1
|
Williams GDZ, Nativ P, Vengosh A. The role of boron in controlling the pH of lithium brines. SCIENCE ADVANCES 2025; 11:eadw3268. [PMID: 40408497 PMCID: PMC12101514 DOI: 10.1126/sciadv.adw3268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Accepted: 04/18/2025] [Indexed: 05/25/2025]
Abstract
The global clean energy transition requires the development of alternative energy technologies that rely on critical raw materials including lithium. Closed-basin brines, which generate ~40% of global lithium production, often have a circumneutral pH; however, during the evaporative concentration required for lithium production, the evaporated brines become acidic. Using primary geochemical and boron isotope data from the Salar de Uyuni (SDU), Bolivia combined with a modeling approach, we show that boron enrichment, which commonly co-occurs with lithium in closed-basin brines, is the primary factor in controlling the pH of brines from the SDU. We demonstrate that boron in global lithium- and boron-rich brines from closed basins exerts a similar influence on brine pH. The unique boron enrichments and its speciation can explain large proportions of alkalinity in these brines (~98% at the SDU), where evaporation alters the dissociation of boric acid, which triggers the formation of acidic evaporated brines.
Collapse
Affiliation(s)
- Gordon D. Z. Williams
- Division of Earth and Climate Sciences, Nicholas School of the Environment, Duke University, Durham, NC, USA
| | - Paz Nativ
- Division of Earth and Climate Sciences, Nicholas School of the Environment, Duke University, Durham, NC, USA
| | - Avner Vengosh
- Division of Earth and Climate Sciences, Nicholas School of the Environment, Duke University, Durham, NC, USA
| |
Collapse
|
2
|
Wiltse ME, Ballenger B, Stewart CB, Blewett TA, Wadler C, Roth HK, Coupannec M, Malik HT, Xu P, Tarazona Y, Zhang Y, Sudowe R, Rosenblum JS, Quinn JC, Borch T. Oil and gas produced water for cattle, crops, and surface water discharge: Evaluation of chemistry, toxicity and economics. JOURNAL OF HAZARDOUS MATERIALS 2025; 494:138581. [PMID: 40359753 DOI: 10.1016/j.jhazmat.2025.138581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 04/23/2025] [Accepted: 05/09/2025] [Indexed: 05/15/2025]
Abstract
Oil and gas produced water (PW), may help alleviate regional water scarcity affecting agriculture, but is often rich in salts and organic compounds that constrain agricultural applications. The specific objective is to assess the reuse potential of conventional PW through a comprehensive assessment of chemistry, toxicity, and economics by investigating PW from 18 conventionally drilled wells from sandstone formations in the Colorado Denver-Julesburg Basin. Ammonium, total dissolved solids, boron, sodium, and chloride were all close to recommended guidelines for livestock and crop irrigation and surface water discharge. Diesel and gasoline range organics and polycyclic aromatic hydrocarbons were detected in low concentrations in evaporation ponds compared to oil water separators, suggesting volatilization or degradation of organic compounds. Radium levels were generally low, but select samples exceeded the regulatory 5 pCi/g threshold, categorizing them as Non-Exempt TENORM (Technologically Enhanced Naturally Occurring Radioactive Material) waste. EC50 with Daphnia magna (D. magna) showed little to no toxicity for PW sampled in evaporation ponds in contrast to EC50 values of 12 % at the oil water separator, indicating that volatile organics controlled toxicity. However, the Aryl Hydrocarbon Receptor (AhR) bioassay illustrated toxicity not captured by the EC50 test. After chemical and toxicological analyses, it is clear that treatment is required, which informed our techno-economic assessment (TEA). Current PW volumes result in a treatment cost of $5.38/m3 ($1.42/barrel) by nanofiltration, but a scenario with increased volumes will result in a lower cost of $3.83/m³ ($0.60/barrel). Our chemical, toxicological, and economic assessment indicates that the PW in this study has potential to be discharged to surface water or reused for cattle and crop irrigation.
Collapse
Affiliation(s)
- Marin E Wiltse
- Department of Chemistry; Colorado State University, Fort Collins, CO 80523, United States
| | - Brooke Ballenger
- Department of Mechanical Engineering, Colorado State University, Fort Collins, CO 80523, United States
| | - Connor B Stewart
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| | - Tamzin A Blewett
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| | - Claire Wadler
- Civil and Environmental Engineering Department, Colorado School of Mines Golden, CO 80401, United States
| | - Holly K Roth
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO 80523, United States
| | - Maelle Coupannec
- Department of Environmental & Radiological Health Sciences, Colorado State University, 1681 Campus Delivery, Fort Collins, CO 80523, United States
| | - Huma Tariq Malik
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO 80523, United States
| | - Pei Xu
- Department of Civil Engineering, New Mexico State University, Las Cruces, NM 88003, United States
| | - Yeinner Tarazona
- Department of Civil Engineering, New Mexico State University, Las Cruces, NM 88003, United States
| | - Yanyan Zhang
- Department of Civil Engineering, New Mexico State University, Las Cruces, NM 88003, United States
| | - Ralf Sudowe
- Department of Environmental & Radiological Health Sciences, Colorado State University, 1681 Campus Delivery, Fort Collins, CO 80523, United States
| | - James S Rosenblum
- Civil and Environmental Engineering Department, Colorado School of Mines Golden, CO 80401, United States
| | - Jason C Quinn
- Department of Mechanical Engineering, Colorado State University, Fort Collins, CO 80523, United States
| | - Thomas Borch
- Department of Chemistry; Colorado State University, Fort Collins, CO 80523, United States; Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO 80523, United States.
| |
Collapse
|
3
|
Yang R, Tang J, Niu J, Hou B, Zhang L. Dissemination mechanisms of unique antibiotic resistance genes from flowback water to soil revealed by combined Illumina and Nanopore sequencing. WATER RESEARCH 2025; 273:123030. [PMID: 39731837 DOI: 10.1016/j.watres.2024.123030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/03/2024] [Accepted: 12/20/2024] [Indexed: 12/30/2024]
Abstract
As a byproduct of shale gas extraction, flowback water (FW) is produced in large quantities globally. Due to the unique interactions between pollutants and microorganisms, FW always harbor multiple antibiotic resistance genes (ARGs) that have been confirmed in our previous findings, potentially serving as a point source for ARGs released into the environment. However, whether ARGs in FW can disseminate or integrate into the environmental resistome remains unclear. In this study, unique ARGs from FW were identified, and the ARG profiles in soil and FW-spiked soil were compared using a combination of Illumina and Nanopore sequencing. The results indicated that the total abundance of the soil resistome increased by 30.8 % in soil contaminated with FW. Of this increase, 11.1 % was attributable to the integration of exogenous ARGs from FW into the soil resistome. Sequence alignment at the gene level further confirmed the successful integration of 20 unique ARG sequences classified as multidrug and vancomycin resistance genes into the soil resistome. These 20 ARG sequences were detected only in the FW. Multiple lines of evidence indicated that horizontal gene transfer dominated ARG dissemination in soil contaminated by FW. This conclusion is supported by the discrepancy between changes in mobile ARGs and host abundance, the upregulation of oxidative stress-related genes (SOD1 and SOD2) and the SOS response (lexA and recA), as well as the upregulation of genes related to quorum sensing (virD4, virB9, and virB3) and naked DNA uptake (pilD, pilT, and pilQ).
Collapse
Affiliation(s)
- Rui Yang
- Key Laboratory of Three Gorges Reservoir Region's Eco-environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China; State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, PR China
| | - Jialin Tang
- Key Laboratory of Three Gorges Reservoir Region's Eco-environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China
| | - Junfeng Niu
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, PR China
| | - Bowen Hou
- Key Laboratory of Three Gorges Reservoir Region's Eco-environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China
| | - Lilan Zhang
- Key Laboratory of Three Gorges Reservoir Region's Eco-environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China; State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, PR China.
| |
Collapse
|
4
|
Ariana A, Cozzarelli I, Danforth C, McDevitt B, Rosofsky A, Vorhees D. Pathways for Potential Exposure to Onshore Oil and Gas Wastewater: What We Need to Know to Protect Human Health. GEOHEALTH 2025; 9:e2024GH001263. [PMID: 40182626 PMCID: PMC11966568 DOI: 10.1029/2024gh001263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 03/17/2025] [Accepted: 03/19/2025] [Indexed: 04/05/2025]
Abstract
Produced water is a chemically complex waste stream generated during oil and gas development. Roughly four trillion liters were generated onshore in the United States in 2021 (ALL Consulting, 2022, https://www.gwpc.org/wp-content/uploads/2021/09/2021_Produced_Water_Volumes.pdf). Efforts are underway to expand historic uses of produced water to offset freshwater needs in water-stressed regions, avoid induced seismic activity associated with its disposal, and extract commodities. Understanding the potential exposures from current and proposed produced water uses and management practices can help to inform health-protective practices. This review summarizes what is known about potential human exposure to produced water from onshore oil and gas development in the United States. We synthesize 236 publications to create a conceptual model of potential human exposure that illustrates the current state of scientific inquiry and knowledge. Exposure to produced water can occur following its release to the environment through spills or leaks during its handling and management. Exposure can also arise from authorized releases, including permitted discharges to surface water, crop irrigation, and road treatment. Knowledge gaps include understanding the variable composition and toxicity of produced water released to the environment, the performance of treatment methods, migration pathways through the environment that can result in human exposure, and the significance of the exposures for human and ecosystem health. Reducing these uncertainties may help in realizing the benefits of produced water use while simultaneously protecting human health.
Collapse
Affiliation(s)
| | | | | | - Bonnie McDevitt
- Geology, Energy & Minerals Science CenterU.S. Geological SurveyRestonVAUSA
| | | | | |
Collapse
|
5
|
Bonciani N, Ottaviani M, Nesterini E, Feilberg KL. Geochemical fingerprinting and statistical variation of 35 elements in produced water and rock material from offshore chalk reservoirs. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:176701. [PMID: 39370007 DOI: 10.1016/j.scitotenv.2024.176701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 09/25/2024] [Accepted: 10/01/2024] [Indexed: 10/08/2024]
Abstract
Trace metals and metalloids occur in small quantities in the subsurface water generated from oil wells, called produced water (PW). While these substances are present in low concentrations, PW volumes are sufficiently large that they are still a potential environmental concern. This study has focused on quantifying 71 trace metals and metalloids present in PW from Danish offshore oil production sites. These metals are often a challenge to measure and are globally underreported. By employing optimized sample treatment combined with ICP-OES and ICP-SFMS methods, the full elemental screening of PW samples collected from various offshore platforms has been carried out with high accuracy. Distinct geochemical signatures involving 35 elements have been discovered and they are associated with significant site-specific variations in the concentrations of key trace metals, including W, Ba, Mo, Cu, and Tl. Utilizing Principal Component Analysis (PCA), the study has effectively distinguished between PW samples from different fields, highlighting the relevance of certain trace metals and elemental ratios as potential geochemical markers. Geochemical analysis of the chalk rock material from the same production wells as the fluid samples has shown a correlation of key elements Tl, W, Cu, Mo, Ba, and As in the chalk with the produced water, potentially indicating the origin of the metals. The study has revealed a high compositional variability of PW and found that elements including Zn, Co, Hg, and Cs occur in concentrations of magnitude higher than previous estimates from reports. In addition, there is high variability in concentrations at different sampling times, underlining the need for environmental monitoring and developing more informed management strategies for the main offshore PW stream. The variability in concentrations in space and time leads to large uncertainties in environmental reporting based on a few samples. The detailed sampling campaign reported here for the first time highlights the need for much more frequent sampling, ideally continuous monitoring. The safety of produced water discharge to sea can be significantly underestimated by limited sampling. This paper provides the first field-specific and time varied screening of heavy metals in real produced water and shows the discrepancy in our understanding of the environmental impact of PW.
Collapse
Affiliation(s)
- Neri Bonciani
- Danish Offshore Technology Centre, Elektrovej 375, DK-2800 Kgs. Lyngby, Denmark
| | - Matteo Ottaviani
- Danish Offshore Technology Centre, Elektrovej 375, DK-2800 Kgs. Lyngby, Denmark
| | - Eleonora Nesterini
- AIT Austrian Institute of Technology, Favoritenstraβe 9-11, 1040 Vienna, Austria
| | - Karen L Feilberg
- Danish Offshore Technology Centre, Elektrovej 375, DK-2800 Kgs. Lyngby, Denmark.
| |
Collapse
|
6
|
Jubb AM, Shelton JL, McDevitt B, Amundson KK, Herzberg AS, Chenault J, Masterson AL, Varonka MS, Jolly G, DeVera CA, Barnhart E, Wilkins MJ, Blondes MS. Produced water geochemistry from hydraulically stimulated Niobrara Formation petroleum wells: Origin of salinity and temporal perspectives on treatment and reuse. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:176845. [PMID: 39426534 DOI: 10.1016/j.scitotenv.2024.176845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 10/08/2024] [Indexed: 10/21/2024]
Abstract
Produced water (i.e., a mixture of returned injection fluids and geologic formation brines) represents the largest volumetric waste stream associated with petroleum production in the United States. As such, produced water has been the focus of intense study with emphasis on understanding the geologic origin of the fluids, environmental impacts of unintended or intentional release, disposal concerns, and their commodity (e.g., lithium) potential. However, produced water geochemistry from many active petroleum plays remain poorly understood leading to knowledge gaps associated with the origin of brine salinity and parameters (e.g., radium levels) that can impact treatment, disposal, and possible reuse. Here we evaluate the major ion geochemistry, radium concentrations, and stable water isotope composition of ~120 produced water samples collected from 17 producing unconventional petroleum wells in Weld County, Colorado from the Late Cretaceous Niobrara Formation. This sample set encompasses eight produced water time series from four new wells across production days 0 to ~365 and from four established wells across production days ~1000 to ~1700. Additionally, produced water from nine other established Niobrara Formation wells were sampled at discrete time points ranging from day 458 to day 2256, as well as hydraulic fracturing input fluids. These results expand the available Niobrara Formation produced water geochemical data, previously limited to a few wells sampled within the first year of production, allowing for the heterogeneity of major ions and radium to be evaluated. Specific highlights include: (i) observations that boron and bromide concentrations are higher in produced waters from new wells compared to older, established wells, suggesting the role of input fluids contributing to fluid geochemistry; and (ii) barium and radium concentrations vary between the producing benches of the Niobrara Formation with implications for treating radiological hazards in produced waters from this formation. Furthermore, we explore the geochemical relationships between major ion ratios and stable water isotope composition to understand the origin of salinity in Niobrara Formation brines from the Denver-Julesburg Basin. These findings are discussed with perspective toward potential treatment and reuse of Niobrara produced water prior to disposal.
Collapse
Affiliation(s)
- Aaron M Jubb
- U.S. Geological Survey, Reston, Virginia 20192, USA.
| | - Jenna L Shelton
- U.S. Geological Survey, National Cooperative Geologic Mapping Program, Indianapolis, Indiana 46202, USA
| | | | - Kaela K Amundson
- Colorado State University, Department of Soil & Crop Sciences, Fort Collins, Colorado 80523, USA
| | | | | | | | | | - Glenn Jolly
- U.S. Geological Survey, Reston, Virginia 20192, USA
| | | | | | - Michael J Wilkins
- Colorado State University, Department of Soil & Crop Sciences, Fort Collins, Colorado 80523, USA
| | | |
Collapse
|
7
|
Gao Y, Zhang Y, Ge X, Gong Y, Chen H, Su J, Xi B, Tan W. Differential responses of the electron transfer capacities of soil humic acid and fulvic acid to long-term wastewater irrigation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 933:173114. [PMID: 38740205 DOI: 10.1016/j.scitotenv.2024.173114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 05/07/2024] [Accepted: 05/08/2024] [Indexed: 05/16/2024]
Abstract
Wastewater irrigation is used to supplement agricultural irrigation because of its benefits and freshwater resource scarcity. However, whether wastewater irrigation for many years affects the electron transfer capacity (ETC) of natural organic matter in soil remains unclear, and organic matter could influence the decomposition and mineralization of substances with redox characteristics in soil through electron transfer, ultimately affecting the soil environment. The composition of soil humic substances (HS) is highly complex, and the effects of soil humic acid (HA) and fulvic acid (FA) on ETC is poorly understood. In this study, we separately evaluated the responses of the electron-accepting capacity (EAC) and electron-donating capacity (EDC) of soil HA and FA in agricultural fields to various durations of wastewater irrigation. Results showed that the EAC of HA and FA increased significantly with increasing the duration of wastewater irrigation. When wastewater irrigation lasted for 56 years, the EAC of HA showed a higher increment (590 %) than that of FA (223 %). The EDC of soil HA and FA, conversely, decreased compared to the control, with the highest reduction of 35.6 % for HA and 65.9 % for FA. Specifically, the EDC of HA gradually decreased starting from 29 years of wastewater irrigation, whereas the decrease in the EDC of FA exhibited no clear pattern in relation to the duration of wastewater irrigation. Increased soil organic matter and total nitrogen content under long-term wastewater irrigation led to an increase in sucrase and phosphatase activities, along with an increase in EAC and a decrease in EDC of HS. This suggests that soil enzyme activities may ultimately lead to changes in ETC. The results of this research provide practical insights into the redox system in soil and its driving role in soil organic matter transformation and nutrient cycling under wastewater irrigation.
Collapse
Affiliation(s)
- Yiman Gao
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Yuan Zhang
- Institute of Geographical Sciences, Hebei Academy of Sciences, Hebei Technology Innovation Center for Geographic Information Application, Shijiazhuang 050011, China
| | - Xiaoyuan Ge
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Lan Zhou Jiao Tong University, Lanzhou 730070, China
| | - Yi Gong
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Beijing University of Chemical Technology, Beijing 100029, China
| | - Huiru Chen
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; North China University of Water Resources and Electric Power, Zheng Zhou 450046, China
| | - Jing Su
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Beidou Xi
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Wenbing Tan
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| |
Collapse
|
8
|
Echchelh A, Hutchison JM, Randtke SJ, Peltier E. Treated water from oil and gas extraction as an unconventional water resource for agriculture in the Anadarko Basin. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168820. [PMID: 38036148 DOI: 10.1016/j.scitotenv.2023.168820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/17/2023] [Accepted: 11/17/2023] [Indexed: 12/02/2023]
Abstract
The energy industry generates large volumes of produced water (PW) as a byproduct of oil and gas extraction. In the central United States, PW disposal occurs through deep well injection, which can increase seismic activity. The treatment of PW for use in agriculture is an alternative to current disposal practices that can also provide supplemental water in regions where limited freshwater sources can affect agricultural production. This paper assesses the potential for developing PW as a water source for agriculture in the Anadarko basin, a major oil and gas field spanning parts of Kansas, Oklahoma, Colorado, and Texas. From 2011 to 2019, assessment of state oil and gas databases indicated that PW generation in the Anadarko Basin averaged 428 million m3/yr. A techno-economic analysis of PW treatment was combined with geographical information on PW availability and composition to assess the costs and energy requirements to recover this PW as a non-conventional water resource for agriculture. The volume of freshwater economically extractable from PW was estimated to be between 58 million m3 per year using reverse osmosis (RO) treatment only and 82 million m3 per year using a combination of RO and mechanical vapor compression to treat higher salinity waters. These volumes could meet 1-2 % and 49-70 % of the irrigation and livestock water demands in the basin, respectively. PW recovery could also modestly contribute to mitigating the decline of the Ogallala aquifer by ~2 %. RO treatment costs and energy requirements, 0.3-1.5 $/m3 and 1.01-2.65 kWh/m3, respectively, are similar to those for deep well injection. Treatment of higher salinity waters increases costs and energy requirements substantially and is likely not economically feasible in most cases. The approach presented here provides a valuable framework for assessing PW as a supplemental water source in regions facing similar challenges.
Collapse
Affiliation(s)
- Alban Echchelh
- Department of Civil, Environmental, and Architectural Engineering, University of Kansas, Lawrence, KS 66045, United States
| | - Justin M Hutchison
- Department of Civil, Environmental, and Architectural Engineering, University of Kansas, Lawrence, KS 66045, United States
| | - Stephen J Randtke
- Department of Civil, Environmental, and Architectural Engineering, University of Kansas, Lawrence, KS 66045, United States
| | - Edward Peltier
- Department of Civil, Environmental, and Architectural Engineering, University of Kansas, Lawrence, KS 66045, United States.
| |
Collapse
|
9
|
Yang Y, Tian L, Shu J, Wu Q, Liu B. Potential hazards of typical small molecular organic matters in shale gas wastewater for wheat irrigation: 2-butoxyethanol and dimethylbenzylamine. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 340:122729. [PMID: 37858699 DOI: 10.1016/j.envpol.2023.122729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 09/30/2023] [Accepted: 10/11/2023] [Indexed: 10/21/2023]
Abstract
2-butoxyethanol (BE) and dimethylbenzylamine (DMBA) are small molecular organic compounds commonly found in shale gas wastewater (SGW) and environmental samples, yet their environmental risks in exposure and irrigation reuse have not been thoroughly studied. From the perspectives of physicochemical properties and toxicity, seven groups of irrigation treatment were designed for wheat irrigation according to the concentration gradient. Overall, wheat growth was normal, but higher DMBA concentrations resulted in more severe growth inhibition. The absorption of BE by various tissues of wheat was positively correlated with its concentration, while the absorption of DMBA by wheat stems showed the same trend. Interestingly, there was no significant difference in the absorption of DMBA by wheat grains in different groups. The detection results of nutritional and heavy metal elements in wheat tissues showed that the presence of organic compounds changed the relative sensitivity of wheat leaves and grains to some elements (such as Mg, Mn, Mo, etc.) enrichment. The Cd and Pb contents of wheat grains in all groups complied with national safety standards, but the As or Cr concentration in wheat grains treated with BE or DMBA exceeded the limits in some cases. Transcriptome sequencing, GO annotation, and KEGG enrichment analysis revealed similar gene functions and metabolic pathways enriched by BE and DMBA. The safe and sustainable agricultural reuse of SGW still has great potential as a promising water resources management strategy.
Collapse
Affiliation(s)
- Yushun Yang
- State Key Laboratory of Hydraulics & Mountain River Engineering, College of Architecture and Environment, Institute of New Energy and Low-Carbon Technology, Sichuan University, Chengdu, Sichuan, 610065, PR China; Yibin Institute of Industrial Technology, Sichuan University Yibin Park, Yibin, Sichuan, 644000, PR China
| | - Lun Tian
- State Key Laboratory of Hydraulics & Mountain River Engineering, College of Architecture and Environment, Institute of New Energy and Low-Carbon Technology, Sichuan University, Chengdu, Sichuan, 610065, PR China; Yibin Institute of Industrial Technology, Sichuan University Yibin Park, Yibin, Sichuan, 644000, PR China
| | - Jingyu Shu
- State Key Laboratory of Hydraulics & Mountain River Engineering, College of Architecture and Environment, Institute of New Energy and Low-Carbon Technology, Sichuan University, Chengdu, Sichuan, 610065, PR China; Yibin Institute of Industrial Technology, Sichuan University Yibin Park, Yibin, Sichuan, 644000, PR China
| | - Qidong Wu
- State Key Laboratory of Hydraulics & Mountain River Engineering, College of Architecture and Environment, Institute of New Energy and Low-Carbon Technology, Sichuan University, Chengdu, Sichuan, 610065, PR China; Yibin Institute of Industrial Technology, Sichuan University Yibin Park, Yibin, Sichuan, 644000, PR China
| | - Baicang Liu
- State Key Laboratory of Hydraulics & Mountain River Engineering, College of Architecture and Environment, Institute of New Energy and Low-Carbon Technology, Sichuan University, Chengdu, Sichuan, 610065, PR China; Yibin Institute of Industrial Technology, Sichuan University Yibin Park, Yibin, Sichuan, 644000, PR China.
| |
Collapse
|
10
|
Ghaffarian Khorram A, Fallah N, Nasernejad B, Afsham N, Esmaelzadeh M, Vatanpour V. Electrochemical-based processes for produced water and oily wastewater treatment: A review. CHEMOSPHERE 2023; 338:139565. [PMID: 37482313 DOI: 10.1016/j.chemosphere.2023.139565] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/15/2023] [Accepted: 07/17/2023] [Indexed: 07/25/2023]
Abstract
The greatest volume of by-products produced in oil and gas recovery operations is referred to as produced water and increasing environmental concerns and strict legislations on discharging it into the environment cause to more attention for focusing on degradation methods for treatment of produced water especially electrochemical technologies. This article provides an overview of electrochemical technologies for treating oily wastewater and produced water, including: electro-coagulation, electro-Fenton, electrochemical oxidation and electrochemical membrane reactor as a single stage and combination of these technologies as multi-stage treatment process. Many researchers have carried out experiments to examine the impact of various factors such as material (i.e, electrode material) and operational conditions (i.e., potential, current density, pH, electrode distance, and other factors) for organic elimination to obtain the high efficiency. Results of each method are reviewed and discussed according to these studies, comprehensively. Furthermore, several challenges need to be overcome and perspectives for future study are proposed for each method.
Collapse
Affiliation(s)
| | - Narges Fallah
- Department of Chemical Engineering, Amirkabir University of Technology, Tehran, Iran.
| | - Bahram Nasernejad
- Department of Chemical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Neda Afsham
- Department of Chemical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Mahdi Esmaelzadeh
- Department of Chemical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Vahid Vatanpour
- Department of Applied Chemistry, Faculty of Chemistry, Kharazmi University, Tehran, Iran; National Research Center on Membrane Technologies, Istanbul Technical University, Maslak, Turkey.
| |
Collapse
|
11
|
Rossi RJ, Tisherman RA, Jaeger JM, Domen J, Shonkoff SBC, DiGiulio DC. Historic and Contemporary Surface Disposal of Produced Water Likely Inputs Arsenic and Selenium to Surficial Aquifers. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:7559-7567. [PMID: 37146013 DOI: 10.1021/acs.est.3c01219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Oil and gas development generates large amounts of wastewater (i.e., produced water), which in California has been partially disposed of in unlined percolation/evaporation ponds since the mid-20th century. Although produced water is known to contain multiple environmental contaminants (e.g., radium and trace metals), prior to 2015, detailed chemical characterizations of pondwaters were the exception rather than the norm. Using a state-run database, we synthesized samples (n = 1688) collected from produced water ponds within the southern San Joaquin Valley of California, one of the most productive agricultural regions in the world, to examine regional trends in pondwater arsenic and selenium concentrations. We filled crucial knowledge gaps resulting from historical pondwater monitoring by constructing random forest regression models using commonly measured analytes (boron, chloride, and total dissolved solids) and geospatial data (e.g., soil physiochemical data) to predict arsenic and selenium concentrations in historical samples. Our analysis suggests that both arsenic and selenium levels are elevated in pondwaters and thus this disposal practice may have contributed substantial amounts of arsenic and selenium to aquifers having beneficial uses. We further use our models to identify areas where additional monitoring infrastructure would better constrain the extent of legacy contamination and potential threats to groundwater quality.
Collapse
Affiliation(s)
- Robert J Rossi
- PSE Healthy Energy, Oakland, California 94612, United States
| | | | - Jessie M Jaeger
- PSE Healthy Energy, Oakland, California 94612, United States
| | - Jeremy Domen
- PSE Healthy Energy, Oakland, California 94612, United States
| | - Seth B C Shonkoff
- PSE Healthy Energy, Oakland, California 94612, United States
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, California 94720, United States
- Energy Technologies Area, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Dominic C DiGiulio
- Department of Civil, Environmental, and Architectural Engineering, University of Colorado, Boulder, Colorado 80309, United States
| |
Collapse
|
12
|
Ju Q, Hu Y, Xie Z, Liu Q, Zhang Z, Liu Y, Peng T, Hu T. Characterizing spatial dependence of boron, arsenic, and other trace elements for Permian groundwater in Northern Anhui plain coal mining area, China, using spatial autocorrelation index and geostatistics. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:39184-39198. [PMID: 36598722 DOI: 10.1007/s11356-022-25019-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 12/23/2022] [Indexed: 06/17/2023]
Abstract
Anthropogenic and geological factors play an essential role in the variability of groundwater quality, resulting in a weak spatial dependence of groundwater trace elements. Thus, it is an essential study to investigate the factors affecting groundwater quality and its spatial abundance of trace elements (including As, B, and other metalloids). In this study, samples are obtained from a Permian sandstone fracture aquifer in a coal mining area. A multivariate statistical analysis, hydrogeochemistry modeling, and spatial autocorrelation analysis were used to analyze the data. The results showed that Moran index was positive for all trace elements, which had good spatial autocorrelation. The Local indicators of spatial association (LISA) indicated that trace elements were clustered. The hydrogeochemical modeling results indicated that the precipitation and stability of iron-phase minerals, such as rhodochrosite and arsenic (As) absorption on the surface of iron-phase minerals in the aquifer, may limit concentrations in the southern region. The spatial autocorrelations of both As and Boron (B) were positive (high-high) in the western areas, indicating that As contamination occurred from both natural geological causes and human coal mining activities. In contrast, B contamination was mainly linked to the influence of human agricultural or industrial activities. Over 96% of the groundwater concentrations of As (10 μg/L) and B (300 μg/L) in the study area exceeded World Health Organization (WHO) limits. Overall, the results of this work could help decision-makers involved in regional water quality management visualize disperse zones where specific anthropogenic and geological processes may threaten groundwater quality.
Collapse
Affiliation(s)
- Qiding Ju
- State Key Laboratory of Mining Response and Disaster Prevention and Control in Deep Coal Mines, Anhui University of Science and Technology, Huainan, 232001, China.
- School of Earth and Environment, Anhui University of Science and Technology, Huainan, 232001, China.
| | - Youbiao Hu
- School of Earth and Environment, Anhui University of Science and Technology, Huainan, 232001, China
| | - Zhigang Xie
- School of Earth and Environment, Anhui University of Science and Technology, Huainan, 232001, China
| | - Qimeng Liu
- School of Earth and Environment, Anhui University of Science and Technology, Huainan, 232001, China
| | - Zhiguo Zhang
- School of Earth and Environment, Anhui University of Science and Technology, Huainan, 232001, China
| | - Yu Liu
- State Key Laboratory of Mining Response and Disaster Prevention and Control in Deep Coal Mines, Anhui University of Science and Technology, Huainan, 232001, China
| | - Taosheng Peng
- School of Earth and Environment, Anhui University of Science and Technology, Huainan, 232001, China
| | - Taifeng Hu
- School of Earth and Environment, Anhui University of Science and Technology, Huainan, 232001, China
| |
Collapse
|
13
|
McDevitt B, Jubb AM, Varonka MS, Blondes MS, Engle MA, Gallegos TJ, Shelton JL. Dissolved organic matter within oil and gas associated wastewaters from U.S. unconventional petroleum plays: Comparisons and consequences for disposal and reuse. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156331. [PMID: 35640759 DOI: 10.1016/j.scitotenv.2022.156331] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/25/2022] [Accepted: 05/25/2022] [Indexed: 06/15/2023]
Abstract
Wastewater generated during petroleum extraction (produced water) may contain high concentrations of dissolved organics due to their intimate association with organic-rich source rocks, expelled petroleum, and organic additives to fluids used for hydraulic fracturing of unconventional (e.g., shale) reservoirs. Dissolved organic matter (DOM) within produced water represents a challenge for treatment prior to beneficial reuse. High salinities characteristic of produced water, often 10× greater than seawater, coupled to the complex DOM ensemble create analytical obstacles with typical methods. Excitation-emission matrix spectroscopy (EEMS) can rapidly characterize the fluorescent component of DOM with little impact from matrix effects. We applied EEMS to evaluate DOM composition in 18 produced water samples from six North American unconventional petroleum plays. Represented reservoirs include the Eagle Ford Shale (Gulf Coast Basin), Wolfcamp/Cline Shales (Permian Basin), Marcellus Shale and Utica/Point Pleasant (Appalachian Basin), Niobrara Chalk (Denver-Julesburg Basin), and the Bakken Formation (Williston Basin). Results indicate that the relative chromophoric DOM composition in unconventional produced water may distinguish different lithologies, thermal maturity of resource types (e.g., heavy oil vs. dry gas), and fracturing fluid compositions, but is generally insensitive to salinity and DOM concentration. These results are discussed with perspective toward DOM influence on geochemical processes and the potential for targeted organic compound treatment for the reuse of produced water.
Collapse
Affiliation(s)
- Bonnie McDevitt
- U.S. Geological Survey, Geology, Energy & Minerals Science Center, Reston, VA 20192, United States.
| | - Aaron M Jubb
- U.S. Geological Survey, Geology, Energy & Minerals Science Center, Reston, VA 20192, United States
| | - Matthew S Varonka
- U.S. Geological Survey, Geology, Energy & Minerals Science Center, Reston, VA 20192, United States
| | - Madalyn S Blondes
- U.S. Geological Survey, Geology, Energy & Minerals Science Center, Reston, VA 20192, United States
| | - Mark A Engle
- Department of Geological Sciences, The University of Texas at El Paso, El Paso, TX 79968, United States
| | - Tanya J Gallegos
- U.S. Geological Survey, Geology, Energy & Minerals Science Center, Reston, VA 20192, United States
| | - Jenna L Shelton
- U.S. Geological Survey, National Cooperative Geologic Mapping Program, Reston, VA 20192, United States
| |
Collapse
|
14
|
Sedlacko EM, Heuberger AL, Chaparro JM, Cath TY, Higgins CP. Metabolomics reveals primary response of wheat (Triticum aestivum) to irrigation with oilfield produced water. ENVIRONMENTAL RESEARCH 2022; 212:113547. [PMID: 35660401 DOI: 10.1016/j.envres.2022.113547] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 01/28/2022] [Accepted: 05/19/2022] [Indexed: 06/15/2023]
Abstract
The reuse of oilfield produced water (PW) for agricultural irrigation has received increased attention for utility in drought-stricken regions. It was recently demonstrated that PW irrigation can affect physiological processes in food crops. However, metabolomic evaluations are important to further discern specific mechanisms of how PW may contribute as a plant-environmental stressor. Herein, the primary metabolic responses of wheat irrigated with PW and matching salinity controls were investigated. Non-targeted gas chromatography mass spectrometry (GC-MS) metabolomics was combined with multivariate analysis and revealed that PW irrigation altered the primary metabolic profiles of both wheat leaf and grain. Over 600 compounds (183 annotated metabolites) were detected that varied between controls (salinity control and tap water) and PW irrigated plants. While some of these changed metabolites are related to salinity stress, over half were found to be unique to PW. The primary metabolites exhibiting changes in abundance in leaf and grain tissues were amines/amino acids, organic acids, and saccharides. Metabolite pathway analysis revealed that amino acid metabolism, sugar metabolism, and nitrogen remobilization are all impacted by PW irrigation, independent of regular plant responses to salinity stress. These data, when combined with prior physiological studies, support a multi-faceted, physio-metabolic response of wheat to the unique stressor imposed by irrigation with PW.
Collapse
Affiliation(s)
- Erin M Sedlacko
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, CO, 80401, USA
| | - Adam L Heuberger
- Department of Horticulture and Landscape Architecture, Colorado State University, Fort Collins, CO, 80523, USA; Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO, 80523, USA
| | - Jaqueline M Chaparro
- Department of Horticulture and Landscape Architecture, Colorado State University, Fort Collins, CO, 80523, USA; Analytical Resources Core - Bioanalysis and Omics, Colorado State University, Fort Collins, CO, 80523, USA
| | - Tzahi Y Cath
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, CO, 80401, USA
| | - Christopher P Higgins
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, CO, 80401, USA.
| |
Collapse
|
15
|
Abstract
Oil and gas production wells generate large volumes of water mixed with hydrocarbons (dispersed and dissolved), salts (ions), and solids. This ‘produced water’ (PW) is a waste stream that must be disposed of appropriately. The presence of toxic hydrocarbons and ions in PW makes it unsuitable for surface discharge or disposal in groundwater resources. Thus, PW is often injected into deep geological formations as a disposal method. However, the supply of global water sources is diminishing, and the demand for water in industrial, domestic, and agricultural use in water-stressed regions makes PW a potentially attractive resource. PW also contains valuable elements like lithium and rare earth elements, which are increasing in global demand. This review article provides an overview of constituents present in PW, current technologies available to remove and recover valuable elements, and a case study highlighting the costs and economic benefits of recovering these valuable elements. PW contains a promising source of valuable elements. Developing technologies, such as ceramic membranes with selective sorption chemistry could make elemental recovery economically feasible and turn PW from a waste stream into a multi-faceted resource.
Collapse
|
16
|
Sustainable Production of Tomato Plants (Solanum lycopersicum L.) under Low-Quality Irrigation Water as Affected by Bio-Nanofertilizers of Selenium and Copper. SUSTAINABILITY 2022. [DOI: 10.3390/su14063236] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Under the global water crisis, utilizing low-quality water sources in agriculture for irrigation has offered an effective solution to address the shortage of water. Using an excess of low-quality water sources may cause serious risks to the environment, which threaten crop safety and human health. Three kinds of irrigation water (0.413, 1.44, and 2.84 dS m−1) were selected under foliar-applied bio-nanofertilizers of selenium (100 mg L−1) and copper (100 mg L−1) in individual and/or combined application. The nanofertilizers were tested on the production of tomato under greenhouse. After harvesting, the quality of tomato yield and soil biology was evaluated. Using saline water for irrigation caused many main features in this study such as increasing the accumulation of salts, soil organic matter, and CaCO3 in soil by 84.6, 32.3, and 18.4%, respectively, compared to control. The highest tomato yield (2.07 kg plant−1) and soluble solids content (9.24%) were recorded after irrigation with low water quality (2.84 dS m−1) and nano-Cu fertilization. The plant enzymatic antioxidants and soil biological activity were decreased in general due to the salinity stress of irrigation water. After 30 days from transplanting, all studied soil biological parameters (soil microbial counts and enzymes) were higher than the same parameters at harvesting (80 days) under different categories of water quality. The values of all soil biological parameters were decreased by increasing water salinity. This study was carried out to answer the question of whether the combined nanofertilizers of selenium and copper can promote tomato production under saline water irrigation. Further investigations are still needed concerning different applied doses of these nanofertilizers.
Collapse
|
17
|
Characterization and Treatment Technologies Applied for Produced Water in Qatar. WATER 2021. [DOI: 10.3390/w13243573] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Qatar is one of the major natural gas (NG) producing countries, which has the world’s third-largest NG reserves besides the largest supplier of liquefied natural gas (LNG). Since the produced water (PW) generated in the oil and gas industry is considered as the largest waste stream, cost-effective PW management becomes fundamentally essential. The oil/gas industries in Qatar produce large amounts of PW daily, hence the key challenges facing these industries reducing the volume of PW injected in disposal wells by a level of 50% for ensuring the long-term sustainability of the reservoir. Moreover, it is important to study the characteristics of PW to determine the appropriate method to treat it and then use it for various applications such as irrigation, or dispose of it without harming the environment. This review paper targets to highlight the generation of PW in Qatar, as well as discuss the characteristics of chemical, physical, and biological treatment techniques in detail. These processes and methods discussed are not only applied by Qatari companies, but also by other companies associated or in collaboration with those in Qatar. Finally, case studies from different companies in Qatar and the challenges of treating the PW are discussed. From the different studies analyzed, various techniques as well as sequencing of different techniques were noted to be employed for the effective treatment of PW.
Collapse
|
18
|
Landsman MR, Rivers F, Pedretti BJ, Freeman BD, Lawler DF, Lynd NA, Katz LE. Boric acid removal with polyol-functionalized polyether membranes. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
19
|
Redmon JH, Kondash AJ, Womack D, Lillys T, Feinstein L, Cabrales L, Weinthal E, Vengosh A. Is Food Irrigated with Oilfield-Produced Water in the California Central Valley Safe to Eat? A Probabilistic Human Health Risk Assessment Evaluating Trace Metals Exposure. RISK ANALYSIS : AN OFFICIAL PUBLICATION OF THE SOCIETY FOR RISK ANALYSIS 2021; 41:1463-1477. [PMID: 33336407 PMCID: PMC8519025 DOI: 10.1111/risa.13641] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/31/2020] [Accepted: 10/18/2020] [Indexed: 05/23/2023]
Abstract
Reuse of oilfield-produced water (OPW) for crop irrigation has the potential to make a critical difference in the water budgets of highly productive but drought-stressed agricultural watersheds. This is the first peer-reviewed study to evaluate how trace metals in OPW used to irrigate California crops may affect human health. We modeled and quantified risks associated with consuming foods irrigated with OPW using available concentration data. The probabilistic risk assessment simulated OPW metal concentrations, crop uptake, human exposures, and potential noncancer and carcinogenic health effects. Overall, our findings indicate that there is a low risk of ingesting toxic amounts of metals from the consumption of tree nuts, citrus, grapes, and root vegetables irrigated with low-saline OPW. Results show increased arsenic cancer risk (at 10-6 ) for adult vegetarians, assuming higher consumption of multiple foods irrigated with OPW that contain high arsenic concentrations. All other cancer risks are below levels of concern and all noncancer hazards are far below levels of concern. Arsenic risk concerns could be mitigated by practices such as blending high-arsenic OPW. Future risk assessment research should model the risks of organic compounds in OPW, as our study focused on inorganic compounds. Nevertheless, our findings indicate that low-saline OPW may provide a safe and sustainable alternative irrigation water source if water quality is adequately monitored and blended as needed prior to irrigation.
Collapse
Affiliation(s)
| | - Andrew John Kondash
- Social, Statistical, and Environmental SciencesRTI InternationalResearch Triangle ParkNCUSA
| | - Donna Womack
- Social, Statistical, and Environmental SciencesRTI InternationalResearch Triangle ParkNCUSA
| | - Ted Lillys
- Social, Statistical, and Environmental SciencesRTI InternationalResearch Triangle ParkNCUSA
| | | | - Luis Cabrales
- Department of Physics and EngineeringCalifornia State UniversityBakersfieldCAUSA
| | | | | |
Collapse
|
20
|
Schreiber ME, Cozzarelli IM. Arsenic release to the environment from hydrocarbon production, storage, transportation, use and waste management. JOURNAL OF HAZARDOUS MATERIALS 2021; 411:125013. [PMID: 33482508 DOI: 10.1016/j.jhazmat.2020.125013] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 10/26/2020] [Accepted: 12/29/2020] [Indexed: 05/12/2023]
Abstract
Arsenic (As) is a toxic trace element with many sources, including hydrocarbons such as oil, natural gas, oil sands, and oil- and gas-bearing shales. Arsenic from these hydrocarbon sources can be released to the environment through human activities of hydrocarbon production, storage, transportation and use. In addition, accidental release of hydrocarbons to aquifers with naturally occurring (geogenic) As can induce mobilization of As to groundwater through biogeochemical reactions triggered by hydrocarbon biodegradation. In this paper, we review the occurrence of As in different hydrocarbons and the release of As from these sources into the environment. We also examine the occurrence of As in wastes from hydrocarbon production, including produced water and sludge. Last, we discuss the potential for As release related to waste management, including accidental or intentional releases, and recycling and reuse of these wastes.
Collapse
Affiliation(s)
- Madeline E Schreiber
- Department of Geosciences, Virginia Tech 926 W. Campus Drive, Blacksburg, VA 24061-0420, USA.
| | | |
Collapse
|
21
|
McDevitt B, McLaughlin MC, Blotevogel J, Borch T, Warner NR. Oil & gas produced water retention ponds as potential passive treatment for radium removal and beneficial reuse. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2021; 23:501-518. [PMID: 33877214 DOI: 10.1039/d0em00413h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Oil and gas (O&G) extraction generates large volumes of produced water (PW) in regions that are often water-stressed. In Wyoming, generators are permitted under the National Pollutant Discharge Elimination System (NPDES) program to discharge O&G PW for beneficial use. In one Wyoming study region, downstream of the NPDES facilities exist naturally occurring wetlands referred to herein as produced water retention ponds (PWRPs). Previously, it was found that dissolved radium (Ra) and organic contaminants are removed within 30 km of the discharges and higher-resolution sampling was required to understand contaminant attenuation mechanisms. In this study, we sampled three NPDES discharge facilities, five PWRPs, and a reference background wetland not impacted by O&G PW disposal. Water samples, grab sediments, sediment cores and vegetation were collected. No inorganic PW constituents were abated through the PWRP series but Ra was shown to accumulate within PWRP grab sediments, upwards of 2721 Bq kg-1, compared to downstream sites. Ra mineral association with depth in the sediment profile is likely controlled by the S cycle under varying microbial communities and redox conditions. Under anoxic conditions, common in wetlands, Ra was available as an exchangeable ion, similar to Ca, Ba and Sr, and S was mostly water-soluble. 226Ra concentration ratios in vegetation samples, normalizing vegetation Ra to sediment Ra, indicated that ratios were highest in sediments containing less exchangeable 226Ra. Sequential leaching data paired with redox potentials suggest that oxic conditions are necessary to contain Ra in recalcitrant sediment minerals and prevent mobility and bioavailability.
Collapse
Affiliation(s)
- Bonnie McDevitt
- Department of Civil and Environmental Engineering, The Pennsylvania State University, 212 Sackett Building, University Park, PA 16801, USA.
| | | | | | | | | |
Collapse
|
22
|
Ezugbe EO, Kweinor Tetteh E, Rathilal S, Asante-Sackey D, Amo-Duodu G. Desalination of Municipal Wastewater Using Forward Osmosis. MEMBRANES 2021; 11:membranes11020119. [PMID: 33567485 PMCID: PMC7915055 DOI: 10.3390/membranes11020119] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 01/29/2021] [Accepted: 02/01/2021] [Indexed: 01/31/2023]
Abstract
Membrane technology has gained much ground in water and wastewater treatment over the past couple of decades. This is timely, as the world explores smart, eco-friendly, and cheap water and wastewater treatment technologies in its quest to make potable water and sanitation commonplace in all parts of the world. Against this background, this study investigated forward osmosis (FO) in the removal of salts (chlorides, sulphates, and carbonates) and organics (chemical oxygen demand (COD), turbidity, total suspended solids (TSS), and color) from a synthetic municipal wastewater (MWW), mimicking secondary-treated industrial wastewater, at very low feed and draw solution flow rates (0.16 and 0.14 L/min respectively), using 70 g/L NaCl solution as the draw solution. The results obtained showed an average of 97.67% rejection of SO42− and CO32− while Cl− was found to enrich the feed solution (FS). An average removal of 88.92% was achieved for the organics. A permeation flux of 5.06 L/m2.h was obtained. The kinetics of the ions transport was studied, and was found to fit the second-order kinetic model, with Pearson’s R-values of 0.998 and 0.974 for Cl− and CO32− respectively. The study proves FO as a potential technology to desalinate saline MWW.
Collapse
|
23
|
Sujanani R, Landsman MR, Jiao S, Moon JD, Shell MS, Lawler DF, Katz LE, Freeman BD. Designing Solute-Tailored Selectivity in Membranes: Perspectives for Water Reuse and Resource Recovery. ACS Macro Lett 2020; 9:1709-1717. [PMID: 35617076 DOI: 10.1021/acsmacrolett.0c00710] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Treatment of nontraditional source waters (e.g., produced water, municipal and industrial wastewaters, agricultural runoff) offers exciting opportunities to expand water and energy resources via water reuse and resource recovery. While conventional polymer membranes perform water/ion separations well, they do not provide solute-specific separation, a key component for these treatment opportunities. Herein, we discuss the selectivity limitations plaguing all conventional membranes, which include poor removal of small, neutral solutes and insufficient discrimination between ions of the same valence. Moreover, we present synthetic approaches for solute-tailored selectivity including the incorporation of single-digit nanopores and solute-selective ligands into membranes. Recent progress in these areas highlights the need for fundamental studies to rationally design membranes with selective moieties achieving desired separations.
Collapse
Affiliation(s)
- Rahul Sujanani
- McKetta Department of Chemical Engineering, The University of Texas at Austin, 200 East Dean Keeton Street, Austin, Texas 78712, United States
| | - Matthew R. Landsman
- Department of Civil, Architectural, and Environmental Engineering, The University of Texas at Austin, 301 East Dean Keeton Street, Austin, Texas 78712, United States
| | - Sally Jiao
- Department of Chemical Engineering, The University of California Santa Barbara, 3357 Engineering II, Santa Barbara, California 93106, United States
| | - Joshua D. Moon
- Department of Chemical Engineering, The University of California Santa Barbara, 3357 Engineering II, Santa Barbara, California 93106, United States
| | - M. Scott Shell
- Department of Chemical Engineering, The University of California Santa Barbara, 3357 Engineering II, Santa Barbara, California 93106, United States
| | - Desmond F. Lawler
- Department of Civil, Architectural, and Environmental Engineering, The University of Texas at Austin, 301 East Dean Keeton Street, Austin, Texas 78712, United States
| | - Lynn E. Katz
- Department of Civil, Architectural, and Environmental Engineering, The University of Texas at Austin, 301 East Dean Keeton Street, Austin, Texas 78712, United States
| | - Benny D. Freeman
- McKetta Department of Chemical Engineering, The University of Texas at Austin, 200 East Dean Keeton Street, Austin, Texas 78712, United States
| |
Collapse
|