1
|
Zhang A, Shen Z, Ding Y, Jiang N, Xu X, He J, Wang L, Gao P. Mechanistic elucidation of ultraviolet light and peracetic acid coupling-driven enhancements in short-chain fatty acid production from sludge: Reactive species-induced organic solubilization and microbial function regulation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 385:125700. [PMID: 40334403 DOI: 10.1016/j.jenvman.2025.125700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 04/27/2025] [Accepted: 05/04/2025] [Indexed: 05/09/2025]
Abstract
This study investigates the potential of enhancing short-chain fatty acid (SCFA) production during anaerobic fermentation of waste activated sludge through ultraviolet (UV) and peracetic acid (PAA) treatment. Under optimal conditions (UV irradiation time = 60 min and PAA dosage = 0.03 g/g VSS (volatile suspended solids), UV/PAA pretreatment enhanced sludge solubility, improved the biodegradability of organic matter, and facilitated pollutant degradation. During anaerobic fermentation, UV/PAA treatment resulted in an 836 % increase in SCFA production and a 50 % higher acetic acid ratio compared to the control group. Mechanistic studies revealed that UV/PAA treatment promoted sludge decomposition and enhanced the biodegradability of dissolved organic matter by generating more reactive species (•OH, CH3C(O)O•, •O2-, and 1O2), thereby facilitating sludge hydrolysis and acidification. Additionally, UV/PAA treatment increased the abundance of hydrolytic and SCFA-producing bacteria while reducing the abundance of SCFA-consuming bacteria. Moreover, UV/PAA treatment stimulated the expression of key enzyme genes involved in organic matter hydrolysis and SCFA production, thereby promoting SCFA accumulation. Therefore, UV/PAA treatment is promising in sludge treatment and provides a new approach for resource recovery from sludge.
Collapse
Affiliation(s)
- Ai Zhang
- College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai, 201620, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Zhilin Shen
- College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai, 201620, China
| | - Yongqiang Ding
- College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai, 201620, China
| | - Nan Jiang
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China; State Key Laboratory of Pollution Control and Resource Reuse, Kay Laboratory of Yangtze River Water Environment, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Xianbao Xu
- Faculty of Civil and Environmental Engineering, Gdansk University of Technology, ul. Narutowicza 11/12, 80-233, Gdansk, Poland
| | - Jinling He
- College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai, 201620, China.
| | - Lin Wang
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China; State Key Laboratory of Pollution Control and Resource Reuse, Kay Laboratory of Yangtze River Water Environment, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Pin Gao
- College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai, 201620, China
| |
Collapse
|
2
|
Liu Y, Niu X, Zhang D, Zhou L, Tao C, Lin Y, Chen S, Chen Y, Lin Z, Kong S. Insight into enhancing the performance of sludge dewatering using a novel flocculant CS-TA prepared through free radical-mediated conjugation. ENVIRONMENTAL TECHNOLOGY 2025; 46:1160-1177. [PMID: 39010782 DOI: 10.1080/09593330.2024.2377797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 05/15/2024] [Indexed: 07/17/2024]
Abstract
Flocculation is one of the most significant conditioning methods for sludge dewatering. In the study, a novel flocculant CS-TA, prepared through free radical-mediated conjugation of tannic acid (TA) and chitosan (CS), was proposed to improve sludge dewatering. The characterisation using Fourier transform infra-red spectroscopy and X-ray diffraction analysis shows that the CS chain was the backbone of CS-TA, and the presence of CS-TA aromatic rings confirmed the conjugation of CS with TA. Moreover, the conditioning of CS-TA yielded the best dewatering performance at 30 mg g TS-1 with the water content of sludge cake by press filtration (Wsc) of 59.78% ± 0.3% and capillary suction time (CST) of 11.8s ± 0.35 s, compared to 98.2% ± 0.15% and 56.2 s ± 0.16 in raw sludge. The results of different influencing factors (e.g. pH and temperature) on flocculation efficiency indicated that CS-TA possessed the capacity for enhancing sludge dewaterability over a wide range of pH, and the optimal temperature was observed to be 35 °C. Furthermore, the increase of particle size and zeta potential implied the addition of CS-TA favoured the formation of larger particles charge neutralisation and adsorption bridging effect. In addition, extracellular polymer substances (EPS) analysis indicated that the decrease in the polysaccharide and protein contents in EPS after CS-TA addition could increase the relative hydrophobicity of sludge. Moreover, the contents of heavy metals in sludge and their leaching toxicity and environmental risk were reduced. This study provides comprehensive insights into the exploration of CS-TA for sludge dewatering and the maintenance of ecological security in an eco-friendly.
Collapse
Affiliation(s)
- Yuejin Liu
- School of Environment and Energy, South China University of Technology, Guangzhou, People's Republic of China
| | - Xiaojun Niu
- School of Environment and Energy, South China University of Technology, Guangzhou, People's Republic of China
- School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, People's Republic of China
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, People's Republic of China
| | - Dongqing Zhang
- School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, People's Republic of China
| | - Lingling Zhou
- School of Environment and Energy, South China University of Technology, Guangzhou, People's Republic of China
| | - Chunyang Tao
- School of Environment and Energy, South China University of Technology, Guangzhou, People's Republic of China
| | - Yu Lin
- Guangzhou Urban Drainage Company Limited, Guangzhou, People's Republic of China
| | - Siping Chen
- School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, People's Republic of China
| | - Yawen Chen
- School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, People's Republic of China
| | - Zhang Lin
- School of Environment and Energy, South China University of Technology, Guangzhou, People's Republic of China
| | - Suying Kong
- School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, People's Republic of China
| |
Collapse
|
3
|
Li Y, He P, Zhang H, Lü F. A critical review of in-situ moisture distribution detection and characterization techniques utilizing deep dewatering for organic waste. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 373:123710. [PMID: 39700926 DOI: 10.1016/j.jenvman.2024.123710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 11/20/2024] [Accepted: 12/10/2024] [Indexed: 12/21/2024]
Abstract
Deep dewatering is crucial for effectively reducing the volume of organic waste and facilitating its downstream transportation and disposal. An in-depth understanding of the occurrence states, composition, and morphological characteristics of moisture in organic waste is the basis for optimizing the dewatering process, improving dewatering efficiency, and reducing energy consumption. Given the common problems of time-consuming, low sensitivity, and poor parallelism of traditional methods, this work reviews the advanced in-situ analysis methods for moisture distribution of organic waste. The Raman microscopy imaging technique is highlighted to provide a new approach for visualizing the spatial distribution of moisture with different binding strengths in solid flocs. Various physical, chemical, and biological characteristics and characterization methods of organic waste related to deep dewatering are introduced, and they are correlated with conditioning methods. Almost all conditioning will cause changes in the physical characteristics of organic waste, while the improvement of dewatering performance is actually caused by changes in the chemical composition and biological characteristics of the matrix, and these characteristics are intrinsically related to the moisture distribution. The characterization and in-situ moisture detection methods presented in this work aim to support future studies in understanding changes in material composition related to improving dewatering performance and further clarifying the mechanisms of deep dewatering of organic wastes.
Collapse
Affiliation(s)
- Yuanxin Li
- Institute of Waste Treatment and Reclamation, Tongji University, Shanghai, 200092, China
| | - Pinjing He
- Institute of Waste Treatment and Reclamation, Tongji University, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China; Jiaxing-Tongji Environmental Research Institute, Jiaxing, 314000, China
| | - Hua Zhang
- Institute of Waste Treatment and Reclamation, Tongji University, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Fan Lü
- Institute of Waste Treatment and Reclamation, Tongji University, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China; Jiaxing-Tongji Environmental Research Institute, Jiaxing, 314000, China.
| |
Collapse
|
4
|
Wang T, Chen JL, Huang R, Wu LG, Chen KP, Wu JC, Chen HL. The remediation performance and mechanism for tetracycline from groundwater using controlled release materials containing mesoporous MnO x with different morphology. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125123. [PMID: 39414073 DOI: 10.1016/j.envpol.2024.125123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/18/2024] [Accepted: 10/13/2024] [Indexed: 10/18/2024]
Abstract
Aiming at the effective remediation of antibiotic contaminants in groundwater, in-situ chemical oxidation (ISCO), using controlled release materials (CRMs) as an oxidant deliverer, has emerged as a promising technique due to their long-term effective pollutant removal performance. This study used different microstructures of mesoporous manganese oxide (MnOx) and sodium persulfate as active components to fabricate CRMs. Following that, a comparative study of tetracycline (TC) degradation and the formation of reactive oxygen species (ROS) by mesoporous MnOx powder and CRMs were conducted. The ROS formed during peroxodisulfate (PDS) activation by powder catalysts and CRMs differed, but MnOx powder catalysts and CRMs both had good reaction stoichiometric efficiency (RSE) for PDS, thus completely mineralizing TC. In PDS activation by mesoporous MnOx powder, oxygen vacancies (OVs) caused by defects in the catalysts contributed to the generation of singlet oxygen (1O2). The 1O2 and free radicals (·SO4- and ·OH) both worked as major ROS participating in TC degradation. Concerning the release of CRMs in static groundwater, the immobilization of catalysts inside CRMs made it difficult to release 1O2 in the solution, thus slowing the degradation of TC by CRMs containing MnOx(1) in static groundwater. In the TC remediation in dynamic groundwater, the water flowing slowly passed through the CRM layer, and TC molecules were trapped. Therefore, 1O2 degraded the trapped TC in the CRM layer in dynamic groundwater. Compared to TC, the toxicity of most intermediates during the TC degradation by CRMs has decreased in static and dynamic groundwater.
Collapse
Affiliation(s)
- Ting Wang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Jing-le Chen
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Rui Huang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Li-Guang Wu
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Kou-Ping Chen
- School of Earth Sciences and Engineering, Nanjing University, Nanjing, 210023, China.
| | - Ji-Chun Wu
- School of Earth Sciences and Engineering, Nanjing University, Nanjing, 210023, China
| | - Hua-Li Chen
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China.
| |
Collapse
|
5
|
Zhang J, Zhang Y, Lv N, Li F, Li Y, Guo Z. Electrochemistry promotion of Fe(Ⅲ)/Fe(Ⅱ) cycle for continuous activation of PAA for sludge disintegration: Performance and mechanism. ENVIRONMENTAL RESEARCH 2024; 256:119268. [PMID: 38815721 DOI: 10.1016/j.envres.2024.119268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/13/2024] [Accepted: 05/27/2024] [Indexed: 06/01/2024]
Abstract
In this study, electrochemistry was used to enhance the advanced oxidation of Fe(Ⅱ)/PAA (EC/Fe(Ⅱ)/PAA) to disintegrate waste activated sludge, and its performance and mechanism was compared with those of EC, PAA, EC/PAA and Fe(Ⅱ)/PAA. Results showed that the EC/Fe(Ⅱ)/PAA process effectively improved sludge disintegration and the concentrations of soluble chemical oxygen demand, polysaccharides and nucleic acids increased by 62.85%, 41.15% and 12.21%, respectively, compared to the Fe(Ⅱ)/PAA process. Mechanism analysis showed that the main active species produced in the EC/Fe(Ⅱ)/PAA process were •OH, R-O• and FeIVO2+. During the reaction process, sludge flocs were disrupted and particle size was reduced by the combined effects of active species oxidation, electrochemical oxidation and PAA oxidation. Furthermore, extracellular polymeric substances (EPS) was degraded, the conversion of TB-EPS to LB-EPS and S-EPS was promoted and the total protein and polysaccharide contents of EPS were increased. After sludge cells were disrupted, intracellular substances were released, causing an increase in nucleic acids, humic acids and fulvic acids in the supernatant, and resulting in sludge reduction. EC effectively accelerated the conversion of Fe(Ⅲ) to Fe(Ⅱ), which was conducive to the activation of PAA, while also enhancing the disintegration of EPS and sludge cells. This study provided an effective approach for the release of organic matter, offering significant benefits in sludge resource utilization.
Collapse
Affiliation(s)
- Jing Zhang
- School of Civil Engineering and Transportation, Hebei University of Technology, Tianjin, 300401, China
| | - Yanping Zhang
- School of Civil Engineering and Transportation, Hebei University of Technology, Tianjin, 300401, China.
| | - Ning Lv
- School of Civil Engineering and Transportation, Hebei University of Technology, Tianjin, 300401, China
| | - Fen Li
- School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin, 150040, Heilongjiang, China
| | - Yibing Li
- School of Civil Engineering and Transportation, Hebei University of Technology, Tianjin, 300401, China
| | - Zhenjie Guo
- School of Civil Engineering and Transportation, Hebei University of Technology, Tianjin, 300401, China
| |
Collapse
|
6
|
Yu H, Wang X, Chen Y, He Y, Yang S, Yuan H, Tao H, Xu S, Gu L. Advanced application of tea residue extracts rich in polyphenols for enhancing sludge dewaterability: Unraveling the role of pH regulation. ENVIRONMENTAL RESEARCH 2024; 252:118978. [PMID: 38704012 DOI: 10.1016/j.envres.2024.118978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 04/07/2024] [Accepted: 04/19/2024] [Indexed: 05/06/2024]
Abstract
Tea polyphenols (TPs), as a kind of derivatives from tea waste, were employed as a novel environmentally friendly bio-based sludge conditioner in this study. The findings showed that when TPs were applied at a dosage of 300 mg g-1 DS, the sludge CST0/CST ratio significantly increased to 1.90. pH regulation was found to markedly affect the dewatering efficiency of sludge. At pH 4, the CST0/CST rose to 2.86, coupled with a reduction in the specific resistance to filtration (SRF) from 6.69 × 1013 m kg-1 to 1.43 × 1013 m kg-1 and a decrease in the moisture content (MC) from 90.57% to 68.75%. TPs formed complexes and precipitated sludge proteins, as demonstrated by changes in the extracellular polymeric substances (EPS), viscosity, zeta potential, and particles size distribution. The optimization significance of acidification treatment on sludge structure disintegration, the interaction of TPs with EPS, and the removal of sludge proteins were elucidated. The research provided an ideal approach for the integrated utilization of biomass resources from tea waste and highlighted the potential application of TPs as an environmentally friendly conditioner in sludge dewatering.
Collapse
Affiliation(s)
- Haixiang Yu
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, 200093, PR China.
| | - Xin Wang
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, 200093, PR China
| | - Ya Chen
- Shanghai Chengtou Raw Water Co., LTD, Shanghai, 200125, PR China
| | - Yiyang He
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, 200093, PR China
| | - Siting Yang
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, 200093, PR China
| | - Haiping Yuan
- School of Environment Engineering, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Hong Tao
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, 200093, PR China
| | - Suyun Xu
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, 200093, PR China
| | - Lin Gu
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, 200093, PR China.
| |
Collapse
|
7
|
Huang W, Wang F, Xia X, Fang S, Cheng X, Zhou A, Feng L, Wang D, Luo J. Tannic Acid Modulation of Substrate Utilization, Microbial Community, and Metabolic Traits in Sludge Anaerobic Fermentation for Volatile Fatty Acid Promotion. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:9792-9803. [PMID: 38780952 DOI: 10.1021/acs.est.3c08678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Anaerobic fermentation is a crucial route to realize effective waste activated sludge (WAS) resource recovery and utilization, while the overall efficiency is commonly restrained by undesirable disruptors (i.e., chemical dewatering agents). This work unveiled the unexpectedly positive effects of biodewatering tannic acid (TA) on the volatile fatty acids (VFAs) biosynthesis during WAS anaerobic fermentation. The total VFAs yield was remarkably increased by 15.6 folds with enriched acetate and butyrate in TA-occurred systems. TA was capable to disintegrate extracellular polymeric substances to promote the overall organics release. However, TA further modulated the soluble proteins structure by hydrogen bonding and hydrophobic interactions, resulting in the decrease of proteins bioavailability and consequential alteration of metabolic substrate feature. These changes reshaped the microbial community and stimulated adaptive regulatory systems in hydrolytic-acidogenic bacteria. The keystone species for carbohydrate metabolism (i.e., Solobacterium and Erysipelotrichaceae) were preferentially enriched. Also, the typical quorum sensing (i.e., enhancing substrate transport) and two-component systems (i.e., sustaining high metabolic activity) were activated to promote the microbial networks connectivity and ecological cooperative behaviors in response to TA stress. Additionally, the metabolic functions responsible for carbohydrate hydrolysis, transmembrane transport, and intracellular metabolism as well as VFA biosynthesis showed increased relative abundance, which maintained high microbial activities for VFAs biosynthesis. This study underscored the advantages of biodewatering TA for WAS treatment in the context of resource recovery and deciphered the interactive mechanisms.
Collapse
Affiliation(s)
- Wenxuan Huang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
- College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
| | - Feng Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
- College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
| | - Xue Xia
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
- College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
| | - Shiyu Fang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
- College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
| | - Xiaoshi Cheng
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
- College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
| | - Aijuan Zhou
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Leiyu Feng
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Dongbo Wang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
| | - Jingyang Luo
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
- College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
| |
Collapse
|
8
|
Zhang W, Zhu L, Yang X, Zhu J, Dong B, Tao H. Targeted regulation of digestate dewaterability by the ozone/persulfate oxidation process. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 354:120332. [PMID: 38364539 DOI: 10.1016/j.jenvman.2024.120332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/14/2024] [Accepted: 02/08/2024] [Indexed: 02/18/2024]
Abstract
Dewatering is the first step in the subsequent treatment and disposal of food waste digestate (FWD). However, FWD is difficult to dewatering. In this study, persulfate was synergistic oxidized by ozone to improve digestate dewaterability. The optimal conditions was at pH = 3, O3=40 mg/g TS and PDS=0.1 g/g TS, under which the reductions in the normalized capillary suction time (NCST) and bound moisture (BM) of the FWD were 89.97% and 65.79%, respectively. Hydrophilic functional groups (oxygen- and nitrogen-containing groups) and hydrophilic protein molecular structures were decomposed by the reactive species of sulfate radical (SO4·-) and hydroxyl radicals (·OH) generated in the ozone-persulfate oxidation process, disrupting the binding between EPS and water molecules. The contributions of SO4·- and ·OH to digestate dewaterability were 42.51% and 28.55%. In addition, the introduction of H+ reduced electrostatic repulsion and contributed to the condensation of digestate flocs. The environmental implication assessment and economic analysis suggested that the O3/PDS oxidation process was cost-effective and has a low environmental implication when applied to the FWD dewaterability improvement process. These results can serve as a reference for the management of FWD and further improvement of FWD treatment and disposal efficiency.
Collapse
Affiliation(s)
- Wei Zhang
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, 200093, PR China.
| | - Li Zhu
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, 200093, PR China
| | - Xue Yang
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, 200093, PR China
| | - Jing Zhu
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, 200093, PR China
| | - Bin Dong
- School of Environmental Science and Engineering. Tongji University, Shanghai, 200092, PR China
| | - Hong Tao
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, 200093, PR China
| |
Collapse
|
9
|
Yuan H, Zhu N. Progress of improving waste activated sludge dewaterability: Influence factors, conditioning technologies and implications and perspectives. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168605. [PMID: 37989393 DOI: 10.1016/j.scitotenv.2023.168605] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/06/2023] [Accepted: 11/14/2023] [Indexed: 11/23/2023]
Abstract
Large amounts of waste activated sludge (WAS) as a by-product generated from the biological treatment in wastewater treatment plants (WWTPs) is of high moisture content (MC), organic pollutants, heavy metals and pathogenic bacteria, it may cause serious environmental ecological risk without appropriate disposal. More than one half of the total operation cost is accounted for sludge disposal in a WWTP. Dewatering is an essential and important step during the sludge treatment and disposal process for it could efficiently reduce its volume, and be beneficial to the subsequent treatment and disposal of sludge. However, sludge should be conditioned before mechanical dewatering because of its high hydrophilicity. In this work, it presented a comprehensive review on sludge dewatering including summarizing the dewaterability measurement indexes, affecting factors, conditioning technologies, the improvement mechanisms. Finally, based on the eventual disposal and low carbon emission target, the implications and perspectives development of sludge conditioning were discussed. Based on the above discussion, there is no unified theoretical insight of the improvement mechanism of sludge dewaterability. In addition, the relationship between the microstructure of organic matters in sludge floc and the dewaterability should be deepened. Especially, how to choose the optimal conditioning technology for sludge dewatering lies in the physical and chemical properties of sludge, however, the carbon emission of the conditioning and dewatering process also needs to be considered. Accordingly, green, low-cost and organic conditioning agents are the direction of future research, and the establishment of automatic operating system and real-time evaluation index system is the key challenge.
Collapse
Affiliation(s)
- Haiping Yuan
- Shanghai Engineering Research Center of Solid Waste Treatment and Resource Recovery, School of Environmental Science and Engineering, Shanghai Jiao Tong University, No.800 Dongchuan Road, Shanghai 200240, China
| | - Nanwen Zhu
- Shanghai Engineering Research Center of Solid Waste Treatment and Resource Recovery, School of Environmental Science and Engineering, Shanghai Jiao Tong University, No.800 Dongchuan Road, Shanghai 200240, China.
| |
Collapse
|
10
|
Li Y, Fu C, Cao X, Wang X, Wang N, Zheng M, Quan L, Lv J, Guo Z. Enhancement of sludge dewaterability by repeated inoculation of acidified sludge: Extracellular polymeric substances molecular structure and microbial community succession. CHEMOSPHERE 2023; 339:139714. [PMID: 37543234 DOI: 10.1016/j.chemosphere.2023.139714] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 07/26/2023] [Accepted: 08/01/2023] [Indexed: 08/07/2023]
Abstract
Improving the dewatering performance of sewage sludge is of great scientific and engineering significance in the context of accelerated urbanization and increasingly strict environmental regulations. Acidified sludge (AS) can improve sludge dewatering performance, but the dewatering effect of repeated inoculation is unclear. The effects of long-term repeated inoculation of AS on the sludge dewaterability were investigated. The molecular structure and microbial community succession of extracellular polymeric substances (EPS) are emphasized. The results revealed that increasing the inoculation ratio of AS reduced the pH, absolute value of sludge zeta potential, and sludge particle size, and the decreasing trend was more evident with prolonging treatment time. Under the conditions of 30% and 50% AS inoculation, the dewatering performance of the sludge was significantly improved (p < 0.05). Compared with the raw sludge, the specific resistance of filtration (SRF) and capillary suction time of 30% inoculation were reduced by 64.3% and 50.1% after 30 cycles, respectively. Excluding loosely bound (LB)-EPS, soluble (S)-EPS and tightly bound (TB)-EPS exhibited a visible decrease, the protein in TB-EPS was significantly related to sludge dewaterability (p < 0.05). The fluorescent components of aromatic protein and fulvic acid-like substances in TB-EPS were significantly associated with SRF, with a correlation coefficient 0.99 (p < 0.05). Both the increase in the percentages of random coil and decrease in α-helix in TB-EPS contributed to improving dewaterability. Increasing Firmicutes and decreasing Chloroflexi levels improved the sludge dewatering capacity. Repeated inoculation did not disrupt the dewatering effect of AS rather increased the feasibility of the engineering application of AS. Considering the dewatering performance and cost synthetically, 30% AS inoculated ratio is feasible for practical applications.
Collapse
Affiliation(s)
- Yunbei Li
- School of Environment, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, 453007, China.
| | - Chunyan Fu
- School of Environment, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, 453007, China
| | - Xinyu Cao
- School of Environment, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, 453007, China
| | - Xin Wang
- School of Environment, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, 453007, China
| | - Ninghao Wang
- School of Environment, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, 453007, China
| | - Mengyu Zheng
- School of Environment, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, 453007, China
| | - Lijun Quan
- School of Environment, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, 453007, China
| | - Jinghua Lv
- School of Environment, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, 453007, China
| | - Zhensheng Guo
- School of Environment, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, 453007, China
| |
Collapse
|
11
|
Song J, Fang W, Lai J, Cao B, Zhang T, Xu Z. Conditioning fecal sludge of public toilets with coupled zero-valent iron and persulfate: Efficiency and mechanism. JOURNAL OF HAZARDOUS MATERIALS 2023; 455:131615. [PMID: 37201282 DOI: 10.1016/j.jhazmat.2023.131615] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/26/2023] [Accepted: 05/10/2023] [Indexed: 05/20/2023]
Abstract
This study investigated the efficiency of fecal sludge conditioning using peroxydisulfate (PDS) activated by zero-valent iron (ZVI). For fecal sludge obtained from public toilets in a densely-populated rural area in China, the ZVI/PDS coupling greatly improved its dewaterability as well as the supernatant quality in terms of organic matter and nutrient contents. The capillary suction time (CST) and supernatant turbidity of fecal sludge can be reduced up to 97% and 73% respectively in 10 min by the combination of 0.15 g/g TS ZVI and 0.2 g/g TS PDS. Protein removal, especially for tightly and loosely bound extracellular-polymeric-substance (EPS), is more linearly correlated to CST reduction than polysaccharide removal. Fecal sludge dewatering was improved by the hybrid functions of radical oxidation and iron coagulation. The ZVI/PDS treatment produced larger and looser flocs, probably because 1) surface ionic and hydrophilic groups of fecal sludge were reduced, 2) surface charge was neutralized, and 3) secondary structures of EPS proteins were altered by the radicals. The excellent fecal sludge dewatering was related to strengthened particle hydrophobicity and reduced sludge viscosity and compressibility. The results highlight that the ZVI/PDS combination is potentially an effective conditioning approach for fecal sludge from public toilets.
Collapse
Affiliation(s)
- Junxue Song
- College of Geography and Environment, Shandong Normal University, Jinan 250358, PR China; Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China
| | - Wei Fang
- Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China
| | - Jing Lai
- College of Geography and Environment, Shandong Normal University, Jinan 250358, PR China
| | - Bingdi Cao
- Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China
| | - Tao Zhang
- Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China.
| | - Zhenzhen Xu
- College of Geography and Environment, Shandong Normal University, Jinan 250358, PR China.
| |
Collapse
|
12
|
Siswina T, Miranti Rustama M, Sumiarsa D, Kurnia D. Phytochemical profiling of Piper crocatum and its antifungal mechanism action as Lanosterol 14 alpha demethylase CYP51 inhibitor: a review. F1000Res 2023; 11:1115. [PMID: 37151610 PMCID: PMC10157293.2 DOI: 10.12688/f1000research.125645.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/17/2023] [Indexed: 03/29/2023] Open
Abstract
Mycoses or fungal infections are general health problem that often occurs in healthy and immunocompromised people in the community. The development of resistant strains in Fungi and the incidence of azole antibiotic resistance in the Asia Pacific which reached 83% become a critical problem nowadays. To control fungal infections, substances and extracts isolated from natural resources, especially in the form of plants as the main sources of drug molecules today, are needed. Especially from Piperaceae, which have long been used in India, China, and Korea to treat human ailments in traditional medicine. The purpose of this review is to describe the antifungal mechanism action from Piper crocatum and its phytochemical profiling against lanosterol 14a demethylase CYP51. The methods used to search databases from Google Scholar to find the appropriate databases using Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) Flow Diagram as a clinical information retrieval method. From 1.150.000 results searched by database, there is 73 final results article to review. The review shows that P. crocatum contains flavonoids, tannins, terpenes, saponins, polyphenols, eugenol, alkaloids, quinones, chavibetol acetate, glycosides, triterpenoids or steroids, hydroxychavikol, phenolics, glucosides, isoprenoids, and non-protein amino acids. Its antifungal mechanisms in fungal cells occur due to ergosterol especially lanosterol 14a demethylase (CYP51) inhibition, which is one of the main target sites for antifungal activity because it functions to maintain the integrity and function of cell membranes in Candida. P. crocatum has an antifungal activity through its phytochemical profiling against fungal by inhibiting the lanosterol 14a demethylase, make damaging cell membranes, fungal growth inhibition, and fungal cell lysis.
Collapse
|
13
|
Zhang X, Zhang H, Wang Z, Liu T, Guo D, Hu Z. Enhanced paper sludge dewatering and in-depth mechanism by oxalic acid/Fe 2+/persulfate process. CHEMOSPHERE 2023; 311:136966. [PMID: 36280120 DOI: 10.1016/j.chemosphere.2022.136966] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 10/17/2022] [Accepted: 10/18/2022] [Indexed: 06/16/2023]
Abstract
As a typical advanced oxidation process, Fe2+-persulfate (PDS) oxidation technology has been widely and efficiently reported for enhancing sludge dewaterability. However, higher dosage of Fe2+ must be added, which will restrain the oxidation efficiency of Fe2+-PDS process. In this work, the oxalic acid (OA)/Fe2+-PDS process was studied to improve paper sludge dewatering. With the OA dosage of 6 μmol (g total solid (TS))-1, Fe2+ dosage of 0.3 mmol (g TS)-1, and PDS dosage of 0.6 mmol (g TS)-1, sludge dewaterability was improved more efficiently. The specific resistance to filtration and water content of sludge cake were decreased by 70.7% and 8.0%, respectively. In comparison with Fe2+-PDS process, the viscosities of sludge suspension and supernatant were further reduced by 3.73% and 51.77%, respectively, and the contents of extracellular polymeric substances fractions were increased. The improved sludge dewaterability in OA/Fe2+-PDS process was mainly contributed by the synergistic effect of oxidative disintegration by free radicals and flocs re-flocculation, the contributions of which were the orders: metal cations > sulfate radical > hydroxyl radical. OA enhanced the efficient disintegration of sludge flocs, released more bound water, generated more Fe3+-oxalate complexes, and finally increased the sludge particle size significantly, forming a larger aggregation and obvious cracks. Additionally, the stabilization of several heavy metals was improved due to the chelating capacity of OA. These works will provide a novel approach for sludge dewatering in the PDS oxidation process.
Collapse
Affiliation(s)
- Xin Zhang
- School of Environmental and Natural Resources, Zhejiang University of Science and Technology, Hangzhou, Zhejiang, 310023, China; State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, Guangdong, 510000, China; Zhejiang Shanying Paper CO., LTD, Jiaxing, Zhejiang, 314000, China; Northeast Petroleum University, Daqing, Heilongjiang, 163318, China.
| | - Hongtao Zhang
- School of Environmental and Natural Resources, Zhejiang University of Science and Technology, Hangzhou, Zhejiang, 310023, China
| | - Zhenchang Wang
- School of Environmental and Natural Resources, Zhejiang University of Science and Technology, Hangzhou, Zhejiang, 310023, China
| | - Tao Liu
- Zhejiang Shanying Paper CO., LTD, Jiaxing, Zhejiang, 314000, China
| | - Daliang Guo
- School of Environmental and Natural Resources, Zhejiang University of Science and Technology, Hangzhou, Zhejiang, 310023, China
| | - Zhijun Hu
- School of Environmental and Natural Resources, Zhejiang University of Science and Technology, Hangzhou, Zhejiang, 310023, China
| |
Collapse
|
14
|
Hong T, Wan M, Lv S, Peng L, Zhao Y. Metal-phenolic Coated Rod-like Silica Nanocarriers With pH Responsiveness for Pesticide Delivery. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.130989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
15
|
Zhang X, Ye P, Wu Y. Enhanced technology for sewage sludge advanced dewatering from an engineering practice perspective: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 321:115938. [PMID: 35985273 DOI: 10.1016/j.jenvman.2022.115938] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/22/2022] [Accepted: 08/01/2022] [Indexed: 06/15/2023]
Abstract
The increasing production of sludge poses significant environmental risks. Sludge disposal and transport are costly because of the high water content (WC). Reducing the WC of sludge is the most efficient strategy to decrease treatment costs. However, the sludge contains a large amount of hydrophilic organic matter, causing poor dewaterability. Therefore, research on preconditioning and mechanical dewatering has great significance for advanced sludge dewatering. In this study, the features of sludge, the advantages and disadvantages of preconditioning methods, and the action mechanisms (including physical, chemical, and biological preconditioning) are thoroughly described. In addition, the dewatering principle and engineering applications of mechanical dewatering techniques are introduced in this manuscript, especially the application of vacuum preloading as an in-situ dewatering technology in sludge. Finally, cost analysis of different conditioning and mechanical dewatering methods is conducted to explore their application feasibility. This manuscript provides new insights for engineering applications of preconditioning methods and mechanical dewatering technology.
Collapse
Affiliation(s)
- Xudong Zhang
- Department of Civil Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444, China.
| | - Peng Ye
- Department of Civil Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444, China.
| | - Yajun Wu
- Department of Civil Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444, China.
| |
Collapse
|
16
|
Xiao T, Zhang L, Chen S, Dai X, Dong B. A novel application of dissolved ozone flotation on sewage sludge thickening: Performance and mechanism investigation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 842:156874. [PMID: 35753468 DOI: 10.1016/j.scitotenv.2022.156874] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 05/31/2022] [Accepted: 06/18/2022] [Indexed: 06/15/2023]
Abstract
Sludge thickening in sewage treatment plants is an essential step to reduce the sewage sludge volume and provide space for collaborative anaerobic digestion of sludge and other urban organic wastes. Dissolved ozone flotation (DOF) is a novel choice worthy of application in the field of sludge thickening. In order to investigate the effect of DOF thickening, the total solid content (TS %) was used to characterize the thickening performance under different O3 dosage. The optimal condition was determined to be polyacrylamide (PAM) dosage = 3 ‰ TS, air floatation time = 2 h and O3 dosage = 12 mg/g TS, under which the TS % of raw-sewage sludge (RS) increased from 0.33 ± 0.01 % to 8.03 ± 0.06 %. In this study, the relationship between the sludge thickening performance, physicochemical properties, and the changes of organic matter (content, structure and molecular weight) in extracellular polymers (EPS) was systematically clarified. The results indicated that the DOF couple with PAM could change the sludge surface properties, destroy the sludge floc structure, release intracellular organic matter, and increase moisture fluidity. The surface hydrophilicity/hydrophobicity, protein (PN) secondary structure and moisture distribution were mainly responsible for sludge thickening performance. Moreover, the change of TS % during the DOF thickening process was mainly caused by the variations of the organic matter content in EMPS layer. The identification of key influencing factors was conducive to the further regulation and upgrading of the novel application for enhanced sludge thickening in sewage treatment plants.
Collapse
Affiliation(s)
- Tingting Xiao
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Lingjun Zhang
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, PR China
| | - Sisi Chen
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Xiaohu Dai
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Bin Dong
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; YANGTZE Eco-Environment Engineering Research Center, China Three Gorges Corporation, Beijing 100038, PR China.
| |
Collapse
|
17
|
Siswina T, Miranti Rustama M, Sumiarsa D, Kurnia D. Phytochemical profiling of Piper crocatum and its antifungal mechanism action as Lanosterol 14 alpha demethylase CYP51 inhibitor: a review. F1000Res 2022; 11:1115. [PMID: 37151610 PMCID: PMC10157293 DOI: 10.12688/f1000research.125645.3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/26/2023] [Indexed: 07/20/2023] Open
Abstract
Mycoses or fungal infections are a general health problem that often occurs in healthy and immunocompromised people in the community. The development of resistant strains in Fungi and the incidence of azole antibiotic resistance in the Asia Pacific which reached 83% become a critical problem nowadays. To control fungal infections, substances and extracts isolated from natural resources, especially in the form of plants as the main sources of drug molecules today, are needed. Especially from Piperaceae, which have long been used in India, China, and Korea to treat human ailments in traditional medicine. The purpose of this review is to describe the antifungal mechanism action from Piper crocatum and its phytochemical profiling against lanosterol 14a demethylase CYP51. The methods used to search databases from Google Scholar to find the appropriate databases using Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) Flow Diagram as a clinical information retrieval method. From 1.150.000 results searched by database, there is 73 final results article to review. The review shows that P. crocatum contains flavonoids, tannins, terpenes, saponins, polyphenols, eugenol, alkaloids, quinones, chavibetol acetate, glycosides, triterpenoids or steroids, hydroxychavikol, phenolics, glucosides, isoprenoids, and non-protein amino acids. Its antifungal mechanisms in fungal cells occur due to ergosterol, especially lanosterol 14a demethylase (CYP51) inhibition, which is one of the main target sites for antifungal activity because it functions to maintain the integrity and function of cell membranes in Candida. P. crocatum has an antifungal activity through its phytochemical profiling against fungal by inhibiting the lanosterol 14a demethylase, make damaging cell membranes, fungal growth inhibition, and fungal cell lysis.
Collapse
Affiliation(s)
- Tessa Siswina
- Midwifery, Poltekkes Kemenkes Pontianak, Pontianak, Kalimantan Barat, 78124, Indonesia
- Chemistry, Padjadjaran University, Sumedang, Jawa Barat, 45363, Indonesia
| | | | - Dadan Sumiarsa
- Chemistry, Padjadjaran University, Sumedang, Jawa Barat, 45363, Indonesia
| | - Dikdik Kurnia
- Chemistry, Padjadjaran University, Sumedang, Jawa Barat, 45363, Indonesia
| |
Collapse
|
18
|
Siswina T, Miranti Rustama M, Sumiarsa D, Kurnia D. Phytochemical profiling of Piper crocatum and its antifungal activity as Lanosterol 14 alpha demethylase CYP51 inhibitor: a review. F1000Res 2022; 11:1115. [PMID: 37151610 PMCID: PMC10157293 DOI: 10.12688/f1000research.125645.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/20/2022] [Indexed: 11/20/2022] Open
Abstract
Mycoses or fungal infections are a general health problem that often occurs in healthy and immunocompromised people in the community. The development of resistant strains in Fungi and the incidence of azole antibiotic resistance in the Asia Pacific which reached 83% become a critical problem nowadays. To control fungal infections, substances and extracts isolated from natural resources, especially in the form of plants as the main sources of drug molecules today, are needed. Especially from Piperaceae, which have long been used in India, China, and Korea to treat human ailments in traditional medicine. The purpose of this review was to describe antifungal activity from Piper crocatum and its phytochemical profiling against lanosterol 14 alpha demethylase CYP51. The methods used search databases from Google Scholar to find the appropriate databases using Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) flow diagram as a clinical information retrieval method. From 1,150,000 results search by database, there were 73 selected articles to review. The review shows that P. crocatum contains flavonoids, tannins, terpenes, saponins, polyphenols, eugenol, alkaloids, quinones, chavibetol acetate, glycosides, triterpenoids or steroids, hydroxychavikol, phenolics, glucosides, isoprenoids, and non-protein amino acids. Its antifungal mechanisms in fungal cells occur due to ergosterol especially lanosterol 14 alpha demethylase CYP51 inhibition as a result of 5,6 desaturase (ERG3) downregulation. P. crocatum has an antifungal activity by its phytochemical profiling that act against fungi by inhibiting the fungal cytochrome P 450 pathway, make damaging cell membranes, fungal growth inhibition, morphological changes, and fungal cell lysis.
Collapse
|
19
|
Zhou S, Wang G, Wang D, Chang X, Huang L, Zhao R, Sun X, Li Z. Application and enhancement of mediumpressure ultraviolet activated peroxydisulfate in treating incineration leachate. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
20
|
Liang J, Zhou Y. Iron-based advanced oxidation processes for enhancing sludge dewaterability: State of the art, challenges, and sludge reuse. WATER RESEARCH 2022; 218:118499. [PMID: 35537253 DOI: 10.1016/j.watres.2022.118499] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 04/12/2022] [Accepted: 04/21/2022] [Indexed: 06/14/2023]
Abstract
The increasing amount of sewage sludge produced in wastewater treatment plants (WWTPs) poses a great challenge to both environment and economy globally. As a requisite process during sludge treatment, sludge dewatering can significantly minimize the sludge volume and lower the operational cost for downstream transportation and disposal. Iron-based advanced oxidation process (AOP), a robust and cost-effective technique with relatively low technical barriers for high-level sludge dewatering, has been widely explored in the past 20 years. The development was mainly driven by the demands of efficient and sustainable sludge conditioning technology and the flexible sludge management approaches. The application of iron-based AOPs in sludge dewatering process attracts more and more attention. In this work, we discussed the current application of iron-based AOPs technology in the sludge dewatering processes in a holistic manner, summarized the factors affecting the sludge dewaterability in the treatment processes, and analyzed the mechanisms of iron-based AOPs to improve dewatering processes. Furthermore, we elaborated potential advantages, limitations, and challenges associated with implementing iron-based AOPs in the full-scale plants and shared the opportunities for sludge reutilization. This review aims to contribute to the development of highly efficient iron-based AOPs for sludge dewatering and offer perspectives and directions towards the new-generation of WWTPs with the sustainable and eco-friendly benefits.
Collapse
Affiliation(s)
- Jialin Liang
- Engineering and Technology Research Center for Agricultural Land Pollution Integrated Prevention and Control of Guangdong Higher Education Institute, College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Yan Zhou
- Advanced Environmental Biotechnology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 637141, Singapore; School of Civil and Environmental Engineering, Nanyang Technological University, 639798, Singapore.
| |
Collapse
|
21
|
Li Y, Yang X, Zhu M, Dong L, Jiang H, Xu Q, Zhou H, Han Y, Feng L, Li C. Synergistic effect of combined hydrothermal carbonization of Fenton's reagent and biomass enhances the adsorption and combustion characteristics of sludge towards eco-friendly and efficient sludge treatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 825:153854. [PMID: 35189214 DOI: 10.1016/j.scitotenv.2022.153854] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 02/05/2022] [Accepted: 02/09/2022] [Indexed: 06/14/2023]
Abstract
The amount of lignocellulose biomass and sludge is enormous, so it is of great significance to find a treatment combining the two substances. Co-hydrothermal carbonization (Co-HTC) has emerged as an efficient approach to dispose sludge. However, the improvement of sludge upgrading and combustion performance remains an important challenge during the Co-HTC of sludge. In this work, the Co-HTC of sludge and Fenton's reagent at different mixing ratios was proposed to achieve sludge reduction. Moreover, the addition of two kinds of biomass improved the adsorption capacity and combustion performance of hydrochars. When sludge and sawdust were the Co-HTC at the mass ratio of 1:3, the liquid phase Pb concentration decreased notably to 18.06%. Furthermore, the adsorption capacity of hydrochars was further improved by modification, which was in accordance with pseudo-second-order kinetics. Particularly, the hydrochars derived from the Co-HTC had higher heating value (HHV) and could be used as a clean fuel. This study proposed a new technical route of combining the HTC with Fenton's reagent and lignocellulose biomass, which could be served as a cleaner and eco-friendly treatment of sludge.
Collapse
Affiliation(s)
- Yeqing Li
- State Key Laboratory of Heavy Oil Processing, Beijing Key Laboratory of Biogas Upgrading Utilization, College of New Energy and Materials, China University of Petroleum Beijing, Beijing 102249, China
| | - Xingru Yang
- State Key Laboratory of Heavy Oil Processing, Beijing Key Laboratory of Biogas Upgrading Utilization, College of New Energy and Materials, China University of Petroleum Beijing, Beijing 102249, China
| | - Mingyu Zhu
- State Key Laboratory of Heavy Oil Processing, Beijing Key Laboratory of Biogas Upgrading Utilization, College of New Energy and Materials, China University of Petroleum Beijing, Beijing 102249, China
| | - Liming Dong
- Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business University, Beijing 100048, China.
| | - Hao Jiang
- State Key Laboratory of Heavy Oil Processing, Beijing Key Laboratory of Biogas Upgrading Utilization, College of New Energy and Materials, China University of Petroleum Beijing, Beijing 102249, China
| | - Quan Xu
- State Key Laboratory of Heavy Oil Processing, Beijing Key Laboratory of Biogas Upgrading Utilization, College of New Energy and Materials, China University of Petroleum Beijing, Beijing 102249, China
| | - Hongjun Zhou
- State Key Laboratory of Heavy Oil Processing, Beijing Key Laboratory of Biogas Upgrading Utilization, College of New Energy and Materials, China University of Petroleum Beijing, Beijing 102249, China
| | - Yongming Han
- College of Information Science & Technology, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Lu Feng
- Department of Biological and Chemical Engineering, Aarhus University, Blichers Allé 20, 8830 Tjele, Denmark; NIBIO, Norwegian Institute of Bioeconomy Research, P.O. Box 115, N-1431 Ås, Norway
| | - Chengfei Li
- Faculty of intelligent manufacturing, Wuyi University, Jiangmen 529020, China.
| |
Collapse
|
22
|
Dong Y, Yuan H, Bai L, Ge D, Zhu N. A comprehensive study on simultaneous enhancement of sludge dewaterability and elimination of polycyclic aromatic hydrocarbons by Fe 2+ catalyzing O 3 process. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 819:152015. [PMID: 34843792 DOI: 10.1016/j.scitotenv.2021.152015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/12/2021] [Accepted: 11/23/2021] [Indexed: 06/13/2023]
Abstract
Simultaneous removal of polycyclic aromatic hydrocarbons (PAHs) in the process of enhancement of sludge dewaterability via oxidation of hydroxyl radicals (•OH) and flocculation of Fe3+ by Fe2+-catalyzing O3 were investigated as a novel research focus. The results showed that capillary suction time (CST) and water content of dewatered sludge cake (Wc) were reduced from 57.9 s and 85.1% to 13.6 s and 69.65% under the optimum usage of 60 mg/g dry solids (DS) O3 and 80 mg/g DS FeSO4, respectively. The relevant dewatering mechanism of Fe2+-catalyzing O3 treatment was elucidated. It was found that extracellular polymeric substances-bound (EPS-bound) and intracellular water was dramatically released through destroying sludge cells and EPS gel-like structure by produced •OH. In addition, the results of X-ray photoelectron spectroscopy (XPS), Fourier transform infrared (FTIR) and 13C NMR spectroscopy revealed that •OH oxidized and mineralized hydrophilic organic matters intensifying hydrophobicity of sludge surface. Moreover, Fe3+ generated by oxidation of Fe2+ agglomerated fragmented fine particles into large aggregates and decreased exposure of hydrophilic sites by neutralizing negative charge, which promoted water-solids separation. Meanwhile, sludge surface roughness was decreased which was determined by material type upright confocal laser microscope (CLM). As a consequence, •OH and Fe3+ were mainly responsible for enhancement of sludge dewaterability. Moreover, more than 40% of removal rate of PAHs was accomplished by Fe2+-catalyzed O3 treatment mitigating the environmental risks of PAHs spread.
Collapse
Affiliation(s)
- Yanting Dong
- School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; Shanghai Engineering Research Center of Solid Waste Treatment and Resource Recovery, School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Haiping Yuan
- School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; Shanghai Engineering Research Center of Solid Waste Treatment and Resource Recovery, School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Lu Bai
- School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; Shanghai Engineering Research Center of Solid Waste Treatment and Resource Recovery, School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Dongdong Ge
- School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; Shanghai Engineering Research Center of Solid Waste Treatment and Resource Recovery, School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Nanwen Zhu
- School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; Shanghai Engineering Research Center of Solid Waste Treatment and Resource Recovery, School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
23
|
Dang Y, Bai Y, Zhang Y, Yang X, Sun X, Yu S, Zhou Y. Tannic acid reinforced electro-Fenton system based on GO-Fe 3O 4/NF cathode for the efficient catalytic degradation of PNP. CHEMOSPHERE 2022; 289:133046. [PMID: 34883130 DOI: 10.1016/j.chemosphere.2021.133046] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 11/04/2021] [Accepted: 11/21/2021] [Indexed: 06/13/2023]
Abstract
In order to overcome the sluggish kinetics of the redox conversion between Fe3+ and Fe2+ in Fenton process, we established a novel electro-Fenton system based on GO-Fe3O4 cathode and tannic acid (TA) for the efficient degradation of p-nitrophenol (PNP). Under the optimal degradation parameters (including the initial PNP concentration of 20 mg L-1, pH = 5, current density of 30 mA cm-2 and feeding ratio of PNP: TA = 1:2), the TA reinforced GO-Fe3O4 electro-Fenton system exhibited the removal rate of PNP over 90.1 ± 0.2%, the COD removal rate of 69.5 ± 0.84% and satisfactory reusability (with the removal rate of ∼80% after 5 recycles). The excellent degradation performance of the proposed TA reinforced GO-Fe3O4 electro-Fenton system was partly attributed to the optimized morphology (with the particle size of Fe3O4 reduced to tens of nanometers, pore size decreased by ∼80% and pore volume increased by 24.3 times) and larger specific surface area (increased by 72.7 times) after compositing GO with Fe3O4, which exposed more active sites. In return, the electron transfer process, the two-electron oxygen reduction reaction (ORR) and the degradation efficiency were promoted in the cooperation of GO and Fe3O4. Moreover, the incorporated TA would form a TA-Fe(III) complex to promote the reduction reaction from Fe3+ to Fe2+, which strengthened the self-circulation of Fe2+ and Fe3+ and indirectly enhanced the conversion of H2O2 to ROS to decompose PNP into smaller organic fragments or mineralize into CO2, H2O, NO2- or NO3-, etc. Obviously, the incorporation of TA provided a promising strategy to improve the electro-Fenton efficiency and realize the efficient removal of PNP in wastewater.
Collapse
Affiliation(s)
- Yuan Dang
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Yangyang Bai
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Yichen Zhang
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Xiaohan Yang
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Xiaoqin Sun
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Sha Yu
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Yuanzhen Zhou
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
| |
Collapse
|
24
|
Zhang Y, Chu W. Bisphenol S degradation via persulfate activation under UV-LED using mixed catalysts: Synergistic effect of Cu-TiO 2 and Zn-TiO 2 for catalysis. CHEMOSPHERE 2022; 286:131797. [PMID: 34426121 DOI: 10.1016/j.chemosphere.2021.131797] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/22/2021] [Accepted: 08/02/2021] [Indexed: 06/13/2023]
Abstract
A photocatalyst composed of Zn-TiO2 and Cu-TiO2 through simple physical mixing was used to activate persulfate(PS) for Bisphenol S (BPS) degradation. Zn-TiO2 and Cu-TiO2 were prepared with a sol gel method and were characterized by X-ray diffraction (XRD), Raman, Transmission electron microscope (TEM), Fourier-transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS). The two catalysts have shown an obvious synergistic effect in the photocatalytic degradation process. When 5 mM persulfate and 0.3 g/L catalyst were used, the removal rate of mixed catalyst (0.2 g/L Zn-TiO2 and 0.1 g/L Cu-TiO2) is 100 % in 18 min, which is significantly better than that of 0.3 g/L Zn-TiO2(58 %) and 0.3 g/L Cu-TiO2(90 %). Typically, the effects of various operation parameters, including the ratio of Cu-TiO2/Zn-TiO2, catalyst dosage, persulfate dosage, initial concentration of BPS, and initial solution pH, were examined. Reactive oxygen species (ROS) in the UV/mixed catalyst/PS process was identified by scavenger and electron paramagnetic resonance (EPR) tests. The superoxide radicals generated by both Zn-TiO2 and the hydrolysis of persulfate in the system could accelerate the Cu (II)/Cu(I) redox cycles and results in the synergistic effect. This study proposed a new and effective way to improve the reaction by simply combining two catalysts, and unraveled the mechanism behind the synergistic effect, which could provide new ideas to use the catalyst more effectively for wastewater treatment or other areas.
Collapse
Affiliation(s)
- Yanlin Zhang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Wei Chu
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong.
| |
Collapse
|
25
|
Li M, Song G, Liu R, Huang X, Liu H. Inactivation and risk control of pathogenic microorganisms in municipal sludge treatment: A review. FRONTIERS OF ENVIRONMENTAL SCIENCE & ENGINEERING 2022; 16:70. [PMID: 34608423 PMCID: PMC8482957 DOI: 10.1007/s11783-021-1504-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 06/28/2021] [Accepted: 07/12/2021] [Indexed: 05/05/2023]
Abstract
The rapid global spread of coronavirus disease 2019 (COVID-19) has promoted concern over human pathogens and their significant threats to public health security. The monitoring and control of human pathogens in public sanitation and health facilities are of great importance. Excessive sludge is an inevitable byproduct of sewage that contains human and animal feces in wastewater treatment plants (WWTPs). It is an important sink of different pollutants and pathogens, and the proper treatment and disposal of sludge are important to minimize potential risks to the environment and public health. However, there is a lack of comprehensive analysis of the diversity, exposure risks, assessment methods and inactivation techniques of pathogenic microorganisms in sludge. Based on this consideration, this review summarizes the control performance of pathogenic microorganisms such as enterovirus, Salmonella spp., and Escherichia coli by different sludge treatment technologies, including composting, anaerobic digestion, aerobic digestion, and microwave irradiation, and the mechanisms of pathogenic microorganism inactivation in sludge treatment processes are discussed. Additionally, this study reviews the diversity, detection methods, and exposure risks of pathogenic microorganisms in sludge. This review advances the quantitative assessment of pathogenic microorganism risks involved in sludge reuse and is practically valuable to optimize the treatment and disposal of sludge for pathogenic microorganism control.
Collapse
Affiliation(s)
- Mengtian Li
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Ge Song
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Ruiping Liu
- Center for Water and Ecology, School of Environment, Tsinghua University, Beijing, 100084 China
| | - Xia Huang
- School of Environment, Tsinghua University, Beijing, 100084 China
| | - Huijuan Liu
- Center for Water and Ecology, School of Environment, Tsinghua University, Beijing, 100084 China
| |
Collapse
|
26
|
Wang G, Ge D, Bai L, Dong Y, Bian C, Xu J, Zhu N, Yuan H. Insight into the roles of electrolysis-activated persulfate oxidation in the waste activated sludge dewaterability: Effects and mechanism. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 297:113342. [PMID: 34314959 DOI: 10.1016/j.jenvman.2021.113342] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/12/2021] [Accepted: 07/18/2021] [Indexed: 06/13/2023]
Abstract
Sludge dewatering, as one of the most important steps of sludge treatment, can facilitate transportation and improve disposal efficiency by reducing the volume of sludge. This study investigated the effects of electrolysis-activated persulfate oxidation on improving sludge dewaterability. The results indicated that the sludge capillary suction time (CST) and water content of dewatered sludge cake (Wc) reduced from 93.7 s and 87.8% to 9.7 s and 68.3% respectively at the optimized process parameters: electrolysis voltage of 40 V, electrolysis time of 20 min, and 1.2 mmol/g TS S2O82-. Correlation analysis revealed that the enhancement of sludge dewaterability was closely associated with the increased floc size and zeta potential, decreased protein content in three-layers extracellular polymeric substances (EPS) and viscosity (R = -0.868, p = 0.002; R = -0.703, p = 0.035; R ≥ 0.961, p < 0.001; R = 0.949, p < 0.001). Four protein fluorescence regions in EPS were analyzed by three-dimensional excitation-emission matrix parallel factor (3D-EEM-PARAFAC). The protein secondary structure was changed after the treatment, and the reduction of α-helix/(β-sheet + random coil) indicated that more hydrophobic sites were exposed. Analysis by X-ray photoelectron spectroscopy (XPS), Fourier transform infrared (FTIR) and rheological test demonstrated that the hydrophilic functional groups of the sludge were decreased and the sludge mobility was significantly enhanced after the treatment with electrolysis-activated persulfate oxidation. Moreover, bound water was converted to free water during SO4·- and ·OH generated by electrolysis-activated persulfate degraded EPS and attacked sludge cells. Meanwhile, scanning electron microscopy (SEM) images revealed that the treated sludge formed porous channel structures, which promoted the flowability of the water. These findings provide a new insight based on electrolysis-activated persulfate oxidation in sludge treatment for enhancing sludge dewaterability.
Collapse
Affiliation(s)
- Guanjun Wang
- Shanghai Engineering Research Center of Solid Waste Treatment and Resource Recovery, School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Dongdong Ge
- Shanghai Engineering Research Center of Solid Waste Treatment and Resource Recovery, School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Lu Bai
- Shanghai Engineering Research Center of Solid Waste Treatment and Resource Recovery, School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yanting Dong
- Shanghai Engineering Research Center of Solid Waste Treatment and Resource Recovery, School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Chang Bian
- Shanghai Engineering Research Center of Solid Waste Treatment and Resource Recovery, School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jiajia Xu
- Shanghai Engineering Research Center of Solid Waste Treatment and Resource Recovery, School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Nanwen Zhu
- Shanghai Engineering Research Center of Solid Waste Treatment and Resource Recovery, School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Haiping Yuan
- Shanghai Engineering Research Center of Solid Waste Treatment and Resource Recovery, School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
27
|
Ge D, Zhu Y, Li G, Yuan H, Zhu N. Identifying the key sludge properties characteristics in Fe 2+-activated persulfate conditioning for dewaterability amelioration and engineering implementation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 296:113204. [PMID: 34243089 DOI: 10.1016/j.jenvman.2021.113204] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 06/29/2021] [Accepted: 06/30/2021] [Indexed: 06/13/2023]
Abstract
Fe2+-activated persulfate process has been introduced into sludge conditioning currently, however the key sludge properties characteristics are worthwhile comprehensively considering for the engineering implementation and management. The results indicated that both the optimal dosages of persulfate and Fe2+ were 0.6 mmol/gTS for sludge dewaterability amelioration, and the reduction efficiencies of capillary suction time (CST), specific resistance of filtration (SRF), and water content (Wc) of dewatered sludge cake reached to 90.5%, 97.2%, and 22.4%, respectively. Significantly, the persulfate and Fe2+ exerted distinctive roles in the conditioning process. The increased persulfate could promote the oxidatively disintegrated effect on sludge flocs, rendering the decrease of particle size. With the oxidative decomposition of the negatively charged biopolymers, sludge zeta potential rose gradually. However, Fe2+ contributed to more persulfate activation to generate free radicals, and the produced Fe3+ could further electrically neutralize the broken sludge fragments. The core mechanism of Fe2+-activated persulfate conditioning is "destroying and re-building" of sludge flocs. Noteworthily, EPS protein was oxidatively degraded more preferentially than EPS polysaccharide, and the decrease of the α-helix content of EPS protein was conducive to the enhancement of sludge dewaterability. Furthermore, the hydrophilic functional groups reduced clearly and element chemical states on sludge flocs altered pronouncedly, also the destroyed structure and microchannel facilitated the flowability of water. These findings provide theoretical and technical support for the practical engineering implementation of the Fe2+-activated persulfate conditioning process.
Collapse
Affiliation(s)
- Dongdong Ge
- School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yidan Zhu
- Jinhua Academy of Agricultural Sciences, Jinhua, Zhejiang, 321025, China
| | - Guobiao Li
- School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Haiping Yuan
- School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Nanwen Zhu
- School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China.
| |
Collapse
|
28
|
Liang Y, Song J, Dong H, Huo Z, Gao Y, Zhou Z, Tian Y, Li Y, Cao Y. Fabrication of pH-responsive nanoparticles for high efficiency pyraclostrobin delivery and reducing environmental impact. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 787:147422. [PMID: 33991920 DOI: 10.1016/j.scitotenv.2021.147422] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 04/12/2021] [Accepted: 04/25/2021] [Indexed: 05/18/2023]
Abstract
In this work, a pH-responsive pesticide delivery system using mesoporous silica nanoparticles (MSNs) as the porous carriers and coordination complexes of Cu ions and tannic acid (TA-Cu) as the capping agent was established for controlling pyraclostrobin (PYR) release. The results showed the loading capacity of PYR@MSNs-TA-Cu nanoparticles for pyraclostrobin was 15.7 ± 0.5% and the TA-Cu complexes deposited on the MSNs surface could protect pyraclostrobin against photodegradation effectively. The nanoparticles had excellent pH responsive release performance due to the decomposition of TA-Cu complexes under the acid condition, which showed 8.53 ± 0.37%, 82.38 ± 1.67% of the encapsulated pyraclostrobin were released at pH 7.4, pH 4.5 after 7 d respectively. The contact angle and adhesion work of PYR@MSNs-TA-Cu nanoparticles on rice foliage were 86.3° ± 2.7° and 75.8 ± 3.1 mJ/m2 after 360 s respectively, indicating that TA on the surface of the nanoparticles could improve deposition efficiency and adhesion ability on crop foliage. The control effect of PYR@MSNs-TA-Cu nanoparticles against Rhizoctonia solani with 400 mg/L of pyraclostrobin was 85.82% after 7 d, while that of the same concentration of pyraclostrobin EC was 53.05%. The PYR@MSNs-TA-Cu nanoparticles did not show any phytotoxicity to the growth of rice plants. Meanwhile, the acute toxicity of PYR@MSNs-TA-Cu nanoparticles to zebrafish was decreased more than 9-fold compared with that of pyraclostrobin EC. Thus, pH-responsive PYR@MSNs-TA-Cu nanoparticles have great potential for enhancing targeting and environmental safety of the active ingredient.
Collapse
Affiliation(s)
- You Liang
- Co-Innovation Center for Modern Production Technology of Grain Crop/Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou, China; College of Plant Protection, China Agricultural University, Beijing, China
| | - Jiehui Song
- Co-Innovation Center for Modern Production Technology of Grain Crop/Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou, China
| | - Hongqiang Dong
- College of Plant Science, Tarim University, Alaer, China
| | - Zhongyang Huo
- Co-Innovation Center for Modern Production Technology of Grain Crop/Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou, China
| | - Yunhao Gao
- College of Plant Protection, China Agricultural University, Beijing, China
| | - Zhiyuan Zhou
- College of Plant Protection, China Agricultural University, Beijing, China
| | - Yuyang Tian
- College of Plant Protection, China Agricultural University, Beijing, China
| | - Yan Li
- College of Plant Protection, China Agricultural University, Beijing, China
| | - Yongsong Cao
- College of Plant Protection, China Agricultural University, Beijing, China.
| |
Collapse
|
29
|
Guo S, Huang Y, Zhou L, Huang X. Improvement of sludge dewaterability and disintegration efficiency using electrolytic zero-valent iron activated peroxymonosulfate. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2021; 84:458-468. [PMID: 34312351 DOI: 10.2166/wst.2021.229] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Electrolysis zero-valent iron activated peroxymonosulfate (EZVI-PMS) was applied to enhance sludge dewaterability and disintegration performance. Sludge dewaterability was characterized by capillary suction time (CST), specific resistance to filtration (SRF), and disintegration performance was explored by measuring sludge DNA content, ammonia nitrogen, chemical oxygen demand (COD), extracellular polymeric substances (EPS) and dissolved organic carbon (DOC). EPS, including soluble EPS (SB-EPS), loosely bound EPS (LB-EPS), and tightly bound EPS (TB-EPS) were analyzed by three dimensional fluorescence excitation-emission spectrum (3D-EEM) to confirm the proteins' transformation tendency. DOC, protein and polysaccharide in EPSs were quantified to investigate the conditioning mechanism. The results showed that sludge CST and SRF were reduced significantly when the current was 0.2 A and PMS dosage was 130 mg/gDS with the reductions of 43.8% and 74.1%, respectively, and DNA was released from sludge cells to the liquid phase. Mechanically, sludge TB-EPS converted to SB-EPS with DOC in TB-EPS decreasing from 367.0 mg/L to 210 mg/L, while DOC in SB-EPS increased from 44 mg/L to 167.4 mg/L. Besides, the changes of protein and polysaccharide contents in SB-EPS and TB-EPS were similar to DOC, and protein in TB-EPS transformed to other protein-like or organic substances obviously.
Collapse
Affiliation(s)
- Shaodong Guo
- School of Urban Construction, Wuhan University of Science and Technology, 10 of Huangjiahu West Road, Hongshan District, Wuhan 430065, Hubei, P.R. China
| | - Yuxin Huang
- School of Urban Construction, Wuhan University of Science and Technology, 10 of Huangjiahu West Road, Hongshan District, Wuhan 430065, Hubei, P.R. China
| | - Long Zhou
- School of Urban Construction, Wuhan University of Science and Technology, 10 of Huangjiahu West Road, Hongshan District, Wuhan 430065, Hubei, P.R. China
| | - Xinghu Huang
- School of Urban Construction, Wuhan University of Science and Technology, 10 of Huangjiahu West Road, Hongshan District, Wuhan 430065, Hubei, P.R. China
| |
Collapse
|