1
|
Kang J, Guo X, Liu X, Chen X, Li H, Hu W, Luo Z. Long-term successional dynamics and response strategies of harmful algal blooms to environmental changes in Tolo Harbour. WATER RESEARCH 2025; 282:123644. [PMID: 40250314 DOI: 10.1016/j.watres.2025.123644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 04/08/2025] [Accepted: 04/12/2025] [Indexed: 04/20/2025]
Abstract
The production and succession of harmful algae blooms (HABs) are attributed more to excessive nutrient concentrations and unbalanced nutrient stoichiometry than to other environmental drivers as the absence of long-term monitoring data. This study analyzed HABs succession patterns and key drivers in Tolo Harbour from 1986 to 2023, leveraging nearly 40 years of data. Effective governmental measures significantly improved water quality, with dissolved inorganic nitrogen (DIN), dissolved inorganic phosphorus (DIP), 5-day biochemical oxygen demand (BOD5), and Escherichia coli (E. coli) concentrations decreasing by 53 %, 80 %, 45 %, and 59 %, respectively. Annual HABs events dropped from 28 to 3, and species diversity declined from 6 to 2. However, toxic species frequency rose from 21 % to 46 %. Dinoflagellates emerged as dominant initial species, with a shift in secondary dominance from diatoms to ochrophytes and toxin types from diarrhetic shellfish poisoning (DSP) to hemolytic toxins (HT). These shifts likely result from combined human and natural influences. Model simulations confirmed that red tide outbreaks, species succession, and shifts in toxin types were driven by declining pH, rising temperatures, unbalanced nitrogen-phosphorus ratios, organic nutrient increases, and algal antagonism. The study emphasizes the importance of the dual reduction of both DIN and DIP, meanwhile inorganic and organic nutrients, suggesting that overly focusing on or distract from one nutrient (e.g., DIP or DON) could lead to unintended ecological consequences, like the proliferation of rare and toxic species. We highlight the combined impacts of climate change (warming and ocean acidification) and anthropogenic activities (nutrient pollution and eutrophication) on HABs, particularly the number and toxin production. This research links policy changes to HABs dynamics, offering strategic recommendations for managing red tides and contribute novel perspectives on the impact of nutrient reduction in comparable bay ecosystems.
Collapse
Affiliation(s)
- Jianhua Kang
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, China
| | - Xinlan Guo
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, China; College of the Environment and Ecology, Xiamen University, Xiamen, 361102, China; State Key laboratory of Marine Environmental Science/Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, Xiamen University, Xiamen, 361102, China
| | - Xuancheng Liu
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, China; College of Marine living Resource Sciences and Management, Shanghai Ocean University, Shanghai, 201306, China
| | - Xianwu Chen
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, China
| | - Haiyan Li
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, China
| | - Wenjia Hu
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, China; Observation and Research Station of Island and Coastal Ecosystem in the Western Taiwan Strait, Ministry of Natural Resources, Xiamen, 361005, China.
| | - Zhaohe Luo
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, China.
| |
Collapse
|
2
|
Zeng Y, Wang H, Liang D, Yuan W, Li S, Xu H, Chen J. Navigating the difference of riverine microplastic movement footprint into the sea: Particle properties influence. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:134888. [PMID: 38897117 DOI: 10.1016/j.jhazmat.2024.134888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 06/01/2024] [Accepted: 06/10/2024] [Indexed: 06/21/2024]
Abstract
As a critical source of marine microplastics (MPs), estuarine MPs community varied in movement due to particle diversity, while tide and runoff further complicated their transport. In this study, a particle mass gradient that represents MPs in the surface layer of the Yangtze River estuary was established. This was done by calculating the masses of 16 particle types using the particle size probability density function (PDF), with typical shapes and polymers as classifiers. Further, Aschenbrenner shape factor and polymer density were embedded into drag coefficients to categorically trace MP movement footprints. Results revealed that the MPs in North Branch moved northward and the MPs in South Branch moved southeastward in a spiral oscillation until they left the model boundary under Changjiang Diluted Water front and the northward coastal currents. Low-density fibrous MPs are more likely to move into the open ocean and oscillate more than films, with a single PE fiber trajectory that reached a maximum oscillatory width of 16.7 km. Over 95 % of the PVC fiber particles settled in nearshore waters west of 122.5°E. Elucidating the aggregation and retention of different MPs types can provide more accurate environmental baseline reference for more precise MP exposure levels and risk dose of ingestion for marine organisms.
Collapse
Affiliation(s)
- Yichuan Zeng
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Hua Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China.
| | - Dongfang Liang
- Department of Engineering, University of Cambridge, Cambridge CB2 1PZ, UK
| | - Weihao Yuan
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Siqiong Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Haosen Xu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Jingwei Chen
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| |
Collapse
|
3
|
Oliveira CYB, Abreu JL, Brandão BC, Oliveira DWS, de Sena PR, da Silva WA, Araújo ES, Rörig LR, de Almeida Costa GK, Silva SMBC, Müller MN, Tribuzi G, Gálvez AO. A Holistic Approach to Producing Anti- Vibrio Metabolites by an Endosymbiotic Dinoflagellate Using Wastewater from Shrimp Rearing. Microorganisms 2024; 12:1598. [PMID: 39203439 PMCID: PMC11356557 DOI: 10.3390/microorganisms12081598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/30/2024] [Accepted: 08/02/2024] [Indexed: 09/03/2024] Open
Abstract
The aquaculture industry requires green solutions to solve several environmental challenges, including adequate wastewater remediation and natural drug applications to treat bacteria- and virus-related diseases. This study investigated the feasibility of cultivating the dinoflagellate Durusdinium glynnii in aquaculture wastewater from shrimp rearing in a synbiotic system (AWW-SS), with different dilutions of f/2 medium (FM). Interestingly, D. glynnii demonstrated enhanced growth in all AWW-SS treatments compared to the control (FM). The highest growth rates were achieved at AWW-SS:FM dilutions of 75:25 and 50:50. The removal of total nitrogen and total phosphorus reached 50.1 and 71.7%, respectively, of the crude AWW-SS. Biomass extracts of D. glynnii grown with AWW-SS were able to inhibit the growth of the bacteria Vibrio parahaemolyticus (inhibition zone of 10.0 ± 1.7 mm) and V. vulnificus (inhibition zone of 11.7 ± 1.5 mm). The presented results demonstrate that the dinoflagellate D. glynnii is a potential candidate for the development of circularity for sustainable aquaculture production, particularly by producing anti-Vibrio compounds at a near-zero cost.
Collapse
Affiliation(s)
- Carlos Yure B. Oliveira
- Laboratory of Live Food Production, Department of Fisheries and Aquaculture, Federal Rural University of Pernambuco, Recife 52171-900, PE, Brazil; (J.L.A.); (B.C.B.); (D.W.S.O.); (P.R.d.S.); (A.O.G.)
- Laboratory of Phycology, Department of Botany, Federal University of Santa Catarina, Florianópolis 88040-900, SC, Brazil;
| | - Jéssika L. Abreu
- Laboratory of Live Food Production, Department of Fisheries and Aquaculture, Federal Rural University of Pernambuco, Recife 52171-900, PE, Brazil; (J.L.A.); (B.C.B.); (D.W.S.O.); (P.R.d.S.); (A.O.G.)
| | - Barbara C. Brandão
- Laboratory of Live Food Production, Department of Fisheries and Aquaculture, Federal Rural University of Pernambuco, Recife 52171-900, PE, Brazil; (J.L.A.); (B.C.B.); (D.W.S.O.); (P.R.d.S.); (A.O.G.)
| | - Deyvid Willame S. Oliveira
- Laboratory of Live Food Production, Department of Fisheries and Aquaculture, Federal Rural University of Pernambuco, Recife 52171-900, PE, Brazil; (J.L.A.); (B.C.B.); (D.W.S.O.); (P.R.d.S.); (A.O.G.)
| | - Pedro Rodrigues de Sena
- Laboratory of Live Food Production, Department of Fisheries and Aquaculture, Federal Rural University of Pernambuco, Recife 52171-900, PE, Brazil; (J.L.A.); (B.C.B.); (D.W.S.O.); (P.R.d.S.); (A.O.G.)
| | - Weverson Ailton da Silva
- Fishery Resources and Engineering Postgraduate Program, State University of West Paraná, Toledo 85903-000, PR, Brazil;
| | - Evando S. Araújo
- Research Group on Electrospinning and Nanotechnology Applications, Department of Materials Science, Federal University of San Francisco Valley, Juazeiro 48902-300, BA, Brazil;
| | - Leonardo R. Rörig
- Laboratory of Phycology, Department of Botany, Federal University of Santa Catarina, Florianópolis 88040-900, SC, Brazil;
| | - Gisely Karla de Almeida Costa
- Laboratory of Aquatic Animal Health, Department of Fisheries and Aquaculture, Federal Rural University of Pernambuco, Recife 52171-900, PE, Brazil; (G.K.d.A.C.); (S.M.B.C.S.)
| | - Suzianny Maria B. C. Silva
- Laboratory of Aquatic Animal Health, Department of Fisheries and Aquaculture, Federal Rural University of Pernambuco, Recife 52171-900, PE, Brazil; (G.K.d.A.C.); (S.M.B.C.S.)
| | - Marius N. Müller
- Department of Oceanography, Federal University of Pernambuco, Recife 50740-600, PE, Brazil;
| | - Giustino Tribuzi
- Department of Food Science and Technology, Federal University of Santa Catarina, Florianopólis 88034-801, SC, Brazil;
| | - Alfredo O. Gálvez
- Laboratory of Live Food Production, Department of Fisheries and Aquaculture, Federal Rural University of Pernambuco, Recife 52171-900, PE, Brazil; (J.L.A.); (B.C.B.); (D.W.S.O.); (P.R.d.S.); (A.O.G.)
| |
Collapse
|
4
|
Liu Z, Wang P, Li J, Luo X, Zhang Y, Huang X, Zhang X, Li W, Qin Q. Comparative metagenomic analysis of microbial community compositions and functions in cage aquaculture and its nearby non-aquaculture environments. Front Microbiol 2024; 15:1398005. [PMID: 38841063 PMCID: PMC11150647 DOI: 10.3389/fmicb.2024.1398005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 04/29/2024] [Indexed: 06/07/2024] Open
Abstract
In the context of burgeoning global aquaculture, its environmental repercussions, particularly in marine ecosystems, have gained significant attentions. Cage aquaculture, a prominent method, has been observed to significantly influence marine environments by discharging substantial amounts of organic materials and pollutants. It is also one of the important reasons for water eutrophication. This study investigated the impacts of cage aquaculture on microbial diversity and functional potential using metagenomics. Specifically, a comparison was made of the physicochemical indicators and microbial diversity between three grouper aquaculture cage nets in Lingshui Xincun Port and three nearby non-aquaculture area surface waters. We found that compared to non-aquaculture areas, the eutrophication indicators in aquaculture environments significantly increased, and the abundances of Vibrio and Pseudoalteromonas in aquaculture environments significantly rose. Additionally, microbial functional genes related to carbon, nitrogen, and sulfur metabolisms were also found to be significantly affected by aquaculture activities. The correlation analysis between microbial populations and environmental factors revealed that the abundances of most microbial taxa showed positive correlations with dissolved inorganic nitrogen, soluble reactive phosphorus, NH4+, and negative correlations with dissolved oxygen. Overall, this study elucidated the significant impacts of aquaculture-induced eutrophication on the diversity and functions of planktonic bacterial communities.
Collapse
Affiliation(s)
- Zetian Liu
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Pandeng Wang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jialing Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Xiaoqing Luo
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Ya Zhang
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Xiaohong Huang
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Xin Zhang
- School of Marine Biology and Fisheries, Hainan University, Haikou, Hainan, China
| | - Wenjun Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Ürümqi, China
| | - Qiwei Qin
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| |
Collapse
|
5
|
Luo M, Wang S, Zhang S, Zhou T, Lu J, Guo S. Ecological role of reed belts in lakeside zone: Impacts on nutrient retention and bacterial community assembly during Hydrilla verticillata decomposition. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 354:120489. [PMID: 38402786 DOI: 10.1016/j.jenvman.2024.120489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/02/2024] [Accepted: 02/21/2024] [Indexed: 02/27/2024]
Abstract
Reed belts acting as basic nutrient filters are important parts of lake buffer riparian zones. However, little is known about their impacts on nutrient release and bacterial community during plant litter decomposition. In this study, a field experiment was conducted in west-lake Taihu to monitor the changes in nutrients, bacterial enzymatic activities, and bacterial community in plant debris during Hydrilla verticillata (H. verticillata) decomposition in open water (HvC) and reed belts (HvL) area for 126 days. We found that there was lower temperature but higher nutrient concentrations in overlying water in HvL than HvC. Partial least squares path modeling revealed that environmental parameters in overlying water had important impacts on bacterial activities and nutrient release (such as alkaline phosphatase, cellulase, and soluble sugar) and therefore affected dissolved organic matter components in plant debris. According to Illumina sequencing, 46,003 OTUs from 10 dominant phyla were obtained and Shannon index was higher in HvL than HvC at the same sampling time. Neutral community model explained 49% of bacterial community variance and immigration rate by the estimate of dispersal in HvC (Nm: 27,154) and HvL (Nm: 25,765), respectively. Null model showed stochastic factors governed the bacterial community assembly in HvC (66.67%) and HvL (87.28%). TP and pH were key factors affecting the bacterial community structure at the phylum level. More hubs and complex interactions among bacteria were observed in HvL than HvC. Function analysis showed bacterial community had important role in carbon, organic phosphorus, and nitrogen removal but phosphorus-starvation was detected in debris of H. verticillata. This study provides useful information for understanding the changes in nutrients and bacterial community in litter during H. verticillata decomposition and highlights the role of reed belts on retained plant litter to protect lake from pollution.
Collapse
Affiliation(s)
- Min Luo
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing, 210098, China; College of Environment, Hohai University, Nanjing, 210098, China
| | - Shuncai Wang
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing, 210098, China; College of Environment, Hohai University, Nanjing, 210098, China
| | - Songhe Zhang
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing, 210098, China; College of Environment, Hohai University, Nanjing, 210098, China.
| | - Tiantian Zhou
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing, 210098, China; College of Environment, Hohai University, Nanjing, 210098, China
| | - Jianhui Lu
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing, 210098, China; College of Environment, Hohai University, Nanjing, 210098, China
| | - Shaozhuang Guo
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing, 210098, China; College of Environment, Hohai University, Nanjing, 210098, China
| |
Collapse
|
6
|
Lu Z, Cai Q, Lai S, Chen N, Huang L, Liu Y, Lei L, Gan S, Zhang L, Paerl HW, Wang F. Coupling of cylindrospermopsin and pho-harboring Verrucomicrobia supports the formation of Raphidiopsis blooms in low-phosphorus waters. WATER RESEARCH 2024; 250:121010. [PMID: 38142507 DOI: 10.1016/j.watres.2023.121010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/26/2023] [Accepted: 12/10/2023] [Indexed: 12/26/2023]
Abstract
Cylindrospermopsin (CYN) can induce phytoplankton community to secrete alkaline phosphatase (ALP), which is one of the important strategies for the bloom-forming cyanobacterium Raphidiopsis to thrive in extremely low-phosphorus (P) waters. However, how bacterioplankton community, another major contributor to ALPs in waters, couples to Raphidiopsis through CYN, and the role of this coupling in supporting the dominance of Raphidiopsis in nature remain largely unknown. Here, we conducted microcosm experiments to address this knowledge gap, using a combination of differential filtration-based and metagenomics-based methods to identify the sources of ALPs. We found that, compared with algal-derived ALPs, bacteria-derived ALPs exhibited a more pronounced and sensitive response to CYN. This response to CYN was enhanced under low-P conditions. Interestingly, we found that Verrucomicrobia made the largest contribution to the total abundance of pho genes, which encode ALPs. Having high gene abundance of the CYN-sensing PI3K-AKT signaling pathway, Verrucomicrobia's proportion increased with higher concentrations of CYN under low-P conditions, thereby explaining the observed increase in pho gene abundance. Compared with other cyanobacterial genera, Raphidiopsis had a higher abundance of the pst gene. This suggests that Raphidiopsis exhibited a greater capacity to uptake the inorganic P generated by ALPs secreted by other organisms. Overall, our results reveal the mechanism of CYN-induced ALP secretion and its impact on planktonic P-cycling, and provide valuable insights into the role of CYN in supporting the formation of Raphidiopsis blooms.
Collapse
Affiliation(s)
- Zhe Lu
- Xiaoliang Research Station of Tropical Coastal Ecosystems, Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, the CAS Engineering Laboratory for Ecological Restoration of Island and Coastal Ecosystems, and Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, PR China; South China National Botanical Garden, Guangzhou 510650, PR China.
| | - Qijia Cai
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Guangzhou, 510655, PR China
| | - Shuyan Lai
- Department of Ecology and Institute of Hydrobiology, Jinan University, Guangzhou, 510650, PR China
| | - Nan Chen
- Department of Ecology and Institute of Hydrobiology, Jinan University, Guangzhou, 510650, PR China
| | - Lincheng Huang
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510650, PR China
| | - Yongxin Liu
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510650, PR China
| | - Lamei Lei
- Department of Ecology and Institute of Hydrobiology, Jinan University, Guangzhou, 510650, PR China.
| | - Shuchai Gan
- Xiaoliang Research Station of Tropical Coastal Ecosystems, Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, the CAS Engineering Laboratory for Ecological Restoration of Island and Coastal Ecosystems, and Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, PR China; South China National Botanical Garden, Guangzhou 510650, PR China
| | - Lulu Zhang
- Xiaoliang Research Station of Tropical Coastal Ecosystems, Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, the CAS Engineering Laboratory for Ecological Restoration of Island and Coastal Ecosystems, and Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, PR China; South China National Botanical Garden, Guangzhou 510650, PR China
| | - Hans W Paerl
- Institute of Marine Sciences, The University of North Carolina at Chapel Hill, Morehead City, USA
| | - Faming Wang
- Xiaoliang Research Station of Tropical Coastal Ecosystems, Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, the CAS Engineering Laboratory for Ecological Restoration of Island and Coastal Ecosystems, and Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, PR China; South China National Botanical Garden, Guangzhou 510650, PR China.
| |
Collapse
|
7
|
Jin H, Zhang C, Meng S, Wang Q, Ding X, Meng L, Zhuang Y, Yao X, Gao Y, Shi F, Mock T, Gao H. Atmospheric deposition and river runoff stimulate the utilization of dissolved organic phosphorus in coastal seas. Nat Commun 2024; 15:658. [PMID: 38291022 PMCID: PMC10828365 DOI: 10.1038/s41467-024-44838-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 01/08/2024] [Indexed: 02/01/2024] Open
Abstract
In coastal seas, the role of atmospheric deposition and river runoff in dissolved organic phosphorus (DOP) utilization is not well understood. Here, we address this knowledge gap by combining microcosm experiments with a global approach considering the relationship between the activity of alkaline phosphatases and changes in phytoplankton biomass in relation to the concentration of dissolved inorganic phosphorus (DIP). Our results suggest that the addition of aerosols and riverine water stimulate the biological utilization of DOP in coastal seas primarily by depleting DIP due to increasing nitrogen concentrations, which enhances phytoplankton growth. This "Anthropogenic Nitrogen Pump" was therefore identified to make DOP an important source of phosphorus for phytoplankton in coastal seas but only when the ratio of chlorophyll a to DIP [Log10 (Chl a / DIP)] is larger than 1.20. Our study therefore suggests that anthropogenic nitrogen input might contribute to the phosphorus cycle in coastal seas.
Collapse
Affiliation(s)
- Haoyu Jin
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Environment and Ecology, Ministry of Education of China, Ocean University of China, Qingdao, 266100, China
- Marine Ecology and Environmental Science Laboratory, Laoshan Laboratory, Qingdao, 266071, China
- School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Chao Zhang
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Environment and Ecology, Ministry of Education of China, Ocean University of China, Qingdao, 266100, China.
- Marine Ecology and Environmental Science Laboratory, Laoshan Laboratory, Qingdao, 266071, China.
| | - Siyu Meng
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Environment and Ecology, Ministry of Education of China, Ocean University of China, Qingdao, 266100, China
- Marine Ecology and Environmental Science Laboratory, Laoshan Laboratory, Qingdao, 266071, China
- School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Qin Wang
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Environment and Ecology, Ministry of Education of China, Ocean University of China, Qingdao, 266100, China
- Marine Ecology and Environmental Science Laboratory, Laoshan Laboratory, Qingdao, 266071, China
| | - Xiaokun Ding
- School of Ocean, Yantai University, Yantai, 264005, China
| | - Ling Meng
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yunyun Zhuang
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Environment and Ecology, Ministry of Education of China, Ocean University of China, Qingdao, 266100, China
- Marine Ecology and Environmental Science Laboratory, Laoshan Laboratory, Qingdao, 266071, China
| | - Xiaohong Yao
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Environment and Ecology, Ministry of Education of China, Ocean University of China, Qingdao, 266100, China
- Marine Ecology and Environmental Science Laboratory, Laoshan Laboratory, Qingdao, 266071, China
| | - Yang Gao
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Environment and Ecology, Ministry of Education of China, Ocean University of China, Qingdao, 266100, China
- Marine Ecology and Environmental Science Laboratory, Laoshan Laboratory, Qingdao, 266071, China
| | - Feng Shi
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Environment and Ecology, Ministry of Education of China, Ocean University of China, Qingdao, 266100, China
- Marine Ecology and Environmental Science Laboratory, Laoshan Laboratory, Qingdao, 266071, China
| | - Thomas Mock
- School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK.
| | - Huiwang Gao
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Environment and Ecology, Ministry of Education of China, Ocean University of China, Qingdao, 266100, China.
- Marine Ecology and Environmental Science Laboratory, Laoshan Laboratory, Qingdao, 266071, China.
| |
Collapse
|
8
|
Jiao K, Yang H, Huang X, Liu F, Li S. Effects of phosphorus species and zinc stress on growth and physiology of the marine diatom Thalassiosira weissflogii. CHEMOSPHERE 2023:139308. [PMID: 37364640 DOI: 10.1016/j.chemosphere.2023.139308] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/20/2023] [Accepted: 06/21/2023] [Indexed: 06/28/2023]
Abstract
Human activities, including industrial and agricultural production, as well as domestic sewage discharge, have led to heavy metal pollution and eutrophication in coastal waters. This has caused a deficiency of dissolved inorganic phosphorus (DIP), but an excess dissolved organic phosphorus (DOP) and high concentrations of zinc. However, the impact of high zinc stress and different phosphorus species on primary producers remains unclear. This study examined the impact of different phosphorus species (DIP and DOP) and high zinc stress (1.74 mg L-1) on the growth and physiology of the marine diatom Thalassiosira weissflogii. The results showed that compared to the low zinc treatment (5 μg L-1), high zinc stress significantly decreased the net growth of T. weissflogii, but the decline was weaker in the DOP group than in the DIP group. Based on changes in photosynthetic parameters and nutrient concentrations, the study suggests that the growth inhibition of T. weissflogii under high zinc stress was likely due to an increase in cell death caused by zinc toxicity, rather than a decrease in cell growth caused by photosynthesis damage. Nonetheless, T. weissflogii was able to reduce zinc toxicity by antioxidant reactions through enhancing activities of superoxide dismutase and catalase and by cationic complexation through enhancing extracellular polymeric substances, particularly when DOP served as the phosphorus source. Furthermore, DOP had a unique detoxification mechanism by producing marine humic acid, which is conducive to complexing metal cations. These results provide valuable insights into the response of phytoplankton to environmental changes in coastal oceans, particularly the effects of high zinc stress and different phosphorus species on primary producers.
Collapse
Affiliation(s)
- Kailin Jiao
- College of Chemistry, Chemical Engineering & Environmental Science, Minnan Normal University, Zhangzhou, 363000, China; Fujian Province University Key Laboratory of Pollution Monitoring and Control, Minnan Normal University, Zhangzhou, 363000, China
| | - Hang Yang
- College of Chemistry, Chemical Engineering & Environmental Science, Minnan Normal University, Zhangzhou, 363000, China
| | - Xuguang Huang
- College of Chemistry, Chemical Engineering & Environmental Science, Minnan Normal University, Zhangzhou, 363000, China; Fujian Province University Key Laboratory of Pollution Monitoring and Control, Minnan Normal University, Zhangzhou, 363000, China; Fujian Province Key Laboratory of Modern Analytical Science and Separation Technology, Minnan Normal University, Zhangzhou, 363000, China.
| | - Fengjiao Liu
- College of Chemistry, Chemical Engineering & Environmental Science, Minnan Normal University, Zhangzhou, 363000, China; Fujian Province University Key Laboratory of Pollution Monitoring and Control, Minnan Normal University, Zhangzhou, 363000, China; Fujian Province Key Laboratory of Modern Analytical Science and Separation Technology, Minnan Normal University, Zhangzhou, 363000, China
| | - Shunxing Li
- College of Chemistry, Chemical Engineering & Environmental Science, Minnan Normal University, Zhangzhou, 363000, China; Fujian Province University Key Laboratory of Pollution Monitoring and Control, Minnan Normal University, Zhangzhou, 363000, China; Fujian Province Key Laboratory of Modern Analytical Science and Separation Technology, Minnan Normal University, Zhangzhou, 363000, China
| |
Collapse
|
9
|
Lu S, Ou L, Dai X, Cui L, Dong Y, Wang P, Li D, Lu D. An overview of Prorocentrum donghaiense blooms in China: Species identification, occurrences, ecological consequences, and factors regulating prevalence. HARMFUL ALGAE 2022; 114:102207. [PMID: 35550289 DOI: 10.1016/j.hal.2022.102207] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 01/18/2022] [Accepted: 02/18/2022] [Indexed: 06/15/2023]
Abstract
Prorocentrum donghaiense Lu (also identified as Prorocentrum shikokuense Hada and Prorocentrum obtusidens Schiller) is a bloom-forming dinoflagellate species distributed worldwide. Blooms of P. donghaiense occur annually in adjacent waters of the East China Sea (ECS), especially in the waters near the Changjiang River Estuary. Blooms of this species have also been reported in nearby Japanese and Korean waters. There has been an apparent bloom-forming species succession pattern in the ECS since 2000, with diatom blooms in the early spring, shifting to long-lasting and large-scale dinoflagellate blooms dominated by P. donghaiense during the spring, and finally ended by diatom and/or Noctiluca scintillans blooms in summer. These bloom succession patterns were closely correlated with changes in environmental factors, such as temperature increase and anthropogenic eutrophication. Decreasing silicate by the construction of the Three Gorges Dam and increasing dissolved inorganic nitrogen flux were mainly influenced by high intensity human activities in the Changjiang River watershed, resulting in low Si/N ratio and high N/P ratios, possibly accelerating outbreak of P. donghaiense blooms. Phosphorous deficiency might be the most critical factor controlling the succession of microalgal blooms from diatoms to dinoflagellates. Prorocentrum donghaiense is a nontoxic species, but it can disrupt marine ecosystem by decreasing phytoplankton biodiversity and changing the structure of the food chain. Prorocentrum donghaiense blooms in the ECS have been intensively studied during the last two decades. Several possible mechanisms that contribute or trigger the annual blooms of this species have been proposed, but further research is required particularly on the aspect of nutrient budget, ecosystem impacts, as well as social-economic impact assessment.
Collapse
Affiliation(s)
- Songhui Lu
- Research Center of Harmful Algae and Marine Biology, Jinan University, Guangzhou 510632, China; Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai 519000, China
| | - Linjian Ou
- Research Center of Harmful Algae and Marine Biology, Jinan University, Guangzhou 510632, China
| | - Xinfeng Dai
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China; Fourth Institute of Oceanography, Ministry of Natural Resources, Beihai 536000, China
| | - Lei Cui
- Research Center of Harmful Algae and Marine Biology, Jinan University, Guangzhou 510632, China
| | - Yuelei Dong
- Research Center of Harmful Algae and Marine Biology, Jinan University, Guangzhou 510632, China
| | - Pengbin Wang
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China; Fourth Institute of Oceanography, Ministry of Natural Resources, Beihai 536000, China
| | - Dongmei Li
- Dalian Phycotoxin Key laboratory, National Marine Environmental Monitoring Center, Ministry of Ecological Environment, Dalian 116023, China
| | - Douding Lu
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China; Fourth Institute of Oceanography, Ministry of Natural Resources, Beihai 536000, China.
| |
Collapse
|
10
|
Fang FT, Zhu ZY, Ge JZ, Deng B, Du JZ, Zhang J. Reconstruction of the main phytoplankton population off the Changjiang Estuary in the East China Sea and its assemblage shift in recent decades: From observations to simulation. MARINE POLLUTION BULLETIN 2022; 178:113638. [PMID: 35413505 DOI: 10.1016/j.marpolbul.2022.113638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 03/30/2022] [Accepted: 04/01/2022] [Indexed: 06/14/2023]
Abstract
Under eutrophication background, the increasing dinoflagellates blooms relative to diatoms blooms off the Changjiang Estuary has caused much concern. We have provided sediment evidence for the first time that the time window of diatoms-to-dinoflagellates shift off the Changjiang Estuary in the East China Sea is early 1990s. Investigations to the water column revealed different surface-bottom concentration matchup patterns between peridinin (dinoflagellates) and fucoxanthin (diatoms), which suggests that the diatoms-dinoflagellates shift recorded in the sediment may have come from more dinoflagellate blooms since 1990s. Physical-biogeochemical 3D numerical simulations for the past decades suggest that the effect of increasing spring sea surface temperature and increasing N/P ratio on the diatoms-dinoflagellates shift is dominant and recessive, respectively.
Collapse
Affiliation(s)
- Fu-Tao Fang
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China
| | - Zhuo-Yi Zhu
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China; School of Oceanography, Shanghai Jiao Tong University, Shanghai 200030, China.
| | - Jian-Zhong Ge
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China
| | - Bing Deng
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China
| | - Jin-Zhou Du
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China
| | - Jing Zhang
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China; School of Oceanography, Shanghai Jiao Tong University, Shanghai 200030, China
| |
Collapse
|
11
|
Markou G. Bioprocess Optimization for the Production of Arthrospira (Spirulina) platensis Biomass Enriched in the Enzyme Alkaline Phosphatase. Bioengineering (Basel) 2021; 8:142. [PMID: 34677215 PMCID: PMC8533315 DOI: 10.3390/bioengineering8100142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/12/2021] [Accepted: 10/13/2021] [Indexed: 11/28/2022] Open
Abstract
The enzyme alkaline phosphatase (ALP) is gaining interest because it exerts bioactive properties and may be a potentially important therapeutic agent for many disorders and diseases. Microalgae are considered an important novel source for the production of diverse bio-compounds and are gaining momentum as functional foods/feeds supplements. So far, studies for the production of ALP are limited to mammalian and partly to some heterotrophic microbial sources after its extraction and/or purification. Methods: Arthrospira was cultivated under P-limitation bioprocess and the effect of the P-limitation degree on the ALP enrichment was studied. The aim of this work was to optimize the cultivation of the edible and generally-recognized-as-safe (GRAS) cyanobacterium Arthrospira platensis for the production of single-cell (SC) biomass enriched in ALP as a potential novel functional diet supplement. Results: The results revealed that the relationship between intracellular-P and single-cell alkaline phosphatase (SC-ALP) activity was inverse; SC-ALP activity was the highest (around 50 U g-1) when intracellular-P was the lowest possible (around 1.7 mg-P g-1) and decreased gradually as P availability increased reaching around 0.5 U g-1 in the control cultures. Under the strongest P-limited conditions, a more than 100-fold increase in SC-ALP activity was obtained; however, protein content of A. platensis decreased significantly (around 22-23% from 58%). Under a moderate P-limitation degree (at intracellular-P of 3.6 mg-P g-1), there was a relatively high SC-ALP activity (>28 U g-1) while simultaneously, a relative high protein content (46%) was attained, which reflects the possibility to produce A. platensis enriched in ALP retaining though its nutritional value as a protein rich biomass source. The paper presents also results on how several parameters of the ALP activity assay, such as pH, temperature etc., and post-harvest treatment (hydrothermal treatment and biomass drying), influence the SC-ALP activity.
Collapse
Affiliation(s)
- Giorgos Markou
- Institute of Technology of Agricultural Products, Hellenic Agricultural Organization-Demeter, L. Sof. Venizelou 1, 14123 Lykovrysi, Greece
| |
Collapse
|
12
|
Kim DD, Wan L, Cao X, Klisarova D, Gerdzhikov D, Zhou Y, Song C, Yoon S. Metagenomic insights into co-proliferation of Vibrio spp. and dinoflagellates Prorocentrum during a spring algal bloom in the coastal East China Sea. WATER RESEARCH 2021; 204:117625. [PMID: 34530224 DOI: 10.1016/j.watres.2021.117625] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/24/2021] [Accepted: 08/27/2021] [Indexed: 06/13/2023]
Abstract
Coastal harmful algal blooms (HABs), commonly termed 'red tides', have severe undesirable consequences to the marine ecosystems and local fishery and tourism industries. Increase in nitrogen and/or phosphorus loading is often regarded as the major culprits of increasing frequency and intensity of the coastal HAB; however, fundamental understanding is lacking as to the causes and mechanism of bloom formation despite decades of intensive investigation. In this study, we interrogated the prokaryotic microbiomes of surface water samples collected at two neighboring segments of East China Sea that contrast greatly in terms of the intensity and frequency of Prorocentrum-dominated HAB. Mantel tests identified significant correlations between the structural and functional composition of the microbiomes and the physicochemical state and the algal biomass density of the surface seawater, implying the possibility that prokaryotic microbiota may play key roles in the coastal HAB. A conspicuous feature of the microbiomes at the sites characterized with high trophic state index and eukaryotic algal cell counts was disproportionate proliferation of Vibrio spp., and their complete domination of the functional genes attributable to the dissimilatory nitrate reduction to ammonia (DNRA) pathway substantially enriched at these sites. The genes attributed to phosphorus uptake function were significantly enriched at these sites, presumably due to the Pi-deficiency induced by algal growth; however, the profiles of the phosphorus mineralization genes lacked consistency, barring any conclusive evidence with regard to contribution of prokaryotic microbiota to phosphorus bioavailability. The results of the co-occurrence network analysis performed with the core prokaryotic microbiome supported that the observed proliferation of Vibrio and HAB may be causally associated. The findings of this study suggest a previously unidentified association between Vibrio proliferation and the Prorocentrum-dominated HAB in the subtropical East China Sea, and opens a discussion regarding a theoretically unlikely, but still possible, involvement of Vibrio-mediated DNRA in Vibrio-Prorocentrum symbiosis. Further experimental substantiation of this supposed symbiotic mechanism may prove crucial in understanding the dynamics of explosive local algal growth in the region during spring algal blooms.
Collapse
Affiliation(s)
- Daehyun Daniel Kim
- Department of Civil and Environmental Engineerimng, KAIST, Daejeon, 34141, Republic of Korea
| | - Lingling Wan
- Key Laboratory of Algal Biology, State key laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Xiuyun Cao
- Key Laboratory of Algal Biology, State key laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Daniela Klisarova
- Department of Anatomy, Histology, Cytology and Biology, Faculty of Medicine, Medical University, Pleven, 5800, Bulgaria; Institute of Fish Resources, 9000 Varna, Bulgaria
| | | | - Yiyong Zhou
- Key Laboratory of Algal Biology, State key laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Chunlei Song
- Key Laboratory of Algal Biology, State key laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
| | - Sukhwan Yoon
- Department of Civil and Environmental Engineerimng, KAIST, Daejeon, 34141, Republic of Korea.
| |
Collapse
|
13
|
Qin X, Shi X, Gao Y, Dai X, Ou L, Guan W, Lu S, Cen J, Qi Y. Alkaline phosphatase activity during a phosphate replete dinoflagellate bloom caused by Prorocentrum obtusidens. HARMFUL ALGAE 2021; 103:101979. [PMID: 33980429 DOI: 10.1016/j.hal.2021.101979] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 01/03/2021] [Accepted: 01/16/2021] [Indexed: 06/12/2023]
Abstract
Prorocentrum obtusidens Schiller (formerly P. donghaiense Lu), a harmful algal species common in the East China Sea (ECS), often thrives with the depletion of phosphate. Three cruises in the spring of 2013 sampled an entire P. obtusidens bloom process to investigate the dynamics of alkaline phosphatase activity (APA) and phosphorus (P) status of the bloom species using both bulk and cell-specific assays. Unlike previous studies, the bloom of P. obtusidens occurred in a phosphate replete environment. Very high APA, with an average of 76.62 ± 90.24 nmol L-1 h-1, was observed during the early-bloom phase, a value comparable to that in low phosphate environments. The alkaline phosphatase (AP) hydrolytic kinetics also suggested a more efficient AP system with a lower half-saturation constant (Ks), but higher maximum potential hydrolytic velocity (Vmax) in this period. The APA decreased significantly with an average of 24.98 ± 30.98 nmol L-1 h-1 when the bloom reached its peak. The lack of a correlation between dissolved inorganic phosphate (DIP) or dissolved organic phosphate (DOP) concentration and APA suggested that the APA was regulated by the internal P growth demand, rather than the external P availability during the phosphate replete P. obtusidens bloom. These findings facilitate an understanding of the P. obtusidens acclimation strategy with respect to P variations in terms of AP expression during blooms in the ECS.
Collapse
Affiliation(s)
- Xianling Qin
- School of Life Sciences, and State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China
| | - Xiaoyong Shi
- College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, China; National Marine Hazard Mitigation Service, Beijing, China
| | - Yahui Gao
- School of Life Sciences, and State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China
| | - Xinfeng Dai
- Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, China
| | - Linjian Ou
- Research Center of Harmful Algae and Marine Biology, and Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, Jinan University, Guangzhou, China.
| | - Weibing Guan
- Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, China
| | - Songhui Lu
- Research Center of Harmful Algae and Marine Biology, and Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, Jinan University, Guangzhou, China.
| | - Jingyi Cen
- Research Center of Harmful Algae and Marine Biology, and Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, Jinan University, Guangzhou, China
| | - Yuzao Qi
- Research Center of Harmful Algae and Marine Biology, and Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, Jinan University, Guangzhou, China
| |
Collapse
|