1
|
Menon AM, Chandran GR, Bommuraj V, Ramaswamy BR, Ramasamy T. Behavioural, Teratogenic and Genotoxic Effects of Antibacterial Compounds, Triclocarban and Triclosan, in Hydra vulgaris. J Appl Toxicol 2025; 45:551-562. [PMID: 39578987 DOI: 10.1002/jat.4730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/08/2024] [Accepted: 11/08/2024] [Indexed: 11/24/2024]
Abstract
Triclocarban (TCC) and triclosan (TCS) are antibacterial compounds used in household, veterinary, industrial and personal care products, which are known to be environmental pollutants and also toxic to organisms. The toxicological effects of these antibacterial chemicals on higher organisms have been studied in detail. But in lower invertebrates like hydra, it is still rare and yet to be explored. In this study, the toxicological effects of these two antibacterial compounds in Hydra vulgaris was performed to clearly understand the organismal, developmental, molecular and behavioural changes. Both TCC and TCS are toxic with respective LC50 values of 0.09 and 0.25 mg/L, whereas TCC is comparatively more toxic than TCS. The structural damage of battery cell complexes (BCCs) on the tentacles was observed and ultimately made prey capturing difficult. It was evident that TCC and TCS exposure caused developmental toxicity by affecting reproduction and regeneration in H. vulgaris at higher sublethal doses (0.045 and 0.125 mg/L, respectively). TCC and TCS also caused DNA damage resulting in apoptosis. This study further reveals that these two antibacterial compounds are teratogenic and genotoxic in the organisms.
Collapse
Affiliation(s)
- Aditya Mohan Menon
- Ecotoxicology and Toxicogenomics Lab, Department of Environmental Biotechnology, School of Environmental Sciences, Bharathidasan University, Tiruchirappalli, India
| | - Gayathri R Chandran
- Ecotoxicology and Toxicogenomics Lab, Department of Environmental Biotechnology, School of Environmental Sciences, Bharathidasan University, Tiruchirappalli, India
| | - Vijayakumar Bommuraj
- Ecotoxicology and Toxicogenomics Lab, Department of Environmental Biotechnology, School of Environmental Sciences, Bharathidasan University, Tiruchirappalli, India
| | - Babu Rajendran Ramaswamy
- Ecotoxicology and Toxicogenomics Lab, Department of Environmental Biotechnology, School of Environmental Sciences, Bharathidasan University, Tiruchirappalli, India
| | - Thirumurugan Ramasamy
- Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, India
- National Centre for Alternatives in Animal Experiment (NCAAE), Bharathidasan University, Tiruchirappalli, India
| |
Collapse
|
2
|
Gabriel A, Venâncio C, Sousa JP, Leston S, Ramos F, Soares AMVM, Lopes I. Ecotoxicity of eluates obtained from Basamid® contaminated soils is pH dependent: A study with Hydra viridissima, Xenopus laevis and Danio rerio. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 868:161640. [PMID: 36669666 DOI: 10.1016/j.scitotenv.2023.161640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/10/2023] [Accepted: 01/12/2023] [Indexed: 06/17/2023]
Abstract
Agrochemicals are mostly used to deplete pests and treat diseases in terrestrial agro-ecosystems. However, their transport through the soil, by leaching and/or runoff, may cause them to reach aquatic systems. Environmental parameters, such as soil pH, can affect this transport, by influencing the magnitude of agrochemicals degradation and chemical reaction. This work aimed at investigating the influence of soil pH on the toxicity of eluates obtained from Basamid® contaminated soils to Hydra viridissima, Xenopus laevis and Danio rerio. For this, a natural soil with pH amended to 5.5, 6.5 and 7.5, was spiked with the recommended dose (RD) of Basamid® (145 mg dazomet/kg soil) and eluates (Ba-E) were prepared with the respective species culture medium. Dilutions of the eluates (0.14-100%), obtained from the three soils (Ba-E 5.5, Ba-E 6.5 and Ba-E 7.5, corresponding to soil spiked with Basamid® RD at soil pH of 5.5, 6.5 and 7.5, respectively), were used to expose the organisms. Results showed that for H. viridissima increased soil alkalinity provoked less mortality comparatively to lower soil pH [LD50,96h of Ba-E 5.5: 10.6% and LD50,96h of Ba-E 7.5: 21.2%]. As for X. laevis and D. rerio Ba-E lethal ecotoxicity was similar across soil pH (LD50,96h varied from 5.7 to 6.9% and from 2.1 to 4.3%, respectively). For malformations, 20% effect dilution (ED) in H. viridissima was significantly higher at Ba-E 7.5 (ED20,96h: 17.4%), comparatively to Ba-E 5.5 and Ba-E 6.5 (ED20,96h: 7.9% and 7.7%, respectively). From the three tested organisms and based on both lethal and sublethal effects, H. viridissima presented the highest tolerance to Basamid® eluates and soil pH was a major factor determining the fumigant toxicity, with higher soil pH levels inducing, lower toxicity. The eluates obtained from soils contaminated with RD of Basamid® induced severe effects to the three aquatic species.
Collapse
Affiliation(s)
- Antonieta Gabriel
- CESAM & Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Cátia Venâncio
- CESAM & Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - José Paulo Sousa
- CFE - Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| | - Sara Leston
- CFE - Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal; REQUIMTE/LAQV - R. D. Manuel II, Apartado, 55142 Porto, Portugal
| | - Fernando Ramos
- REQUIMTE/LAQV - R. D. Manuel II, Apartado, 55142 Porto, Portugal
| | - Amadeu M V M Soares
- CESAM & Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Isabel Lopes
- CESAM & Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
3
|
Venâncio C, Monteiro B, Lopes I, Sousa ACA. Assessing the risks of capecitabine and its active metabolite 5-fluorouracil to freshwater biota. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:58841-58854. [PMID: 36997780 PMCID: PMC10163094 DOI: 10.1007/s11356-023-26505-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 03/13/2023] [Indexed: 05/08/2023]
Abstract
Capecitabine (CAP, prodrug) and 5-fluorouracil (5-FU, its active metabolite) are two of the most prominent cytostatics, for which no clear picture can be drawn regarding potential concentrations of effect for freshwater biota, with CAP being grouped in the least studied cytostatic, whereas 5-FU has been classified as of no and of high environmental risk. Accordingly, the present work aimed to assess the ecotoxicity of CAP and 5-FU in three freshwater species, which included a 72-h assay with the producer Raphidocelis subcapitata; a 96-h assay with the invertebrate secondary consumer Hydra viridissima; and a 96-h assay with embryos of the vertebrate secondary consumer Danio rerio. The following endpoints were monitored: yield and population growth rate for the algae; mortality, morphological alterations, and post-exposure feeding rates for the cnidarian; and mortality, hatching, and malformations for the fish. Overall, organisms' sensitivity to CAP decreased in the following order: R. subcapitata > H. viridissima > D. rerio, whereas for 5-FU, it decreased in the following order: H. viridissima > D. rerio > R. subcapitata. For CAP, no median lethal effective concentrations (LC/EC50) were possible to compute for D. rerio, with no significant mortality or malformations registered in embryos exposed at concentrations up to 800 mg L-1. For R. subcapitata, the EC50s were 0.077 and 0.63 mg L-1 for yield and growth rate, respectively, and for H. viridissima, the EC50,30 min for feeding was 22.0 mg L-1. For 5-FU, no EC50s could be computed for R. subcapitata, whilst the EC50s for H. viridissima mortality and feeding were 55.4 and 67.9 mg L-1, respectively, and for D. rerio, the LC50,96 h and EC50,96 h (hatching and abnormalities) were 4546, 4100, and 2459 mg L-1, respectively. Assuming similar modes of action for both compounds and their co-occurrence, the combined risk quotient of the two chemicals was determined to be 7.97, which represents a risk for freshwater biota. Anticipating the increased consumption of these compounds and cancer development trends worldwide, these impacts may be further aggravated.
Collapse
Affiliation(s)
- Cátia Venâncio
- Department of Biology, University of Aveiro, Campus de Santiago, P-3810-193, Aveiro, Portugal
- CESAM-Centre for Environmental and Marine Studies, University of Aveiro, Aveiro, Portugal
| | - Bruna Monteiro
- CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Isabel Lopes
- Department of Biology, University of Aveiro, Campus de Santiago, P-3810-193, Aveiro, Portugal.
- CESAM-Centre for Environmental and Marine Studies, University of Aveiro, Aveiro, Portugal.
| | - Ana C A Sousa
- Department of Biology and Comprehensive Health Research Centre (CHRC), University of Évora, Évora, Portugal
| |
Collapse
|
4
|
ULLAH S, SHAHBAZ A, ASLAM MZ. Impact Of Irrigation Water On the Quality Attributes of Selected Indigenous Plants. JOURNAL OF THE TURKISH CHEMICAL SOCIETY, SECTION A: CHEMISTRY 2022. [DOI: 10.18596/jotcsa.1070001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
5
|
Henry J, Brand JA, Bai Y, Martin JM, Wong BBM, Wlodkowic D. Multi-generational impacts of exposure to antidepressant fluoxetine on behaviour, reproduction, and morphology of freshwater snail Physa acuta. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 814:152731. [PMID: 34974022 DOI: 10.1016/j.scitotenv.2021.152731] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 12/08/2021] [Accepted: 12/23/2021] [Indexed: 06/14/2023]
Abstract
Contamination of the environment by pharmaceutical pollutants poses an increasingly critical threat to aquatic ecosystems around the world. This is particularly true of psychoactive compounds, such as antidepressant drugs, which have become ubiquitous contaminants and have been demonstrated to modify aquatic animal behaviours at very low concentrations (i.e. ng/L). Despite raising risks to the hydrosphere, there is a notable paucity of data on the long term, multigenerational effects of antidepressants at environmentally realistic concentrations. Moreover, current research has predominantly focused on mean-level effects, with little research on variation among and within individuals when considering key behavioural traits. In this work, we used a multigenerational exposure of a freshwater snail (Physa acuta) to an environmentally relevant concentration of the antidepressant fluoxetine (mean measured concentration: 32.7 ng/L, SE: 2.3). The snails were allowed to breed freely in large mesocosm populations over 3 years. Upon completion of the exposure, we repeatedly measured the locomotory activity (624 measures total), reproductive output (234 measures total) as well as morphometric endpoints (78 measures total). While we found no mean-level differences between treatments in locomotory activities, we did find that fluoxetine exposed snails (n = 46) had significantly reduced behavioural plasticity (i.e. VW; within-individual variation) in activity levels compared to unexposed snails (n = 32). As a result, fluoxetine exposed snails demonstrated significant behavioural repeatability, which was not the case for unexposed snails. Further, we report a reduction in egg mass production in fluoxetine exposed snails, and a marginally non-significant difference in morphology between treatment groups. These results highlight the potential detrimental effects of long-term fluoxetine exposure on non-target organisms at environmentally realistic dosages. Additionally, our findings demonstrate the underappreciated potential for psychoactive contaminants to have impacts beyond mean-level effects, with consequences for population resilience to current and future environmental challenges.
Collapse
Affiliation(s)
- Jason Henry
- The Neurotox Lab, School of Science, RMIT University, Melbourne, VIC 3083, Australia
| | - Jack A Brand
- School of Biological Sciences, Monash University, VIC 3800, Australia
| | - Yutao Bai
- The Neurotox Lab, School of Science, RMIT University, Melbourne, VIC 3083, Australia
| | - Jake M Martin
- School of Biological Sciences, Monash University, VIC 3800, Australia
| | - Bob B M Wong
- School of Biological Sciences, Monash University, VIC 3800, Australia
| | - Donald Wlodkowic
- The Neurotox Lab, School of Science, RMIT University, Melbourne, VIC 3083, Australia.
| |
Collapse
|
6
|
Rao Y, Long H, Hao J. The oxidative degradation of Caffeine in UV/Fe(II)/persulfate system-Reaction kinetics and decay pathways. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2021; 93:559-569. [PMID: 32946166 DOI: 10.1002/wer.1458] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 08/14/2020] [Accepted: 09/05/2020] [Indexed: 06/11/2023]
Abstract
In this study, the degradation of caffeine was investigated by UV/Fe2+ /persulfate (PS) process. Caffeine (CAF) degradation in sole-UV, UV/Fe2+ , UV/PS, and Fe2+ /PS systems was also conducted to examine the contribution of isolated processes to CAF degradation. The effects of pH levels, the concentration of Fe2+ and PS, inorganic anions, and initial concentration of CAF on the performance of UV/Fe2+ /PS process were evaluated. Radical competitive reactions indicated both hydroxyl radicals and sulfate radicals played important roles in CAF degradation in UV/Fe2+ /PS system. Nine intermediates, among which three were detected for the first time, were identified by ultra-performance liquid chromatography/electrospray-time-of-flight mass spectrometry (UPLC/ESI-TOF-MS) and SPME (solid-phase microextraction)/GC/MS. The possible degradation pathways of CAF were proposed, among which demethylation, hydroxylation, the oxidation of olefinic double bond, and the cleavage of pyrimidine ring and imidazole ring were involved in the degradation of CAF in UV/Fe2+ /PS system. PRACTITIONER POINTS: Caffeine degradation by UV/Fe2+ /PS process was investigated. Caffeine degradation did not follow a simple pseudo-first order kinetics Chloride ions promoted CAF degradation. The anions NO3 - , SO4 2- , and H2 PO4 - exerted a negative influence on caffeine degradation. Nine intermediates were detected, and decay pathways were proposed.
Collapse
Affiliation(s)
- Yongfang Rao
- Department of Environmental Science and Engineering, Xi' an Jiaotong University, Xi'an, China
| | - Huimin Long
- Department of Environmental Science and Engineering, Xi' an Jiaotong University, Xi'an, China
| | - Jingchen Hao
- Department of Environmental Science and Engineering, Xi' an Jiaotong University, Xi'an, China
| |
Collapse
|
7
|
Castillo-Zacarías C, Barocio ME, Hidalgo-Vázquez E, Sosa-Hernández JE, Parra-Arroyo L, López-Pacheco IY, Barceló D, Iqbal HNM, Parra-Saldívar R. Antidepressant drugs as emerging contaminants: Occurrence in urban and non-urban waters and analytical methods for their detection. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 757:143722. [PMID: 33221013 DOI: 10.1016/j.scitotenv.2020.143722] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 10/21/2020] [Accepted: 11/11/2020] [Indexed: 02/05/2023]
Abstract
Antidepressants are drugs with a direct action on the brain's biochemistry through their interaction with the neurotransmitters, such as dopamine, norepinephrine, and serotonin. The increasing worldwide contamination from these drugs may be witnessed through their increasing presence in the urban water cycle. Furthermore, their occurrence has been detected in non-urban water, such as rivers and oceans. Some endemic aquatic animals, such as certain fish and mollusks, have bioaccumulated different antidepressant drugs in their tissues. This problem will increase in the years to come because the present COVID-19 pandemic has increased the general worldwide occurrence of depression and anxiety, triggering the consumption of antidepressants and, consequently, their presence in the environment. This work provides information on the occurrence of the most administrated antidepressants in urban waters, wastewater treatment plants, rivers, and oceans. Furthermore, it provides an overview of the analytical approaches currently used to detect each antidepressant presented. Finally, the ecotoxicological effect of antidepressants on several in vivo models are listed. Considering the information provided in this review, there is an urgent need to test the presence of antidepressant members of the MAOI and TCA groups. Furthermore, incorporating new degradation/immobilization technologies in WWTPs will be useful to stop the increasing occurrence of these drugs in the environment.
Collapse
Affiliation(s)
| | - Mario E Barocio
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
| | | | | | - Lizeth Parra-Arroyo
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
| | - Itzel Y López-Pacheco
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
| | - Damià Barceló
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona, 18-26, 08034 Barcelona, Spain; Catalan Institute of Water Research, Parc Científic i Tecnològic de la Universitat de Girona, c/Emili Grahit, 101, Edifici H2O, 17003 Girona, Spain; College of Environmental and Resources Sciences, Zhejiang A&F University, Hangzhou 311300, China
| | - Hafiz N M Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico.
| | | |
Collapse
|