1
|
Spadetto L, Gómez-Ramírez P, León-Ortega M, Zamora-López A, Díaz-García S, Zamora-Marín JM, Tecles-Vicente F, Pardo-Marín L, Fenoll J, Calvo JF, García-Fernández AJ. Exploring anticoagulant rodenticide exposure and effects in eagle owl (Bubo bubo) nestlings from a Mediterranean semiarid region. ENVIRONMENTAL RESEARCH 2025; 264:120382. [PMID: 39551374 DOI: 10.1016/j.envres.2024.120382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 11/13/2024] [Accepted: 11/14/2024] [Indexed: 11/19/2024]
Abstract
Anticoagulant rodenticides (ARs) are widely used for pest control, resulting in their pervasive presence in the environment and posing significant toxicological risks to a range of predatory and scavenging species. Our study mainly aimed to evaluate AR exposure and effects in nestlings of eagle owl (Bubo bubo) from the Region of Murcia (southeastern Spain). We analysed ARs in blood samples (n = 106) using high-performance liquid chromatography-triple quadrupole (HPLC-TQ), assessed the influence of potential anthropogenic (presence of livestock farms, landfills and human population density) and environmental (land uses and proximity to watercourses) variables, and measured prothrombin time (PT) and plasma biochemical parameters as biomarkers of effects. Our results showed the presence of AR residues in 91.5% of the nestlings, with 70.8% exhibiting multiple ARs (up to six compounds in a single individual). Second-generation ARs (SGARs) were the most prevalent compounds. The analysis of biochemical parameters indicated that the sampled individuals were in good physiological condition. Although PT was positively correlated with total AR concentration (ΣARs), the relationship was not significant (Rho = 0.04; p = 0.49). Regarding environmental factors, higher ΣARs were associated with the most urbanised study site and the presence of landfills, likely due to the increased availability of rodent prey. The prevalence of two SGARs (brodifacoum and difenacoum) was linked to closer proximity to riverbeds, suggesting a contamination pathway associated with inland aquatic ecosystems, where these AR compounds may concentrate due to water scarcity. This study underscores the widespread exposure of eagle owls to ARs and highlights the importance of effective monitoring and management of these pollutants to protect conservation-concern wildlife in Mediterranean semiarid regions.
Collapse
Affiliation(s)
- Livia Spadetto
- Area of Toxicology, Faculty of Veterinary, Campus de Espinardo, University of Murcia, 30100, Murcia, Spain
| | - Pilar Gómez-Ramírez
- Area of Toxicology, Faculty of Veterinary, Campus de Espinardo, University of Murcia, 30100, Murcia, Spain.
| | - Mario León-Ortega
- ULULA Association for Owl Study and Conservation, 30100, Murcia, Spain
| | - Antonio Zamora-López
- ULULA Association for Owl Study and Conservation, 30100, Murcia, Spain; Department of Zoology and Physical Anthropology, Faculty of Biology, University of Murcia, 30100, Murcia, Spain
| | - Sarah Díaz-García
- ULULA Association for Owl Study and Conservation, 30100, Murcia, Spain
| | - José Manuel Zamora-Marín
- ULULA Association for Owl Study and Conservation, 30100, Murcia, Spain; Department of Zoology and Physical Anthropology, Faculty of Biology, University of Murcia, 30100, Murcia, Spain; Department of Applied Biology, Centro de Investigación e Innovación Agroalimentaria (CIAGRO-UMH), Miguel Hernández University of Elche, Elche, Spain
| | - Fernando Tecles-Vicente
- Interdisciplinary Laboratory of Clinical Analysis (Interlab-UMU), Veterinary School, Regional Campus of International Excellence 'Campus Mare Nostrum', University of Murcia, 30100, Murcia, Spain
| | - Luis Pardo-Marín
- Interdisciplinary Laboratory of Clinical Analysis (Interlab-UMU), Veterinary School, Regional Campus of International Excellence 'Campus Mare Nostrum', University of Murcia, 30100, Murcia, Spain
| | - José Fenoll
- Instituto Murciano de Investigación y Desarrollo Agrario y Alimentario, IMIDA, 30150, Murcia, Spain
| | - José Francisco Calvo
- Department of Ecology and Hydrology, Faculty of Biology, University of Murcia, 30100, Murcia, Spain
| | | |
Collapse
|
2
|
Schmieg H, Ferling H, Bucher KA, Jacob S, Regnery J, Schrader H, Schwaiger J, Friesen A. Brodifacoum causes coagulopathy, hemorrhages, and mortality in rainbow trout (Oncorhynchus mykiss) at environmentally relevant hepatic residue concentrations. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 289:117629. [PMID: 39808875 DOI: 10.1016/j.ecoenv.2024.117629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 12/20/2024] [Accepted: 12/25/2024] [Indexed: 01/16/2025]
Abstract
Widely used second-generation anticoagulant rodenticides like brodifacoum are classified as persistent, bioaccumulative, and toxic. Widespread exposure of terrestrial and avian non-target species is well-known and recently hepatic anticoagulant rodenticide residues have been detected in wild fish. However, no sufficient data exist to interpret the effects of these findings on fish health. In order to assess the potential impact of rodenticide residues on fish, we exposed rainbow trout (Oncorhynchus mykiss) to brodifacoum-spiked feed. In a first experiment, individually kept trout (body weight ca. 200 g) were exposed to a single dose of brodifacoum and observed for 15 days. In a second experiment, fish (body weight ca. 330 g) were kept in groups and fed every 7 or 8 days with brodifacoum-spiked feed for up to 60 days. Sampling of trout every 15 days over the 60 days period allowed monitoring of brodifacoum concentrations in serum, liver, and muscle tissue, as well as occurring effects over the course of the experiment. In both experiments, brodifacoum doses of ≥ 75 µg/kg body weight caused prolonged or non-measurable blood coagulation times. Disturbed hemostasis led to hemorrhages and anemia with significantly decreased albumin levels. In the 60 days-experiment, brodifacoum doses ≥ 100 µg/kg body weight caused additionally discoloration, apathy, and anorexia, resulting in reduced weight gain, and ultimately mortality. The delay until the onset of overt symptoms (14-17 days) highlights the importance of test duration while investigating effects of anticoagulant rodenticides in fish. The lowest hepatic brodifacoum concentration associated with effects in trout was on average 122.6 ng/g liver wet weight, which is in the range of previously reported brodifacoum residues in wild fish. These findings illustrate the risks associated with the use of anticoagulant rodenticides for freshwater fish and reinforce the need to stipulate all available and appropriate risk mitigation measures to prevent emissions at source.
Collapse
Affiliation(s)
- Hannah Schmieg
- Unit 73 Aquatic Toxicology, Operational Management Wielenbach, Bavarian Environment Agency, Demollstr. 31, Wielenbach 82407, Germany
| | - Hermann Ferling
- Unit 73 Aquatic Toxicology, Operational Management Wielenbach, Bavarian Environment Agency, Demollstr. 31, Wielenbach 82407, Germany
| | - Karina Annika Bucher
- Unit 73 Aquatic Toxicology, Operational Management Wielenbach, Bavarian Environment Agency, Demollstr. 31, Wielenbach 82407, Germany
| | - Stefanie Jacob
- Section IV 1.2 Biocides, German Environment Agency, Dessau-Roßlau 06813, Germany
| | - Julia Regnery
- Department of Biochemistry, Ecotoxicology, Federal Institute of Hydrology, Am Mainzer Tor 1, Koblenz 56068, Germany
| | - Hannah Schrader
- Unit 73 Aquatic Toxicology, Operational Management Wielenbach, Bavarian Environment Agency, Demollstr. 31, Wielenbach 82407, Germany.
| | - Julia Schwaiger
- Unit 73 Aquatic Toxicology, Operational Management Wielenbach, Bavarian Environment Agency, Demollstr. 31, Wielenbach 82407, Germany
| | - Anton Friesen
- Section IV 1.2 Biocides, German Environment Agency, Dessau-Roßlau 06813, Germany
| |
Collapse
|
3
|
Picone M, Volpi Ghirardini A, Piazza R, Bonato T. First evidence of the suitability of hair for assessing wildlife exposure to anticoagulant rodenticides (ARs). ENVIRONMENTAL RESEARCH 2025; 264:120302. [PMID: 39510232 DOI: 10.1016/j.envres.2024.120302] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 10/17/2024] [Accepted: 11/04/2024] [Indexed: 11/15/2024]
Abstract
Anticoagulant rodenticides (ARs) are potent pesticides acting as vitamin K epoxide reductase inhibitors causing haemorrhaging or external bleeding from orifices and/or skin lesions in intoxicated rodents. However, their non-selective mode of action makes them particularly harmful for non-target wildlife, which may be exposed to ARs via ingestion of AR-containing baits (primary exposure), feeding on AR-intoxicated rodents and carrions (secondary exposure), consuming AR-contaminated necrophagous species (tertiary exposure), and exposure to surface waters receiving baited sewer systems and ARs from outdoor-placed traps after heavy rain events. In the present study, we assessed the suitability of hairs as a non-invasive matrix for monitoring the possible exposure of mammals to ARs with a focus on the first-generation anticoagulant rodenticides (FGARs) warfarin, coumatetralyl, and chlorophacinone and the second-generation anticoagulant rodenticides (SGARs) brodifacoum, bromadiolone, difenacoum, flocoumafen, and difethialone. The Red fox (n = 24) was selected as the species representing the potentially exposed non-target wildlife in a littoral area of Northern Italy along the Adriatic coast (Cavallino-Treporti municipality). Half (n = 12) of the analysed hair samples were positive for at least one of the targeted ARs, with a higher prevalence of SGARs (n = 11; 46%) compared to FGARs (n = 1; 4%). The most frequently quantified ARs were brodifacoum (25%), difethialone (13%), and flocoumafen (13%), with concentrations ranging from 0.08 ng g-1 (difethialone) to 0.96 ng g-1 (brodifacoum). These data documented that a relevant part of the Red foxes living in the study area were exposed to ARs and, most importantly, provided the first evidence that hair residues can be used as a non-invasive matrix for assessing the possible exposure of mammals to ARs.
Collapse
Affiliation(s)
- Marco Picone
- Department of Environmental Sciences, Informatic, And Statistics, Ca' Foscari university Venice, Via Torino 155, 30172 Venezia-Mestre, Italy.
| | - Annamaria Volpi Ghirardini
- Department of Environmental Sciences, Informatic, And Statistics, Ca' Foscari university Venice, Via Torino 155, 30172 Venezia-Mestre, Italy
| | - Rossano Piazza
- Department of Environmental Sciences, Informatic, And Statistics, Ca' Foscari university Venice, Via Torino 155, 30172 Venezia-Mestre, Italy
| | - Tiziano Bonato
- Department of Environmental Sciences, Informatic, And Statistics, Ca' Foscari university Venice, Via Torino 155, 30172 Venezia-Mestre, Italy; Società Estense Servizi Ambientali (S.E.S.A. S.p.A.), 35042 EsteItaly
| |
Collapse
|
4
|
Rowley JJL, Symons A, Doyle C, Hall J, Rose K, Stapp L, Lettoof DC. Broad-scale pesticide screening finds anticoagulant rodenticide and legacy pesticides in Australian frogs. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 930:172526. [PMID: 38636866 DOI: 10.1016/j.scitotenv.2024.172526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 03/20/2024] [Accepted: 04/14/2024] [Indexed: 04/20/2024]
Abstract
Pesticide contamination poses a significant threat to non-target wildlife, including amphibians, many of which are already highly threatened. This study assessed the extent of pesticide exposure in dead frogs collected during a mass mortality event across eastern New South Wales, Australia between July 2021 and March 2022. Liver tissue from 77 individual frogs of six species were analysed for >600 legacy and contemporary pesticides, including rodenticides. More than a third (36 %) of the liver samples contained at least one of the following pesticides: brodifacoum, dieldrin, DDE, heptachlor/heptachlor epoxide, fipronil sulfone, and 2-methyl-4-chlorophenoxyacetic acid (MCPA). Brodifacoum, a second-generation anticoagulant rodenticide, was found in four of the six frog species analysed: the eastern banjo frog (Limnodynastes dumerilii), cane toad (Rhinella marina), green tree frog (Litoria caerulea) and Peron's tree frog (Litoria peronii). This is the first report of anticoagulant rodenticide detected in wild amphibians, raising concerns about potential impacts on frogs and extending the list of taxa shown to accumulate rodenticides. Dieldrin, a banned legacy pesticide, was also detected in two species: striped marsh frog (Limnodynastes peronii) and green tree frog (Litoria caerulea). The toxicological effects of these pesticides on frogs are difficult to infer due to limited comparable studies; however, due to the low frequency of detection the presence of these pesticides was not considered a major contributing factor to the mass mortality event. Additional research is needed to investigate the effects of pesticide exposure on amphibians, particularly regarding the impacts of second-generation anticoagulant rodenticides. There is also need for continued monitoring and improved conservation management strategies for the mitigation of the potential threat of pesticide exposure and accumulation in amphibian populations.
Collapse
Affiliation(s)
- Jodi J L Rowley
- Australian Museum Research Institute, Australian Museum, 1 William Street, Sydney, New South Wales 2010, Australia; Centre for Ecosystem Science, School of Biological, Earth and Environmental Sciences (BEES), University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Andrew Symons
- New South Wales Department of Climate Change, Energy, the Environment and Water, Environment Protection Science Branch, 480 Weeroona Road, Lidcombe, New South Wales 2141, Australia
| | - Christopher Doyle
- New South Wales Department of Climate Change, Energy, the Environment and Water, Environment Protection Science Branch, 480 Weeroona Road, Lidcombe, New South Wales 2141, Australia
| | - Jane Hall
- Australian Registry of Wildlife Health, Taronga Conservation Society Australia, Bradley's Head Road, Mosman, NSW 2088, Australia
| | - Karrie Rose
- Australian Registry of Wildlife Health, Taronga Conservation Society Australia, Bradley's Head Road, Mosman, NSW 2088, Australia
| | - Laura Stapp
- New South Wales Department of Climate Change, Energy, the Environment and Water, Environment Protection Science Branch, 480 Weeroona Road, Lidcombe, New South Wales 2141, Australia
| | - Damian C Lettoof
- Environment, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Centre for Environment and Life Sciences, Floreat, Western Australia 6014, Australia; School of Molecular and Life Sciences, Curtin University, Brand Drive, Bentley, Western Australia 6102, Australia
| |
Collapse
|
5
|
von Törne WJ, Klyk-Seitz UA, Piechotta C. Developing a GC-EI-MS/MS method for quantifying warfarin and five hydroxylated metabolites generated by the Fenton reaction. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:16986-16994. [PMID: 38329665 PMCID: PMC10894117 DOI: 10.1007/s11356-024-32133-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 01/18/2024] [Indexed: 02/09/2024]
Abstract
Since the 1950s, Warfarin has been used globally as both a prescription drug and a rodenticide. Research has shown that warfarin and other rodenticides are present in the environment and food chain. However, emerging contaminants are subject to degradation by biotic and abiotic processes and advanced oxidation processes. In some cases, detecting the parent compound may not be possible due to the formation of structurally changed species. This approach aims to identify hydroxylated transformation products of warfarin in a laboratory setting, even after the parent compound has undergone degradation. Therefore, the Fenton reaction is utilized to insert hydroxylation into the parent compound, warfarin, by hydroxyl and hydroperoxyl radicals generated by Fe2+/Fe3+ redox reaction with hydrogen peroxide. Using multiple reaction monitoring, a GC-MS/MS method, incorporating isotopically labeled reference compounds, is used to quantify the expected derivatized species. The analytes are derivatized using trimethyl-3-trifluoromethyl phenyl ammonium hydroxide, and the derivatization yield of warfarin is determined by using isotopically labeled reference compounds. The method has a linear working range of 30 to 1800 ng/mL, with detection limits ranging from 18.7 to 67.0 ng/mL. The analytes are enriched using a C18-SPE step, and the recovery for each compound is calculated. The Fenton reaction generates all preselected hydroxylated transformation products of warfarin. The method successfully identifies that 4'-Me-O-WAR forms preferentially under the specified experimental conditions. By further optimizing the SPE clean-up procedures, this GC-MS-based method will be suitable for detecting transformation products in more complex matrices, such as environmental water samples. Overall, this study provides a better understanding of warfarin's degradation and offers a robust analytical tool for investigating its transformation products.
Collapse
Affiliation(s)
- Wipert Jannik von Törne
- Bundesanstalt für Materialforschung und -prüfung (BAM), Richard-Willstätter-Straße 11, 12489, Berlin, Germany
- Technischen Universität Berlin, Straße des 17. Juni 135, 10623, Berlin, Germany
| | - Urszula-Anna Klyk-Seitz
- Bundesanstalt für Materialforschung und -prüfung (BAM), Richard-Willstätter-Straße 11, 12489, Berlin, Germany
| | - Christian Piechotta
- Bundesanstalt für Materialforschung und -prüfung (BAM), Richard-Willstätter-Straße 11, 12489, Berlin, Germany.
- Technischen Universität Berlin, Straße des 17. Juni 135, 10623, Berlin, Germany.
| |
Collapse
|
6
|
Regnery J, Rohner S, Bachtin J, Möhlenkamp C, Zinke O, Jacob S, Wohlsein P, Siebert U, Reifferscheid G, Friesen A. First evidence of widespread anticoagulant rodenticide exposure of the Eurasian otter (Lutra lutra) in Germany. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:167938. [PMID: 37866608 DOI: 10.1016/j.scitotenv.2023.167938] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/13/2023] [Accepted: 10/17/2023] [Indexed: 10/24/2023]
Abstract
Exposure of wildlife to anticoagulant rodenticides (ARs) has been extensively documented for species directly or indirectly linked to pest rodents via the terrestrial food web. Recently, the scientific focus extended to a former blind spot, namely AR emissions to the aquatic environment, and provided clear evidence of AR residues in freshwater fish. As second-generation ARs are likely to be transferred along the aquatic food chain, a total of 122 Eurasian otter (Lutra lutra) individuals found dead in Germany between 2005 and 2021 were investigated to shed more light on resultant environmental risks. Target analytes comprised one pharmaceutical and eight biocidal anticoagulants, as well as one suspected bait impurity. Notably, all target compounds were detected in the analyzed livers of otters, a primarily piscivorous top predator and indicator species for the aquatic environment, strictly protected by conservation laws. In regions with pronounced rodent control measures, otters were frequently exposed to biocidal ARs. The elevated AR levels measured in multiple otters, compared to freshwater fish, hinted at biomagnification of second-generation ARs within the aquatic food web. The results indicated that risk mitigation measures implemented in Germany within the biocidal product authorization may not be sufficient to protect aquatic non-target wildlife from AR exposure, challenging the effectiveness of current regulatory measures.
Collapse
Affiliation(s)
- Julia Regnery
- Federal Institute of Hydrology, Department of Biochemistry and Ecotoxicology, 56068 Koblenz, Germany.
| | - Simon Rohner
- University of Veterinary Medicine Hannover, Foundation, Institute for Terrestrial and Aquatic Wildlife Research, 25761 Büsum, Germany
| | - Julia Bachtin
- Federal Institute of Hydrology, Department of Biochemistry and Ecotoxicology, 56068 Koblenz, Germany
| | - Christel Möhlenkamp
- Federal Institute of Hydrology, Department of Biochemistry and Ecotoxicology, 56068 Koblenz, Germany
| | - Olaf Zinke
- Museum of the Westlausitz Kamenz, Department of Zoology, 01917 Kamenz, Germany
| | - Stefanie Jacob
- German Environment Agency, Section IV 1.2 Biocides, 06844 Dessau-Rosslau, Germany
| | - Peter Wohlsein
- University of Veterinary Medicine Hannover, Foundation, Department of Pathology, 30559 Hannover, Germany
| | - Ursula Siebert
- University of Veterinary Medicine Hannover, Foundation, Institute for Terrestrial and Aquatic Wildlife Research, 25761 Büsum, Germany
| | - Georg Reifferscheid
- Federal Institute of Hydrology, Department of Biochemistry and Ecotoxicology, 56068 Koblenz, Germany
| | - Anton Friesen
- German Environment Agency, Section IV 1.2 Biocides, 06844 Dessau-Rosslau, Germany
| |
Collapse
|
7
|
Oliva-Vidal P, Martínez JM, Sánchez-Barbudo IS, Camarero PR, Colomer MÀ, Margalida A, Mateo R. Second-generation anticoagulant rodenticides in the blood of obligate and facultative European avian scavengers. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 315:120385. [PMID: 36257565 DOI: 10.1016/j.envpol.2022.120385] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 09/30/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
The widespread use of second-generation anticoagulant rodenticides (SGARs) and their high persistence in animal tissues has led to these compounds becoming ubiquitous in rodent-predator-scavenger food webs. Exposure to SGARs has usually been investigated in wildlife species found dead, and despite growing evidence of the potential risk of secondary poisoning of predators and scavengers, the current worldwide exposure of free-living scavenging birds to SGARs remains scarcely investigated. We present the first active monitoring of blood SGAR concentrations and prevalence in the four European obligate (i.e., vultures) and facultative (red and black kites) avian scavengers in NE Spain. We analysed 261 free-living birds and detected SGARs in 39.1% (n = 102) of individuals. Both SGAR prevalence and concentrations (ΣSGARs) were related to the age and foraging behaviour of the species studied. Black kites showed the highest prevalence (100%), followed by red kites (66.7%), Egyptian (64.2%), bearded (20.9%), griffon (16.9%) and cinereous (6.3%) vultures. Overall, both the prevalence and average ΣSGARs were higher in non-nestlings than nestlings, and in species such as kites and Egyptian vultures foraging in anthropic landscapes (e.g., landfill sites and livestock farms) and exploiting small/medium-sized carrions. Brodifacoum was most prevalent (28.8%), followed by difenacoum (16.1%), flocoumafen (12.3%) and bromadiolone (7.3%). In SGAR-positive birds, the ΣSGAR (mean ± SE) was 7.52 ± 0.95 ng mL-1; the highest level detected being 53.50 ng mL-1. The most abundant diastereomer forms were trans-bromadiolone and flocoumafen, and cis-brodifacoum and difenacoum, showing that lower impact formulations could reduce secondary exposures of non-target species. Our findings suggest that SGARs can bioaccumulate in scavenging birds, showing the potential risk to avian scavenging guilds in Europe and elsewhere. We highlight the need for further studies on the potential adverse effects associated with concentrations of SGARSs in the blood to better interpret active monitoring studies of free-living birds.
Collapse
Affiliation(s)
- Pilar Oliva-Vidal
- Institute for Game and Wildlife Research, IREC (CSIC-UCLM-JCCM), Ronda de Toledo, 12, 13005, Ciudad Real, Spain; Department of Animal Science, Faculty of Life Sciences and Engineering, University of Lleida, Av. Alcalde Rovira Roure, 191, 25198, Spain.
| | - José María Martínez
- Gobierno de Aragón, Subdirección General de Desarrollo Rural y Sostenibilidad, Departamento Medio Ambiente, C/ General Lasheras 8, E-22003 Huesca, Spain
| | - Inés S Sánchez-Barbudo
- Institute for Game and Wildlife Research, IREC (CSIC-UCLM-JCCM), Ronda de Toledo, 12, 13005, Ciudad Real, Spain
| | - Pablo R Camarero
- Institute for Game and Wildlife Research, IREC (CSIC-UCLM-JCCM), Ronda de Toledo, 12, 13005, Ciudad Real, Spain
| | - Mª Àngels Colomer
- Department of Mathematics, Faculty of Life Sciences and Engineering, University of Lleida, Avda. Alcalde Rovira Roure, 191, 25198, Spain
| | - Antoni Margalida
- Institute for Game and Wildlife Research, IREC (CSIC-UCLM-JCCM), Ronda de Toledo, 12, 13005, Ciudad Real, Spain; Pyrenean Institute of Ecology (CSIC), Avda. Nuestra Señora de la Victoria, 12, 22700, Jaca, Spain
| | - Rafael Mateo
- Institute for Game and Wildlife Research, IREC (CSIC-UCLM-JCCM), Ronda de Toledo, 12, 13005, Ciudad Real, Spain
| |
Collapse
|
8
|
A systematic review of Rat Ecology in Urban Sewer Systems. Urban Ecosyst 2022. [DOI: 10.1007/s11252-022-01292-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
9
|
Badry A, Schenke D, Brücher H, Chakarov N, Grünkorn T, Illner H, Krüger O, Marczak T, Müskens G, Nachtigall W, Zollinger R, Treu G, Krone O. Spatial variation of rodenticides and emerging contaminants in blood of raptor nestlings from Germany. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:60908-60921. [PMID: 35435551 PMCID: PMC9427910 DOI: 10.1007/s11356-022-20089-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 04/01/2022] [Indexed: 05/11/2023]
Abstract
Wildlife exposures to pest controlling substances have resulted in population declines of many predatory species during the past decades. Many pesticides were subsequently classified as persistent, bioaccumulative, and toxic (PBT) and banned on national or global scales. However, despite their risks for non-target vertebrate wildlife, PBT substances such as anticoagulant rodenticides (ARs) are still permitted for use in Europe and have shown to threaten raptors. Whereas risks of ARs are known, much less information is available on emerging agrochemicals such as currently used PPPs and medicinal products (MPs) in higher trophic level species. We expect that currently used PPPs are relatively mobile (vs. lipophilic) as a consequence of the PBT criteria and thus more likely to be present in aqueous matrices. We therefore analyzed blood of 204 raptor nestlings of three terrestrial (red kite, common buzzard, Montagu's harrier) and two aquatic species (white-tailed sea eagle, osprey) from Germany. In total, we detected ARs in 22.6% of the red kites and 8.6% of the buzzards, whereas no Montagu's harriers or aquatic species were exposed prior to sampling. ΣAR concentration tended to be higher in North Rhine-Westphalia (vs. North-Eastern Germany) where population density is higher and intense livestock farming more frequent. Among the 90 targeted and currently used PPPs, we detected six substances from which bromoxynil (14.2%) was most frequent. Especially Montagu's harrier (31%) and red kites (22.6%) were exposed and concentrations were higher in North Rhine-Westphalia as well. Among seven MPs, we detected ciprofloxacin (3.4%), which indicates that risk mitigation measures may be needed as resistance genes were already detected in wildlife from Germany. Taken together, our study demonstrates that raptors are exposed to various chemicals during an early life stage depending on their sampling location and underpins that red kites are at particular risk for multiple pesticide exposures in Germany.
Collapse
Affiliation(s)
- Alexander Badry
- Department of Wildlife Diseases, Leibniz Institute for Zoo and Wildlife Research, Alfred-Kowalke-Straße 17, 10315, Berlin, Germany.
| | - Detlef Schenke
- Institute for Ecological Chemistry, Plant Analysis and Stored Product Protection, Julius Kühn-Institut, Königin-Luise-Straße 19, 14195, Berlin, Germany
| | - Helmut Brücher
- Wiesenweihenschutz Brandenburg, Hauptstraße 11, 14913, Rohrbeck, Germany
| | - Nayden Chakarov
- Department of Animal Behaviour, Bielefeld University, Morgenbreede 45, 33615, Bielefeld, Germany
| | | | - Hubertus Illner
- Arbeitsgemeinschaft Biologischer Umweltschutz/Biologische Station Soest, Teichstraße 19, 59505, Bad Sassendorf, Germany
| | - Oliver Krüger
- Department of Animal Behaviour, Bielefeld University, Morgenbreede 45, 33615, Bielefeld, Germany
| | | | - Gerard Müskens
- Müskens Fauna, van Nispenstraat 4, 6561 BG, Groesbeek, The Netherlands
| | | | - Ronald Zollinger
- Natuurplaza, P.O. Box 1413, NL-6501, BK, Nijmegen, The Netherlands
| | - Gabriele Treu
- Department Chemicals, Umweltbundesamt, Wörlitzer Platz 1, 06844, Dessau-Roßlau, Germany
| | - Oliver Krone
- Department of Wildlife Diseases, Leibniz Institute for Zoo and Wildlife Research, Alfred-Kowalke-Straße 17, 10315, Berlin, Germany
| |
Collapse
|
10
|
Guo X, Lee MJ, Byers KA, Helms L, Weinberger KR, Himsworth CG. Characteristics of the urban sewer system and rat presence in Seattle. Urban Ecosyst 2022. [DOI: 10.1007/s11252-022-01255-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
11
|
Thornton GL, Stevens B, French SK, Shirose LJ, Reggeti F, Schrier N, Parmley EJ, Reid A, Jardine CM. Anticoagulant rodenticide exposure in raptors from Ontario, Canada. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:34137-34146. [PMID: 35034316 DOI: 10.1007/s11356-022-18529-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 01/02/2022] [Indexed: 06/14/2023]
Abstract
Anticoagulant rodenticides (ARs) are used globally to control rodent pest infestations in both urban and agricultural settings. It is well documented that non-target wildlife, including predatory birds, are at risk for secondary anticoagulant exposure and toxicosis through the prey they consume. However, there have been no large-scale studies of AR exposure in raptors in Ontario, Canada since new Health Canada legislation was implemented in 2013 in an attempt to limit exposure in non-target wildlife. Our objective was to measure levels of ARs in wild raptors in southern Ontario to assess their exposure. We collected liver samples from 133 raptors representing 17 species submitted to the Canadian Wildlife Health Cooperative (CWHC) in Ontario, Canada, between 2017 and 2019. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) was used to quantitatively assess the level of exposure to 14 first- and second-generation ARs. Detectable levels of one or more ARs were found in 82 of 133 (62%) tested raptors, representing 12 species. The most commonly detected ARs were bromadiolone (54/133), difethialone (40/133), and brodifacoum (33/133). Of AR-positive birds, 34/82 (42%) contained residues of multiple (> 1) anticoagulant compounds. Our results indicate that AR exposure is common in raptors living in southern Ontario, Canada. Our finding that brodifacoum, difethialone, and bromadiolone were observed alone or in combination with one another in the majority of our sampled raptors indicates that legislative changes in Canada may not be protecting non-target wildlife as intended.
Collapse
Affiliation(s)
- Grace L Thornton
- Department of Pathobiology, University of Guelph, Guelph, ON, N1G 2W1, Canada.
- Department of Pathobiology, Canadian Wildlife Health Cooperative, University of Guelph, Guelph, ON, N1G 2W1, Canada.
| | - Brian Stevens
- Department of Pathobiology, University of Guelph, Guelph, ON, N1G 2W1, Canada
- Department of Pathobiology, Canadian Wildlife Health Cooperative, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Shannon K French
- Department of Pathobiology, University of Guelph, Guelph, ON, N1G 2W1, Canada
- Department of Pathobiology, Canadian Wildlife Health Cooperative, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Leonard J Shirose
- Department of Pathobiology, University of Guelph, Guelph, ON, N1G 2W1, Canada
- Department of Pathobiology, Canadian Wildlife Health Cooperative, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Felipe Reggeti
- Animal Health Laboratory, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Nick Schrier
- Animal Health Laboratory, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - E Jane Parmley
- Department of Pathobiology, Canadian Wildlife Health Cooperative, University of Guelph, Guelph, ON, N1G 2W1, Canada
- Department of Population Medicine, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Alexandra Reid
- Ontario Ministry of Agriculture, Food, and Rural Affairs, 1 Stone Rd W, Guelph, ON, N1G 4Y2, Canada
| | - Claire M Jardine
- Department of Pathobiology, University of Guelph, Guelph, ON, N1G 2W1, Canada.
- Department of Pathobiology, Canadian Wildlife Health Cooperative, University of Guelph, Guelph, ON, N1G 2W1, Canada.
| |
Collapse
|
12
|
Regnery J, Riegraf C, Jacob S, Friesen A. New insights on in vitro biotransformation of anticoagulant rodenticides in fish. CHEMOSPHERE 2022; 294:133727. [PMID: 35085616 DOI: 10.1016/j.chemosphere.2022.133727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/20/2022] [Accepted: 01/20/2022] [Indexed: 06/14/2023]
Abstract
The assessment of the bioaccumulation potential of chemicals is an essential and mandatory part of their regulatory environmental risk and hazard assessment. So far, in vitro data on fish metabolism is rarely available for biocidal active substances such as anticoagulant rodenticides. In this case study we present in vitro biotransformation rates of eight biocidal and one pharmaceutical anticoagulants in rainbow trout (Oncorhynchus mykiss) liver subcellular S9 fraction (RT-S9) determined following the Organisation for Economic Co-operation and Development test guideline 319B method at two different incubation temperatures (i.e., 12 ± 1 °C and 23 ± 2 °C). Furthermore, we address challenges associated with the usability and interpretation of in vitro data to support the decision making within the regulatory bioaccumulation assessment in bridging the gap between in silico methods and in vivo studies. According to our results, four of the tested substances (i.e., chlorophacinone, coumatetralyl, bromadiolone, and difenacoum) exhibited significant intrinsic clearance (p < .001) in the RT-S9 assay. Overall, the observed metabolism was (very) slow and clearance rates were temperature-dependent. Whether the determined in vitro biotransformation rate had a substantial influence on the predicted bioconcentration factor during extrapolation was subject to the lipophilicity of the test substance. Further improvements of existing concepts are needed to overcome uncertainties in the prediction of bioconcentration factors for chemicals such as anticoagulants.
Collapse
Affiliation(s)
- Julia Regnery
- Federal Institute of Hydrology, Department of Biochemistry, Ecotoxicology, 56068 Koblenz, Germany.
| | - Carolin Riegraf
- Federal Institute of Hydrology, Department of Biochemistry, Ecotoxicology, 56068 Koblenz, Germany
| | - Stefanie Jacob
- German Environment Agency, Section IV 1.2 Biocides, 06844 Dessau-Rosslau, Germany
| | - Anton Friesen
- German Environment Agency, Section IV 1.2 Biocides, 06844 Dessau-Rosslau, Germany
| |
Collapse
|
13
|
Pes K, Ortiz-Delgado JB, Sarasquete C, Laizé V, Fernández I. Short-term exposure to pharmaceuticals negatively impacts marine flatfish species: Histological, biochemical and molecular clues for an integrated ecosystem risk assessment. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 90:103822. [PMID: 35101594 DOI: 10.1016/j.etap.2022.103822] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 01/24/2022] [Accepted: 01/26/2022] [Indexed: 06/14/2023]
Abstract
The marine habitat and its biodiversity can be impacted by released pharmaceuticals. The short-term (7 days) effect of 3 commonly used drugs - warfarin, dexamethasone and imidazole - on Senegalese sole (Solea senegalensis) juveniles was investigated. Occurrence of hemorrhages, histopathological alterations, antioxidant status, activity of antioxidant enzymes and expression of genes involved in the xenobiotic response (pxr, abcb1 and cyp1a), were evaluated. The results showed a time and drug-dependent effect. Warfarin exposure induced hemorrhages, hepatocyte vacuolar degeneration, and altered the activity of glutathione peroxidase (GPx) and the expression of all the studied genes. Dexamethasone exposure increased liver glycogen content, altered antioxidant status, GPx and superoxide dismutase activities, as well as abcb1 and cyp1a expression. Imidazole induced hepatocyte vacuolar degeneration and ballooning, and altered the antioxidant status and expression of the tested genes. The present work anticipates a deeper impact of pharmaceuticals on the aquatic environment than previously reported, thus underlining the urgent need for an integrated risk assessment.
Collapse
Affiliation(s)
- Katia Pes
- Centro de Ciências do Mar (CCMAR), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Juan B Ortiz-Delgado
- Instituto de Ciencias Marinas de Andalucía-ICMAN/CSIC, Campus Universitario Río San Pedro, Apdo. Oficial, 11510 Puerto Real, Cádiz, Spain
| | - Carmen Sarasquete
- Instituto de Ciencias Marinas de Andalucía-ICMAN/CSIC, Campus Universitario Río San Pedro, Apdo. Oficial, 11510 Puerto Real, Cádiz, Spain
| | - Vincent Laizé
- Centro de Ciências do Mar (CCMAR), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; S2 AQUA - Sustainable and Smart Aquaculture Collaborative Laboratory, Olhão, Portugal
| | - Ignacio Fernández
- Aquaculture Research Center, Agro-Technological Institute of Castilla y León (ITACyL), Ctra. Arévalo, s/n, 40196 Zamarramala, Segovia, Spain; Centro Oceanográfico de Vigo, Instituto Español de Oceanografía (IEO-CSIC), 36390 Vigo, Spain.
| |
Collapse
|
14
|
El-Nahhal I, El-Nahhal Y. Pesticide residues in drinking water, their potential risk to human health and removal options. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 299:113611. [PMID: 34526283 DOI: 10.1016/j.jenvman.2021.113611] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 08/13/2021] [Accepted: 08/23/2021] [Indexed: 06/13/2023]
Abstract
The application of pesticides in agricultural and public health sectors has resulted in substantially contaminated water resources with residues in many countries. Almost no reviews have addressed pesticide residues in drinking water globally; calculated hazard indices for adults, children, and infants; or discussed the potential health risk of pesticides to the human population. The objectives of this article were to summarize advances in research related to pesticide residues in drinking water; conduct health risk assessments by estimating the daily intake of pesticide residues consumed only from drinking water by adults, children, and infants; and summarize options for pesticide removal from water systems. Approximately 113 pesticide residues were found in drinking water samples from 31 countries worldwide. There were 61, 31, and 21 insecticide, herbicide, and fungicide residues, respectively. Four residues were in toxicity class IA, 14 residues were in toxicity class IB, 55 residues were in toxicity class II, 17 residues were in toxicity class III, and 23 residues were in toxicity class IV. The calculated hazard indices (HIs) exceeded the value of one in many cases. The lowest HI value (0.0001) for children was found in Canada, and the highest HI value (30.97) was found in Egypt, suggesting a high potential health risk to adults, children, and infants. The application of advanced oxidation processes (AOPs) showed efficient removal of many pesticide classes. The combination of adsorption followed by biodegradation was shown to be an effective and efficient purification option. In conclusion, the consumption of water contaminated with pesticide residues may pose risks to human health in exposed populations.
Collapse
Affiliation(s)
| | - Yasser El-Nahhal
- Dept. of Earth and Environmental Science Faculty of Science, The Islamic University, Gaza, Palestine.
| |
Collapse
|
15
|
Coronado-Posada N, Mercado-Camargo J, Olivero-Verbel J. In Silico Analysis to Identify Molecular Targets for Chemicals of Concern: The Case Study of Flocoumafen, an Anticoagulant Pesticide. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2021; 40:2034-2043. [PMID: 33729601 DOI: 10.1002/etc.5042] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/06/2020] [Accepted: 03/11/2021] [Indexed: 06/12/2023]
Abstract
Rodenticides are pesticides used worldwide, with little information available regarding health consequences in wildlife and humans. The aim of the present study was to use virtual screening to identify potential targets for flocoumafen, a superwarfarin rodenticide. Blind docking of more than 841 human proteins was carried out employing AutoDock Vina. The strength of the ligand interaction with the proteins was quantified based on the binding affinity score (kcal/mol). Results indicate that flocoumafen could be a promiscuous ligand for diversity of cellular protein targets. The best complexes were obtained for prostaglandin F synthase (-14.2 kcal/mol) and serum albumin (-14.0 kcal/mol) followed by glucocorticoid receptor 2, matrix metalloproteinase-9, nuclear receptor ROR-alpha, and activin receptor type-1, all with values equal or better than -13.5 kcal/mol. Docking method validation based on the root-mean-square deviation showed that flocoumafen had good capability to predict corresponding co-crystallized poses; and molecular dynamics simulations suggested the complex with greater binding affinity was thermodynamically stable. Protein-protein interaction networks built with main protein targets revealed that protein kinase B (AKT1), ribosomal protein S6 kinase B1 (RPS6KB1), phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha (PIK3CA), retinoid X receptor alpha (RXRA), and protein phosphatase 2 catalytic subunit alpha (PPP2CA) were major hub proteins, whereas the gene ontology analysis reported that cellular response to endogenous stimulus, protein binding, and the TOR complex were the biological processes, molecular function, and cell component enrichments, respectively. These results should motivate more ecotoxicity testing for flocoumafen and other superwarfarins, as well as precautionary legislation to minimize exposure to these highly toxic chemicals. Environ Toxicol Chem 2021;40:2034-2043. © 2021 SETAC.
Collapse
Affiliation(s)
- Nadia Coronado-Posada
- Environmental and Computational Chemistry Group, School of Pharmaceutical Sciences, University of Cartagena, Cartagena, Colombia
| | - Jairo Mercado-Camargo
- Group of Organic Medicinal Chemistry, School of Pharmaceutical Sciences, University of Cartagena, Cartagena, Colombia
| | - Jesus Olivero-Verbel
- Environmental and Computational Chemistry Group, School of Pharmaceutical Sciences, University of Cartagena, Cartagena, Colombia
| |
Collapse
|
16
|
Badry A, Schenke D, Treu G, Krone O. Linking landscape composition and biological factors with exposure levels of rodenticides and agrochemicals in avian apex predators from Germany. ENVIRONMENTAL RESEARCH 2021; 193:110602. [PMID: 33307088 DOI: 10.1016/j.envres.2020.110602] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 12/03/2020] [Accepted: 12/04/2020] [Indexed: 05/15/2023]
Abstract
Intensification of agricultural practices has resulted in a substantial decline of Europe's farmland bird populations. Together with increasing urbanisation, chemical pollution arising from these land uses is a recognised threat to wildlife. Raptors are known to be particularly sensitive to pollutants that biomagnify and are thus frequently used sentinels for pollution in food webs. The current study focussed on anticoagulant rodenticides (ARs) but also considered selected medicinal products (MPs) and frequently used plant protection products (PPPs). We analysed livers of raptor species from agricultural and urban habitats in Germany, namely red kites (MIML; Milvus milvus), northern goshawks (ACGE; Accipiter gentilis) and Eurasian sparrowhawks (ACNI; Accipiter nisus) as well as white-tailed sea eagles (HAAL; Haliaeetus albicilla) and ospreys (PAHA; Pandion haliaetus) to account for potential aquatic exposures. Landscape composition was quantified using geographic information systems. The highest detection of ARs occurred in ACGE (81.3%; n = 48), closely followed by MIML (80.5%; n = 41), HAAL (38.3%; n = 60) and ACNI (13%; n = 23), whereas no ARs were found in PAHA (n = 13). Generalized linear models demonstrated (1) an increased probability for adults to be exposed to ARs with increasing urbanisation, and (2) that species-specific traits were responsible for the extent of exposure. For MPs, we found ibuprofen in 14.9% and fluoroquinolones in 2.3% in individuals that were found dead. Among 30 investigated PPPs, dimethoate (and its metabolite omethoate) and thiacloprid were detected in two MIML each. We assumed that the levels of dimethoate were a consequence of deliberate poisoning. AR and insecticide poisoning were considered to represent a threat to red kites and may ultimately contribute to reported decreased survival rates. Overall, our study suggests that urban raptors are at greatest risk for AR exposure and that exposures may not be limited to terrestrial food webs.
Collapse
Affiliation(s)
- Alexander Badry
- Leibniz Institute for Zoo and Wildlife Research, Department of Wildlife Diseases, Alfred-Kowalke-Straße 17, 10315, Berlin, Germany.
| | - Detlef Schenke
- Julius Kühn-Institut, Institute for Ecological Chemistry, Plant Analysis and Stored Product Protection, Königin-Luise-Straße19, 14195, Berlin, Germany
| | - Gabriele Treu
- Umweltbundesamt, Department Chemicals, Wörlitzer Platz 1, 06844, Dessau-Roßlau, Germany
| | - Oliver Krone
- Leibniz Institute for Zoo and Wildlife Research, Department of Wildlife Diseases, Alfred-Kowalke-Straße 17, 10315, Berlin, Germany
| |
Collapse
|