1
|
Barathikannan K, Rambabu K, Ihtisham M, Sridhar K, Mazumder JA, Chelliah R, Oh DH, Banat F. Sustainable utilization of date palm byproducts: Bioactive potential and multifunctional applications in food and packaging. Food Chem 2025; 482:144216. [PMID: 40209379 DOI: 10.1016/j.foodchem.2025.144216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 03/30/2025] [Accepted: 04/04/2025] [Indexed: 04/12/2025]
Abstract
Fruit processing of date palm (Phoenix dactylifera L.) produces substantial byproducts. A variety of bioactive compounds exist in these byproduct streams, such as seeds, pomace, leaves, and pollen, including phenolic acids, flavonoids, tannins, carotenoids, tocopherols, tocotrienols, phytosterols, and phytoestrogens. The present review describes the sensory properties, nutritional profiles, and bioactive components of these byproducts, demonstrating their potential as functional foods, nutraceuticals, and active packaging. Emphasizing sustainable practices, this review examines both traditional and innovative extraction methods, prioritizing eco-friendly techniques that preserve bioactivity and align with sustainable goals. This review also addresses the safety, cytotoxicity, and regulatory aspects crucial for food applications. The use of biopolymers derived from date byproducts presents promising sustainable alternatives for food packaging, potentially improving food preservation and extending shelf life. This review explores how byproducts from date palms can enhance food chemistry, bioprocessing, and materials science within the context of sustainable food practices.
Collapse
Affiliation(s)
- Kaliyan Barathikannan
- Department of Chemical and Petroleum Engineering, Khalifa University of Science and Technology, P. O. Box 127788 Abu Dhabi, United Arab Emirates; Food Security and Technology Center, Khalifa University of Science and Technology, P. O. Box 127788 Abu Dhabi, United Arab Emirates
| | - Krishnamoorthy Rambabu
- Department of Chemical and Petroleum Engineering, Khalifa University of Science and Technology, P. O. Box 127788 Abu Dhabi, United Arab Emirates; Food Security and Technology Center, Khalifa University of Science and Technology, P. O. Box 127788 Abu Dhabi, United Arab Emirates
| | - Muhammad Ihtisham
- Department of Chemical and Petroleum Engineering, Khalifa University of Science and Technology, P. O. Box 127788 Abu Dhabi, United Arab Emirates; Food Security and Technology Center, Khalifa University of Science and Technology, P. O. Box 127788 Abu Dhabi, United Arab Emirates
| | - Kandi Sridhar
- Department of Chemical and Petroleum Engineering, Khalifa University of Science and Technology, P. O. Box 127788 Abu Dhabi, United Arab Emirates; Food Security and Technology Center, Khalifa University of Science and Technology, P. O. Box 127788 Abu Dhabi, United Arab Emirates
| | - Jahirul Ahmed Mazumder
- Department of Chemical and Petroleum Engineering, Khalifa University of Science and Technology, P. O. Box 127788 Abu Dhabi, United Arab Emirates; Food Security and Technology Center, Khalifa University of Science and Technology, P. O. Box 127788 Abu Dhabi, United Arab Emirates
| | - Ramachandran Chelliah
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon 24341, South Korea
| | - Deog Hwan Oh
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon 24341, South Korea
| | - Fawzi Banat
- Department of Chemical and Petroleum Engineering, Khalifa University of Science and Technology, P. O. Box 127788 Abu Dhabi, United Arab Emirates; Food Security and Technology Center, Khalifa University of Science and Technology, P. O. Box 127788 Abu Dhabi, United Arab Emirates.
| |
Collapse
|
2
|
Bolla M, Pettinato M, Ferrari PF, Fabiano B, Perego P. Polyhydroxyalkanoates production from laboratory to industrial scale: A review. Int J Biol Macromol 2025; 310:143255. [PMID: 40250686 DOI: 10.1016/j.ijbiomac.2025.143255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 04/06/2025] [Accepted: 04/15/2025] [Indexed: 04/20/2025]
Abstract
Environmental issues related to fossil-based plastics are getting the attention of the media and legislative authorities, addressing the need to improve the plastics' design, collection, and circular economy. In this regard, polyhydroxyalkanoates (PHAs) represent a promising alternative to the conventional polymers, given their biological origin, biodegradability, and biocompatibility. To date, their commercialization covers only a little percentage of the biodegradable plastic application, mainly due to their high cost. However, new production strategies are being investigated and patented, enhancing the PHA market competitiveness. This review tries to fill the gap about the critical investigation on innovative and up-to-date process strategies in PHA production field, deeply evaluating them from a plant-engineering point of view. Several aspects are considered regarding the reduction of the production costs and the increase in the overall PHA productivity and recovery. Among them, the feeding of pre-treated carbon sources derived from food and agro-industrial wastes, the use of mixed microbial cultures as convenient substitutes to the pure ones, and optimized downstream processes are widely discussed. The overlook of the topic is completed by evaluating the innovative technologies existing at pilot and industrial scale, able to achieve improved production yields. Finally, PHA economic and market current conditions are investigated.
Collapse
Affiliation(s)
- Maria Bolla
- Department of Civil, Chemical and Environmental Engineering, University of Genoa, via Opera Pia, 15, 16145 Genoa, Italy.
| | - Margherita Pettinato
- Department of Civil, Chemical and Environmental Engineering, University of Genoa, via Opera Pia, 15, 16145 Genoa, Italy; Research Center for Biologically Inspired Engineering in Vascular Medicine and Longevity, University of Genoa, via Montallegro, 1, 16145 Genoa, Italy.
| | - Pier Francesco Ferrari
- Department of Civil, Chemical and Environmental Engineering, University of Genoa, via Opera Pia, 15, 16145 Genoa, Italy; Research Center for Biologically Inspired Engineering in Vascular Medicine and Longevity, University of Genoa, via Montallegro, 1, 16145 Genoa, Italy; IRCCS Ospedale Policlinico San Martino, largo Rosanna Benzi, 10, 16132, Genoa, Italy.
| | - Bruno Fabiano
- Department of Civil, Chemical and Environmental Engineering, University of Genoa, via Opera Pia, 15, 16145 Genoa, Italy; Research Center for Biologically Inspired Engineering in Vascular Medicine and Longevity, University of Genoa, via Montallegro, 1, 16145 Genoa, Italy.
| | - Patrizia Perego
- Department of Civil, Chemical and Environmental Engineering, University of Genoa, via Opera Pia, 15, 16145 Genoa, Italy; Research Center for Biologically Inspired Engineering in Vascular Medicine and Longevity, University of Genoa, via Montallegro, 1, 16145 Genoa, Italy; IRCCS Ospedale Policlinico San Martino, largo Rosanna Benzi, 10, 16132, Genoa, Italy.
| |
Collapse
|
3
|
Marotta A, Borriello A, Khan MR, Cavella S, Ambrogi V, Torrieri E. Boosting Food Packaging Sustainability Through the Valorization of Agri-Food Waste and By-Products. Polymers (Basel) 2025; 17:735. [PMID: 40292599 PMCID: PMC11946487 DOI: 10.3390/polym17060735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 03/06/2025] [Accepted: 03/07/2025] [Indexed: 04/30/2025] Open
Abstract
The environmental concerns associated with synthetic polymers have intensified the search for sustainable and biodegradable alternatives, particularly for food packaging applications. Natural biopolymers offer promising solutions due to their biodegradability, reduced environmental impact, and reliance on renewable resources. Among these, agri-food waste and by-products have gained significant attention as valuable feedstocks for polymer production, supporting a circular economy approach. This review critically examines the current status of biopolymers derived from plant, animal, and microbial sources, focusing on their physical and chemical properties and their application in food packaging. The findings underscore that the properties of plant- and animal-based biopolymers are heavily influenced by the source material and extraction techniques, with successful examples in biodegradable films, coatings, and composite materials. However, a critical gap remains in the characterization of microbial biopolymers, as research in this area predominantly focuses on optimizing production processes rather than evaluating their material properties. Despite this limitation, microbial biopolymers have demonstrated considerable potential in composite films and fillers. By addressing these gaps and evaluating the key factors that influence the success of biopolymer-based packaging, we contribute to the ongoing efforts to develop sustainable food packaging solutions and reduce the environmental impact of plastic waste.
Collapse
Affiliation(s)
- Angela Marotta
- Department of Chemical, Materials, and Industrial Production Engineering (INSTM Consortium—UdR Naples), University of Naples Federico II, P.le Tecchio 80, 80125 Naples, Italy; (A.M.); (V.A.)
| | - Angela Borriello
- Department of Agricultural Sciences, University of Naples Federico II, Piazza Carlo di Borbone, 80055 Portici, Italy;
| | - Muhammad Rehan Khan
- Department of Agricultural and Food Sciences, Alma Mater Studiorum, University of Bologna, Piazza Goidanich, 47521 Cesena, Italy;
| | - Silvana Cavella
- Department of Agricultural Sciences, University of Naples Federico II, Piazza Carlo di Borbone, 80055 Portici, Italy;
| | - Veronica Ambrogi
- Department of Chemical, Materials, and Industrial Production Engineering (INSTM Consortium—UdR Naples), University of Naples Federico II, P.le Tecchio 80, 80125 Naples, Italy; (A.M.); (V.A.)
| | - Elena Torrieri
- Department of Agricultural Sciences, University of Naples Federico II, Piazza Carlo di Borbone, 80055 Portici, Italy;
| |
Collapse
|
4
|
Ben Abdallah M, Saadaoui I, Al-Ghouti MA, Zouari N, Hahladakis JN, Chamkha M, Sayadi S. Advances in polyhydroxyalkanoate (PHA) production from renewable waste materials using halophilic microorganisms: A comprehensive review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 963:178452. [PMID: 39824097 DOI: 10.1016/j.scitotenv.2025.178452] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 01/06/2025] [Accepted: 01/08/2025] [Indexed: 01/20/2025]
Abstract
Polyhydroxyalkanoates (PHAs) are biodegradable and biocompatible polymers that can replace conventional plastics in different sectors. However, PHA commercialization is hampered due to their high production cost resulting from the use of high purity substrates, their low conversion into PHAs by using conventional microbial chassis and the high downstream processing cost. Taking these challenges into account, researchers are focusing on the use of waste by-products as alternative low-cost feedstocks for fast-growing and contamination-resistant halophilic microorganisms (Bacteria, Archaea…). This is of great importance since these extremophiles can use low-cost substrates, produce high PHA content of copolymers or different PHA monomer compositions. They can present high potential for reducing the costs of PHA fermentation and recovery processes, making their use in commercial applications easier. However, little is known about the potential of halophiles in advancing the PHA production from renewable waste materials at lab-scale and their successful implementation at industrial-scale. This review presents actual advances in PHA production by halophilic pure/engineered species (e.g. Haloferax mediterranei, Halomonas spp.) and mixed microbial consortia (MMC) using organic waste streams. The development of optimal PHA production process involves robust genetic engineering strategies, advanced fermentation processes using mixed microbial consortia versus pure/engineered strains as well as algal biomass as feedstocks.
Collapse
Affiliation(s)
- Manel Ben Abdallah
- Biotechnology Program, Center for Sustainable Development, College of Arts and Sciences, Qatar University, Doha 2713, Qatar; Laboratory of Environmental Bioprocesses, Centre of Biotechnology of Sfax, BP 1177, 3018 Sfax, Tunisia.
| | - Imen Saadaoui
- Biotechnology Program, Center for Sustainable Development, College of Arts and Sciences, Qatar University, Doha 2713, Qatar.
| | - Mohammad A Al-Ghouti
- Environmental Sciences Program, Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha, P.O. Box 2713, Qatar
| | - Nabil Zouari
- Environmental Sciences Program, Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha, P.O. Box 2713, Qatar
| | - John N Hahladakis
- Biotechnology Program, Center for Sustainable Development, College of Arts and Sciences, Qatar University, Doha 2713, Qatar
| | - Mohamed Chamkha
- Laboratory of Environmental Bioprocesses, Centre of Biotechnology of Sfax, BP 1177, 3018 Sfax, Tunisia
| | - Sami Sayadi
- Biotechnology Program, Center for Sustainable Development, College of Arts and Sciences, Qatar University, Doha 2713, Qatar.
| |
Collapse
|
5
|
Kusuma HS, Sabita A, Putri NA, Azliza N, Illiyanasafa N, Darmokoesoemo H, Amenaghawon AN, Kurniawan TA. Waste to wealth: Polyhydroxyalkanoates (PHA) production from food waste for a sustainable packaging paradigm. FOOD CHEMISTRY. MOLECULAR SCIENCES 2024; 9:100225. [PMID: 39497731 PMCID: PMC11532435 DOI: 10.1016/j.fochms.2024.100225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 09/16/2024] [Accepted: 10/06/2024] [Indexed: 11/07/2024]
Abstract
The growing demand for sustainable food packaging and the increasing concerns regarding environmental pollution have driven interest in biodegradable materials. This paper presents an in-depth review of the production of Polyhydroxyalkanoates (PHA), a biodegradable polymer, from food waste. PHA-based bioplastics, particularly when derived from low-cost carbon sources such as volatile fatty acids (VFAs) and waste oils, offer a promising solution for reducing plastic waste and enhancing food packaging sustainability. Through optimization of microbial fermentation processes, PHA production can achieve significant efficiency improvements, with yields reaching up to 87 % PHA content under ideal conditions. This review highlights the technical advancements in using PHA for food packaging, emphasizing its biodegradability, biocompatibility, and potential to serve as a biodegradable alternative to petroleum-based plastics. However, challenges such as high production costs, mechanical limitations, and the need for scalability remain barriers to industrial adoption. The future of PHA in food packaging hinges on overcoming these challenges through further research and innovation in production techniques, material properties, and cost reduction strategies, along with necessary legislative support to promote widespread use.
Collapse
Affiliation(s)
- Heri Septya Kusuma
- Department of Chemical Engineering, Faculty of Industrial Technology, Universitas Pembangunan Nasional “Veteran” Yogyakarta, Indonesia
| | - Atna Sabita
- Department of Chemical Engineering, Faculty of Industrial Technology, Universitas Pembangunan Nasional “Veteran” Yogyakarta, Indonesia
| | - Najla Anira Putri
- Department of Chemical Engineering, Faculty of Industrial Technology, Universitas Pembangunan Nasional “Veteran” Yogyakarta, Indonesia
| | - Nadhira Azliza
- Department of Chemical Engineering, Faculty of Industrial Technology, Universitas Pembangunan Nasional “Veteran” Yogyakarta, Indonesia
| | - Nafisa Illiyanasafa
- Department of Chemical Engineering, Faculty of Industrial Technology, Universitas Pembangunan Nasional “Veteran” Yogyakarta, Indonesia
| | - Handoko Darmokoesoemo
- Department of Chemistry, Faculty of Science and Technology, Airlangga University, Mulyorejo, Surabaya 60115, Indonesia
| | | | | |
Collapse
|
6
|
Unis R, Gnaim R, Kashyap M, Shamis O, Gnayem N, Gozin M, Liberzon A, Gnaim J, Golberg A. Bioconversion of bread waste into high-quality proteins and biopolymers by fermentation of archaea Haloferax mediterranei. Front Microbiol 2024; 15:1491333. [PMID: 39777146 PMCID: PMC11703665 DOI: 10.3389/fmicb.2024.1491333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 09/30/2024] [Indexed: 01/11/2025] Open
Abstract
The valorization of bread waste into high-quality protein and biopolymers using the halophilic microorganism Haloferax mediterranei presents a sustainable approach to food waste management and resource optimization. This study successfully coproduced protein and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) biopolymer with a biomass content of 8.0 ± 0.1 g L-1 and a productivity of 11.1 mg L-1 h-1. The fermentation process employed 3.0% w/v of enzymatically hydrolyzed bread waste. The amino acid profile of the cell biomass revealed a total content of 358 g kg-1 of biomass dry weight (DW), including 147 g kg-1 DW of essential amino acids. The protein quality, assessed through in-vitro enzyme digestion, indicated a high-quality protein with a digestibility value of 0.91 and a protein digestibility-corrected amino acid score (PDCAAS) of 0.78. The PHBV biopolymer component (36.0 ± 6.3% w/w) consisted of a copolymer of 3-hydroxybutyrate and 3-hydroxyvalerate in a 91:9 mol% ratio. This bioconversion process not only mitigates food waste but also generates valuable biomaterials.
Collapse
Affiliation(s)
- Razan Unis
- Department of Environmental Studies, Porter School of Environment and Earth Sciences, Tel Aviv University, Tel Aviv, Israel
- The Triangle Regional R&D Center (TRDC), Kfar Qari, Israel
| | - Rima Gnaim
- Department of Environmental Studies, Porter School of Environment and Earth Sciences, Tel Aviv University, Tel Aviv, Israel
- The Triangle Regional R&D Center (TRDC), Kfar Qari, Israel
| | - Mrinal Kashyap
- Department of Environmental Studies, Porter School of Environment and Earth Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Olga Shamis
- Faculty of Exact Sciences, School of Chemistry, Tel Aviv University, Tel Aviv, Israel
| | - Nabeel Gnayem
- Department of Environmental Studies, Porter School of Environment and Earth Sciences, Tel Aviv University, Tel Aviv, Israel
- The Triangle Regional R&D Center (TRDC), Kfar Qari, Israel
| | - Michael Gozin
- Faculty of Exact Sciences, School of Chemistry, Tel Aviv University, Tel Aviv, Israel
- Center for Advanced Combustion Science, Tel Aviv University, Tel Aviv, Israel
- Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, Israel
| | | | - Jallal Gnaim
- The Triangle Regional R&D Center (TRDC), Kfar Qari, Israel
| | - Alexander Golberg
- Department of Environmental Studies, Porter School of Environment and Earth Sciences, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
7
|
Yan HJ, Cui YW, Chen S, Wang X. Effects of magnetic field exposure patterns on polyhydroxyalkanoates synthesis by Haloferax mediterranei at extreme hypersaline context: Carbon distribution and salt tolerance. Int J Biol Macromol 2024; 283:137769. [PMID: 39561839 DOI: 10.1016/j.ijbiomac.2024.137769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 10/24/2024] [Accepted: 11/15/2024] [Indexed: 11/21/2024]
Abstract
The synthesis of polyhydroxyalkanoates (PHAs) by extremophiles presents a promising alternative to mitigate pollution originating from the use of petroleum-based plastics. This study focuses on the impact of different magnetic field (MF) exposure patterns on PHA production and carbon metabolism, aiming to enhance PHA productivity by Haloferax mediterranei within the extreme hypersaline environment and subsequently reducing production costs. Results indicated that under 300 g/L salinity, the highest PHA productivity (1.45 ± 0.06 g/(L d)) and PHA content (65.91 % PHA/cell dry weight) were achieved with 50 mT MF exposure throughout the fermentation period. Continuous exposure to 50 mT MF proved vital for maximizing cell biomass and PHA productivity. Continuous exposure to 50 mT MF enabled Haloferax mediterranei to channel acetyl-CoA towards the PHA synthesis pathway while maintaining growth and proliferation. Correlation analysis further proved the principal role of carbon flux on PHA accumulation. Due to the demand for balancing osmotic pressure, cellular substances were sacrificed to ensure PHA synthesis as anti-salinity substance. Meanwhile, the observed promotion of MF on PHA production, betaine aldehyde dehydrogenase activity, and K+ uptake contributed to sustaining cellular activity at 300 g/L salinity. This study provides a non-gene editing approach to enhance PHA productivity.
Collapse
Affiliation(s)
- Hui-Juan Yan
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China
| | - You-Wei Cui
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China.
| | - Si Chen
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China
| | - Xu Wang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China; Beijing Municipal Research Institute of Eco-Environmental Protection, National Engineering Research Center for Urban Environmental Pollution Control, Beijing 100037, China
| |
Collapse
|
8
|
Simó-Cabrera L, García-Chumillas S, Benitez-Benitez SJ, Cánovas V, Monzó F, Pire C, Martínez-Espinosa RM. Production of Poly(3-hydroxybutyrate- co-3-hydroxyvalerate) (PHBV) by Haloferax mediterranei Using Candy Industry Waste as Raw Materials. Bioengineering (Basel) 2024; 11:870. [PMID: 39329612 PMCID: PMC11429114 DOI: 10.3390/bioengineering11090870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 08/09/2024] [Accepted: 08/26/2024] [Indexed: 09/28/2024] Open
Abstract
The haloarchaeon Haloferax mediterranei synthesizes poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) under unfavorable nutritional conditions without the addition of any precursor to the culture, which is an advantage compared to other microbial counterparts able to synthesize polyhydroxyalkanoates (PHA). PHBV is a biodegradable polymer showing physiochemical properties of biotechnological and biomedical interest and can be used as an alternative to plastics made from chemical synthesis (which are not environmentally friendly). The versatile metabolism of H. mediterranei makes the use of waste as a carbon source for cellular growth and PHA synthesis possible. In this work, cellular growth and the production and characterization of PHBV using two different types of confectionery waste were analyzed and compared with cellular growth and PHBV synthesis in a standard culture media with glucose of analytical grade as a carbon source. The PHBV granules produced were analyzed by TEM and the biopolymer was isolated and characterized by GC-MS, FTIR NMR, and DSC. The results reveal that H. mediterranei can use these two residues (R1 and R2) for pure PHBV production, achieving 0.256 and 0.983 g PHBV/L, respectively, which are among the highest yields so far described using for the first-time waste from the candy industry. Thus, a circular economy-based process has been designed to optimize the upscaling of PHBV production by using haloarchaea as cell factories and valorizing confectionery waste.
Collapse
Affiliation(s)
- Lorena Simó-Cabrera
- Biochemistry, Molecular Biology, Edaphology and Agricultural Chemistry Department, Faculty of Science, University of Alicante, Carretera San Vicente del Raspeig s/n-03690 San Vicente del Raspeig, E-03690 Alicante, Spain
- Multidisciplinary Institute for Environmental Studies "Ramón Margalef", University of Alicante, Ap. 99, E-03080 Alicante, Spain
| | - Salvador García-Chumillas
- Technological Centre of Footwear and Plastic of the Region of Murcia (CETEC) Avda, Europa 4-5, E-30840 Alhama de Murcia, Spain
- Cetec Biotechnology, Avda, Europa 4-5, E-30840 Alhama de Murcia, Spain
| | - Sergio J Benitez-Benitez
- Technological Centre of Footwear and Plastic of the Region of Murcia (CETEC) Avda, Europa 4-5, E-30840 Alhama de Murcia, Spain
| | - Verónica Cánovas
- Cetec Biotechnology, Avda, Europa 4-5, E-30840 Alhama de Murcia, Spain
| | - Fuensanta Monzó
- Technological Centre of Footwear and Plastic of the Region of Murcia (CETEC) Avda, Europa 4-5, E-30840 Alhama de Murcia, Spain
| | - Carmen Pire
- Biochemistry, Molecular Biology, Edaphology and Agricultural Chemistry Department, Faculty of Science, University of Alicante, Carretera San Vicente del Raspeig s/n-03690 San Vicente del Raspeig, E-03690 Alicante, Spain
- Multidisciplinary Institute for Environmental Studies "Ramón Margalef", University of Alicante, Ap. 99, E-03080 Alicante, Spain
| | - Rosa María Martínez-Espinosa
- Biochemistry, Molecular Biology, Edaphology and Agricultural Chemistry Department, Faculty of Science, University of Alicante, Carretera San Vicente del Raspeig s/n-03690 San Vicente del Raspeig, E-03690 Alicante, Spain
- Multidisciplinary Institute for Environmental Studies "Ramón Margalef", University of Alicante, Ap. 99, E-03080 Alicante, Spain
| |
Collapse
|
9
|
Giwa AS, Shafique E, Ali N, Vakili M. Recent Advances in Food Waste Transformations into Essential Bioplastic Materials. Molecules 2024; 29:3838. [PMID: 39202917 PMCID: PMC11357003 DOI: 10.3390/molecules29163838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/06/2024] [Accepted: 08/09/2024] [Indexed: 09/03/2024] Open
Abstract
Lignocellulose is a major biopolymer in plant biomass with a complex structure and composition. It consists of a significant amount of high molecular aromatic compounds, particularly vanillin, syringeal, ferulic acid, and muconic acid, that could be converted into intracellular metabolites such as polyhydroxyalkanoates (PHA) and hydroxybutyrate (PHB), a key component of bioplastic production. Several pre-treatment methods were utilized to release monosaccharides, which are the precursors of the relevant pathway. The consolidated bioprocessing of lignocellulose-capable microbes for biomass depolymerization was discussed in this study. Carbon can be stored in a variety of forms, including PHAs, PHBs, wax esters, and triacylglycerides. From a biotechnology standpoint, these compounds are quite adaptable due to their precursors' utilization of hydrogen energy. This study lays the groundwork for the idea of lignocellulose valorization into value-added products through several significant dominant pathways.
Collapse
Affiliation(s)
- Abdulmoseen Segun Giwa
- School of Civil and Environmental Engineering, Nanchang Institute of Science and Technology, Nanchang 330108, China;
| | - Ehtisham Shafique
- Department of Biological and Health Sciences, Pak-Austria Fachhochschule: Institute of Applied Sciences and Technology, Khanpur Road Haripur 22621, Pakistan;
| | - Nasir Ali
- Department of Biological and Health Sciences, Pak-Austria Fachhochschule: Institute of Applied Sciences and Technology, Khanpur Road Haripur 22621, Pakistan;
| | | |
Collapse
|
10
|
Costa P, Basaglia M, Casella S, Favaro L. Copolymers as a turning point for large scale polyhydroxyalkanoates applications. Int J Biol Macromol 2024; 275:133575. [PMID: 38960239 DOI: 10.1016/j.ijbiomac.2024.133575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 05/28/2024] [Accepted: 06/28/2024] [Indexed: 07/05/2024]
Abstract
Traditional plastics reshaped the society thanks to their brilliant properties and cut-price manufacturing costs. However, their protracted durability and limited recycling threaten the environment. Worthy alternatives seem to be polyhydroxyalkanoates, compostable biopolymers produced by several microbes. The most common 3-hydroxybutyrate homopolymer has limited applications calling for copolymers biosynthesis to enhance material properties. As a growing number of researches assess the discovery of novel comonomers, great endeavors are dedicated as well to copolymers production scale-up, where the choice of the microbial carbon source significantly affects the overall economic feasibility. Diving into novel metabolic pathways, engineered strains, and cutting-edge bioprocess strategies, this review aims to survey up-to-date publications about copolymers production, focusing primarily on precursors origins. Specifically, in the core of the review, copolymers precursors have been divided into three categories based on their economic value: the costliest structurally related ones, the structurally unrelated ones, and finally various low-cost waste streams. The combination of cheap biomasses, efficient pretreatment strategies, and robust microorganisms paths the way towards the development of versatile and circular polymers. Conceived to researchers and industries interested in tackling polyhydroxyalkanoates production, this review explores an angle often underestimated yet of prime importance: if PHAs copolymers offer advanced properties and sustainable end-of-life, the feedstock choice for their upstream becomes a major factor in the development of plastic substitutes.
Collapse
Affiliation(s)
- Paolo Costa
- Waste-to-Bioproducts Lab, Department of Agronomy, Food, Natural resources, Animals and Environment (DAFNAE), University of Padova, Agripolis, Viale dell'Università, 16, 35020 Legnaro, PD, Italy.
| | - Marina Basaglia
- Waste-to-Bioproducts Lab, Department of Agronomy, Food, Natural resources, Animals and Environment (DAFNAE), University of Padova, Agripolis, Viale dell'Università, 16, 35020 Legnaro, PD, Italy.
| | - Sergio Casella
- Waste-to-Bioproducts Lab, Department of Agronomy, Food, Natural resources, Animals and Environment (DAFNAE), University of Padova, Agripolis, Viale dell'Università, 16, 35020 Legnaro, PD, Italy.
| | - Lorenzo Favaro
- Waste-to-Bioproducts Lab, Department of Agronomy, Food, Natural resources, Animals and Environment (DAFNAE), University of Padova, Agripolis, Viale dell'Università, 16, 35020 Legnaro, PD, Italy; Department of Microbiology, Stellenbosch University, Private Bag X1, 7602 Matieland, South Africa.
| |
Collapse
|
11
|
Jo SY, Lim SH, Lee JY, Son J, Choi JI, Park SJ. Microbial production of poly(3-hydroxybutyrate-co-3-hydroxyvalerate), from lab to the shelf: A review. Int J Biol Macromol 2024; 274:133157. [PMID: 38901504 DOI: 10.1016/j.ijbiomac.2024.133157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 06/22/2024]
Abstract
Polyhydroxyalkanoates (PHAs) are natural biopolyesters produced by microorganisms that represent one of the most promising candidates for the replacement of conventional plastics due to their complete biodegradability and advantageous material properties which can be modulated by varying their monomer composition. Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) [P(3HB-co-3HV)] has received particular research attention because it can be synthesized based on the same microbial platform developed for poly(3-hydroxybutyrate) [P(3HB)] without much modification, with as high productivity as P(3HB). It also offers more useful mechanical and thermal properties than P(3HB), which broaden its application as a biocompatible and biodegradable polyester. However, a significant commercial disadvantage of P(3HB-co-3HV) is its rather high production cost, thus many studies have investigated the economical synthesis of P(3HB-co-3HV) from structurally related and unrelated carbon sources in both wild-type and recombinant microbial strains. A large number of metabolic engineering strategies have also been proposed to tune the monomer composition of P(3HB-co-3HV) and thus its material properties. In this review, recent metabolic engineering strategies designed for enhanced production of P(3HB-co-3HV) are discussed, along with their current status, limitations, and future perspectives.
Collapse
Affiliation(s)
- Seo Young Jo
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Seo Hyun Lim
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Ji Yeon Lee
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Jina Son
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Jong-Il Choi
- Department of Biotechnology and Bioengineering, Chonnam National University, Gwangju 61186, Republic of Korea.
| | - Si Jae Park
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea.
| |
Collapse
|
12
|
Al-Daghistani HI, Zein S, Abbas MA. Microbial communities in the Dead Sea and their potential biotechnological applications. Commun Integr Biol 2024; 17:2369782. [PMID: 38919836 PMCID: PMC11197920 DOI: 10.1080/19420889.2024.2369782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 06/12/2024] [Indexed: 06/27/2024] Open
Abstract
The Dead Sea is unique compared to other extreme halophilic habitats. Its salinity exceeds 34%, and it is getting saltier. The Dead Sea environment is characterized by a dominance of divalent cations, with magnesium chloride (MgCl2) levels approaching the predicted 2.3 M upper limit for life, an acidic pH of 6.0, and high levels of absorbed ultraviolet radiation. Consequently, only organisms adapted to such a polyextreme environment can survive in the surface, sinkholes, sediments, muds, and underwater springs of the Dead Sea. Metagenomic sequence analysis and amino acid profiling indicated that the Dead Sea is predominantly composed of halophiles that have various adaptation mechanisms and produce metabolites that can be utilized for biotechnological purposes. A variety of products have been obtained from halophilic microorganisms isolated from the Dead Sea, such as antimicrobials, bioplastics, biofuels, extremozymes, retinal proteins, colored pigments, exopolysaccharides, and compatible solutes. These resources find applications in agriculture, food, biofuel production, industry, and bioremediation for the detoxification of wastewater and soil. Utilizing halophiles as a bioprocessing platform offers advantages such as reduced energy consumption, decreased freshwater demand, minimized capital investment, and continuous production.
Collapse
Affiliation(s)
- Hala I. Al-Daghistani
- Department of Medical Laboratory Sciences, Faculty of Allied Medical Sciences, Al-Ahliyya Amman University, Amman, Jordan
| | - Sima Zein
- Department of Pharmaceutical Biotechnology, Faculty of Allied Medical Sciences, Al-Ahliyya Amman University, Amman, Jordan
| | - Manal A. Abbas
- Department of Medical Laboratory Sciences, Faculty of Allied Medical Sciences, Al-Ahliyya Amman University, Amman, Jordan
| |
Collapse
|
13
|
Longo A, Fanelli F, Villano M, Montemurro M, Rizzello CG. Bioplastic Production from Agri-Food Waste through the Use of Haloferax mediterranei: A Comprehensive Initial Overview. Microorganisms 2024; 12:1038. [PMID: 38930420 PMCID: PMC11205408 DOI: 10.3390/microorganisms12061038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/06/2024] [Accepted: 05/16/2024] [Indexed: 06/28/2024] Open
Abstract
The research on bioplastics (both biobased and biodegradable) is steadily growing and discovering environmentally friendly substitutes for conventional plastic. This review highlights the significance of bioplastics, analyzing, for the first time, the state of the art concerning the use of agri-food waste as an alternative substrate for biopolymer generation using Haloferax mediterranei. H. mediterranei is a highly researched strain able to produce polyhydroxybutyrate (PHB) since it can grow and produce bioplastic in high-salinity environments without requiring sterilization. Extensive research has been conducted on the genes and pathways responsible for PHB production using H. mediterranei to find out how fermentation parameters can be regulated to enhance cell growth and increase PHB accumulation. This review focuses on the current advancements in utilizing food waste as a substitute for costly substrates to reduce feedstock expenses. Specifically, it examines the production of biomass and the recovery of PHB from agri-food waste. Furthermore, it emphasizes the characterization of PHB and the significance of hydroxyvalerate (HV) abundance in the formation of Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) copolymer. The downstream processing options are described, and the crucial factors associated with industrial scale-up are assessed, including substrates, bioreactors, process parameters, and bioplastic extraction and purification. Additionally, the economic implications of various options are discussed.
Collapse
Affiliation(s)
- Angela Longo
- Department of Environmental Biology, Sapienza University of Rome, 00185 Rome, Italy; (A.L.); (C.G.R.)
| | - Francesca Fanelli
- Institute of Sciences of Food Production (CNR-ISPA), National Research Council of Italy, 70126 Bari, Italy;
| | - Marianna Villano
- Department of Chemistry, Sapienza University of Rome, 00185 Rome, Italy;
- Research Center for Applied Sciences to the Safeguard of Environment and Cultural Heritage (CIABC), Sapienza University of Rome, 00185 Rome, Italy
| | - Marco Montemurro
- Institute of Sciences of Food Production (CNR-ISPA), National Research Council of Italy, 70126 Bari, Italy;
| | - Carlo Giuseppe Rizzello
- Department of Environmental Biology, Sapienza University of Rome, 00185 Rome, Italy; (A.L.); (C.G.R.)
| |
Collapse
|
14
|
Bacha S, Arous F, Chouikh E, Jaouani A, Gtari M, Charradi K, Attia H, Ghorbel D. Exploring Bacillus amyloliquefaciens strain OM81 for the production of polyhydroxyalkanoate (PHA) bioplastic using olive mill wastewater. 3 Biotech 2023; 13:415. [PMID: 38009166 PMCID: PMC10667205 DOI: 10.1007/s13205-023-03808-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 10/10/2023] [Indexed: 11/28/2023] Open
Abstract
In this study, bacterial strains isolated from olive oil mill wastewater assigned to Bacillus (n = 4) and Klebsiella (n = 1) genera, were evaluated for their ability to accumulate intracellular PHA granules using Sudan Black staining. A maximum PHA production of 0.14 g/L (i.e., 30.2% wt./wt. in dry biomass) was observed in Bacillus amyloliquefaciens strain OM81 after 72 h of incubation in the presence of 2% glucose (synthetic medium). To reduce bioplastic production costs and recover a polluting product, olive mill wastewater was tested as a carbon source. In this context, the maximum growth (1.45 g/L) was observed in the presence of 50% olive mill wastewater. After extracting the biopolymers with chloroform, quantitative and qualitative analyses were conducted using Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), and thermogravimetric analysis (TGA). FTIR showed an absorption band at 1730 cm-1 assigned to the elongation of the PHB carbonyl groups. This approach offers a dual benefit of reducing pollution and bioplastic production costs. The Bacillus amyloliquefaciens strain OM81 showed promising results for PHAs production, making it a potential candidate for further investigation. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-023-03808-4.
Collapse
Affiliation(s)
- Samar Bacha
- University of Carthage, INSAT, Centre Urbain Nord, B.P. 676, 1080 Tunis, Tunisia
| | - Fatma Arous
- LR22ES04 Bioresources, Environment and Biotechnologies (BeB), University of Tunis El Manar, Higher Institute of Applied Biological Sciences of Tunis, 1006 Tunis, Tunisia
| | - Emna Chouikh
- University of Carthage, INSAT, Centre Urbain Nord, B.P. 676, 1080 Tunis, Tunisia
| | - Atef Jaouani
- LR22ES04 Bioresources, Environment and Biotechnologies (BeB), University of Tunis El Manar, Higher Institute of Applied Biological Sciences of Tunis, 1006 Tunis, Tunisia
| | - Maher Gtari
- University of Carthage, INSAT, Centre Urbain Nord, B.P. 676, 1080 Tunis, Tunisia
- USCR Bactériologie Moléculaire & Génomique, INSAT, Centre Urbain Nord, B.P. 676, 1080 Tunis, Tunisia
- Food Analysis, Valorization, and Safety Laboratory, LAVASA, LR11ES45, BPW, University of Sfax, ENIS, 3038 Sfax, Tunisia
| | - Khaled Charradi
- Nanomaterials and Systems for Renewable Energy Laboratory, Research and Technology Center of Energy, Technopark Borj Cedria, BP 095, Hammam-Lif, Tunisia
| | - Hamadi Attia
- Food Analysis, Valorization, and Safety Laboratory, LAVASA, LR11ES45, BPW, University of Sfax, ENIS, 3038 Sfax, Tunisia
| | - Dorra Ghorbel
- University of Carthage, INSAT, Centre Urbain Nord, B.P. 676, 1080 Tunis, Tunisia
- Food Analysis, Valorization, and Safety Laboratory, LAVASA, LR11ES45, BPW, University of Sfax, ENIS, 3038 Sfax, Tunisia
| |
Collapse
|
15
|
Rizzarelli P, Leanza M, Rapisarda M. Investigations into the characterization, degradation, and applications of biodegradable polymers by mass spectrometry. MASS SPECTROMETRY REVIEWS 2023. [PMID: 38014928 DOI: 10.1002/mas.21869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 10/10/2023] [Accepted: 11/08/2023] [Indexed: 11/29/2023]
Abstract
Biodegradable polymers have been getting more and more attention because of their contribution to the plastic pollution environmental issues and to move towards a circular economy. Nevertheless, biodegradable materials still exhibit various disadvantages restraining a widespread use in the market. Therefore, additional research efforts are required to improve their performance. Mass spectrometry (MS) affords a relevant contribution to optimize biodegradable polymer synthesis, to confirm macromolecular structures, to examine along the time the progress of degradation processes and highlight advantages and drawbacks in the extensive applications. This review aims to provide an overview of the MS investigations carried out to support the synthesis of biodegradable polymers, with helpful information on undesirable products or polymerization mechanism, to understand deterioration pathways by the structure of degradation products and to follow drug release and pharmacokinetic. Additionally, it summarizes MS studies addressed on environmental and health issues related to the extensive use of plastic materials, that is, potential migration of additives or microplastics identification and quantification. The paper is focused on the most significant studies relating to synthetic and microbial biodegradable polymers published in the last 15 years, not including agro-polymers such as proteins and polysaccharides.
Collapse
Affiliation(s)
- Paola Rizzarelli
- Consiglio Nazionale delle Ricerche (CNR), Istituto per i Polimeri Compositi e Biomateriali (IPCB), ede Secondaria di Catania, Catania, Italy
| | - Melania Leanza
- Consiglio Nazionale delle Ricerche (CNR), Istituto per i Polimeri Compositi e Biomateriali (IPCB), ede Secondaria di Catania, Catania, Italy
| | - Marco Rapisarda
- Consiglio Nazionale delle Ricerche (CNR), Istituto per i Polimeri Compositi e Biomateriali (IPCB), ede Secondaria di Catania, Catania, Italy
| |
Collapse
|
16
|
Jung HJ, Kim SH, Shin N, Oh SJ, Hwang JH, Kim HJ, Kim YH, Bhatia SK, Jeon JM, Yoon JJ, Yang YH. Polyhydroxybutyrate (PHB) production from sugar cane molasses and tap water without sterilization using novel strain, Priestia sp. YH4. Int J Biol Macromol 2023; 250:126152. [PMID: 37558031 DOI: 10.1016/j.ijbiomac.2023.126152] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 07/15/2023] [Accepted: 08/03/2023] [Indexed: 08/11/2023]
Abstract
The production cost of biodegradable polymer like polyhydroxybutyrate (PHB) is still higher than that of petroleum-based plastics. A potential solution for reducing its production cost is using a cheap carbon source and avoiding a process of sterilization. In this study, a novel PHB-producing microbial strain, Priestia sp. YH4 was screened from the marine environment using sugarcane molasses as the carbon source without sterilization. Culture conditions, such as carbon, NaCl, temperature, pH, inoculum size, and cultivation time, were optimized for obtaining the highest PHB production by YH4 resulting in 5.94 g/L of dry cell weight (DCW) and 61.7 % of PHB content in the 5 mL culture. In addition, it showed similar PHB production between the cultures with or without sterilization in Marine Broth media. When cultured using only tap water, sugarcane molasses, and NaCl in a 5 L fermenter, 24.8 g/L DCW was produced at 41 h yielding 13.9 g/L PHB. Finally, DSC (Differential Scanning Calorimetry) and GPC (Gel Permeation Chromatography) were used to analyze thermal properties and molecular weights resulting in Tm = 167.2 °C, Tc = 67.3 °C, Mw = 2.85 × 105, Mn = 1.05 × 105, and PDI = 2.7, respectively. Therefore, we showed the feasibility of more economical process for PHB production by finding novel strain, utilizing molasses with minimal media components and avoiding sterilization.
Collapse
Affiliation(s)
- Hee Ju Jung
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Sang Hyun Kim
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Nara Shin
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Suk-Jin Oh
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Jeong Hyeon Hwang
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Hyun Jin Kim
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Yi-Hyun Kim
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Shashi Kant Bhatia
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea; Institute for Ubiquitous Information Technology and Applications, Konkuk University, Seoul, Republic of Korea
| | - Jong-Min Jeon
- Green & Sustainable Materials R&D Department, Korea Institute of Industrial Technology (KITECH), Cheonan, Republic of Korea
| | - Jeong-Jun Yoon
- Green & Sustainable Materials R&D Department, Korea Institute of Industrial Technology (KITECH), Cheonan, Republic of Korea
| | - Yung-Hun Yang
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea; Institute for Ubiquitous Information Technology and Applications, Konkuk University, Seoul, Republic of Korea.
| |
Collapse
|
17
|
Chavan S, Yadav B, Tyagi RD, Wong JWC, Drogui P. Trends and challenges in the valorization of kitchen waste to polyhydroxyalkanoates. BIORESOURCE TECHNOLOGY 2023; 369:128323. [PMID: 36400275 DOI: 10.1016/j.biortech.2022.128323] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/08/2022] [Accepted: 11/10/2022] [Indexed: 06/16/2023]
Abstract
Kitchen waste (KW) is frequently available for free or with a negative cost due to its huge production. It contains a large proportion of organic substances, especially fermentable sugars, which can be used for bioplastic (polyhydroxyalkanoates or PHA) synthesis. Nevertheless, due to the difficulties in processing, various pre-treatments of KW are being investigated to enhance the concentration of simple sugars released during its hydrolysis. The effective use of KW will help in minimizing the issues of its inappropriate disposal. However, the review on KW to bioplastic synthesis is rarely reported in the literature. Hence, this particular review provides a comprehensive summary of the updated research developments in KW valorization and its potency as a feedstock for PHAs synthesis. Additionally, the impacts of KW, its availability, the necessary pre-treatments for the biopolymerization process, as well as the prospects and challenges for industrially generating sustainable PHAs, are critically discussed.
Collapse
Affiliation(s)
- Shraddha Chavan
- INRS Eau, Terre et Environnement, 490, rue de la Couronne, Québec G1K 9A9, Canada
| | - Bhoomika Yadav
- INRS Eau, Terre et Environnement, 490, rue de la Couronne, Québec G1K 9A9, Canada
| | - R D Tyagi
- BOSK-Bioproducts, 100-399 rue Jacquard, Québec (QC) G1N 4J6, Canada; School of Technology, Huzhou University, Huzhou 311800, China.
| | - Jonathan W C Wong
- Institute of Bioresource and Agriculture, Sino-Forest Applied Research Centre for Pearl River Delta Environment and Department of Biology, Hong Kong Baptist University, Hong Kong; School of Technology, Huzhou University, Huzhou 311800, China
| | - Patrick Drogui
- INRS Eau, Terre et Environnement, 490, rue de la Couronne, Québec G1K 9A9, Canada
| |
Collapse
|
18
|
Alsafadi D, AljaririAlhesan JS, Mansoura A, Oqdeha S. Production of polyhydroxyalkanoate from sesame seed wastewater by sequencing batch reactor cultivation process of Haloferax Mediterranei. ARAB J CHEM 2023. [DOI: 10.1016/j.arabjc.2023.104584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
|
19
|
Jung HJ, Kim SH, Cho DH, Kim BC, Bhatia SK, Lee J, Jeon JM, Yoon JJ, Yang YH. Finding of Novel Galactose Utilizing Halomonas sp. YK44 for Polyhydroxybutyrate (PHB) Production. Polymers (Basel) 2022; 14:polym14245407. [PMID: 36559775 PMCID: PMC9782037 DOI: 10.3390/polym14245407] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/26/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022] Open
Abstract
Polyhydroxybutyrate (PHB) is a biodegradable bioplastic with potential applications as an alternative to petroleum-based plastics. However, efficient PHB production remains difficult. The main cost of PHB production is attributed to carbon sources; hence, finding inexpensive sources is important. Galactose is a possible substrate for polyhydroxyalkanoate production as it is abundant in marine environments. Marine bacteria that produce PHB from galactose could be an effective resource that can be used for efficient PHB production. In this study, to identify a galactose utilizing PHB producer, we examined 16 Halomonas strains. We demonstrated that Halomonas cerina (Halomonas sp. YK44) has the highest growth and PHB production using a culture media containing 2% galactose, final 4% NaCl, and 0.1% yeast extract. These culture conditions yielded 8.98 g/L PHB (78.1% PHB content (w/w)). When galactose-containing red algae (Eucheuma spinosum) hydrolysates were used as a carbon source, 5.2 g/L PHB was produced with 1.425% galactose after treatment with activated carbon. Since high salt conditions can be used to avoid sterilization, we examined whether Halomonas sp. YK44 could produce PHB in non-sterilized conditions. Culture media in these conditions yielded 72.41% PHB content. Thus, Halomonas sp. YK44 is robust against contamination, allowing for long-term culture and economical PHB production.
Collapse
Affiliation(s)
- Hee Ju Jung
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Su Hyun Kim
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Do Hyun Cho
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Byung Chan Kim
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Shashi Kant Bhatia
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
- Institute for Ubiquitous Information Technology and Applications, Konkuk University, Seoul 05029, Republic of Korea
| | - Jongbok Lee
- Department of Biological and Chemical Engineering, Hongik University, Sejong 30016, Republic of Korea
| | - Jong-Min Jeon
- Green & Sustainable Materials R&D Department, Research Institute of Clean Manufacturing System, Korea Institute of Industrial Technology (KITECH), Cheonan 31056, Republic of Korea
| | - Jeong-Jun Yoon
- Green & Sustainable Materials R&D Department, Research Institute of Clean Manufacturing System, Korea Institute of Industrial Technology (KITECH), Cheonan 31056, Republic of Korea
| | - Yung-Hun Yang
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
- Institute for Ubiquitous Information Technology and Applications, Konkuk University, Seoul 05029, Republic of Korea
- Correspondence: ; Tel.: +82-2-450-2-3936
| |
Collapse
|
20
|
Hathi ZJ, Haque MA, Priya A, Qin ZH, Huang S, Lam CH, Ladakis D, Pateraki C, Mettu S, Koutinas A, Du C, Lin CSK. Fermentative bioconversion of food waste into biopolymer poly(3-hydroxybutyrate-co-3-hydroxyvalerate) using Cupriavidus necator. ENVIRONMENTAL RESEARCH 2022; 215:114323. [PMID: 36115419 DOI: 10.1016/j.envres.2022.114323] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 08/20/2022] [Accepted: 09/07/2022] [Indexed: 05/27/2023]
Abstract
Dependency on plastic commodities has led to a recurrent increase in their global production every year. Conventionally, plastic products are derived from fossil fuels, leading to severe environmental concerns. The recent coronavirus disease 2019 pandemic has triggered an increase in medical waste. Conversely, it has disrupted the supply chain of personal protective equipment (PPE). Valorisation of food waste was performed to cultivate C. necator for fermentative production of biopolymer poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV). The increase in biomass, PHBV yield and molar 3-hydroxy valerate (3HV) content was estimated after feeding volatile fatty acids. The fed-batch fermentation strategy reported in this study produced 15.65 ± 0.14 g/L of biomass with 5.32 g/L of PHBV with 50% molar 3HV content. This is a crucial finding, as molar concentration of 3HV can be modulated to suit the specification of biopolymer (film or fabric). The strategy applied in this study addresses the issue of global food waste burden and subsequently generates biopolymer PHBV, turning waste to wealth.
Collapse
Affiliation(s)
- Zubeen J Hathi
- School of Energy and Environment, City University of Hong Kong, Tat Chee Ave, Kowloon, Hong Kong
| | - Md Ariful Haque
- School of Energy and Environment, City University of Hong Kong, Tat Chee Ave, Kowloon, Hong Kong
| | - Anshu Priya
- School of Energy and Environment, City University of Hong Kong, Tat Chee Ave, Kowloon, Hong Kong
| | - Zi-Hao Qin
- School of Energy and Environment, City University of Hong Kong, Tat Chee Ave, Kowloon, Hong Kong
| | - Shuquan Huang
- School of Energy and Environment, City University of Hong Kong, Tat Chee Ave, Kowloon, Hong Kong
| | - Chun Ho Lam
- School of Energy and Environment, City University of Hong Kong, Tat Chee Ave, Kowloon, Hong Kong
| | - Dimitris Ladakis
- Department of Food Science and Human Nutrition, Agricultural University of Athens, Athens, Greece
| | - Chrysanthi Pateraki
- Department of Food Science and Human Nutrition, Agricultural University of Athens, Athens, Greece
| | - Srinivas Mettu
- Chemical and Environmental Engineering, School of Engineering, RMIT University, Melbourne, Victoria, 3000, Australia
| | - Apostolis Koutinas
- Department of Food Science and Human Nutrition, Agricultural University of Athens, Athens, Greece
| | - Chenyu Du
- School of Applied Sciences, University of Huddersfield, Huddersfield, HD1 3DH, United Kingdom
| | - Carol Sze Ki Lin
- School of Energy and Environment, City University of Hong Kong, Tat Chee Ave, Kowloon, Hong Kong.
| |
Collapse
|
21
|
Ding Z, Kumar V, Sar T, Harirchi S, Dregulo AM, Sirohi R, Sindhu R, Binod P, Liu X, Zhang Z, Taherzadeh MJ, Awasthi MK. Agro waste as a potential carbon feedstock for poly-3-hydroxy alkanoates production: Commercialization potential and technical hurdles. BIORESOURCE TECHNOLOGY 2022; 364:128058. [PMID: 36191751 DOI: 10.1016/j.biortech.2022.128058] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/24/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
The enormous production and widespread applications of non -biodegradable plastics lead to their accumulation and toxicity to animals and humans. The issue can be addressed by the development of eco-friendly strategies for the production of biopolymers by utilization of waste residues like agro residues. This will address two societal issues - waste management and the development of an eco-friendly biopolymer, poly-3-hydroxy alkanoates (PHAs). Strategies adopted for utilization of agro-residues, challenges and future perspectives are discussed in detail in this comprehensive review. The possibility of PHA properties improvements can be increased by preparation of blends.
Collapse
Affiliation(s)
- Zheli Ding
- Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences (CATAS), Haikou, Hainan Province 571101, China
| | - Vinay Kumar
- Department of Community Medicine, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam 602105, India
| | - Taner Sar
- Swedish Centre for Resource Recovery, University of Borås, Borås 50190, Sweden
| | - Sharareh Harirchi
- Swedish Centre for Resource Recovery, University of Borås, Borås 50190, Sweden
| | - Andrei Mikhailovich Dregulo
- Institute for Regional Economy Problems of the Russian Academy of Sciences (IRES RAS), 38 Serpukhovskaya str, 190013 Saint-Petersburg, Russia
| | - Ranjna Sirohi
- Department of Food Technology, School of Health Sciences & Technology, University of Petroleum and Energy Studies, Dehradun 248 007, India
| | - Raveendran Sindhu
- Department of Food Technology, TKM Institute of Technology, Kollam 691505, Kerala, India
| | - Parameswaran Binod
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Trivandrum 695019, Kerala, India
| | - Xiaodi Liu
- Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences (CATAS), Haikou, Hainan Province 571101, China
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | | | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China.
| |
Collapse
|
22
|
Priya A, Hathi Z, Haque MA, Kumar S, Kumar A, Singh E, Lin CSK. Effect of levulinic acid on production of polyhydroxyalkanoates from food waste by Haloferax mediterranei. ENVIRONMENTAL RESEARCH 2022; 214:114001. [PMID: 35934144 DOI: 10.1016/j.envres.2022.114001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/15/2022] [Accepted: 07/25/2022] [Indexed: 06/15/2023]
Abstract
Polyhydroxyalkanoates (PHA), especially poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) is considered as the most suitable candidate to replace petrochemical plastics. However, the high production cost and the composition of the monomers in the copolymer are the major constraints in production. The 3-hydroxyvalerate (3HV) rich copolymers are ideal for various applications due to their lower melting points, improved elasticity, and ductility. Haloferax mediterranei is a suitable microorganism for the production of biopolymer PHBV from biowaste. Nevertheless, the potential of H. mediterranei cultivated on food waste as sustainable substrate and levulinic acid as an inducer has not been explored for PHBV production. This study aims at the valorization of food waste as low-cost substrate and evaluation of effect of levulinic acid in the production and composition of PHBV using H. mediterranei. Shake-flask fermentations using different concentrations of salt, glucose and levulinic acid were first performed to optimize the cultivation conditions. The highest growth of the halophile was observed at salt concentration of 15% and glucose of concentration 10 g/L. Under optimized growth conditions, H. mediterranei was cultivated for PHBV production in fed-batch bioreactor with pulse fed levulinic acid. The maximum biomass of 3.19 ± 0.66 g/L was achieved after 140 h of cultivation with 3 g/L of levulinic acid. A decrease in H. mediterranei growth was noticed with the increase in levulinic acid concentration in the range of 3-10 g/L. The overall yield of PHBV at 3, 5, 7 and 10 g/L of levulinic acid were 18.23%, 56.70%, 31.54%, 21.29%, respectively. The optimum concentration of 5 g/L of levulinic acid was found to produce the maximum yield of 56.70% PHBV with 18.55 mol% 3HV content. A correlation between levulinic acid concentrations and PHBV production established in this study can serve as an important reference for future large-scale production.
Collapse
Affiliation(s)
- Anshu Priya
- School of Energy and Environment, City University of Hong Kong, Tat Chee Ave, Kowloon, Hong Kong
| | - Zubeen Hathi
- School of Energy and Environment, City University of Hong Kong, Tat Chee Ave, Kowloon, Hong Kong
| | - Md Ariful Haque
- School of Energy and Environment, City University of Hong Kong, Tat Chee Ave, Kowloon, Hong Kong
| | - Sunil Kumar
- Technology Development Centre, Council of Scientific and Industrial Research-National Environmental Engineering Research Institute (CSIR - NEERI), Nehru Marg, Nagpur, 440020, Maharashtra, India
| | - Aman Kumar
- Technology Development Centre, Council of Scientific and Industrial Research-National Environmental Engineering Research Institute (CSIR - NEERI), Nehru Marg, Nagpur, 440020, Maharashtra, India
| | - Ekta Singh
- Technology Development Centre, Council of Scientific and Industrial Research-National Environmental Engineering Research Institute (CSIR - NEERI), Nehru Marg, Nagpur, 440020, Maharashtra, India
| | - Carol S K Lin
- School of Energy and Environment, City University of Hong Kong, Tat Chee Ave, Kowloon, Hong Kong.
| |
Collapse
|
23
|
Microplastic burden in Africa: A review of occurrence, impacts, and sustainability potential of bioplastics. CHEMICAL ENGINEERING JOURNAL ADVANCES 2022. [DOI: 10.1016/j.ceja.2022.100402] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
|
24
|
A promising antimicrobial bionanocomposite based poly(3-hydroxybutyrate-co-3-hydroxyvalerate) reinforced silver doped zinc oxide nanoparticles. Sci Rep 2022; 12:14299. [PMID: 35995923 PMCID: PMC9395520 DOI: 10.1038/s41598-022-17470-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 07/26/2022] [Indexed: 02/02/2023] Open
Abstract
A bionanocomposite based on biosynthesized poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) and reinforced with silver@zinc oxide (Ag-ZnO) was synthesized in variable loadings of Ag-ZnO using the in-situ casting dissolution technique. The degradable biopolymer PHBV had been biosynthesized from date waste as a renewable carbon source. The fabricated products were investigated as promising antibacterial materials. The Ag-ZnO nanoparticles were also synthesized using the green method in the presence of Gum Arabic. The Ag-ZnO nanoparticles were loaded within the PHBV biopolymer backbone at concentration of 1%, 3%, 5% and 10%, PHBV/Ag-ZnO(1,3,5,10%). The chemical structure, morphology, physical and thermal properties of the PHBV/Ag-ZnO bionanocomposites were assessed via common characterization tools of FTIR, TGA, XRD, SEM and EDX. One step of the degradation process was observed in the range of 200-220 °C for all the obtained materials. The onset degradation temperature of the bionanocomposites have been noticeably increased with increasing the nanofiller loading percentage. In addition, fabricated products were investigated for their interesting antibacterial performance. A detailed biological screening for the obtained products was confirmed against some selected Gram-positive and Gram-negative strains S. aureus and E. coli, respectively. Overall, the bionanocomposite PHBV/Ag-ZnO(10%) was the most potent against both types of the selected bacteria. The order of bacterial growth inhibition on the surface of the fabricated bionanocomposites was detected as follows: PHBV/Ag-ZnO(10%) > PHBV/Ag-ZnO(5%) > PHBV/Ag-ZnO(3%) > PHBV/Ag-ZnO(1%).
Collapse
|
25
|
Ibrahim MI, Alsafadi D, Safi E, Alenazi E, Aboulsoud M, Hussein MA, Alamry KA. Biosynthesized poly(3-hydroxybutyrate-co-3-hydroxyvalerate) as biocompatible microcapsules with extended release for busulfan and montelukast. Int J Biol Macromol 2022; 213:728-737. [PMID: 35671908 DOI: 10.1016/j.ijbiomac.2022.05.181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 05/09/2022] [Accepted: 05/27/2022] [Indexed: 11/18/2022]
Abstract
An extended release dosage form based on encapsulating the challenging drug busulfan within microspheres of the biodegradable, biocompatible and biosynthesized poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) polyester was achieved. The used (PHBV) polymer was biosynthesized by the halophilic archaeon Haloferax mediterranei from date waste biomass as feed-stock. PHBV microspheres of 1.2-2.1 μm diameter were successfully fabricated and loaded with busulfan with an encapsulation efficiency of 29.2 ± 0.2%. In addition, PHBV microspheres of 1.5-3.5 μm diameter and loaded with montelukast sodium (MK) drug were also fabricated with an encapsulation efficiency of 16.0 ± 0.4%. The double-emulsion solvent evaporation method was used to fabricate the drug-loaded microspheres. The drug-loaded microspheres have been characterized by XRD, FTIR and SEM, and confirmed to be successfully fabricated. The drugs in vitro release profiles have shown extended release for up to 3 days in case of busulfan and 8 h in case of montelukast sodium. The in vitro release profiles for busulfan and montelukast suggest that these drug-loaded microcapsules can be efficiently used as new dosage forms to solve the current issues of busulfan administration protocols, and to introduce a new dosage form for montelukast with extended release performance.
Collapse
Affiliation(s)
- Mohammad I Ibrahim
- Department of Chemistry, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Diya Alsafadi
- Biocatalysis and Biosynthesis Research Unit, Advanced Research Center, Royal Scientific Society, Amman 11941, Jordan
| | - Eyad Safi
- College of Petroleum Engineering & Geosciences (CPG), King Fahd University of Petroleum & Minerals (KFUPM), Dhahran, Saudi Arabia
| | - Eid Alenazi
- King Faisal Specialist Hospital (KFSH), Riyadh, Saudi Arabia
| | | | - Mahmoud A Hussein
- Department of Chemistry, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Polymer Chemistry Lab., Chemistry Department, Faculty of Science, Assiut University, Assiut 71516, Egypt
| | - Khalid A Alamry
- Department of Chemistry, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| |
Collapse
|
26
|
Date Components as Promising Plant-Based Materials to Be Incorporated into Baked Goods—A Review. SUSTAINABILITY 2022. [DOI: 10.3390/su14020605] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Date (Phoenix dactylifera L. Arecaceae) fruits and their by-products are rich in nutrients. The health benefits of dates and their incorporation into value-added products have been widely studied. The date-processing industry faces a significant sustainability challenge as more than 10% (w/w) of the production is discarded as waste or by-products. Currently, food scientists are focusing on bakery product fortification with functional food ingredients due to the high demand for nutritious food with more convenience. Utilizing date components in value-added bakery products is a trending research area with increasing attention. Studies where the researchers tried to improve the quality of bakery goods by incorporating date components have shown positive results, with several drawbacks that need attention and further research. The objective of this review is to present a comprehensive overview of the utilization of date components in bakery products and to identify gaps in the current knowledge. This review will help focus further research in the area of valorization of date by-products and thereby contribute to the generation of novel functional bakery products that meet consumer expectations and industry standards, thus generating income for the relevant industry and considerable alleviation of the environmental burden this waste and by-products contribute to. Only a few studies have been focused on utilizing date by-products and their extracts for baked goods, while a research area still remaining under-explored is the effect of incorporation of date components on the shelf life of bakery products.
Collapse
|
27
|
Haloarchaea as emerging big players in future polyhydroxyalkanoate bioproduction: Review of trends and perspectives. CURRENT RESEARCH IN BIOTECHNOLOGY 2022. [DOI: 10.1016/j.crbiot.2022.09.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
28
|
Hussin F, Aroua MK, Szlachta M. Biochar derived from fruit by-products using pyrolysis process for the elimination of Pb(II) ion: An updated review. CHEMOSPHERE 2022; 287:132250. [PMID: 34547565 DOI: 10.1016/j.chemosphere.2021.132250] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 09/02/2021] [Accepted: 09/12/2021] [Indexed: 06/13/2023]
Abstract
Water pollution is one of the most concerning global environmental problems in this century with the severity and complexity of the issue increases every day. One of the major contributors to water pollution is the discharge of harmful heavy metal wastes into the rivers and water bodies. Without proper treatment, the release of these harmful inorganic waste would endanger the environment by contaminating the food chains of living organisms, hence, leading to potential health risks to humans. The adsorption method has become one of the cost-effective alternative treatments to eliminate heavy metal ions. Since the type of adsorbent material is the most vital factor that determines the effectiveness of the adsorption, continuous efforts have been made in search of cheap adsorbents derived from a variety of waste materials. Fruit waste can be transformed into valuable products, such as biochar, as they are composed of many functional groups, including carboxylic groups and lignin, which is effective in metal binding. The main objective of this study was to review the potential of various types of fruit wastes as an alternative adsorbent for Pb(II) removal. Following a brief overview of the properties and effects of Pb(II), this study discussed the equilibrium isotherms and adsorption kinetic by various adsorption models. The possible adsorption mechanisms and regeneration study for Pb(II) removal were also elaborated in detail to provide a clear understanding of biochar produced using the pyrolysis technique. The future prospects of fruit waste as an adsorbent for the removal of Pb(II) was also highlighted.
Collapse
Affiliation(s)
- Farihahusnah Hussin
- Research Centre for Carbon Dioxide Capture and Utilisation (CCDCU), School of Engineering and Technology, Sunway University, No. 5 Jalan Universiti, Bandar Sunway, 47500, Petaling Jaya, Selangor, Malaysia.
| | - Mohamed Kheireddine Aroua
- Research Centre for Carbon Dioxide Capture and Utilisation (CCDCU), School of Engineering and Technology, Sunway University, No. 5 Jalan Universiti, Bandar Sunway, 47500, Petaling Jaya, Selangor, Malaysia; Department of Engineering, Lancaster University, Lancaster, LA1 4YW, UK
| | - Małgorzata Szlachta
- Faculty of Environmental Engineering, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370, Wrocław, Poland; Geological Survey of Finland, P.O. Box 96, FI-02151, Espoo, Finland
| |
Collapse
|
29
|
Rodríguez G JE, Brojanigo S, Basaglia M, Favaro L, Casella S. Efficient production of polyhydroxybutyrate from slaughterhouse waste using a recombinant strain of Cupriavidus necator DSM 545. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 794:148754. [PMID: 34225137 DOI: 10.1016/j.scitotenv.2021.148754] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/23/2021] [Accepted: 06/25/2021] [Indexed: 06/13/2023]
Abstract
Slaughterhouse residues are greatly available and can pose a threat to the environment if not disposed of correctly. Such by-products can be proficiently processed into polyhydroxyalkanoates by accurately selected and developed bacterial strains. Cupriavidus necator DSM 545, one of the most efficient polyhydroxyalkanoates-producing strain, cannot grow well on fatty substrates. In this work, a recombinant lipolytic C. necator microbe was developed for the efficient conversion of slaughtering by-products into polyhydroxyalkanoates. Two lipase sequences, lipC and lipH of Pseudomonas stutzeri BT3, were effectively expressed in C. necator DSM 545. The engineered strain C. necator DSM 545 JR11, selected for the outstanding extracellular lipolytic activity, produced high levels of polyhydroxyalkanoates (nearly 65% of cell dry mass) from udder, jowl and membrane caul fat. This research is crucial to the cost-effective one-step processing of slaughterhouse waste into polyhydroxyalkanoates with useful applications in several industrial and medical sectors.
Collapse
Affiliation(s)
- Jesús E Rodríguez G
- Department of Agronomy Food Natural Resources Animals and Environment (DAFNAE), University of Padova, Agripolis, Viale dell'Università 16, 35020 Legnaro, PD, Italy.
| | - Silvia Brojanigo
- Department of Agronomy Food Natural Resources Animals and Environment (DAFNAE), University of Padova, Agripolis, Viale dell'Università 16, 35020 Legnaro, PD, Italy.
| | - Marina Basaglia
- Department of Agronomy Food Natural Resources Animals and Environment (DAFNAE), University of Padova, Agripolis, Viale dell'Università 16, 35020 Legnaro, PD, Italy.
| | - Lorenzo Favaro
- Department of Agronomy Food Natural Resources Animals and Environment (DAFNAE), University of Padova, Agripolis, Viale dell'Università 16, 35020 Legnaro, PD, Italy.
| | - Sergio Casella
- Department of Agronomy Food Natural Resources Animals and Environment (DAFNAE), University of Padova, Agripolis, Viale dell'Università 16, 35020 Legnaro, PD, Italy.
| |
Collapse
|
30
|
Jia L, Sun H, Zhou Q, Zhao L, Wu W. Pilot-scale two-stage constructed wetlands based on novel solid carbon for rural wastewater treatment in southern China: Enhanced nitrogen removal and mechanism. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 292:112750. [PMID: 33991828 DOI: 10.1016/j.jenvman.2021.112750] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/19/2021] [Accepted: 05/01/2021] [Indexed: 06/12/2023]
Abstract
Constructed wetlands (CWs) have been proved to be an alternative to the treatment of various wastewater. However, there are few studies focused on the removal performance and mechanisms of pollutants in pilot-scale CWs packed with novel solid carbon. In this study, we investigated the effect of poly-3-hydroxybutyrate-co-3-hydroxyvalerate/polyacetic acid (PHBV/PLA) blends as carbon source on pollutant's transformation, microbial communities and functional genes in pilot-scale aeration-anoxic two-stage CWs for polishing rural runoff in southern China. Results showed a striking improvement of TN removal in CWs with PHBV/PLA blends (64.5%) compared to that in CWs with ceramsite (52.9%). NH4+-N (61.3-64.6%), COD (40.4-53.8%) and TP (43.6-47.1%) were also removed effectively in both two CWs. In addition, the strains of Rhodocyclaceae and Bacteroidetes were the primary denitrifiers on the surface of PHBV/PLA blends. Further, the aerobic stage induced gathering of 16 S and amoA genes and the anoxic zone with PHBV/PLA blends increased the nirS genes, which fundamentally explained the better denitrification performance in CW based on PHBV/PLA blends. Consequently, this study will provide straightforward guidance for the operation of engineering CWs packed with polymers to govern the low-C/N rural wastewater.
Collapse
Affiliation(s)
- Lixia Jia
- Department of Environmental Science, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, PR China
| | - Haimeng Sun
- Department of Environmental Science, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, PR China
| | - Qi Zhou
- Department of Environmental Science, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, PR China
| | - Liu Zhao
- Department of Environmental Science, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, PR China
| | - Weizhong Wu
- Department of Environmental Science, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, PR China.
| |
Collapse
|
31
|
Ghosh S, Greiserman S, Chemodanov A, Slegers PM, Belgorodsky B, Epstein M, Kribus A, Gozin M, Chen GQ, Golberg A. Polyhydroxyalkanoates and biochar from green macroalgal Ulva sp. biomass subcritical hydrolysates: Process optimization and a priori economic and greenhouse emissions break-even analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 770:145281. [PMID: 33517017 DOI: 10.1016/j.scitotenv.2021.145281] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 01/14/2021] [Accepted: 01/16/2021] [Indexed: 06/12/2023]
Abstract
Although macroalgae biomass is an emerging sustainable feedstock for biorefineries, the optimum process parameters for their hydrolysis and fermentation are still not known. In the present study, the simultaneous production of polyhydroxyalkanoates (PHA) and biochar from green macroalgae Ulva sp. is examined, applying subcritical water hydrolysis and Haloferax mediterranei fermentation. First, the effects of temperature, treatment time, salinity, and solid load on the biomass and PHA productivity were optimized following the Taguchi method. Hydrolysis at 170 °C, 20 min residence time, 38 g L-1 salinity with a seaweed solid load of 5% led to the maximum PHA yield of 0.104 g g-1Ulva and a biochar yield of 0.194 ± 1.23 g g-1Ulva. Second, the effect of different initial culture densities on the biomass and PHA productivity was studied. An initial culture density of 50 g L-1 led to the maximum volumetric PHA productivity of 0.024 ± 0.002 g L-1 h-1 with a maximum PHA content of 49.38 ± 0.3% w/w Sensitivity analysis shows that within 90% confidence, the annual PHA production from Ulva sp. is 148.14 g PHA m-2 year-1 with an annual biochar production of 42.6 g m-2 year-1. Priori economic and greenhouse gas break-even analyses of the process were done to estimate annual revenues and allowable greenhouse gas emissions. The study illustrates that PHA production from seaweed hydrolysate using extreme halophiles coupled to biochar production could become a benign and promising step in a marine biorefinery.
Collapse
Affiliation(s)
- Supratim Ghosh
- Porter School of the Environment and Earth Sciences, Faculty of Exact Science, Tel Aviv University, Tel Aviv 69978, Israel.
| | - Semion Greiserman
- Porter School of the Environment and Earth Sciences, Faculty of Exact Science, Tel Aviv University, Tel Aviv 69978, Israel
| | - Alexander Chemodanov
- Porter School of the Environment and Earth Sciences, Faculty of Exact Science, Tel Aviv University, Tel Aviv 69978, Israel
| | - Petronella Margaretha Slegers
- Operations Research and Logistics, Wageningen University & Research, P.O. Box 8130, 6700 EW Wageningen, the Netherlands
| | - Bogdan Belgorodsky
- School of Chemistry, Faculty of Exact Science, Tel Aviv University, Tel Aviv 69978, Israel
| | - Michael Epstein
- Porter School of the Environment and Earth Sciences, Faculty of Exact Science, Tel Aviv University, Tel Aviv 69978, Israel
| | - Abraham Kribus
- School of Mechanical Engineering, Tel Aviv University, Tel Aviv, Israel
| | - Michael Gozin
- School of Chemistry, Faculty of Exact Science, Tel Aviv University, Tel Aviv 69978, Israel
| | - Guo-Qiang Chen
- Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Alexander Golberg
- Porter School of the Environment and Earth Sciences, Faculty of Exact Science, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
32
|
Analysis of Polyhydroxyalkanoates Granules in Haloferax mediterranei by Double-Fluorescence Staining with Nile Red and SYBR Green by Confocal Fluorescence Microscopy. Polymers (Basel) 2021; 13:polym13101582. [PMID: 34069083 PMCID: PMC8156647 DOI: 10.3390/polym13101582] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/04/2021] [Accepted: 05/12/2021] [Indexed: 11/20/2022] Open
Abstract
Haloferaxmediterranei is a haloarchaeon of high interest in biotechnology because it produces and mobilizes intracellular polyhydroxyalkanoate (PHA) granules during growth under stress conditions (limitation of phosphorous in the culture media), among other interesting metabolites (enzymes, carotenoids, etc.). The capability of PHA production by microbes can be monitored with the use of staining-based methods. However, the staining of haloarchaea cells is a challenging task; firstly, due to the high ionic strength of the medium, which is inappropriate for most of dyes, and secondly, due to the low permeability of the haloarchaea S-layer to macromolecules. In this work, Haloferax mediterranei is used as a halophilic archaeon model to describe an optimized protocol for the visualization and analysis of intracellular PHA granules in living cells. The method is based on double-fluorescence staining using Nile red and SYBR Green by confocal fluorescence microscopy. Thanks to this method, the capability of PHA production by new haloarchaea isolates could be easily monitored.
Collapse
|
33
|
Ning P, Yang G, Hu L, Sun J, Shi L, Zhou Y, Wang Z, Yang J. Recent advances in the valorization of plant biomass. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:102. [PMID: 33892780 PMCID: PMC8063360 DOI: 10.1186/s13068-021-01949-3] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 04/07/2021] [Indexed: 05/28/2023]
Abstract
Plant biomass is a highly abundant renewable resource that can be converted into several types of high-value-added products, including chemicals, biofuels and advanced materials. In the last few decades, an increasing number of biomass species and processing techniques have been developed to enhance the application of plant biomass followed by the industrial application of some of the products, during which varied technologies have been successfully developed. In this review, we summarize the different sources of plant biomass, the evolving technologies for treating it, and the various products derived from plant biomass. Moreover, the challenges inherent in the valorization of plant biomass used in high-value-added products are also discussed. Overall, with the increased use of plant biomass, the development of treatment technologies, and the solution of the challenges raised during plant biomass valorization, the value-added products derived from plant biomass will become greater in number and more valuable.
Collapse
Affiliation(s)
- Peng Ning
- Energy-rich Compounds Production by Photosynthetic Carbon Fixation Research Center, Shandong Key Lab of Applied Mycology, Qingdao Agricultural University, No. 700 Changcheng Road, Chengyang District, Qingdao, 266109, China
- College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Guofeng Yang
- College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Lihong Hu
- Institute of Chemical Industry of Forest Products, Key Laboratory of Biomass Energy and Material, CAF, Nanjing, China
| | - Jingxin Sun
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Lina Shi
- Agricultural Integrated Service Center of Zhuyouguan, Longkou, Yantai, China
| | - Yonghong Zhou
- Institute of Chemical Industry of Forest Products, Key Laboratory of Biomass Energy and Material, CAF, Nanjing, China
| | - Zhaobao Wang
- Energy-rich Compounds Production by Photosynthetic Carbon Fixation Research Center, Shandong Key Lab of Applied Mycology, Qingdao Agricultural University, No. 700 Changcheng Road, Chengyang District, Qingdao, 266109, China.
- College of Life Sciences, Qingdao Agricultural University, Qingdao, China.
| | - Jianming Yang
- Energy-rich Compounds Production by Photosynthetic Carbon Fixation Research Center, Shandong Key Lab of Applied Mycology, Qingdao Agricultural University, No. 700 Changcheng Road, Chengyang District, Qingdao, 266109, China.
- College of Life Sciences, Qingdao Agricultural University, Qingdao, China.
| |
Collapse
|
34
|
Sirohi R, Kumar Gaur V, Kumar Pandey A, Jun Sim S, Kumar S. Harnessing fruit waste for poly-3-hydroxybutyrate production: A review. BIORESOURCE TECHNOLOGY 2021; 326:124734. [PMID: 33497926 DOI: 10.1016/j.biortech.2021.124734] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/12/2021] [Accepted: 01/14/2021] [Indexed: 06/12/2023]
Abstract
Poly-3-hydroxybutyrate is a biopolymer which has shown tremendous potential for replacing conventional petroleum-based plastics for plummeting the plastic pollution problem. However, the production cost of PHB is high which makes it less attractive for commercial use. To tackle this challenge, various researchers suggest the search for low-cost substrates and energy efficient technologies for PHB production. In this regard, the waste generated from fruit processing industries or fruit wastes could be pre-processed and fermented for effectively generating PHB. Therefore, the aim of this review was to focus on the methods of fruit waste pre-processing and the effect of fermentation variables on PHB production using fruit waste as a substrate. The relevant research findings on the use of different microorganisms, PHB production conditions and fruit waste-based substrates are also covered. Analysis of various studies revealed that pineapple and mixed fruit waste are effective for PHB production.
Collapse
Affiliation(s)
- Ranjna Sirohi
- Technology Development Centre, CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur 440 020, India; Department of Chemical & Biological Engineering, Korea University, Seoul 136713, Republic of Korea
| | - Vivek Kumar Gaur
- Environmental Biotechnology Division, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research, Lucknow 226 001, India
| | - Ashutosh Kumar Pandey
- Technology Development Centre, CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur 440 020, India
| | - Sang Jun Sim
- Department of Chemical & Biological Engineering, Korea University, Seoul 136713, Republic of Korea
| | - Sunil Kumar
- Technology Development Centre, CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur 440 020, India.
| |
Collapse
|
35
|
Haloarchaea as Cell Factories to Produce Bioplastics. Mar Drugs 2021; 19:md19030159. [PMID: 33803653 PMCID: PMC8003077 DOI: 10.3390/md19030159] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/03/2021] [Accepted: 03/16/2021] [Indexed: 11/16/2022] Open
Abstract
Plastic pollution is a worldwide concern causing the death of animals (mainly aquatic fauna) and environmental deterioration. Plastic recycling is, in most cases, difficult or even impossible. For this reason, new research lines are emerging to identify highly biodegradable bioplastics or plastic formulations that are more environmentally friendly than current ones. In this context, microbes, capable of synthesizing bioplastics, were revealed to be good models to design strategies in which microorganisms can be used as cell factories. Recently, special interest has been paid to haloarchaea due to the capability of some species to produce significant concentrations of polyhydroxyalkanoate (PHA), polyhydroxybutyrate (PHB), and polyhydroxyvalerate (PHV) when growing under a specific nutritional status. The growth of those microorganisms at the pilot or industrial scale offers several advantages compared to that of other microbes that are bioplastic producers. This review summarizes the state of the art of bioplastic production and the most recent findings regarding the production of bioplastics by halophilic microorganisms with special emphasis on haloarchaea. Some protocols to produce/analyze bioplastics are highlighted here to shed light on the potential use of haloarchaea at the industrial scale to produce valuable products, thus minimizing environmental pollution by plastics made from petroleum.
Collapse
|
36
|
Abdelmoez W, Dahab I, Ragab EM, Abdelsalam OA, Mustafa A. Bio‐ and oxo‐degradable plastics: Insights on facts and challenges. POLYM ADVAN TECHNOL 2021. [DOI: 10.1002/pat.5253] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Wael Abdelmoez
- Chemical Engineering Department, Faculty of Engineering Minia University Minia Egypt
| | - Islam Dahab
- Chemical Engineering Department, Faculty of Engineering Minia University Minia Egypt
| | - Esraa M. Ragab
- Chemical Engineering Department, Faculty of Engineering Minia University Minia Egypt
| | - Omnia A. Abdelsalam
- Chemical Engineering Department, Faculty of Engineering Minia University Minia Egypt
| | - Ahmad Mustafa
- Faculty of Engineering October University for Modern Sciences and Arts (MSA) 6th of October City Egypt
- Center of Excellence October University for Modern Sciences and Arts (MSA) 6th of October City Egypt
| |
Collapse
|
37
|
Biosynthesis of Polyhydroxyalkanoates from Defatted Chlorella Biomass as an Inexpensive Substrate. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11031094] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Microalgae biomass has been recently used as an inexpensive substrate for the industrial production of polyhydroxyalkanoates (PHAs). In this work, a dilute acid pretreatment using 0.3 N of hydrochloric acid (HCl) was performed to extract reducing sugars from 10% (w/v) of defatted Chlorella biomass (DCB). The resulting HCl DCB hydrolysate was used as a renewable substrate to assess the ability of three bacterial strains, namely Bacillus megaterium ALA2, Cupriavidus necator KCTC 2649, and Haloferax mediterranei DSM 1411, to produce PHA in shake flasks. The results show that under 20 g/L of DCB hydrolysate derived sugar supplementation, the cultivated strains successfully accumulated PHA up to 29.7–75.4% of their dry cell weight (DCW). Among the cultivated strains, C. necator KCTC 2649 exhibited the highest PHA production (7.51 ± 0.20 g/L, 75.4% of DCW) followed by H. mediterranei DSM 1411 and B. megaterium ALA2, for which a PHA content of 3.79 ± 0.03 g/L (55.5% of DCW) and 0.84 ± 0.06 g/L (29.7% of DCW) was recorded, respectively. Along with PHA, a maximum carotenoid content of 1.80 ± 0.16 mg/L was produced by H. mediterranei DSM 1411 at 120 h of cultivation in shake flasks. PHA and carotenoid production increased by 1.45- and 1.37-fold, respectively, when HCl DCB hydrolysate biotransformation was upscaled to a 1 L of working volume fermenter. Based on FTIR and 1H NMR analysis, PHA polymers accumulated by B. megaterium ALA2 and C. necator KCTC 2649 were identified as homopolymers of poly(3-hydroxybutyrate). However, a copolymer of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) with a 3-hydroxyvalerate fraction of 10.5 mol% was accumulated by H. mediterranei DSM 1411.
Collapse
|
38
|
Kasirajan L, Maupin-Furlow JA. Halophilic archaea and their potential to generate renewable fuels and chemicals. Biotechnol Bioeng 2020; 118:1066-1090. [PMID: 33241850 DOI: 10.1002/bit.27639] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 10/27/2020] [Accepted: 11/17/2020] [Indexed: 12/16/2022]
Abstract
Lignocellulosic biofuels and chemicals have great potential to reduce our dependence on fossil fuels and mitigate air pollution by cutting down on greenhouse gas emissions. Chemical, thermal, and enzymatic processes are used to release the sugars from the lignocellulosic biomass for conversion to biofuels. These processes often operate at extreme pH conditions, high salt concentrations, and/or high temperature. These harsh treatments add to the cost of the biofuels, as most known biocatalysts do not operate under these conditions. To increase the economic feasibility of biofuel production, microorganisms that thrive in extreme conditions are considered as ideal resources to generate biofuels and value-added products. Halophilic archaea (haloarchaea) are isolated from hypersaline ecosystems with high salt concentrations approaching saturation (1.5-5 M salt concentration) including environments with extremes in pH and/or temperature. The unique traits of haloarchaea and their enzymes that enable them to sustain catalytic activity in these environments make them attractive resources for use in bioconversion processes that must occur across a wide range of industrial conditions. Biocatalysts (enzymes) derived from haloarchaea occupy a unique niche in organic solvent, salt-based, and detergent industries. This review focuses on the use of haloarchaea and their enzymes to develop and improve biofuel production. The review also highlights how haloarchaea produce value-added products, such as antibiotics, carotenoids, and bioplastic precursors, and can do so using feedstocks considered "too salty" for most microbial processes including wastes from the olive-mill, shell fish, and biodiesel industries.
Collapse
Affiliation(s)
- Lakshmi Kasirajan
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida, USA.,Division of Crop Improvement, ICAR Sugarcane Breeding Institute, Coimbatore, India
| | - Julie A Maupin-Furlow
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida, USA.,Genetics Institute, University of Florida, Gainesville, Florida, USA
| |
Collapse
|