Xie
- Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Jie Yang
- Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, College of Water Sciences, Beijing Normal University, Beijing 100875, China.
| |
Collapse
|
17
|
Tran HT, Lin C, Bui XT, Ngo HH, Cheruiyot NK, Hoang HG, Vu CT. Aerobic composting remediation of petroleum hydrocarbon-contaminated soil. Current and future perspectives. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 753:142250. [PMID: 33207468 DOI: 10.1016/j.scitotenv.2020.142250] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 09/02/2020] [Accepted: 09/05/2020] [Indexed: 06/11/2023]
Abstract
This article provides a comprehensive review on aerobic composting remediation of soil contaminated with total petroleum hydrocarbons (TPHs). The studies reviewed have demonstrated that composting technology can be applied to treat TPH contamination (as high as 380,000 mg kg-1) in clay, silt, and sandy soils successfully. Most of these studies reported more than 70% removal efficiency, with a maximum of 99%. During the composting process, the bacteria use TPHs as carbon and energy sources, whereas the fungi produce enzymes that can catalyze oxidation reactions of TPHs. The mutualistic and competitive interactions between the bacteria and fungi are believed to sustain a robust biodegradation system. The highest biodegradation rate is observed during the thermophilic phase. However, the presence of a diverse and dynamic microbial community ensures that TPH degradation occurs in the entire composting process. Initial concentration, soil type, soil/compost ratio, aeration rate, moisture content, C/N ratio, pH, and temperature affect the composting process and should be monitored and controlled to ensure successful degradation. Nevertheless, there is insufficient research on optimizing these operational parameters, especially for large-scale composting. Also, toxic and odorous gas emissions during degradation of TPHs, usually unaddressed, can be potential air pollution sources and need further insightful characterization and mitigation/control research.
Collapse
Affiliation(s)
- Huu-Tuan Tran
- College of Maritime, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan; Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan
| | - Chitsan Lin
- College of Maritime, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan; Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan.
| | - Xuan-Thanh Bui
- Key Laboratory of Advanced Waste Treatment Technology, Vietnam National University Ho Chi Minh (VNU-HCM), Linh Trung Ward, Thu Duc District, Ho Chi Minh City 700000, Viet Nam; Faculty of Environment and Natural Resources, Ho Chi Minh City University of Technology (HCMUT), Ho Chi Minh City 700000, Viet Nam.
| | - Huu-Hao Ngo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Nicholas Kiprotich Cheruiyot
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan
| | - Hong-Giang Hoang
- College of Maritime, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan; Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan
| | - Chi-Thanh Vu
- Department of Civil and Environmental Engineering, The University of Alabama in Huntsville, AL 35899, USA
| |
Collapse
|
18
|
Li X, Zhao X, Yang J, Li S, Bai S, Zhao X. Recognition of core microbial communities contributing to complex organic components degradation during dry anaerobic digestion of chicken manure. BIORESOURCE TECHNOLOGY 2020; 314:123765. [PMID: 32652447 DOI: 10.1016/j.biortech.2020.123765] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/23/2020] [Accepted: 06/26/2020] [Indexed: 06/11/2023]
Abstract
Microbial metabolism of complex organic components can drive different microbial communities, which is significant to the process of dry anaerobic digestion (AD). However, possible mechanisms between organic components and the corresponding microbial communities during the process of dry AD is poorly investigated. Results showed that the microbial species affecting the degradation of organic components were 69 nodes (13.3%) in the hydrolysis stage, hemicellulose was mainly degraded by Methanobacterium (2.3%), with a degradation rate of 35.0%. In the acetogenesis stage, the microbial species were 27 nodes (10.3%), hemicellulose was mainly degraded by LK-44f (0.1%) and Treponema (0.3%), with a degradation rate of 52.2%. In the methanogenesis stage, the microbial species were 10 nodes (4.8%), polysaccharide was mainly degraded by Ureibacillus (0.1%), with a degradation rate of 46.9%. The study provides theoretical support for the rapid degradation of complex components by segment-oriented regulation.
Collapse
Affiliation(s)
- Xiang Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Innovation Base of Groundwater & Environmental System Engineering, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xiuyun Zhao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Innovation Base of Groundwater & Environmental System Engineering, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Jinjin Yang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Innovation Base of Groundwater & Environmental System Engineering, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Shaokang Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Innovation Base of Groundwater & Environmental System Engineering, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Sicong Bai
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Xinyu Zhao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Innovation Base of Groundwater & Environmental System Engineering, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| |
Collapse
|