1
|
Chang J, Zhang L, An Q, Ma Z, Xu P, Cernava T, Jin D. Novel insight into the mechanisms of neurotoxicity induced by type I and type II pyrethroids via disrupting the gut-brain axis in lizards. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 983:179697. [PMID: 40398162 DOI: 10.1016/j.scitotenv.2025.179697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2025] [Revised: 05/13/2025] [Accepted: 05/15/2025] [Indexed: 05/23/2025]
Abstract
Type I and type II pyrethroids are widely used and frequently detected in agricultural environments. The neurotoxic effects and underlying mechanisms of pyrethroids in native animal populations, including lizards as common farmland inhabitants, remain unclear. This study exposed male lizards (Eremias argus) to type I bifenthrin (BF) and type II fluvalinate (FA) pyrethroids for 28 days, resulting in abnormal behaviors. Targeted analyses indicated that neurotransmitters, including dopamine, GABA, acetylcholine, and choline in lizard plasma, were significantly decreased with alterations in the cholinergic synapse, dopaminergic synapse, and cAMP signaling pathway in the brain after BF and FA treatment. Nervous system-related genes such as CACNA1A, CACNA1B, and CACNA1C were significantly down-regulated and highly correlated with arachidonic acid metabolism pathway-related metabolites in lizard gut. A notable decrease in metabolites within the arachidonic acid metabolism pathway and alterations in the gut microbiome were indicative for anti-inflammatory responses and neurotoxic effects. Interestingly, increased type I BF bioaccumulation in lizard intestines induced a higher abundance of Akkermansia, which resulted in reduced inflammation in the gut and lower neurotoxic effects compared to the low-dose BF exposure group. This study reveals contrasting dose-responses between pyrethroid types and suggests gut-brain axis-regulated neurotoxicity in lizards.
Collapse
Affiliation(s)
- Jing Chang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Leisen Zhang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiong An
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zheng Ma
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Peng Xu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Tomislav Cernava
- Institute of Environmental Biotechnology, Graz University of Technology, Petersgasse 12, 8010 Graz, Austria; School of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton SO17 1BJ, United Kingdom
| | - Decai Jin
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| |
Collapse
|
2
|
Zhao W, Wang W, Wu Y, Guo W, Ren W, Meng S, Yun S, Feng C. Magnetic biochar prepared from a spent mushroom substrate as an adsorbent for the analysis of pyrethroids in environmental water samples. Talanta 2025; 284:127195. [PMID: 39577382 DOI: 10.1016/j.talanta.2024.127195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 10/30/2024] [Accepted: 11/08/2024] [Indexed: 11/24/2024]
Abstract
In this study, a spent mushroom substrate (SMS) from Lentinus edodes cultivation was used to prepare biochar (BC) and magnetic biochar (MBC) at high temperatures. The magnetic field strength of MBC was proved via VSM analysis. The results of the nitrogen adsorption‒desorption isotherms of BC and MBC showed that MBC exhibited stronger adsorption, and SEM was performed to compare the microstructures of BC and MBC. TEM was performed to compare the distributions of C, O, and Fe. The FT-IR and XRD results revealed changes in the structure and the formation of new substances after magnetization; that is, MBC was more conducive to the adsorption and recovery of pesticides. Moreover, a method for the detection of tetramethrin, beta-cypermethrin, and fenvalerate in water samples (tap water, lake water, and river water) was established, and this method combined the use of MBC as adsorbent and high-performance liquid chromatography. Moreover, great linearity of the method was obtained in the range of 0.5-2.5 μg/mL; the recoveries in real samples were in the range of 70.20-73.32 %, and the RSDs were in the range of 0.22-1.09 %. The method is simple and effective, is suitable for the detection of pyrethroids in water, and has certain application potential.
Collapse
Affiliation(s)
- Wenfei Zhao
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Wen Wang
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Yixuan Wu
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Wenhui Guo
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Wenzhuo Ren
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Shiyu Meng
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Shaojun Yun
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Cuiping Feng
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi, 030801, China.
| |
Collapse
|
3
|
Hou S, Zhang D, Xu Z, Shen Y, Wang Y. A Broad-Spectrum Monoclonal Antibody-Based Heterologous ic-ELISA for the Detection of Multiple Pyrethroids in Water, Milk, Celery, and Leek. Foods 2025; 14:768. [PMID: 40077471 PMCID: PMC11898949 DOI: 10.3390/foods14050768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 02/15/2025] [Accepted: 02/20/2025] [Indexed: 03/14/2025] Open
Abstract
Pyrethroids are one of the most commonly used insecticides worldwide in agriculture, public health, and household products. To monitor the presence of pyrethroids in the environment and in food, a broad-spectrum monoclonal antibody (mAb), CL/CN-1D2, was prepared. This mAb demonstrates a 50% inhibitory concentration (IC50) for different pyrethroids: cypermethrin (129.1 µg/L), β-cypermethrin (199.6 µg/L), cyfluthrin (215.5 µg/L), fenpropathrin (220.3 µg/L), λ-cyhalothrin (226.9 µg/L), β-cyfluthrin (241.7 µg/L), deltamethrin (591.2 µg/L), and fenvalerate (763.1 µg/L). Using the mAb CL/CN-1D2, a highly sensitive heterologous indirect competitive ELISA (ic-ELISA) was developed for the rapid detection of these pyrethroids. The limit of detection (LOD) for the eight pyrethroids in water, milk, celery, and leek matrices ranged from 24.4 to 152.2 μg/kg. The recoveries ranged from 65.1% to 112.4%, with a coefficient of variation (CV) below 15%. A robust correlation (R2 = 0.9945) between the ic-ELISA and GC indicated that the ic-ELISA is a reliable tool for the rapid and cost-effective screening of pyrethroids residues.
Collapse
Affiliation(s)
| | | | | | | | - Yulian Wang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan 430070, China; (S.H.); (D.Z.); (Z.X.); (Y.S.)
| |
Collapse
|
4
|
Chen Y, Deng Y, Wu M, Ma P, Pan W, Chen W, Zhao L, Huang X. Impact of pesticides exposure and type 2 diabetes risk: a systematic review and meta-analysis. Endocrine 2025; 87:448-458. [PMID: 39384693 DOI: 10.1007/s12020-024-04067-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 10/03/2024] [Indexed: 10/11/2024]
Abstract
OBJECTIVE We conducted a systematic review and meta-analysis of observational studies that assessed the relationship between pesticides exposure and type 2 diabetes. We also examined the presence of heterogeneity and biases across the available studies. METHODS We conducted a comprehensive literature search of peer-reviewed studies published from 2011 to 2023, without language limitations. A random-effects model was employed to calculate the overall odds ratio (OR) and its corresponding 95% confidence interval (CI). RESULTS We included 19 studies (n = 12 case-control and n = 7 cross-sectional) for a total of 45,813 participants in our analysis. Our findings revealed a notable correlation between pesticide exposure and type 2 diabetes (non-specific definition) when not limiting pesticide types (OR: 1.19, 95% CI: 1.11-1.28). Subgroup analysis identified associations between pyrethroid (OR: 1.17, 95% CI: 1.05-1.30) and type 2 diabetes, as well as between organochlorine (OR: 1.26, 95% CI: 1.11-1.43) and type 2 diabetes. However, no statistically significant association was observed between herbicide exposure and the onset of type 2 diabetes (OR: 1.26, 95% CI: 0.91-1.75). In the elderly group, pesticide exposure significantly heightened the risk of type 2 diabetes (OR: 1.25, 95% CI: 1.14-1.38), with no statistically significant heterogeneity among studies (I2 = 14.2%, p = 0.323). CONCLUSIONS Pesticide (organochlorine and pyrethroid) exposure constitutes a risk factor for type 2 diabetes.
Collapse
Affiliation(s)
- Yang Chen
- Department of Toxicology, School of Public Health, Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, China
| | - Yaqin Deng
- Department of Toxicology, School of Public Health, Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, China
| | - Minjia Wu
- Department of Toxicology, School of Public Health, Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, China
| | - Peixuan Ma
- Department of Toxicology, School of Public Health, Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, China
| | - Wen Pan
- Department of Toxicology, School of Public Health, Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, China
| | - Weiqi Chen
- Department of Toxicology, School of Public Health, Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, China
| | - Lina Zhao
- School of Public Health, Wuhan University, Wuhan, China
| | - Xiaowei Huang
- Department of Toxicology, School of Public Health, Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning, China.
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, China.
| |
Collapse
|
5
|
Zhang W, Lei W, Bo T, Xu J, Wang W. Beta-cypermethrin-induced stress response and ABC transporter-mediated detoxification in Tetrahymena thermophila. Comp Biochem Physiol C Toxicol Pharmacol 2025; 287:110066. [PMID: 39510334 DOI: 10.1016/j.cbpc.2024.110066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 09/18/2024] [Accepted: 11/02/2024] [Indexed: 11/15/2024]
Abstract
β-Cypermethrin (β-CYP), a synthetic pyrethroid pesticide, is widely used for insect management. However, it also affects non-target organisms and pollutes aquatic ecosystems. Tetrahymena thermophila, a unicellular ciliated protist found in fresh water, is in direct contact with aquatic environments and sensitive to environmental changes. The proliferation of T. thermophila was inhibited and the cellular morphology changed under β-CYP stress. The intracellular ROS level significantly increased, and SOD activity gradually rose with increasing β-CYP concentrations. Under 25 mg/L β-CYP stress, 687 genes were up-regulated, primarily enriched in the organic cyclic compound binding and heterocyclic compound binding pathways. These include 8 ATP-binding cassette transporters (ABC) family genes, 2 cytochrome P450 monooxygenase genes, and 2 glutathione peroxidase related genes. Among of them, ABCG14 knockdown affected cellular proliferation under β-CYP stress. In contrast, overexpression of ABCG14 enhanced cellular tolerance to β-CYP. The results demonstrated that Tetrahymena tolerates high β-CYP concentration stress through various detoxification mechanisms, with ABCG14 playing a crucial role in detoxification of β-CYP.
Collapse
Affiliation(s)
- Wenyong Zhang
- School of Life Science, Shanxi University, Taiyuan 030006, China; Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan 030006, China; Taiyuan Institute of Technology, Taiyuan 030008, China.
| | - Wenliang Lei
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan 030006, China.
| | - Tao Bo
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan 030006, China; Shanxi Key Laboratory of Biotechnology, Taiyuan 030006, China.
| | - Jing Xu
- School of Life Science, Shanxi University, Taiyuan 030006, China; Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan 030006, China.
| | - Wei Wang
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan 030006, China; Shanxi Key Laboratory of Biotechnology, Taiyuan 030006, China.
| |
Collapse
|
6
|
Lv B, Zhang Z, Chen B, Yu S, Song M, Yu Y, Lu T, Sun L, Qian H. The effects of different halogenated-pyrethroid pesticides on soil microbial community. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 958:177882. [PMID: 39644647 DOI: 10.1016/j.scitotenv.2024.177882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/30/2024] [Accepted: 11/30/2024] [Indexed: 12/09/2024]
Abstract
The application of pesticides increases crop yields but affects the structure and function of the soil microbial community. Halogens are common functional modification groups in chemical compounds, and innovative pesticides have been developed on the basis of these groups. However, the effects of different halogen substituents on soil microorganisms remain unclear. This study investigated the effects of three pyrethroid pesticides (deltamethrin, cypermethrin, and cyfluthrin) on the soil microbiota. Our results revealed that all these pesticides significantly reduced the stability of the bacterial communities and decreased bacterial diversity at high concentrations. Compared with deltamethrin (Br-) and cypermethrin (Cl-), low concentrations (0.5 mg/kg) of cyfluthrin (F-) increased soil bacterial diversity by 23.14 % and increased the potential for nitrogen fixation by 2.00 % and nitrification by 3.39 %, thus making it a relatively eco-friendly option. Our findings provide new insights into the potential ecological effects of halogenated pyrethroid pesticides on soil ecosystems.
Collapse
Affiliation(s)
- Binghai Lv
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Zhenyan Zhang
- Institute for Advanced Study, Shaoxing University, Shaoxing 312000, PR China; College of Chemistry & Chemical Engineering, Shaoxing University, Shaoxing 312000, PR China
| | - Bingfeng Chen
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Siqi Yu
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Minglong Song
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Yitian Yu
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Tao Lu
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Liwei Sun
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Haifeng Qian
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China.
| |
Collapse
|
7
|
Zhang Y, Li JN, Wang JX, Li YF, Kallenborn R, Xiao H, Cai MG, Tang ZH, Zhang ZF. High-throughput screening of 222 pesticides in road environments in a megacity of northern China: A new approach to urban population exposure. ENVIRONMENTAL RESEARCH 2024; 257:119379. [PMID: 38851374 DOI: 10.1016/j.envres.2024.119379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/25/2024] [Accepted: 06/06/2024] [Indexed: 06/10/2024]
Abstract
A large number of pesticides have been widely manufactured and applied, and are released into the environment with negative impact on human health. Pesticides are largely used in densely populated urban environments, in green zones, along roads and on private properties. In order to characterize the potential exposure related health effects of pesticide and their occurrence in the urban environment, 222 pesticides were screened and quantified in 228 road dust and 156 green-belt soil samples in autumn and spring from Harbin, a megacity in China, using GC-MS/MS base quantitative trace analysis. The results showed that a total of 33 pesticides were detected in road dust and green-belt soil, with the total concentrations of 650 and 236 ng/g (dry weight = dw), respectively. The concentrations of pesticides in road dust were significantly higher than that in green-belt soil. Pesticides in the environment were influenced by the seasons, with the highest concentrations of insecticides in autumn and the highest levels of herbicides in spring. In road dust, the concentrations of highways in autumn and spring (with the mean values of 94.1 and 68.2 ng/g dw) were much lower than that of the other road classes (arterial roads, sub-arterial roads and branch ways). Whereas in the green-belt soil, there was no significant difference in the concentration of pesticides between the different road classes. A first risk assessment was conducted to evaluate the potential adverse health effects of the pesticides, the results showed that the highest hazard index (HI) for a single pesticide in dust and soil was 0.12, the hazard index for children was higher than that for adults, with an overall hazard index of less than 1. Our results indicated that pesticide levels do not have a significant health impact on people.
Collapse
Affiliation(s)
- Ye Zhang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, China; Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, 150040, China
| | - Jin-Nong Li
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, China; Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, 150040, China
| | - Jian-Xin Wang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, China; Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, 150040, China
| | - Yi-Fan Li
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China; International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), Polar Academy, Harbin Institute of Technology, Harbin, 150090, China; IJRC-PTS-NA, Toronto, M2N 6X9, Canada
| | - Roland Kallenborn
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China; International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), Polar Academy, Harbin Institute of Technology, Harbin, 150090, China; Faculty of Chemistry, Biotechnology & Food Sciences (KBM), Norwegian University of Life Sciences (NMBU), Ås NO-1432, Norway
| | - Hang Xiao
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Ming-Gang Cai
- Coastal and Ocean Management Institute, Xiamen University, Xiamen, 361102, China
| | - Zhong-Hua Tang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, China; Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, 150040, China.
| | - Zi-Feng Zhang
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China; International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), Polar Academy, Harbin Institute of Technology, Harbin, 150090, China.
| |
Collapse
|
8
|
Zhu G, Liu Z, Wang H, Mou S, Li Y, Ma J, Li X. Risk Assessment of Fenpropathrin: Cause Hepatotoxicity and Nephrotoxicity in Common Carp ( Cyprinus carpio L.). Int J Mol Sci 2024; 25:9822. [PMID: 39337314 PMCID: PMC11432585 DOI: 10.3390/ijms25189822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 09/05/2024] [Accepted: 09/08/2024] [Indexed: 09/30/2024] Open
Abstract
The synthetic pyrethroid pesticide fenpropathrin (FEN) is extensively used worldwide and has frequently been detected in biota and the environment, whilst the negative effects and toxicological mechanisms of FEN on non-target organisms are still unknown. In the present study, healthy immature common carp were treated with FEN (0.45 and 1.35 μg/L) for a duration of 14 days, and the negative impacts and possible mechanisms of FEN on fish were investigated. Biochemical analyses results showed that FEN exposure altered the levels of glucose (GLU), total cholesterol (T-CHO), triglyceride (TG), albumin (ALB), alkaline phosphatase (ALP), alanine transaminase (ALT), and aspartate transaminase (AST) in carp serum, and caused histological injury of the liver and kidney, indicating that FEN may cause hepatotoxicity and nephrotoxicity in carp. In addition, FEN also altered the activities of superoxide dismutase (SOD) and catalase (CAT) in carp serum, upregulated the levels of reactive oxygen species (ROS), and elevated the levels of malondialdehyde (MDA) in the liver and kidney. Meanwhile, tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) levels were also upregulated, indicating that oxidative stress and inflammatory reaction may be involved in the hepatotoxicity and nephrotoxicity caused by FEN. Furthermore, RNA-seq analysis results revealed that FEN treatment induced a diverse array of transcriptional changes in the liver and kidney and downregulated differentially expressed genes (DEGs) were concentrated in multiple pathways, especially cell cycle and DNA replication, suggesting that FEN may induce cell cycle arrest of hepatocytes and renal cells, subsequently inducing hepatotoxicity and nephrotoxicity. Overall, the present study enhances our comprehension of the toxic effects of FEN and provides empirical evidence to support the risk assessment of FEN for non-target organisms.
Collapse
Affiliation(s)
- Gongming Zhu
- State Key Laboratory of Antiviral Drugs, College of Life Science, Henan Normal University, Xinxiang 453007, China; (G.Z.); (Z.L.); (H.W.); (S.M.); (Y.L.); (X.L.)
- Henan International Joint Laboratory of Aquatic Toxicology and Health Protection, Henan Normal University, Xinxiang 453007, China
- Pingyuan Laboratory, Xinxiang 453007, China
| | - Zhihui Liu
- State Key Laboratory of Antiviral Drugs, College of Life Science, Henan Normal University, Xinxiang 453007, China; (G.Z.); (Z.L.); (H.W.); (S.M.); (Y.L.); (X.L.)
- Henan International Joint Laboratory of Aquatic Toxicology and Health Protection, Henan Normal University, Xinxiang 453007, China
| | - Hao Wang
- State Key Laboratory of Antiviral Drugs, College of Life Science, Henan Normal University, Xinxiang 453007, China; (G.Z.); (Z.L.); (H.W.); (S.M.); (Y.L.); (X.L.)
- Henan International Joint Laboratory of Aquatic Toxicology and Health Protection, Henan Normal University, Xinxiang 453007, China
| | - Shaoyu Mou
- State Key Laboratory of Antiviral Drugs, College of Life Science, Henan Normal University, Xinxiang 453007, China; (G.Z.); (Z.L.); (H.W.); (S.M.); (Y.L.); (X.L.)
- Henan International Joint Laboratory of Aquatic Toxicology and Health Protection, Henan Normal University, Xinxiang 453007, China
| | - Yuanyuan Li
- State Key Laboratory of Antiviral Drugs, College of Life Science, Henan Normal University, Xinxiang 453007, China; (G.Z.); (Z.L.); (H.W.); (S.M.); (Y.L.); (X.L.)
- Henan International Joint Laboratory of Aquatic Toxicology and Health Protection, Henan Normal University, Xinxiang 453007, China
| | - Junguo Ma
- State Key Laboratory of Antiviral Drugs, College of Life Science, Henan Normal University, Xinxiang 453007, China; (G.Z.); (Z.L.); (H.W.); (S.M.); (Y.L.); (X.L.)
- Henan International Joint Laboratory of Aquatic Toxicology and Health Protection, Henan Normal University, Xinxiang 453007, China
- Pingyuan Laboratory, Xinxiang 453007, China
| | - Xiaoyu Li
- State Key Laboratory of Antiviral Drugs, College of Life Science, Henan Normal University, Xinxiang 453007, China; (G.Z.); (Z.L.); (H.W.); (S.M.); (Y.L.); (X.L.)
- Henan International Joint Laboratory of Aquatic Toxicology and Health Protection, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
9
|
Zhao S, Nigar R, Zhong G, Li J, Geng X, Yi X, Tian L, Bing H, Wu Y, Zhang G. Occurrence and fate of current-use pesticides in Chinese forest soils. ENVIRONMENTAL RESEARCH 2024; 255:119087. [PMID: 38719064 DOI: 10.1016/j.envres.2024.119087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/19/2024] [Accepted: 05/05/2024] [Indexed: 05/25/2024]
Abstract
Pesticides play a crucial role in securing global food production to meet increasing demands. However, because of their pervasive use, they are now ubiquitous environmental pollutants that have adverse effects on both ecosystems and human health. In this study, the environmental occurrence and fate of 16 current-use pesticides (CUPs) were investigated in 93 forest soil samples obtained from 11 distinct mountains in China. The concentrations of the target pesticides ranged from 0.36 to 55 ng/g dry weight. Cypermethrin, dicofol, chlorpyrifos, chlorothalonil, and trifluralin were the most frequently detected CUPs. The CUP concentrations were generally higher in the O-horizon than in the A-horizon. Chlorpyrifos, chlorothalonil, and dicofol were detected in most deep layers in soil profiles from three mountains selected to represent distinct climate zones. No clear altitudinal trend in organic carbon-normalized concentrations of CUPs was observed in the O- or A-horizons within individual mountains. A negative correlation was noted between the CUP concentrations and the altitudes across all sampling sites. This indicated that proximity to emission sources was a key factor affecting the spatial distribution of CUPs in mountain forest soil on a national scale. The ecological risk assessment showed that dicofol and cypermethrin pose potential risks to earthworms. This study emphasizes the importance of source control when setting management strategies for CUPs.
Collapse
Affiliation(s)
- Shizhen Zhao
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou, 510640, China.
| | - Refayat Nigar
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guangcai Zhong
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou, 510640, China
| | - Jun Li
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou, 510640, China
| | - Xiaofei Geng
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Xin Yi
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Lele Tian
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Haijian Bing
- Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Yanhong Wu
- Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Gan Zhang
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou, 510640, China
| |
Collapse
|
10
|
Shi T, Zhang Q, Chen X, Mao G, Feng W, Yang L, Zhao T, Wu X, Chen Y. Overview of deltamethrin residues and toxic effects in the global environment. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:271. [PMID: 38954040 DOI: 10.1007/s10653-024-02043-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 05/21/2024] [Indexed: 07/04/2024]
Abstract
Pyrethroids are synthetic organic insecticides. Deltamethrin, as one of the pyrethroids, has high insecticidal activity against pests and parasites and is less toxic to mammals, and is widely used in cities and urban areas worldwide. After entering the natural environment, deltamethrin circulates between solid, liquid and gas phases and enters organisms through the food chain, posing significant health risks. Increasing evidence has shown that deltamethrin has varying degrees of toxicity to a variety of organisms. This review summarized worldwide studies of deltamethrin residues in different media and found that deltamethrin is widely detected in a range of environments (including soil, water, sediment, and air) and organisms. In addition, the metabolism of deltamethrin, including metabolites and enzymes, was discussed. This review shed the mechanism of toxicity of deltamethrin and its metabolites, including neurotoxicity, immunotoxicity, endocrine disruption toxicity, reproductive toxicity, hepatorenal toxicity. This review is aim to provide reference for the ecological security and human health risk assessment of deltamethrin.
Collapse
Affiliation(s)
- Tianli Shi
- School of the Environment and Safety Engineering, School of the Emergency Management, Jiangsu University, 301 Xuefu Rd, Zhenjiang, 212013, China
| | - Qinwen Zhang
- School of the Environment and Safety Engineering, School of the Emergency Management, Jiangsu University, 301 Xuefu Rd, Zhenjiang, 212013, China
| | - Xiangyu Chen
- School of the Environment and Safety Engineering, School of the Emergency Management, Jiangsu University, 301 Xuefu Rd, Zhenjiang, 212013, China
| | - Guanghua Mao
- School of the Environment and Safety Engineering, School of the Emergency Management, Jiangsu University, 301 Xuefu Rd, Zhenjiang, 212013, China
| | - Weiwei Feng
- School of the Environment and Safety Engineering, School of the Emergency Management, Jiangsu University, 301 Xuefu Rd, Zhenjiang, 212013, China
- Institute of Environmental Health and Ecological Safety, Jiangsu University, 301 Xuefu Rd, Zhenjiang, 212013, China
| | - Liuqing Yang
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Rd, Zhenjiang, 212013, China
| | - Ting Zhao
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Rd, Zhenjiang, 212013, China
| | - Xiangyang Wu
- School of the Environment and Safety Engineering, School of the Emergency Management, Jiangsu University, 301 Xuefu Rd, Zhenjiang, 212013, China
| | - Yao Chen
- School of the Environment and Safety Engineering, School of the Emergency Management, Jiangsu University, 301 Xuefu Rd, Zhenjiang, 212013, China.
- Institute of Environmental Health and Ecological Safety, Jiangsu University, 301 Xuefu Rd, Zhenjiang, 212013, China.
| |
Collapse
|
11
|
Huang Y, Zhang X, Li Z. Analysis of nationwide soil pesticide pollution: Insights from China. ENVIRONMENTAL RESEARCH 2024; 252:118988. [PMID: 38663666 DOI: 10.1016/j.envres.2024.118988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/02/2024] [Accepted: 04/21/2024] [Indexed: 05/12/2024]
Abstract
China is a typical agricultural country that heavily relies on pesticides. Some pesticides can remain in the soil after application and thus pose a significant threat to human health. In order to characterize the status and hazards of nationwide soil contamination, this study extracted concentration data from published literature and analyzed them by a scoring approach, standard comparison and health risk assessment. For the soil pollution score, northern regions got the highest values, such as Henan (0.63), Liaoning (0.55), Heilongjiang (0.54) and Jilin (0.53), which implies high soil pesticide residues in these provinces. In contrast, Qinghai (-0.77), Guizhou (-0.64) and Tibet (-0.63) had lower scores. China's soil pesticide standards cover only 16 pesticides, and these pesticide concentrations were all below the corresponding standards. Direct exposure to soil pesticides in this study generally posed a negligible risk to children. Furthermore, pesticide dissipation and usage intensity in each province were analyzed as they were possible influences on pollution. The result showed that soil in the northern regions could accumulate more pesticides than those in the southern regions, and this geographic pattern was basically consistent with the distribution of soil pollution. However, the relationship between agricultural activities and soil pollution was less well characterized. It is recommended to establish a long-term monitoring database for pesticides and include more pesticides in regulatory frameworks. Additionally, efforts to accelerate pesticide degradation and shift the planting structure to reduce pesticide usage can help alleviate the pressure on soil from pesticides. This study can serve as a critical reference for policymakers and stakeholders in the field of agriculture.
Collapse
Affiliation(s)
- Yabi Huang
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| | - Xiaoyu Zhang
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| | - Zijian Li
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, Guangdong, 518107, China.
| |
Collapse
|
12
|
Zuo W, Zhao Y, Qi P, Zhang C, Zhao X, Wu S, An X, Liu X, Cheng X, Yu Y, Tang T. Current-use pesticides monitoring and ecological risk assessment in vegetable soils at the provincial scale. ENVIRONMENTAL RESEARCH 2024; 246:118023. [PMID: 38145733 DOI: 10.1016/j.envres.2023.118023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/14/2023] [Accepted: 12/22/2023] [Indexed: 12/27/2023]
Abstract
Pesticides represent one of the largest intentional inputs of potentially hazardous compounds into agricultural soils. However, as an important vegetable producing country, surveys on pesticide residues in soils of vegetable production areas are scarce in China. This study presented the occurrence, spatial distribution, correlation between vegetable types and pesticides, and ecological risk evaluation of 94 current-use pesticides in 184 soil samples from vegetable production areas of Zhejiang province (China). The ecological risks of pesticides to soil biota were evaluated with toxicity exposure ratios (TERs) and risk quotient (RQ). The pesticide concentrations varied largely from below the limit of quantification to 20703.06 μg/kg (chlorpyrifos). The situation of pesticide residues in Jiaxing is more serious than in other cities. Soils in the vegetable areas are highly diverse in pesticide combinations. Eisenia fetida suffered exposure risk from multiple pesticides. The risk posed by chlorpyrifos, which exhibited the highest RQs at all scenarios, was worrisome. Only a few pesticides accounted for the overall risk of a city, while the other pesticides make little or zero contribution. This work will guide the appropriate use of pesticides and manage soil ecological risks, achieving green agricultural production.
Collapse
Affiliation(s)
- Wei Zuo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture and Rural Affairs, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Yang Zhao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture and Rural Affairs, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Peipei Qi
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture and Rural Affairs, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Chunrong Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture and Rural Affairs, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Xueping Zhao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture and Rural Affairs, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Shenggan Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture and Rural Affairs, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Xuehua An
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture and Rural Affairs, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Xinju Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture and Rural Affairs, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Xi Cheng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture and Rural Affairs, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Yijun Yu
- Zhejiang Cultivated Land Quality and Fertilizer Management Station, Hangzhou 310020, China.
| | - Tao Tang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture and Rural Affairs, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| |
Collapse
|
13
|
Ma R, Wang X, Ren K, Ma Y, Min T, Yang Y, Xie X, Li K, Zhu K, Yuan D, Mo C, Deng X, Zhang Y, Dang C, Zhang H, Sun T. Chronic low-dose deltamethrin exposure induces colon injury and aggravates DSS-induced colitis via promoting cellular senescence. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 274:116214. [PMID: 38489907 DOI: 10.1016/j.ecoenv.2024.116214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/19/2024] [Accepted: 03/12/2024] [Indexed: 03/17/2024]
Abstract
OBJECTIVE Deltamethrin (DLM) is a commonly used insecticide, which is harmful to many organs. Here, we explored the effects of chronic low-dose DLM residues on colon tissue and its potential mechanism. METHODS The mice were given long-term low-dose DLM by intragastric administration, and the body weights and disease activity index (DAI) scores of the mice were regularly recorded. The colon tissues were then collected for hematoxylin-eosin, immunofluorescence and immunohistochemistry staining. Besides, the RNA sequencing was performed to explore the potential mechanism. RESULTS Our results showed that long-term exposure to low-dose DLM could cause inflammation in mice colon tissue, manifested as weight loss, increased DAI score, increased apoptosis of colonic epithelial cells, and increased infiltration of inflammatory cells. However, we observed that after long-term exposure to DLM and withdrawal for a period of time, although apoptosis was restored, the recovery of colon inflammation was not ideal. Subsequently, we performed RNA sequencing and found that long-term DLM exposure could lead to the senescence of some cells in mice colon tissue. The results of staining of cellular senescence markers in colon tissue showed that the level of cellular senescence in the DLM group was significantly increased, and the p53 signalling related to senescence was also significantly activated, indicating that cellular senescence played a key role in DLM-induced colitis. We further treated mice with quercetin (QUE) after long-term DLM exposure, and found that QUE could indeed alleviate DLM-induced colitis. In addition, we observed that long-term accumulation of DLM could aggravate DSS-induced colitis in mice, and QUE treatment could reverse this scenario. CONCLUSION Continuous intake of DLM caused chronic colitis in mice, and the inflammation persisted even after discontinuation of DLM intake. This was attributed to the induction of cellular senescence in colon tissue. Treatment with QUE alleviated DLM-induced colitis by reducing cellular senescence. Long-term DLM exposure also aggravated DSS-induced colitis, which could be mitigated by QUE treatment.
Collapse
Affiliation(s)
- Rulan Ma
- Department of Surgical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Xueni Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Kaijie Ren
- Department of Surgical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Yuyi Ma
- Department of Surgical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Tianhao Min
- Department of Surgical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Yong Yang
- Xi'an Analytical and Monitoring Centre for Agri-food Quality Safety, Xi'an 710077, China
| | - Xin Xie
- Department of Nuclear Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Kang Li
- Department of Surgical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Kun Zhu
- Department of Surgical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Dawei Yuan
- Department of Surgical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Caijing Mo
- Department of Surgical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Xiaoyuan Deng
- Department of Surgical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Yong Zhang
- Department of Surgical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Chengxue Dang
- Department of Surgical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China.
| | - Hao Zhang
- Department of Surgical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China.
| | - Tuanhe Sun
- Department of Surgical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China.
| |
Collapse
|
14
|
Wang R, Wang F, Lu Y, Zhang S, Cai M, Guo D, Zheng H. Spatial distribution and risk assessment of pyrethroid insecticides in surface waters of East China Sea estuaries. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 344:123302. [PMID: 38190875 DOI: 10.1016/j.envpol.2024.123302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/31/2023] [Accepted: 01/03/2024] [Indexed: 01/10/2024]
Abstract
Pyrethroid insecticides are the most commonly used household insecticides and pose substantial risks to marine aquatic organisms. many studies have detected pyrethroid insecticides in the waters and estuaries of the western United States, but their distributions within western Pacific estuaries have not been reported. Accordingly, we used high-throughput organic analyses combined with high volume solid-phase extraction to comprehensively assess 13 pyrethroid insecticides in East China Sea estuaries and the Huangpu River. The results demonstrated the presence of various ∑13pyrethroid insecticides in East China Sea estuaries (mean and median values of 8.45 ± 5.57 and 7.78 ng L-1, respectively), among which cypermethrin was the primary contaminant. The concentrations of ∑12pyrethroid insecticide detected in the surface waters at the Huangpu River (mean 6.7 ng L-1, outlet 16.4 ng L-1) were higher than those in the Shanghai estuary (4.7 ng L-1), suggesting that runoff from inland areas is a notable source of insecticides. Wetlands reduced the amount of runoff containing pyrethroid insecticides that reached the ocean. Several factors influenced pesticide distributions in East China Sea estuaries, and higher proportions were derived from agricultural sources than from urban sources, with a higher proportion of agricultural sources than urban sources, influenced by anthropogenic use in the region. Permethrin and cypermethrin were the main compounds contributing to the high ecological risk in the estuaries. Consequently, to prevent risks to marine aquatic life, policymakers should aim to reduce insecticide contaminants derived from urban and agricultural sources.
Collapse
Affiliation(s)
- Rui Wang
- Ministry of Natural Resources Key Laboratory for Polar Science, Polar Research Institute of China, 451 Jinqiao Road, Shanghai, 200136, China; State Key Laboratory of Marine Pollution, and Department of Chemistry, City University of Hong Kong, Hong Kong SAR, 999077, China; Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, School of Environment, Beijing Jiaotong University, Beijing, 100044, China
| | - Feng Wang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Yintao Lu
- Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, School of Environment, Beijing Jiaotong University, Beijing, 100044, China
| | - Shengwei Zhang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Minghong Cai
- Ministry of Natural Resources Key Laboratory for Polar Science, Polar Research Institute of China, 451 Jinqiao Road, Shanghai, 200136, China; School of Oceanography, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai, 200030, China.
| | - Dongdong Guo
- Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, School of Environment, Beijing Jiaotong University, Beijing, 100044, China
| | - Hongyuan Zheng
- Ministry of Natural Resources Key Laboratory for Polar Science, Polar Research Institute of China, 451 Jinqiao Road, Shanghai, 200136, China
| |
Collapse
|
15
|
Küçükler S, Çelik O, Özdemir S, Aydın Ş, Çomaklı S, Dalkılınç E. Effects of rutin against deltamethrin-induced testicular toxicity in rats: Biochemical, molecular, and pathological studies. Food Chem Toxicol 2024; 186:114562. [PMID: 38432437 DOI: 10.1016/j.fct.2024.114562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/27/2024] [Accepted: 02/29/2024] [Indexed: 03/05/2024]
Affiliation(s)
- Sefa Küçükler
- Department of Biochemistry, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey.
| | - Orhan Çelik
- Department of Biochemistry, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey.
| | - Selçuk Özdemir
- Department of Genetics, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey.
| | - Şeyma Aydın
- Department of Genetics, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey.
| | - Selim Çomaklı
- Department of Pathology, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey.
| | - Elif Dalkılınç
- Department of Biochemistry, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey.
| |
Collapse
|
16
|
Wang W, Mou S, Xiu W, Li Y, Liu Z, Feng Y, Ma J, Li X. Fenpropathrin disrupted the gills of common carp (Cyprinus carpio L.) through oxidative stress, inflammatory responses, apoptosis, and transcriptional alterations. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 271:116007. [PMID: 38280339 DOI: 10.1016/j.ecoenv.2024.116007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/16/2024] [Accepted: 01/21/2024] [Indexed: 01/29/2024]
Abstract
Fenpropathrin (FEN) is an extensively utilized synthetic pyrethroid insecticide frequently found in aquatic ecosystems. However, the adverse effects and potential mechanisms of FEN on aquatic species are poorly understood. In this work, common carp were treated with FEN at concentrations of 0.45 and 1.35 μg/L FEN for 14 days, after which the tissue structure, physiological alterations, and mRNA transcriptome of the gills were evaluated. Specifically, FEN exposure caused pathological damage to the gills of carp, downregulated the levels of claudin-1, occludin, and zonula occluden-1 (ZO-1), and inhibited Na+-K+-ATPase activity in the gills. In addition, FEN exposure promoted an increase in reactive oxygen species (ROS) levels and significantly upregulated the levels of malondialdehyde (MDA), 8-hydroxy-2 deoxyguanosine (8-OHdG), and protein carbonyl (PC) in the gills. Moreover, the inflammation-related indices (TNF-α, IL-1β, and IFN-γ) and the apoptosis-related parameter caspase-3 were generally increased, especially in the 1.35 μg/L FEN group, and these indices were significantly greater than those in the control group. These findings suggest that FEN exposure can cause oxidative stress, the inflammatory response, and apoptosis in carp gills. Importantly, the results of RNA-seq analysis showed that 0.45 and 1.35 μg/L FEN could significantly interfere with multiple immune and metabolic pathways, including the phagosome, NOD-like receptor (NLR) signalling pathway, Toll-like receptor (TLR) signalling pathway, necroptosis, and arachidonic acid metabolism pathways, indicating that the effects of FEN on the gills of fish are intricate. In summary, our findings confirm the toxic effects of FEN on common carp gills and provide additional comprehensive information for evaluating the toxicity and underlying molecular mechanisms of FEN in aquatic organisms.
Collapse
Affiliation(s)
- Wenhua Wang
- Henan International Joint Laboratory of Aquatic Toxicology and Health Protection, College of Life Science, Henan Normal University, Xinxiang, Henan 453007, China
| | - Shaoyu Mou
- Henan International Joint Laboratory of Aquatic Toxicology and Health Protection, College of Life Science, Henan Normal University, Xinxiang, Henan 453007, China
| | - Wenyao Xiu
- Henan International Joint Laboratory of Aquatic Toxicology and Health Protection, College of Life Science, Henan Normal University, Xinxiang, Henan 453007, China
| | - Yuanyuan Li
- Henan International Joint Laboratory of Aquatic Toxicology and Health Protection, College of Life Science, Henan Normal University, Xinxiang, Henan 453007, China.
| | - Zhihui Liu
- Henan International Joint Laboratory of Aquatic Toxicology and Health Protection, College of Life Science, Henan Normal University, Xinxiang, Henan 453007, China
| | - Yiyi Feng
- Henan International Joint Laboratory of Aquatic Toxicology and Health Protection, College of Life Science, Henan Normal University, Xinxiang, Henan 453007, China
| | - Junguo Ma
- Henan International Joint Laboratory of Aquatic Toxicology and Health Protection, College of Life Science, Henan Normal University, Xinxiang, Henan 453007, China; Pingyuan Laboratory, Henan 453007, China.
| | - Xiaoyu Li
- Henan International Joint Laboratory of Aquatic Toxicology and Health Protection, College of Life Science, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
17
|
Xiu W, Ding W, Mou S, Li Y, Sultan Y, Ma J, Li X. Adverse effects of fenpropathrin on the intestine of common carp (Cyprinus carpio L.) and the mechanism involved. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 199:105799. [PMID: 38458669 DOI: 10.1016/j.pestbp.2024.105799] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/10/2024] [Accepted: 01/19/2024] [Indexed: 03/10/2024]
Abstract
Fenpropathrin (FEN), a pyrethroid pesticide, is frequently detected in natural water bodies, unavoidable pose adverse effects to aquatic organisms. However, the harmful effects and potential mechanisms of FEN on aquatic species are poorly understood. In this study, common carp were treatment with FEN at 0.45 and 1.35 μg/L for 14 d, and the toxic effects and underlying mechanisms of FEN on the intestine of carp were revealed. RNA-seq results showed that FEN exposure cause a wide range of transcriptional alterations in the intestine and the differentially expressed genes were mainly enrichment in the pathways related to immune and metabolism. Specifically, FEN exposure induced pathological damage and altered submicroscopic structure of the intestine, elevated the levels of Bacteroides fragilis enterotoxin, altered the contents of claudin-1, occludin, and zonula occluden-1 (ZO-1), and causing injury to the intestinal barrier. In addition, inflammation-related index TNF-α in the serum and IL-6 in the intestinal tissues were generally increased after FEN exposure. Moreover, FEN exposure promoted an increase in reactive oxygen species (ROS), altered the levels of superoxide dismutase (SOD), catalase (CAT), and glutathione (GSH), upregulated the contents of malondialdehyde (MDA) in the intestines. The apoptosis-related parameter cytochrome c, caspase-9, and caspase-3 were significantly altered, indicating that inflammation reaction, oxidative stress, and apoptosis may be involved in the toxic mechanism of FEN on carp. Moreover, FEN treatment also altered the intestinal flora community significantly, which may affect the intestinal normal physiological function and thus affect the growth of fish. Overall, the present study help to clarify the intestinal reaction mechanisms after FEN treatment, and provide a basis for the risk assessment of FEN.
Collapse
Affiliation(s)
- Wenyao Xiu
- College of Life Science, Henan Normal University, Xinxiang, Henan 453007, China
| | - Weikai Ding
- Henan International Joint Laboratory of Aquatic Toxicology and Health Protection, Henan Normal University, Xinxiang, Henan 453007, China
| | - Shaoyu Mou
- College of Life Science, Henan Normal University, Xinxiang, Henan 453007, China
| | - Yuanyuan Li
- Henan International Joint Laboratory of Aquatic Toxicology and Health Protection, Henan Normal University, Xinxiang, Henan 453007, China.
| | - Yousef Sultan
- Department of Food Toxicology and Contaminants, National Research Centre, Dokki, Cairo 12622, Egypt
| | - Junguo Ma
- College of Life Science, Henan Normal University, Xinxiang, Henan 453007, China.
| | - Xiaoyu Li
- Henan International Joint Laboratory of Aquatic Toxicology and Health Protection, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
18
|
Zhang B, Liu X, Wei W, Li X, Zhu H, Chen L. Environmental carrying capacity and ecological risk assessment of pesticides under different soil use types in the Central Plains Urban Agglomeration (CPUA), China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 341:122852. [PMID: 37944884 DOI: 10.1016/j.envpol.2023.122852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 06/12/2023] [Accepted: 10/30/2023] [Indexed: 11/12/2023]
Abstract
Soil environmental safety has received much attention during the past few decades due to its significance in agricultural production and human health. Special attention is required for soil pesticide residues and ecological risks. This study examined 197 soil samples from industrial, residential and agricultural areas for the presence of 12 organophosphorus pesticides (OPPs) and 8 synthetic pyrethroids (SYPs) in the 16 cities in Henan Province, and the center of CPUA, based on the Central Plains Urban Agglomeration (CPUA) concept proposed by China. The total average concentrations of ∑12OPPs in industrial, residential and agricultural soils were 194, 217, 267 ng/g dry weight, and those of ∑8SYPs were 26.8, 35.7, 25.5 ng/g dry weight, respectively. The two pollutants with the greatest concentrations in the soils were malathion and fenpropathrin, respectively, the dominant components of OPPs and SYPs. The soil environmental carrying capacity (SECC) analysis, representing the maximum residual load that can be supported, shows that acephate and cyhalothrin were overloaded, with a predicted period of over 500 years. Among the 16 cities of CPUA, a higher frequency of high ecological risk could be observed only in Shangqiu. The OPPs in children had total non-carcinogenic risk values of more than 1.0. Similarly, the non-carcinogenic risks of SYPs in adults and children in the residential areas were more than 1.0. The study provides knowledge on how to effectively manage soil safety in Henan Province, which is the center of the CPUA, with a large population and grain province to protect ecosystems and reduce the risks of soil pesticide residues in humans.
Collapse
Affiliation(s)
- Baozhong Zhang
- College of Environmental Engineering, Henan University of Technology, Lianhua Street 100, Zhengzhou, Henan, 450001, China; Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G 2P5, Canada.
| | - Xiaolong Liu
- College of Environmental Engineering, Henan University of Technology, Lianhua Street 100, Zhengzhou, Henan, 450001, China.
| | - Wenhao Wei
- College of Environmental Engineering, Henan University of Technology, Lianhua Street 100, Zhengzhou, Henan, 450001, China.
| | - Xiquan Li
- College of Environmental Engineering, Henan University of Technology, Lianhua Street 100, Zhengzhou, Henan, 450001, China.
| | - Huina Zhu
- College of Environmental Engineering, Henan University of Technology, Lianhua Street 100, Zhengzhou, Henan, 450001, China; Henan International Joint Laboratory of Environmental Pollution, Remediation and Grain Quality Security, Zhengzhou, 450001, Henan Province, China.
| | - Lingyun Chen
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G 2P5, Canada.
| |
Collapse
|
19
|
Rede D, Teixeira I, Delerue-Matos C, Fernandes VC. Assessing emerging and priority micropollutants in sewage sludge: environmental insights and analytical approaches. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:3152-3168. [PMID: 38085484 PMCID: PMC10791843 DOI: 10.1007/s11356-023-30963-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 11/05/2023] [Indexed: 01/18/2024]
Abstract
The application of sewage sludge (SS) in agriculture, as an alternative to manufactured fertilizers, is current practice worldwide. However, as wastewater is collected from households, industries, and hospitals, the resulting sludge could contaminate land with creeping levels of pharmaceuticals, pesticides, heavy metals, polycyclic aromatic hydrocarbons, and microplastics, among others. Thus, the sustainable management of SS requires the development of selective methods for the identification and quantification of pollutants, preventing ecological and/or health risks. This study presents a thorough evaluation of emerging and priority micropollutants in SS, through the lens of environmental insights, by developing and implementing an integrated analytical approach. A quick, easy, cheap, effective, rugged, and safe (QuEChERS) extraction method, coupled with gas chromatography and liquid chromatography, was optimized for the determination of 42 organic compounds. These include organophosphorus pesticides, organochlorine pesticides, pyrethroid pesticides, organophosphate ester flame retardants, polybrominated diphenyl ethers, polychlorinated biphenyls, and polycyclic aromatic hydrocarbons. The optimization of the dispersive-solid phase for clean-up, combined with the optimization of chromatographic parameters, ensured improved sensitivity. Method validation included assessments for recovery, reproducibility, limit of detection (LOD), and limit of quantification (LOQ). Recoveries ranged from 59.5 to 117%, while LODs ranged from 0.00700 to 0.271 µg g-1. Application of the method to seven SS samples from Portuguese wastewater treatment plants revealed the presence of sixteen compounds, including persistent organic pollutants. The quantification of α-endosulfan, an organochlorine pesticide, was consistently observed in all samples, with concentrations ranging from 0.110 to 0.571 µg g-1. Furthermore, the study encompasses the analysis of agronomic parameters, as well as the mineral and metal content in SS samples. The study demonstrates that the levels of heavy metals comply with legal limits. By conducting a comprehensive investigation into the presence of micropollutants in SS, this study contributes to a deeper understanding of the environmental and sustainable implications associated with SS management.
Collapse
Affiliation(s)
- Diana Rede
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 431, 4249-015, Porto, Portugal
- Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre S/N, 4169-007, Porto, Portugal
| | - Ivan Teixeira
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 431, 4249-015, Porto, Portugal
| | - Cristina Delerue-Matos
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 431, 4249-015, Porto, Portugal
| | - Virgínia Cruz Fernandes
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 431, 4249-015, Porto, Portugal.
| |
Collapse
|
20
|
Wang L, Jiang J, Lu J, Long T, Guo Y, Dong S, Wu H. The Developmental Toxicity and Endocrine-Disrupting Effects of Fenpropathrin on Gobiocypris rarus during the Early Life Stage. TOXICS 2023; 11:1003. [PMID: 38133404 PMCID: PMC10747009 DOI: 10.3390/toxics11121003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/04/2023] [Accepted: 12/06/2023] [Indexed: 12/23/2023]
Abstract
In the present study, the developmental toxicity and endocrine-disrupting effects of fenpropathrin on Gobiocypris rarus during the early life stage were studied using a semi-static water exposure method. The results showed that the LOEC (lowest observed effect concentration) of fenpropathrin on the incubation of rare minnow embryos was above 2.5 μg·L-1. The LOEC and NOEC (no observed effect concentration) of fenpropathrin on the developmental malformations and death indicators were 2.0 and 1.5 μg·L-1, respectively. After exposure to 1.5 μg·L-1 of fenpropathrin for 31 days, the expressions of androgen receptor genes (AR) and sex hormone-synthesis-related genes (CYP17 and CYP19a) were significantly decreased and the expressions of thyroid hormone receptor genes (TRβ) and aryl hydrocarbon receptor genes (AhR1a and AhR2) were significantly increased in juvenile Gobiocypris rarus. The expression levels of the androgen receptor gene (AR), estrogen receptor gene (ER1), and the sex hormone-synthesis-related genes (HMGR, CYP17, and CYP19a) were significantly decreased, while the estrogen receptor gene (ER2a), thyroid hormone receptor gene (TRβ), and aromatic hydrocarbon receptor genes (AhR1a and AhR2) were upregulated in juvenile Gobiocypris rarus under exposure to 2.0 μg·L-1 of fenpropathrin. Relatively low concentrations of fenpropathrin can affect the expression of sex hormone receptor genes, genes related to sex hormone synthesis, thyroid hormone receptor genes, and aromatic hydrocarbon receptor genes, thus interfering with the reproductive system, thyroid system, and metabolic level in Gobiocypris rarus. Therefore, more attention should be paid to the endocrine-disrupting effect caused by the pyrethroid insecticides in the water environment. Furthermore, studies on the internal mechanism of the endocrine-disrupting effect of pyrethroid insecticides on fish is needed in the future.
Collapse
Affiliation(s)
- Lei Wang
- Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
- College of Agricultural Science and Engineering, Hohai University, Nanjing 210098, China
| | - Jinlin Jiang
- Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Jianwei Lu
- Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Tao Long
- Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Yang Guo
- Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Shunan Dong
- College of Agricultural Science and Engineering, Hohai University, Nanjing 210098, China
| | - Huiyi Wu
- Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
- College of Agricultural Science and Engineering, Hohai University, Nanjing 210098, China
| |
Collapse
|
21
|
Hou J, Chen L, Han B, Li Y, Yu L, Wang L, Tao S, Liu W. Distribution characteristics and risk assessment of neonicotinoid insecticides in planting soils of mainland China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 902:166000. [PMID: 37541504 DOI: 10.1016/j.scitotenv.2023.166000] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/31/2023] [Accepted: 07/31/2023] [Indexed: 08/06/2023]
Abstract
Neonicotinoid insecticides (NEOs) are generally used in crop production. Their widespread use on agricultural soil has raised concerns regarding their health and ecological risks. Previous studies have reported the contamination of the farmland soils with NEOs from the coastal provinces of China. Information about NEOs at the national scale as well as the residues of their metabolites are relatively unknown. In this study, 391 soil samples were collected from 31 provinces in nine agricultural regions across mainland China, and the concentrations of ten parent NEOs and three metabolites were determined. At least one NEO was detected in all soil samples, with the sum of the NEOs (ΣNEOs) ranging from 0.04 to 702 μg/kg. The most common parent NEO and metabolite are imidacloprid and imidacloprid-urea, respectively. The concentrations of NEOs in coastal regions at the same latitude were higher than those in inland regions. The NEOs were further compared in the soils of seven types of monocrops and three types of multiple crops (multicrops) (i.e., two types of crops were produced in succession or simultaneously within the decade of this study). The results showed that the highest NEO residues were found in soils planted with vegetables (VE), fruits (FR), and cotton (CO) monocrops and VE & FR multicrops. Differences in NEO concentrations were observed between soils planted with monocrops and multicrops. For example, VE & FR > VE > vegetables and grains (VE & GR) > GR. Moreover, the health risks posed by NEOs in agricultural soils in China are extremely low, and the ecological risks require urgent attention. Particularly, individual NEOs in > 45% of agricultural soils in mainland China may have sublethal effects on two non-target species (HQnon-target > 0.01).
Collapse
Affiliation(s)
- Jie Hou
- Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Liyuan Chen
- Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Bingjun Han
- Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Yujun Li
- Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Lu Yu
- Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Lixi Wang
- Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Shu Tao
- Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Wenxin Liu
- Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China.
| |
Collapse
|
22
|
Elbanna R, Osman KA, Salama MS. Biomarkers of oral subacute toxicity of deltamethrin in exposed male Albino rats. Toxicol Ind Health 2023; 39:735-753. [PMID: 37877786 DOI: 10.1177/07482337231209360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
Deltamethrin is one of the most effective pyrethroid compounds, widely employed in veterinary medicine, public health, and farming. Deltamethrin-triggered oxidative stress largely causes serious harm to an organism. Acute toxicity of this compound was extensively investigated, while less information is available on its oral sub-acute effects. This study assessed, in the male Albino rats, the effects of oral gavage of either 0.874 mg/kg (0.01 LD50) or 8.740 mg/kg (0.10 LD50) of deltamethrin for successive 14 days to investigate its effects on biomarkers and to detect the tissue injury in rats following subacute deltamethrin treatment. It was found that levels of glutathione peroxidase, superoxide dismutase, and catalase in the brain, kidney, and liver, alkaline phosphatase (ALP), and uric acid in serum, hematocrit, mean corpuscular volume (MCV), white blood cells (WBC)s, eosinophils, and basophils were significantly reduced compared with untreated rats. However, when rats were treated with deltamethrin for successive 14 days, alanine aminotransferase (ALT) and lactate dehydrogenase (LDH) activities in serum and the levels of thiobarbituric acid reactive substances (TBARs) in brain, kidney, and liver, red blood cell distribution width (RDW-CV), total protein, monocytes, and basophils and the ratios of neutrophils to lymphocytes, an aggregated marker of systemic inflammation and systemic immune inflammation indexes, significantly increased compared with the control group. Histologic lesions were observed in the liver, kidney, brain, testis, and epidemies in rats exposed to subacute deltamethrin for 14 days, and most tissues of rats treated with 0.10 LD50 of deltamethrin were more affected than those treated with 0.01 LD50. These findings strongly suggest that subacute exposure to deltamethrin caused significant systemic toxicity through oxidative stress resulting in biochemical and histological changes in the studied tissues. These findings highlight the potential harmful effects of deltamethrin and emphasize the importance of understanding the subacute effects of this compound, particularly in the context of veterinary medicine, public health, and farming.
Collapse
Affiliation(s)
- Rania Elbanna
- Department of Pesticide Chemistry and Technology, Faculty of Agriculture, Alexandria University, Alexandria, Egypt
| | - Khaled A Osman
- Department of Pesticide Chemistry and Technology, Faculty of Agriculture, Alexandria University, Alexandria, Egypt
| | - Maher S Salama
- Department of Pesticide Chemistry and Technology, Faculty of Agriculture, Alexandria University, Alexandria, Egypt
| |
Collapse
|
23
|
Liu ST, Horng JL, Lin LY, Chou MY. Fenpropathrin causes alterations in locomotion and social behaviors in zebrafish (Danio rerio). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 265:106756. [PMID: 37952273 DOI: 10.1016/j.aquatox.2023.106756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/01/2023] [Accepted: 11/03/2023] [Indexed: 11/14/2023]
Abstract
Fenpropathrin is one of the widely used pyrethroid pesticides in agriculture and is frequently detected in the environment, groundwater, and food. While fenpropathrin was found to have neurotoxic effects in mammals, it remains unclear whether it has similar effects on fish. Here, we used adult zebrafish to investigate the impacts of fenpropathrin on fish social behaviors and neural activity. Exposure of adult zebrafish to 500 ppb of fenpropathrin for 72 h increased anxiety levels but decreased physical fitness, as measured by a novel tank diving test and swimming tunnel test. Fish exposed to fenpropathrin appeared to spend more time in the conspecific zone of the tank, possibly seeking greater comfort from their companions. Although learning, memory, and aggressive behavior did not change, fish exposed to fenpropathrin appeared to have shorter fighting durations. The immunocytochemical results showed the tyrosine hydroxylase antibody-labeled dopaminergic neurons in the teleost posterior tuberculum decreased in the zebrafish brain. According to a quantitative polymerase chain reaction (qPCR) analysis of the brain, exposure to fenpropathrin resulted in a decrease in the messenger (m)RNA expression of monoamine oxidase (mao), an enzyme that facilitates the deamination of dopamine. In contrast, the mRNA expression of the sncga gene, which may trigger Parkinson's disease, was found to have increased. There were no changes observed in expressions of genes related to antioxidants and apoptosis between the control and fenpropathrin-exposed groups. We provide evidence to demonstrate the defect of the neurotoxicity of fenpropathrin toward dopaminergic neurons in adult zebrafish.
Collapse
Affiliation(s)
- Sian-Tai Liu
- Department of Life Science, National Taiwan University, Taipei City, Taiwan
| | - Jiun-Lin Horng
- Department of Anatomy and Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei City, Taiwan
| | - Li-Yih Lin
- Department of Life Science, School of Life Sciences, National Taiwan Normal University, Taipei City, Taiwan
| | - Ming-Yi Chou
- Department of Life Science, National Taiwan University, Taipei City, Taiwan.
| |
Collapse
|
24
|
Ma J, Xiu W, Diao C, Miao Y, Feng Y, Ding W, Li Y, Sultan Y, Li X. Fenpropathrin induces neurotoxic effects in common carp (Cyprinus carpio L.). PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 197:105644. [PMID: 38072519 DOI: 10.1016/j.pestbp.2023.105644] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/10/2023] [Accepted: 10/09/2023] [Indexed: 12/18/2023]
Abstract
Fenpropathrin (FEN) is a synthetic pyrethroid that has been frequently detected in aquatic environments, yet the neurotoxic impacts and underlying mechanisms on nontarget organisms are lacking. In this experiment, common carp were exposed to 0.45 and 1.35 μg/L FEN for 14 d and exhibited abnormal locomotor behaviour. Biochemical and molecular analysis results indicated that FEN altered the contents of tight junction proteins (claudin-1, occludin, and ZO-1), disturbed Na+-K+-ATPase and AChE activities, caused abnormal expression of neurotransmitters (ACh, DA, GABA, 5-HT, and glutamate) and caused histological damage in the brain, suggesting that FEN may damage the blood-brain barrier and induce neurotoxicity in carp. Furthermore, FEN also promoted an increase in ROS, changed SOD and CAT activities, and generally upregulated the contents of MDA, 8-OHdG, and protein carbonyl in the brain, indicating that FEN can induce oxidative stress and cause damage to lipids, DNA, and proteins. Moreover, inflammation-related indicators (TNF-α, IL-1β, IL-6, and IL-10), mitophagy-related genes (PINK1, parkin, ulk1, beclin1, LC3, p62, tfeb, and atg5), and apoptosis-related parameters (p53, bax, bcl-2, caspase-3, caspase-8, and caspase-9) were also significantly changed, suggesting that inflammation, mitophagy, and apoptosis may participate in FEN-induced neurotoxicity in carp. This study refines the understanding of the toxicity mechanism of FEN and thus provides data support for the risk assessment of FEN.
Collapse
Affiliation(s)
- Junguo Ma
- College of Life Science, Henan Normal University, Xinxiang, Henan 453007, China.
| | - Wenyao Xiu
- College of Life Science, Henan Normal University, Xinxiang, Henan 453007, China
| | - Chunyu Diao
- College of Life Science, Henan Normal University, Xinxiang, Henan 453007, China
| | - Yumeng Miao
- College of Life Science, Henan Normal University, Xinxiang, Henan 453007, China
| | - Yiyi Feng
- Henan International Joint Laboratory of Aquatic Toxicology and Health Protection, Henan Normal University, Xinxiang, Henan 453007, China
| | - Weikai Ding
- Henan International Joint Laboratory of Aquatic Toxicology and Health Protection, Henan Normal University, Xinxiang, Henan 453007, China
| | - Yuanyuan Li
- Henan International Joint Laboratory of Aquatic Toxicology and Health Protection, Henan Normal University, Xinxiang, Henan 453007, China
| | - Yousef Sultan
- Department of Food Toxicology and Contaminants, National Research Centre, Dokki, Cairo 12622, Egypt
| | - Xiaoyu Li
- Henan International Joint Laboratory of Aquatic Toxicology and Health Protection, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
25
|
Zhang M, Yang K, Yang L, Diao Y, Wang X, Hu K, Li Q, Li J, Zhao N, He L, Chen S, Liu A, Ao X, Yang Y, Liu S. A novel cold-adapted pyrethroid-degrading esterase from Bacillus subtilis J6 and its application for pyrethroid-residual alleviation in food matrix. JOURNAL OF HAZARDOUS MATERIALS 2023; 463:132847. [PMID: 39491987 DOI: 10.1016/j.jhazmat.2023.132847] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/09/2023] [Accepted: 10/22/2023] [Indexed: 11/05/2024]
Abstract
Prolonged and widespread use of pyrethroid pesticides a significant concern for human health. The initial step in pyrethroid bioremediation involves the hydrolysis of ester-bond. In the present study, the esterase genes est10 and est13, derived from Bacillus subtilis, were successfully cloned and expressed in Escherichia coli. Recombinant Est10 and Est13 were classified within esterase families VII and XIII, respectively, both of which exhibited conserved G-X-G-X-G motifs. These enzymes demonstrated the capability to degrade pyrethroids, with Est13 exhibiting superior efficiency, and thus was selected for further investigation. The degradation products of β-cypermethrin by Est13 were identified as 3-phenoxybenzoic acid, 3-phenoxybenzaldehyde, and 3-(2,2-Dichloroethenyl)- 2,2-dimethyl-cyclopropanecarboxylate, with key catalytic triads comprising Ser93, Asp192, and His222. Notably, Est13 exhibited the highest β-cypermethrin-hydrolytic activity at 25 °C and a pH of 7.0, showing robust stability in low and medium temperature environment and a broad range of pH levels. Furthermore, Est13 displayed notable resistance to organic solvents and NaCl, coupled with wide substrate specificity. Moreover, Est13 exhibited substantial efficiency in removing β-cypermethrin residues from various food items such as milk, meat, vegetables, and fruits. These findings underscore the potential of Est13 for application in the bioremediation of pyrethroid-contaminated environments and reduction of pyrethroid residues in food products.
Collapse
Affiliation(s)
- Mengmei Zhang
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, People's Republic of China
| | - Kun Yang
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, People's Republic of China
| | - Li Yang
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, People's Republic of China
| | - Yangyu Diao
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, People's Republic of China
| | - Xingjie Wang
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, People's Republic of China
| | - Kaidi Hu
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, People's Republic of China
| | - Qin Li
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, People's Republic of China
| | - Jianlong Li
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, People's Republic of China
| | - Ning Zhao
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, People's Republic of China
| | - Li He
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, People's Republic of China
| | - Shujuan Chen
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, People's Republic of China
| | - Aiping Liu
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, People's Republic of China
| | - Xiaolin Ao
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, People's Republic of China
| | - Yong Yang
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, People's Republic of China
| | - Shuliang Liu
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, People's Republic of China.
| |
Collapse
|
26
|
Ma R, Sun T, Wang X, Ren K, Min T, Xie X, Wang D, Li K, Zhang Y, Zhu K, Mo C, Dang C, Yang Y, Zhang H. Chronic exposure to low-dose deltamethrin can lead to colon tissue injury through PRDX1 inactivation-induced mitochondrial oxidative stress injury and gut microbial dysbiosis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 264:115475. [PMID: 37714033 DOI: 10.1016/j.ecoenv.2023.115475] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 08/15/2023] [Accepted: 09/11/2023] [Indexed: 09/17/2023]
Abstract
OBJECTIVE To date, it is unclear whether deltamethrin (DLM) intake causes damage to colon tissue. Hence, in this study, we aimed to clarify the effect of long-term exposure to low-dose DLM on colon tissues, and its potential mechanisms. METHODS Mice were treated with DLM (0.2 mg/kg/day) or DLM combined with N-acetyl-l-cysteine (NAC) (50 mg/kg/day) for 8 weeks. Human colon cancer cells (HCT-116) were treated with DLM (0, 25, 50, or 100 µM), NAC (2 mM), or overexpression plasmids targeting peroxiredoxin 1 (PRDX1) for 48 h. DLM was detected using a DLM rapid detection card. Colon injury was evaluated using haematoxylin and eosin staining and transmission electron microscopy. Apoptosis was determined using immunofluorescence staining (IF), western blotting (WB) and flow cytometry (FC) assays. MitoTracker, JC-1, and glutathione (GSH) detection were used to detect mitochondrial oxidative stress. Intestinal flora were identified by 16 S rDNA sequencing. RESULTS DLM accumulation was detected in the colon tissue and faeces of mice following long-term intragastric administration. Interestingly, our results showed that, even at a low dose, long-term intake of DLM resulted in severe weight loss and decreased the disease activity index scores and colon length. The results of IF, WB, and FC showed that DLM induced apoptosis in the colon tissue and cells. MitoTracker, JC-1, and GSH assays showed that DLM increased mitochondrial stress in colonic epithelial cells. Mechanistic studies have shown that increased mitochondrial stress and apoptosis are mediated by PRDX1 inhibition. Further experiments showed that PRDX1 overexpression significantly reduced DLM-induced oxidative stress injury and apoptosis. In addition, we observed that chronic exposure to DLM altered the composition of the intestinal flora in mice, including an increase in Odoribacter and Bacteroides and a decrease in Lactobacillus. The gut microbial richness decreased after DLM exposure in mice. Supplementation with NAC both in vivo and in vitro alleviated DLM-induced oxidative stress injury, colonic epithelial cell apoptosis, and gut microbial dysbiosis. CONCLUSION Chronic exposure to DLM, even at small doses, can cause damage to the colon tissue, which cannot be ignored. The production and use of pesticides such as DLM should be strictly regulated during agricultural production.
Collapse
Affiliation(s)
- Rulan Ma
- Department of Surgical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Tuanhe Sun
- Department of Surgical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Xueni Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Kaijie Ren
- Department of Surgical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Tianhao Min
- Department of Surgical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Xin Xie
- Department of Nuclear Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Dangdang Wang
- Xi'an Analytical and Monitoring Centre for Agri-food Quality Safety, Xi'an 710077, China
| | - Kang Li
- Department of Surgical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Yong Zhang
- Department of Surgical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Kun Zhu
- Department of Surgical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Caijing Mo
- Department of Surgical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Chengxue Dang
- Department of Surgical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China.
| | - Yong Yang
- Xi'an Analytical and Monitoring Centre for Agri-food Quality Safety, Xi'an 710077, China.
| | - Hao Zhang
- Department of Surgical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China.
| |
Collapse
|
27
|
Yuan H, Li B, Wei J, Liu X, He Z. Ultra-high performance liquid chromatography and gas chromatography coupled to tandem mass spectrometry for the analysis of 32 pyrethroid pesticides in fruits and vegetables: A comparative study. Food Chem 2023; 412:135578. [PMID: 36731238 DOI: 10.1016/j.foodchem.2023.135578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 01/05/2023] [Accepted: 01/24/2023] [Indexed: 01/28/2023]
Abstract
In this study, multi-residue analysis methods for 32 pyrethroids in fruit and vegetable samples were established in both GC-MS/MS and UHPLC-MS/MS. The parameters that affecting the ionization efficiencies of pyrethroids in UHPLC-ESI-MS/MS, including ion source temperature, in-source fragmentation, and mobile phase conditions were thoroughly investigated to guarantee better performance. These two techniques were comprehensively compared in terms of recovery, LOQ, linearity, and matrix effects. In general, UHPLC-MS/MS was found suitable for more pesticides than GC-MS/MS. Lower LOQs were obtained for most of the selected pyrethroids in UHPLC-MS/MS. Similar results were obtained in terms of recoveries and RSDs for the validated pesticides in fortification experiments. A total of 136 real samples were analyzed by both techniques, obtaining similar results. The results suggest that UHPLC-MS/MS offers a suitable alternative to GC-MS/MS in the routine analysis of pyrethroids in fruits and vegetables.
Collapse
Affiliation(s)
- Haiyue Yuan
- Key Laboratory for Environmental Factors Control of Agro-product Quality Safety, Ministry of Agriculture, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, PR China
| | - Bei Li
- Key Laboratory of Tropical Fruits and Vegetables Quality and Safety for State Market Regulation, Haikou 570311, PR China
| | - Jing Wei
- Key Laboratory of Tropical Fruits and Vegetables Quality and Safety for State Market Regulation, Haikou 570311, PR China
| | - Xiaowei Liu
- Key Laboratory for Environmental Factors Control of Agro-product Quality Safety, Ministry of Agriculture, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, PR China
| | - Zeying He
- Key Laboratory for Environmental Factors Control of Agro-product Quality Safety, Ministry of Agriculture, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, PR China.
| |
Collapse
|
28
|
Ma X, Tao S, Fu S, Yang H, Lin B, Lou Y, Li Y. Adsorption of Pyrethroids in Water by Calcined Shell Powder: Preparation, Characterization, and Mechanistic Analysis. MATERIALS (BASEL, SWITZERLAND) 2023; 16:2802. [PMID: 37049096 PMCID: PMC10096194 DOI: 10.3390/ma16072802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 03/17/2023] [Accepted: 03/24/2023] [Indexed: 06/19/2023]
Abstract
Pyrethroids are common contaminants in water bodies. In this study, an efficient mussel shell-based adsorbent was prepared, the effects of factors (calcination temperature, calcination time, and sieved particle size) on the pyrethroid adsorption capacity from calcined shell powder were investigated via Box-Behnken design, and the prediction results of the model were verified. By characterizing (scanning electron microscopy, X-ray diffraction, Fourier infrared spectroscopy, and Brunauer-Emmett-Teller measurements) the adsorbent before and after the optimized preparation process, the results showed that calcined shell powder had a loose and porous structure, and the main component of the shell powder under optimized condition was calcium oxide. The adsorption mechanism was also investigated, and the analysis of adsorption data showed that the Langmuir, pseudo second-order, and intra-particle diffusion models were more suitable for describing the adsorption process. The adsorbent had good adsorption potential for pyrethroids, the adsorption capacity of the two pesticides was 1.05 and 1.79 mg/g, and the removal efficiency was over 40 and 70% at the maximum initial concentration, respectively.
Collapse
Affiliation(s)
- Xiaohan Ma
- Key Laboratory of Food Deep Processing Technology of Animal Protein of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China
| | - Siyuan Tao
- Hangzhou Yuhang Food and Drug Monitoring & Testing Center, Hangzhou 311112, China
| | - Shiqian Fu
- Key Laboratory of Food Deep Processing Technology of Animal Protein of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China
| | - Huicheng Yang
- Zhejiang Marine Development Research Institute, Zhoushan 316021, China
| | - Bangchu Lin
- Zhejiang Yulin Technology Co., Ltd., Ningbo 315021, China
| | - Yongjiang Lou
- Key Laboratory of Food Deep Processing Technology of Animal Protein of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China
| | - Yongyong Li
- Key Laboratory of Food Deep Processing Technology of Animal Protein of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China
| |
Collapse
|
29
|
Gu S, Zhang Q, Gu J, Wang C, Chu M, Li J, Mo X. The stereoselective metabolic disruption of cypermethrin on rats by a sub-acute study based on metabolomics. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:31130-31140. [PMID: 36441315 DOI: 10.1007/s11356-022-24359-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 11/17/2022] [Indexed: 06/16/2023]
Abstract
Due to the massive application of cypermethrin (CYP) for pest control in China, the adverse effects on non-target organisms have aroused great attention. However, comparative studies between its different stereoisomers remain scarce, especially for metabolism perturbations. Herein, the rats were administered α-CYP, β-CYP, and θ-CYP by gavage at doses of 8.5, 29.2, and 25.0 mg/kg/day, respectively, for 28 consecutive days. By blood examination, significant changes in liver and renal function parameters were observed in rats exposed to all three CYPs. The stereoisomeric selectivity in metabolic disturbances was assessed based on a metabolomic strategy via multivariate analysis and pathway analysis. The results demonstrated that amino acid and glycolipid metabolism were disrupted in all CYP groups. Among them, the most significant changes in the metabolic phenotype were observed in the θ-CYP group, with 56 differential metabolites enriched in 9 differential metabolic pathways. At the same time, the endogenous metabolite trimethylamine oxide (TMAO), which is closely linked to the gut microbiota, was also significantly elevated in this group. Gender differences were found in α- and θ-CYP-exposed rats, with perturbations in amino acid and glucose metabolism of greater concern in females and lipid metabolism of greater concern in males. Overall, β-CYP exhibited a lower risk of metabolic perturbations than α-CYP or θ-CYP, which helps to screen suitable agrochemical products for green agricultural development.
Collapse
Affiliation(s)
- Sijia Gu
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, 310032, Zhejiang, China
| | - Quan Zhang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, 310032, Zhejiang, China.
| | - Jinping Gu
- College of Pharmaceutical Sciences, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, 310032, Zhejiang, China
| | - Cui Wang
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Mengjie Chu
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, 310032, Zhejiang, China
| | - Jing Li
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, 310032, Zhejiang, China
| | - Xunjie Mo
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, 310032, Zhejiang, China
| |
Collapse
|
30
|
Yao R, Yao S, Ai T, Huang J, Liu Y, Sun J. Organophosphate Pesticides and Pyrethroids in Farmland of the Pearl River Delta, China: Regional Residue, Distributions and Risks. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:1017. [PMID: 36673774 PMCID: PMC9858657 DOI: 10.3390/ijerph20021017] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/01/2023] [Accepted: 01/02/2023] [Indexed: 06/17/2023]
Abstract
A regional-scale survey was conducted to assess the occurrence, distribution, and risk of two extensively used pesticides (organophosphate pesticides and pyrethroids) in agricultural soils from the Pearl River Delta (PRD), South China. All target organophosphate pesticides (OPPs) and pyrethroids (PYs) were detected in the soil samples and both with a detection rate of 100%. The residues of the sum of six OPPs and the sum of four PYs were in the range of LOD-991 ng/g and 8.76-2810 ng/g, respectively. Dimethoate was the dominant OPPs, and fenpropathrin was the predominant PYs in the soils of the PRD region. With intensive agricultural activities, higher residues of OPPs and PYs in soils were detected closer to the seaside, among which Zhuhai city and Huizhou city suffered more serious combined pesticide pollution. The vertical compositional profiles showed that dimethoate could be detected through each soil layer in the PRD region's nine cities. The human exposure estimation of OPPs showed insignificant risks to the local population. In contrast, cypermethrin and fenpropathrin showed a potential ecological risk of 2.5% and 3.75% of the sampling sites, respectively. These results can facilitate those commonly used pesticide controls and promote sustainable soil management.
Collapse
Affiliation(s)
- Runlin Yao
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China
- Bathurst Future Agri-Tech Institute, Qingdao Agricultural University, Qingdao 266109, China
| | - Siyu Yao
- Department of Environmental Sciences, College of Earth and Environment Sciences, Lanzhou University, Lanzhou 730000, China
| | - Tao Ai
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China
| | - Jiahui Huang
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China
| | - Yang Liu
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China
| | - Jianteng Sun
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China
| |
Collapse
|
31
|
Wang R, Zhang S, Xiao K, Cai M, Liu H. Occurrence, sources, and risk assessment of pyrethroid insecticides in surface water and tap water from Taihu Lake, China. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 325:116565. [PMID: 36279776 DOI: 10.1016/j.jenvman.2022.116565] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/21/2022] [Accepted: 10/16/2022] [Indexed: 06/16/2023]
Abstract
Pyrethroid insecticides are one of the most widely used insecticides globally, posing a severe threat to human health and the environment. In this study, we applied high-throughput organic analysis testing combined with high-volume solid-phase extraction (Hi-throat/Hi-volume SPE) to elucidate the occurrence of 11 pyrethroid insecticides in lake water (n = 37), tributary river water (n = 15), and tap water (n = 6) in the Taihu Lake Basin. Permethrin was found to be the major contributing pyrethroid insecticide (detection rate = 100%). The concentrations of pyrethroid insecticides from different lake regions were revealed in the following descending order: southern > eastern > western > northern. The principal component analysis and multiple linear regression demonstrated that landscape maintenance, agricultural cultivation, and livestock breeding were the main sources of pyrethroid insecticides in the Taihu Lake surface water. Moreover, runoff input plays an important role in their accumulation, while the surrounding rivers contribute 2292 kg of pyrethroid insecticides to Taihu Lake annually. The risk assessment analysis demonstrated that pyrethroid insecticides pose a high risk to both the ecological environment and the surrounding human populations, thereby necessitating effective countermeasures. Furthermore, the pyrethroid insecticides in the Yangtze River Delta region have to be controlled. Overall, this is the first study focused on China that revealed the residue levels in water sources and tap water.
Collapse
Affiliation(s)
- Rui Wang
- Ministry of Natural Resources Key Laboratory for Polar Science, Polar Research Institute of China, 451 Jinqiao Road, Shanghai, 200136, China; Department of Municipal and Environmental Engineering, School of Civil Engineering, Beijing Jiaotong University, Beijing, 100044, China
| | - Shengwei Zhang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Kaiyan Xiao
- Ministry of Natural Resources Key Laboratory for Polar Science, Polar Research Institute of China, 451 Jinqiao Road, Shanghai, 200136, China
| | - Minghong Cai
- Ministry of Natural Resources Key Laboratory for Polar Science, Polar Research Institute of China, 451 Jinqiao Road, Shanghai, 200136, China; School of Oceanography, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai, 200030, China; Antarctic Great Wall Ecology National Observation and Research Station, Polar Research Institute of China, 1000 Xuelong Road, Shanghai, 201209, China.
| | - Hongling Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
32
|
Wu M, Zhang W, Miao J, Sun C, Wang Q, Pan L. Pyrethroids contamination and health risk assessment in seafood collected from the coast of Shandong, China. MARINE POLLUTION BULLETIN 2023; 186:114442. [PMID: 36493516 DOI: 10.1016/j.marpolbul.2022.114442] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 10/25/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
This study provides the first data on pyrethroid residues of seafood in China. A total of 192 seafood samples were randomly selected from four coastal cities of Shandong Province in 2020. The residues of fenpropathrin, cypermethrin and deltamethrin in seafood by GC-MS were ND to 26.82 μg/kg, ND to 19.18 μg/kg and ND to 15.56 μg/kg, respectively. The cumulative risk to general population of different age groups was assessed by the hazard quotient (HQ) and hazard index (HI) approaches, and showed that the maximum value of both HQ (1.81 × 10-3) and HI (2.9 × 10-3) were below the threshold 1. The present results indicated that the three main pyrethroids from the consumption of seafood is unlikely to pose a health risk to general populations in Shandong. The uncertainty analysis indicated that the monitoring study of pyrethroid residues in seafood is worthy of continuous attention to ensure food safety.
Collapse
Affiliation(s)
- Manni Wu
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, PR China
| | | | - Jingjing Miao
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, PR China.
| | - Ce Sun
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, PR China
| | - Qiaoqiao Wang
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, PR China
| | - Luqing Pan
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, PR China
| |
Collapse
|
33
|
Jing Q, Liu J, Chen A, Chen C, Liu J. The spatial-temporal chemical footprint of pesticides in China from 1999 to 2018. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:75539-75549. [PMID: 35657547 DOI: 10.1007/s11356-022-20602-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 04/29/2022] [Indexed: 06/15/2023]
Abstract
The massive use of pesticides brings considerable environmental and human health impacts. This study conducted an overall assessment of the ecological impact of the extensive pesticide use in China from 1999 to 2018 through the Chemical Footprint (ChF) calculation. The results demonstrated that the primary ecological impacts caused by pesticides occurred in the most central and eastern regions in China, e.g., provinces of Shandong, Henan, Hubei, Anhui, and Jiangsu. The northeastern, some southern and central provinces, e.g., Heilongjiang, Jilin, Liaoning, Yunnan, Guangxi, Guangdong, Ningxia, and Shaanxi, got moderate impacts, whereas the northwest regions, e.g., Qinghai, Xinjiang, and Tibet, had much lighter impacts relatively. The agricultural soil in inland areas and surface sea waters in coastal provinces bore the major impacts of the pesticide pollution in China, shared above 80% of the ChF across all environmental compartments. Chlorpyrifos, pymetrozine, fenpropathrin, pyridaben, atrazine, etc., were the pesticides that had the greatest impacts on the ecosystem, which contributed over 95% of the total ChF of pesticides used in China, although the use amount of these pesticides accounted for less than 10% of the total use amount of all pesticides annually. The study also indicated that the overall ChF of pesticide use in China has been declining since 2010, which was corresponding with the control actions of highly hazardous pesticides, especially the elimination of high toxic organophosphorus insecticides during the past decade.
Collapse
Affiliation(s)
- Qiaonan Jing
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Junzhou Liu
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Anna Chen
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Chengkang Chen
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Jianguo Liu
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China.
| |
Collapse
|
34
|
Wu H, Gao J, Xie M, Wu J, Song R, Yuan X, Wu Y, Ou D. Chronic exposure to deltamethrin disrupts intestinal health and intestinal microbiota in juvenile crucian carp. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 241:113732. [PMID: 35679730 DOI: 10.1016/j.ecoenv.2022.113732] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/24/2022] [Accepted: 05/31/2022] [Indexed: 06/15/2023]
Abstract
The indiscriminate use of deltamethrin in agriculture and aquaculture can lead to residues increased in many regions, which poses negative impacts on intestinal health of aquatic organisms. Although the potential toxicity of deltamethrin have recently attracted attention, the comprehensive studies on intestinal injuries after chronic deltamethrin exposure remain poorly understood. Herein, in a 28-day chronic toxicity test, crucian carp expose to different concentrations of deltamethrin (0, 0.3, and 0.6 μg/L) were used as the research object. We found that the morphology changes and increased goblet cells in intestinal tissue, and the extent of tissue injury increased along with the increasing exposure dose of deltamethrin. Additionally, the genes expression of antioxidant activity (Cu/Zn superoxide dismutase (Cu-Zn SOD), glutathione peroxidase 1 (GPX1), and catalase (CAT)), inflammatory response (tumor necrosis factor alpha (TNFα), interferon gamma (IFNγ), and interleukin 1 beta (IL-1β)), and tight junctions (Claudin 12 (CLDN12), and tight junction protein 1 (ZO-1)) dramatically increased. Meanwhile, the apoptosis and autophagy process were triggered through caspase-9 cascade and autophagy related 5 (ATG5)- autophagy related 12 (ATG12) conjugate. Besides, chronic deltamethrin exposure increased the amount of Proteobacteria and Verrucomicrobiota, while decreased Fusobacteriota abundance, resulting in intestinal microbiota function disorders. In summary, our results highlight that chronic exposure to deltamethrin cause serious intestinal toxicity and results in physiological changes and intestinal flora disturbances.
Collapse
Affiliation(s)
- Hao Wu
- Hunan Fisheries Science Institute, Changsha 410153, China.
| | - Jinwei Gao
- Hunan Fisheries Science Institute, Changsha 410153, China.
| | - Min Xie
- Hunan Fisheries Science Institute, Changsha 410153, China.
| | - Jiayu Wu
- Hunan Fisheries Science Institute, Changsha 410153, China.
| | - Rui Song
- Hunan Fisheries Science Institute, Changsha 410153, China.
| | - Xiping Yuan
- Hunan Fisheries Science Institute, Changsha 410153, China.
| | - Yuanan Wu
- Hunan Fisheries Science Institute, Changsha 410153, China.
| | - Dongsheng Ou
- Hunan Fisheries Science Institute, Changsha 410153, China.
| |
Collapse
|
35
|
Duan Y, Wang D, Xu Z, Yu Supplementary data S, Zhang X, Liu Z. Sensitive determination of pyrethroid insecticide residues in tea using a molecularly imprinted fiber array based on homemade solid-phase microextraction coatings. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
36
|
Li L, Liu S, Yin Y, Zheng G, Zhao C, Ma L, Shan Q, Dai X, Wei L, Lin J, Xie W. The toxicokinetics and risk assessment of pyrethroids pesticide in tilapia (Oreochromis mossambicus) upon short-term water exposure. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 241:113751. [PMID: 35691199 DOI: 10.1016/j.ecoenv.2022.113751] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 06/04/2022] [Accepted: 06/04/2022] [Indexed: 06/15/2023]
Abstract
Pyrethroids pesticides (PPs) are the widely adopted synthetic pesticides for agriculture and fishery. The frequent use of these pesticides leads to the accumulation of residues in the freshwater environments in China, subsequently affecting aquatic organisms and ecosystems. However, there are few reports on the toxicological and risk assessment of aquaculture aquatic products. In this study, the uptake, depuration kinetics and potential risk to human health and ecology of fenpropathrin, cypermethrin, fenvalerate, and deltamethrin were assessed using tilapia. The results indicated that four PPs were readily accumulated by tilapia. The bioconcentration factors (BCF) of the PPs in plasma and muscle were between 71.3 and 2112.1 L/kg and 23.9-295.3 L/kg, respectively. The half-lives (t1/2) of muscle and plasma were 2.90-9.20 d and 2.57-8.15 d. The risks of PPs residues in the muscle of tilapia and exposed water were evaluated by hazard quotient (HQ) and risk quotient (RQ). Although PPs residues in tilapia had a low dietary risk to human health, the residues in the exposed water had a high ecological risk to fish, daphnia, and green algae. Therefore, assessing the PPs content in freshwater aquaculture and monitoring their dosages and frequencies are highly necessitated to avoid their adverse effect on the aquaculture environment.
Collapse
Affiliation(s)
- Lichun Li
- Ministry of Agriculture Laboratory of Quality & Safety Risky Assessment for Aquatic Product, Pearl River Fisheries Research Institute, Chinese Academic of Fishery Science, Guangzhou 510380, China; key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Guangzhou 510380, China
| | - Shugui Liu
- Ministry of Agriculture Laboratory of Quality & Safety Risky Assessment for Aquatic Product, Pearl River Fisheries Research Institute, Chinese Academic of Fishery Science, Guangzhou 510380, China; key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Guangzhou 510380, China
| | - Yi Yin
- Ministry of Agriculture Laboratory of Quality & Safety Risky Assessment for Aquatic Product, Pearl River Fisheries Research Institute, Chinese Academic of Fishery Science, Guangzhou 510380, China; key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Guangzhou 510380, China.
| | - Guangming Zheng
- Ministry of Agriculture Laboratory of Quality & Safety Risky Assessment for Aquatic Product, Pearl River Fisheries Research Institute, Chinese Academic of Fishery Science, Guangzhou 510380, China; key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Guangzhou 510380, China
| | - Cheng Zhao
- Ministry of Agriculture Laboratory of Quality & Safety Risky Assessment for Aquatic Product, Pearl River Fisheries Research Institute, Chinese Academic of Fishery Science, Guangzhou 510380, China; key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Guangzhou 510380, China
| | - Lisha Ma
- Ministry of Agriculture Laboratory of Quality & Safety Risky Assessment for Aquatic Product, Pearl River Fisheries Research Institute, Chinese Academic of Fishery Science, Guangzhou 510380, China; key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Guangzhou 510380, China
| | - Qi Shan
- Ministry of Agriculture Laboratory of Quality & Safety Risky Assessment for Aquatic Product, Pearl River Fisheries Research Institute, Chinese Academic of Fishery Science, Guangzhou 510380, China; key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Guangzhou 510380, China
| | - Xiaoxin Dai
- Ministry of Agriculture Laboratory of Quality & Safety Risky Assessment for Aquatic Product, Pearl River Fisheries Research Institute, Chinese Academic of Fishery Science, Guangzhou 510380, China; key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Guangzhou 510380, China
| | - Linting Wei
- Ministry of Agriculture Laboratory of Quality & Safety Risky Assessment for Aquatic Product, Pearl River Fisheries Research Institute, Chinese Academic of Fishery Science, Guangzhou 510380, China; key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Guangzhou 510380, China
| | - Jiawei Lin
- Ministry of Agriculture Laboratory of Quality & Safety Risky Assessment for Aquatic Product, Pearl River Fisheries Research Institute, Chinese Academic of Fishery Science, Guangzhou 510380, China; key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Guangzhou 510380, China
| | - Wenping Xie
- Ministry of Agriculture Laboratory of Quality & Safety Risky Assessment for Aquatic Product, Pearl River Fisheries Research Institute, Chinese Academic of Fishery Science, Guangzhou 510380, China; key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Guangzhou 510380, China
| |
Collapse
|
37
|
Tang T, Wu R, Zhang L, Wang Y, Ling J, Du W, Shen G, Chen Y, Zhao M. Distribution and partitioning of pyrethroid insecticides in agricultural lands: Critical influencing factors. ENVIRONMENT INTERNATIONAL 2021; 156:106736. [PMID: 34197973 DOI: 10.1016/j.envint.2021.106736] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 06/15/2021] [Accepted: 06/16/2021] [Indexed: 06/13/2023]
Abstract
Pyrethroid insecticides are widely applied due to the broad spectrum and high efficiency in pest control and detected in various environmental media, but the key factor affecting their occurrence and distribution in agricultural lands is still not clear. Here, we measured pyrethroid residues in 644 surface soil and 630 surface water samples and quantified the impacts of various factors on the distribution and partition of pyrethroids through a large-scale field study in Southeast China during 2015-2017. The pyrethroid residues were widely detected in the studied areas, and the mean concentration of seven individual pyrethroids in surface soil and water ranged from 0.10 (cyfluthrin, (CYF)) to 12.14 ng/g (bifenthrin, (BIF)) and 0.18 (CYF) to 3.36 µg/L (BIF) respectively, which were higher than other regions in China and some other countries. Using a generalized linear model coupled with dominance analysis, we found that the crop type and season were significantly associated with pyrethroid residues in surface soil and water (p < 0.05). The crop difference dominated the variances of the distribution of pyrethroid residues in the surface soil and water with a contribution of more than 55% and followed by the factor of season difference. The findings provide new insight into the distribution and partitioning of pyrethroids in agricultural lands and insecticide control on ecological safety and public health.
Collapse
Affiliation(s)
- Tao Tang
- State Key Laboratory for Quality and Safety of Agro-products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture and Rural Affairs, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, China
| | - Ruxin Wu
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Li Zhang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Yonghui Wang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Jun Ling
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Wei Du
- School of Geographical Sciences, East China Normal University, Shanghai 200241, China
| | - Guofeng Shen
- Ministry of Education Laboratory of Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Yuanchen Chen
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China.
| | - Meirong Zhao
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| |
Collapse
|
38
|
Li J, Jiang H, Wu P, Li S, Han B, Yang Q, Wang X, Han B, Deng N, Qu B, Zhang Z. Toxicological effects of deltamethrin on quail cerebrum: Weakened antioxidant defense and enhanced apoptosis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 286:117319. [PMID: 33990053 DOI: 10.1016/j.envpol.2021.117319] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 04/16/2021] [Accepted: 05/03/2021] [Indexed: 06/12/2023]
Abstract
Deltamethrin is the most common type II synthetic pyrethroid insecticide, and has posed widespread residues to environment. However, whether deltamethrin has potential toxic effects on quail cerebrum remains greatly obscure. Accordingly, we investigated the impact of chronic exposure to deltamethrin on oxidative stress and apoptosis in quail cerebrum. Quails upon 12-week exposure of deltamethrin (0, 15, 30, or 45 mg/kg body weight intragastric administration) were used as a cerebrum injury model. The results showed that deltamethrin treatment led to cerebral injury dose-dependently through the weakened antioxidant defense by downregulating nuclear factor erythroid-2-related factor 2 (Nrf2) and its downstream proteins levels and mRNA expression. Furthermore, deltamethrin treatment induced apoptosis in cerebrum by decreasing B-cell lymphoma gene 2 (Bcl-2) level, as well as increasing Jun N-terminal kinase3, caspase-3, and Bcl-2-associated X protein levels. Simultaneously, toll-like receptor 4 (TLR4) downstream inflammation-related genes or proteins were significantly up-regulated by deltamethrin dose-dependently. Altogether, our study demonstrated that chronic exposure to deltamethrin induces inflammation and apoptosis in quail cerebrums by promoting oxidative stress linked to inhibition of the Nrf2/TLR4 signaling pathway. These results provide a novel knowledge on the chronic toxic effect of deltamethrin, and establish a theoretical foundation for the evaluation of pesticide-induced health risk.
Collapse
Affiliation(s)
- Jiayi Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Huijie Jiang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Pengfei Wu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Siyu Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Bing Han
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Qingyue Yang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Xiaoqiao Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Biqi Han
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Ning Deng
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Bing Qu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Zhigang Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China; Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Harbin, 150030, China.
| |
Collapse
|
39
|
Dutta K, Shityakov S, Khalifa I. New Trends in Bioremediation Technologies Toward Environment-Friendly Society: A Mini-Review. Front Bioeng Biotechnol 2021; 9:666858. [PMID: 34409018 PMCID: PMC8365754 DOI: 10.3389/fbioe.2021.666858] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 05/26/2021] [Indexed: 01/29/2023] Open
Abstract
Today's environmental balance has been compromised by the unreasonable and sometimes dangerous actions committed by humans to maintain their dominance over the Earth's natural resources. As a result, oceans are contaminated by the different types of plastic trash, crude oil coming from mismanagement of transporting ships spilling it in the water, and air pollution due to increasing production of greenhouse gases, such as CO2 and CH4 etc., into the atmosphere. The lands, agricultural fields, and groundwater are also contaminated by the infamous chemicals viz., polycyclic aromatic hydrocarbons, pyrethroids pesticides, bisphenol-A, and dioxanes. Therefore, bioremediation might function as a convenient alternative to restore a clean environment. However, at present, the majority of bioremediation reports are limited to the natural capabilities of microbial enzymes. Synthetic biology with uncompromised supervision of ethical standards could help to outsmart nature's engineering, such as the CETCH cycle for improved CO2 fixation. Additionally, a blend of synthetic biology with machine learning algorithms could expand the possibilities of bioengineering. This review summarized current state-of-the-art knowledge of the data-assisted enzyme redesigning to actively promote new research on important enzymes to ameliorate the environment.
Collapse
Affiliation(s)
- Kunal Dutta
- Department of Human Physiology, Vidyasagar University, Medinipur, India
| | - Sergey Shityakov
- Department of Chemoinformatics, Infochemistry Scientific Center, Saint Petersburg National Research University of Information Technologies, Mechanics and Optics (ITMO University), Saint-Petersburg, Russia
| | - Ibrahim Khalifa
- Food Technology Department, Faculty of Agriculture, Benha University, Moshtohor, Egypt
| |
Collapse
|
40
|
Zhang Q, Ying Z, Tang T, Guo B, Gu S, Fu L, Dai W, Lin S. Residual characteristics and potential integrated risk assessment of synthetic pyrethroids in leafy vegetables from Zhejiang in China - Based on a 3-year investigation. Food Chem 2021; 365:130389. [PMID: 34256228 DOI: 10.1016/j.foodchem.2021.130389] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 06/08/2021] [Accepted: 06/14/2021] [Indexed: 11/17/2022]
Abstract
Leafy vegetables have high nutritional value and are very popular in China. However, the long-term variation in residues and integrated risks of synthetic pyrethroids (SPs) in these vegetables have not been well examined. In this study, a total of 1005 samples were collected from 55 markets during 2017-2019. The cumulative exposure to nine kinds of SPs in Zhejiang, China, through the consumption of nine leafy vegetables was analyzed, and the potential integrated risk was assessed by the relative potency factor. A total of 191 samples were detected with SPs residues. The most frequently detected SPs were λ-cyhalothrin and cypermethrin. The integrated risk assessment results revealed that the dietary risk for these SPs via leafy vegetable exposure is acceptable for children, adults and elderly individuals. The data provided here will be helpful for the government to formulate food policies in China.
Collapse
Affiliation(s)
- Quan Zhang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, China.
| | - Zeteng Ying
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, China
| | - Tao Tang
- State Key Laboratory for Quality and Safety of Agro-products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture and Rural Affairs, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, China
| | - Bin Guo
- Institute of Environment, Resources, Soil and Fertilizer, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, China
| | - Sijia Gu
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, China
| | - Lili Fu
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, China
| | - Wei Dai
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, China
| | - Shu Lin
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, China
| |
Collapse
|
41
|
Sharma R, Shishodia A, Kamble S, Gunasekaran A, Belhadi A. Agriculture supply chain risks and COVID-19: mitigation strategies and implications for the practitioners. INTERNATIONAL JOURNAL OF LOGISTICS-RESEARCH AND APPLICATIONS 2020. [DOI: 10.1080/13675567.2020.1830049] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Rohit Sharma
- Operations & SCM, National Institute of Industrial Engineering (NITIE), Mumbai, India
| | | | - Sachin Kamble
- Operations and SCM, EDHEC Business School, Roubaix, France
| | - Angappa Gunasekaran
- School of Business and Public Administration, California State University, Bakersfield, CA, USA
| | | |
Collapse
|