1
|
Boukhatem A, Rached O, Bentellis A, Vasileiadis S, Castaldi P, Garau G, Diquattro S. Promoting the recovery of soil health in As and Sb-polluted soils: new evidence from the biochar-compost option. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:559-574. [PMID: 39695038 PMCID: PMC11732966 DOI: 10.1007/s11356-024-35650-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 11/22/2024] [Indexed: 12/20/2024]
Abstract
The role of compost and biochar in the recovery of As and Sb-polluted soils is poorly investigated, as well as the influence of their application rates on soil health and quality. In this study, we therefore investigated the effectiveness over time (2, 4, and 6 months, M) of a municipal solid waste compost (MSWC) and a biochar (BC), applied at 10 and 30% rates, and of selected mixtures (MIX; applied at 10 and 30% total rates, 1:1 ratio of MSWC and BC), on labile As and Sb in a polluted soil from an abandoned Sb mine (Djebel Hamimat, Algeria). At the same timepoints, the amendment impact on soil chemistry was also monitored, while the activity and diversity of the resident microbial communities were investigated at 6 M. After 6 months, MSWC, BC, and MIX applied at the higher rate significantly increased soil pH (from 7.5 up to 8.2), while MSWC and MIX increased soil EC to worrying values. The soil dissolved organic carbon content was also greatly increased by MSWC and MIX at the higher rates (up to 50-fold), while BC showed a negligible impact. All the amendments reduced the concentration of labile Sb in soil, with BC 10% being the most effective treatment (i.e., reducing labile Sb from ~ 60 to 20 mg kg-1 soil). On the contrary, only BC and MIX applied at 10% significantly reduced labile As (e.g., from ~ 12 to 4 mg kg-1 soil in the case of BC). MSWC and MIX at both rates increased up to 2000-fold soil dehydrogenase activity, while BC showed a null impact. The Biolog community level physiological profile and sequencing of the partial 16S rRNA gene showed a reduction of catabolic activity and α-diversity and a change of the community composition of bacterial populations in treated soils. Overall, MIX treatment, especially at 10%, was the most promising option for the chemical and biological recovery of As and Sb-polluted soils.
Collapse
Affiliation(s)
- Amina Boukhatem
- École Nationale Supérieure de Biotechnologie Taoufik Khaznadar (ENSB), 25100, Constantine, Algeria
| | - Oualida Rached
- École Nationale Supérieure de Biotechnologie Taoufik Khaznadar (ENSB), 25100, Constantine, Algeria
| | - Alima Bentellis
- École Nationale Supérieure de Biotechnologie Taoufik Khaznadar (ENSB), 25100, Constantine, Algeria
| | - Sotirios Vasileiadis
- Department of Biochemistry and Biotechnology, University of Thessaly, Larissa, Greece
| | - Paola Castaldi
- Dipartimento Di Agraria, University of Sassari, Viale Italia 39, 07100, Sassari, Italy
- Nucleo Di Ricerca Sulla Desertificazione, University of Sassari, Viale Italia, 39 07100, Sassari, Italy
| | - Giovanni Garau
- Dipartimento Di Agraria, University of Sassari, Viale Italia 39, 07100, Sassari, Italy.
- Nucleo Di Ricerca Sulla Desertificazione, University of Sassari, Viale Italia, 39 07100, Sassari, Italy.
| | - Stefania Diquattro
- Dipartimento Di Agraria, University of Sassari, Viale Italia 39, 07100, Sassari, Italy
- Nucleo Di Ricerca Sulla Desertificazione, University of Sassari, Viale Italia, 39 07100, Sassari, Italy
| |
Collapse
|
2
|
Hu M, Wu W, Zhou C, Zhu H, Hu L, Jiang L, Lin D, Yang K. Simultaneous adsorption of fulvic acid and organic contaminants by KOH activated mesoporous biochar with large surface area. Heliyon 2024; 10:e27055. [PMID: 38509967 PMCID: PMC10951520 DOI: 10.1016/j.heliyon.2024.e27055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 02/15/2024] [Accepted: 02/22/2024] [Indexed: 03/22/2024] Open
Abstract
Returning carbon materials from biomass to soil is a potential technology to retard organic contaminants or dissolved organic matter (DOM) in soil by adsorption, as well as to store carbon in soil for carbon sequestration. However, DOM was widely reported to inhibit adsorption of organic contaminants on carbon materials by competition and by enhancing contaminants' solubility. In this study, a KOH activated carbon material (KAC), pyrolyzed from bamboo chips, with high surface area (3108 m2/g), micropores volumes (0.964 cm3/g), mesopores volumes (1.284 cm3/g), was observed that it can adsorb fulvic acid (FA) and organic contaminants (e.g., nitrobenzene, phenols, and anilines) simultaneously with weak competition and high adsorption capacity. With 50 mg TOC/L FA, for example, the average competition suppressing rate (ΔKf/Kf-m) of organic contaminants on KAC was lower than 5%, the adsorption for organic contaminants and FA were higher than 1100 mg/g and 90 mg TOC/g, respectively. The weak competition on KAC could be attributed to the low micropore blockage (<35%) and the weak adsorption sites competition on mesopores of KAC, as well as the minimal solubility enhancement of organic contaminants by FA because most FA is adsorbed on KAC but is not dissolved in the solution. In addition, adsorption of organic contaminants with high hydrogen-bonding donor ability (αm) and adsorption affinity was less suppressed by FA because of the heterogeneous nature of hydrophilic sites on KAC's surface. Therefore, KAC could be a potential carbon material to be produced to implement to soil for carbon storage and simultaneous retarding organic contaminants and DOM.
Collapse
Affiliation(s)
- Min Hu
- Department of Environmental Science, Zhejiang University, Hangzhou, 310058, China
- Key Laboratory of Environmental Pollution and Ecological Health of Ministry of Education, Hangzhou, 310058, China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, 310058, China
| | - Wenhao Wu
- Department of Environmental Science, Zhejiang University, Hangzhou, 310058, China
- Key Laboratory of Environmental Pollution and Ecological Health of Ministry of Education, Hangzhou, 310058, China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, 310058, China
| | - Chenkai Zhou
- Department of Environmental Science, Zhejiang University, Hangzhou, 310058, China
- Zhejiang University-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311200, China
- Key Laboratory of Environmental Pollution and Ecological Health of Ministry of Education, Hangzhou, 310058, China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, 310058, China
| | - Hongxia Zhu
- Department of Environmental Science, Zhejiang University, Hangzhou, 310058, China
- College of Environment and Civil Engineering, Chengdu University of Technology, Chengdu, 610059, China
| | - Laigang Hu
- Department of Environmental Science, Zhejiang University, Hangzhou, 310058, China
- Key Laboratory of Environmental Pollution and Ecological Health of Ministry of Education, Hangzhou, 310058, China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, 310058, China
| | - Ling Jiang
- Department of Environmental Science, Zhejiang University, Hangzhou, 310058, China
- Key Laboratory of Environmental Pollution and Ecological Health of Ministry of Education, Hangzhou, 310058, China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, 310058, China
| | - Daohui Lin
- Department of Environmental Science, Zhejiang University, Hangzhou, 310058, China
- Key Laboratory of Environmental Pollution and Ecological Health of Ministry of Education, Hangzhou, 310058, China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, 310058, China
| | - Kun Yang
- Department of Environmental Science, Zhejiang University, Hangzhou, 310058, China
- Zhejiang University-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311200, China
- Key Laboratory of Environmental Pollution and Ecological Health of Ministry of Education, Hangzhou, 310058, China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, 310058, China
| |
Collapse
|
3
|
Garau M, Lo Cascio M, Vasileiadis S, Sizmur T, Nieddu M, Pinna MV, Sirca C, Spano D, Roggero PP, Garau G, Castaldi P. Using biochar for environmental recovery and boosting the yield of valuable non-food crops: The case of hemp in a soil contaminated by potentially toxic elements (PTEs). Heliyon 2024; 10:e28050. [PMID: 38509955 PMCID: PMC10951655 DOI: 10.1016/j.heliyon.2024.e28050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/11/2024] [Accepted: 03/11/2024] [Indexed: 03/22/2024] Open
Abstract
Hemp (Cannabis sativa L.) is known to tolerate high concentrations of soil contaminants which however can limit its biomass yield. On the other hand, organic-based amendments such as biochar can immobilize soil contaminants and assist hemp growth in soils contaminated by potentially toxic elements (PTEs), allowing for environmental recovery and income generation, e.g. due to green energy production from plant biomass. The aim of this study was therefore to evaluate the suitability of a softwood-derived biochar to enhance hemp growth and promote the assisted phytoremediation of a PTE-contaminated soil (i.e., Sb 2175 mg kg-1; Zn 3149 mg kg-1; Pb 403 mg kg-1; and Cd 12 mg kg-1). Adding 3% (w/w) biochar to soil favoured the reduction of soluble and exchangeable PTEs, decreased soil dehydrogenase activity (by ∼2.08-fold), and increased alkaline phosphomonoesterase and urease activities, basal respiration and soil microbial carbon (by ∼1.18-, 1.22-, 1.22-, and 1.66-fold, respectively). Biochar increased the abundance of selected soil culturable microorganisms, while amplicon sequencing analysis showed a positive biochar impact on α-diversity and the induction of structural changes on soil bacterial community structure. Biochar did not affect root growth of hemp but significantly increased its aboveground biomass by ∼1.67-fold for shoots, and by ∼2-fold for both seed number and weight. Biochar increased the PTEs phytostabilisation potential of hemp with respect to Cd, Pb and Zn, and also stimulated hemp phytoextracting capacity with respect to Sb. Overall, the results showed that biochar can boost hemp yield and its phytoremediation effectiveness in soils contaminated by PTEs providing valuable biomass that can generate profit in economic, environmental and sustainability terms.
Collapse
Affiliation(s)
- Matteo Garau
- Dipartimento di Agraria, University of Sassari, Viale Italia 39, 07100, Sassari, Italy
| | - Mauro Lo Cascio
- Dipartimento di Agraria, University of Sassari, Viale Italia 39, 07100, Sassari, Italy
- CMCC – Euro-Mediterranean Center on Climate Change Foundation, IAFES Division, Via de Nicola 9, 07100, Sassari, Italy
| | | | - Tom Sizmur
- Department of Geography and Environmental Science, University of Reading, Reading, RG6 6DW, UK
| | - Maria Nieddu
- Dipartimento di Agraria, University of Sassari, Viale Italia 39, 07100, Sassari, Italy
| | - Maria Vittoria Pinna
- Dipartimento di Agraria, University of Sassari, Viale Italia 39, 07100, Sassari, Italy
| | - Costantino Sirca
- Dipartimento di Agraria, University of Sassari, Viale Italia 39, 07100, Sassari, Italy
- CMCC – Euro-Mediterranean Center on Climate Change Foundation, IAFES Division, Via de Nicola 9, 07100, Sassari, Italy
| | - Donatella Spano
- Dipartimento di Agraria, University of Sassari, Viale Italia 39, 07100, Sassari, Italy
- CMCC – Euro-Mediterranean Center on Climate Change Foundation, IAFES Division, Via de Nicola 9, 07100, Sassari, Italy
| | - Pier Paolo Roggero
- Dipartimento di Agraria, University of Sassari, Viale Italia 39, 07100, Sassari, Italy
- Nucleo Ricerca Desertificazione, University of Sassari, Sassari, Italy
| | - Giovanni Garau
- Dipartimento di Agraria, University of Sassari, Viale Italia 39, 07100, Sassari, Italy
| | - Paola Castaldi
- Dipartimento di Agraria, University of Sassari, Viale Italia 39, 07100, Sassari, Italy
- Nucleo Ricerca Desertificazione, University of Sassari, Sassari, Italy
| |
Collapse
|
4
|
Pinna MV, Diquattro S, Garau M, Grottola CM, Giudicianni P, Roggero PP, Castaldi P, Garau G. Combining biochar and grass-legume mixture to improve the phytoremediation of soils contaminated with potentially toxic elements (PTEs). Heliyon 2024; 10:e26478. [PMID: 38455572 PMCID: PMC10918015 DOI: 10.1016/j.heliyon.2024.e26478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 02/14/2024] [Accepted: 02/14/2024] [Indexed: 03/09/2024] Open
Abstract
The combination of soil amendments with plants can be a viable option for restoring the functionality of PTEs-contaminated soils. Soil recovery could be further optimized through the mixed cropping of plant species (e.g. legumes and grasses) with different physiological characteristics. The aim of this study was to assess the phytoremediation ability of Vicia villosa Roth. And Lolium rigidum Gaud. Grown alone or in mixture in a soil contaminated with PTEs (C), i.e. Cd (23 mg kg-1), Pb (4473 mg kg-1) and Zn (3147 mg kg-1), and amended with 3% biochar (C + B). Biochar improved soil fertility and changed PTEs distribution, reducing soluble fractions and increasing the more stable ones. The addition of biochar increased the plant biomass of hairy vetch and annual ryegrass, both in monoculture and when in mixture. For example, shoot and root biomass of the C + B intercropped hairy vetch and annual ryegrass increased 9- and 7-fold, and ∼3-fold respectively, compared to the respective C plants. The biochar addition decreased PTE-uptake by both plants, while mixed cropping increased the uptake of PTEs by shoots of hairy vetch grown in C and C + B. The bioaccumulation, translocation factors, and mineralomass showed that hairy vetch and annual ryegrass behaved as phytostabilising plants. PTE mineralomasses proved that mixed cropping in C + B increased the overall capacity of PTE accumulation by plant tissues, particularly the root system. Therefore, the combination of biochar and legumes/grasses mixed cropping could be an effective solution for the recovery of PTEs-contaminated soils and the mitigation of their environmental hazard.
Collapse
Affiliation(s)
- Maria Vittoria Pinna
- Dipartimento di Agraria, University of Sassari, Viale Italia 39, 07100 Sassari, Italy
| | - Stefania Diquattro
- Dipartimento di Agraria, University of Sassari, Viale Italia 39, 07100 Sassari, Italy
- Nucleo Ricerca Desertificazione, University of Sassari, Sassari, Italy
| | - Matteo Garau
- Dipartimento di Agraria, University of Sassari, Viale Italia 39, 07100 Sassari, Italy
| | - Corinna Maria Grottola
- Institute of Sciences and Technologies for Sustainable Energy and Mobility (STEMS) of the National Research Council (CNR), Naples, Italy
| | - Paola Giudicianni
- Institute of Sciences and Technologies for Sustainable Energy and Mobility (STEMS) of the National Research Council (CNR), Naples, Italy
| | - Pier Paolo Roggero
- Dipartimento di Agraria, University of Sassari, Viale Italia 39, 07100 Sassari, Italy
- Nucleo Ricerca Desertificazione, University of Sassari, Sassari, Italy
| | - Paola Castaldi
- Dipartimento di Agraria, University of Sassari, Viale Italia 39, 07100 Sassari, Italy
- Nucleo Ricerca Desertificazione, University of Sassari, Sassari, Italy
| | - Giovanni Garau
- Dipartimento di Agraria, University of Sassari, Viale Italia 39, 07100 Sassari, Italy
| |
Collapse
|
5
|
Garau M, Pinna MV, Nieddu M, Castaldi P, Garau G. Mixing Compost and Biochar Can Enhance the Chemical and Biological Recovery of Soils Contaminated by Potentially Toxic Elements. PLANTS (BASEL, SWITZERLAND) 2024; 13:284. [PMID: 38256837 PMCID: PMC10818981 DOI: 10.3390/plants13020284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 12/30/2023] [Accepted: 01/08/2024] [Indexed: 01/24/2024]
Abstract
Biochar and compost are able to influence the mobility of potentially toxic elements (PTEs) in soil. As such, they can be useful in restoring the functionality of contaminated soils, albeit their effectiveness can vary substantially depending on the chemical and/or the (micro)biological endpoint that is targeted. To better explore the potential of the two amendments in the restoration of PTE-contaminated soils, biochar, compost (separately added at 3% w/w), and their mixtures (1:1, 3:1, and 1:3 biochar-to-compost ratios) were added to contaminated soil (i.e., 2362 mg kg-1 of Sb and 2801 mg kg-1 of Zn). Compost and its mixtures promoted an increase in soil fertility (e.g., total N; extractable P; and exchangeable K, Ca, and Mg), which was not found in the soil treated with biochar alone. All the tested amendments substantially reduced labile Zn in soil, while biochar alone was the most effective in reducing labile Sb in the treated soils (-11% vs. control), followed by compost (-4%) and biochar-compost mixtures (-8%). Compost (especially alone) increased soil biochemical activities (e.g., dehydrogenase, urease, and β-glucosidase), as well as soil respiration and the potential catabolic activity of soil microbial communities, while biochar alone (probably due to its high adsorptive capacity towards nutrients) mostly exhibited an inhibitory effect, which was partially mitigated in soils treated with both amendments. Overall, the biochar-compost combinations had a synergistic effect on both amendments, i.e., reducing PTE mobility and restoring soil biological functionality at the same time. This finding was supported by plant growth trials which showed increased Sb and Zn mineralomass values for rigid ryegrass (Lolium rigidum Gaud.) grown on biochar-compost mixtures, suggesting a potential use of rigid ryegrass in the compost-biochar-assisted phytoremediation of PTE-contaminated soils.
Collapse
Affiliation(s)
- Matteo Garau
- Dipartimento di Agraria, University of Sassari, Viale Italia 39, 07100 Sassari, Italy; (M.G.); (M.V.P.); (M.N.); (P.C.)
| | - Maria Vittoria Pinna
- Dipartimento di Agraria, University of Sassari, Viale Italia 39, 07100 Sassari, Italy; (M.G.); (M.V.P.); (M.N.); (P.C.)
| | - Maria Nieddu
- Dipartimento di Agraria, University of Sassari, Viale Italia 39, 07100 Sassari, Italy; (M.G.); (M.V.P.); (M.N.); (P.C.)
| | - Paola Castaldi
- Dipartimento di Agraria, University of Sassari, Viale Italia 39, 07100 Sassari, Italy; (M.G.); (M.V.P.); (M.N.); (P.C.)
- Nucleo Ricerca Desertificazione, University of Sassari, 07100 Sassari, Italy
| | - Giovanni Garau
- Dipartimento di Agraria, University of Sassari, Viale Italia 39, 07100 Sassari, Italy; (M.G.); (M.V.P.); (M.N.); (P.C.)
| |
Collapse
|
6
|
Xiao J, Li X, Zhang X, Cao Y, Vithanage M, Bolan N, Wang H, Zhong Z, Chen G. Contrasting effect of pristine, ball-milled and Fe-Mn modified bone biochars on dendroremediation potential of Salix jiangsuensis "172" for cadmium- and zinc-contaminated soil. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 341:123019. [PMID: 38008255 DOI: 10.1016/j.envpol.2023.123019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 10/20/2023] [Accepted: 11/19/2023] [Indexed: 11/28/2023]
Abstract
Bone biochar (BC) has a high capacity for the immobilization of potentially toxic elements (PTEs); however, its effect on dendroremediation efficiency remains unclear. Therefore, this study aimed to determine the effects of various concentrations (0, 0.5, 1, and 2 wt%) of BC, ball-milled BC (MBC), and Fe-Mn oxide-modified BC (FMBC) on soil properties, plant growth, and metal accumulation in Salix jiangsuensis "172" (SJ-172) grown in cadmium (Cd)- and zinc (Zn)-contaminated soil. BC and MBC promoted the photosynthetic rate, mineral element absorption, and plant growth of SJ-172, whereas FMBC inhibited the growth of SJ-172. Different biochars greatly influenced the concentrations of Cd and Zn in tissues of SJ-172. BC and MBC elevated the Cd levels, whereas FMBC decreased the Cd content in the leaves, stems, and cuttings of SJ-172. Unlikely, BC, MBC and FMBC show no evident change to the Zn concentration in the aboveground tissues of SJ-172, while decreased root Cd and Zn content compared with the control. MBC, at a 2.0% application rate, significantly increased the translocation factors of Cd (55.0%) and Zn (40.87%), whereas BC and FMBC demonstrated no significant effects compared with the control (P > 0.05). Moreover, 2.0% BC and MBC increased Cd and Zn accumulation in SJ-172 by 28.40 and 41.14, and 25.89 and 36.16%, respectively, whereas 2.0% FMBC reduced Cd and Zn accumulation by 53.20% and 13.18 %, respectively, compared with the control. The phytoremediation potential of SJ-172 for Cd- and Zn-contaminated soils was enhanced by MBC and BC, whereas it was lowered by FMBC compared to the control. These results provide novel insights for the application of fast-growing trees assisted by biochar amendments in the dendroremediation of severely PTEs-contaminated soil.
Collapse
Affiliation(s)
- Jiang Xiao
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, 311400, China
| | - Xiaogang Li
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, 311400, China
| | - Xiaoping Zhang
- China National Bamboo Research Center, National Forestry and Grassland Administration, Hangzhou, 310012, China
| | - Yini Cao
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, 311400, China
| | - Meththika Vithanage
- Ecosphere Resilience Research Center, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, 10250, Sri Lanka
| | - Nanthi Bolan
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA 6009, Australia; The UWA Institute of Agriculture and Environment, The University of Western Australia, Perth, WA 6009, Australia
| | - Hailong Wang
- School of Environmental and Chemical Engineering, Foshan University, Foshan, Guangdong, 528000, China; Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China; Biochar Engineering Technology Research Center of Guangdong Province, School of Environmental and Chemical Engineering, Foshan University, Foshan, Guangdong, 528000, China
| | - Zheke Zhong
- China National Bamboo Research Center, National Forestry and Grassland Administration, Hangzhou, 310012, China
| | - Guangcai Chen
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, 311400, China.
| |
Collapse
|
7
|
Alankarage D, Betts A, Scheckel KG, Herde C, Cavallaro M, Juhasz AL. Remediation options to reduce bioaccessible and bioavailable lead and arsenic at a smelter impacted site - consideration of treatment efficacy. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 341:122881. [PMID: 37935301 PMCID: PMC10843775 DOI: 10.1016/j.envpol.2023.122881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/30/2023] [Accepted: 11/04/2023] [Indexed: 11/09/2023]
Abstract
In this study, smelter contaminated soil was treated with various soil amendments (ferric sulfate [Fe2(SO4)3], triple superphosphate [TSP] and biochar) to determine their efficacy in immobilizing soil lead (Pb) and arsenic (As). In soils incubated with ferric sulfate (0.6M), gastric phase Pb bioaccessibility was reduced from 1939 ± 17 mg kg-1 to 245 ± 4.7 mg kg-1, while intestinal phase bioaccessibility was reduced from 194 ± 25 mg kg-1 to 11.9 ± 3.5 mg kg-1, driven by the formation of plumbojarosite. In TSP treated soils, there were minor reductions in gastric phase Pb bioaccessibility (to 1631 ± 14 mg kg-1) at the highest TSP concentration (6000 mg kg-1) although greater reductions were observed in the intestinal phase, with bioaccessibility reduced to 9.3 ± 2.2 mg kg-1. Speciation analysis showed that this was primarily driven by the formation of chloropyromorphite in the intestinal phase following Pb and phosphate solubilization in the low pH gastric fluid. At the highest concentration (10% w/w), biochar treated soils showed negligible decreases in Pb bioaccessibility in both gastric and intestinal phases. Validation of bioaccessibility outcomes using an in vivo mouse assay led to similar results, with treatment effect ratios (TER) of 0.20 ± 0.01, 0.76 ± 0.11 and 1.03 ± 0.10 for ferric sulfate (0.6M), TSP (6000 mg kg-1) and biochar (10% w/w) treatments. Results of in vitro and in vivo assays showed that only ferric sulfate treatments were able to significantly reduce As bioaccessibility and bioavailability with TER at the highest application of 0.06 ± 0.00 and 0.14 ± 0.04 respectively. This study highlights the potential application of ferric sulfate treatment for the immobilization of Pb and As in co-contaminated soils.
Collapse
Affiliation(s)
- Dileepa Alankarage
- Future Industries Institute, STEM, University of South Australia, SA, Australia.
| | - Aaron Betts
- United States Environmental Protection Agency, National Risk Management Research Laboratory, Land Remediation and Pollution Control Division, Cincinnati, OH, USA
| | - Kirk G Scheckel
- United States Environmental Protection Agency, National Risk Management Research Laboratory, Land Remediation and Pollution Control Division, Cincinnati, OH, USA
| | - Carina Herde
- South Australian Health and Medical Research Institute, Preclinical, Imaging and Research Laboratories, Adelaide, 5086, Australia
| | - Michelle Cavallaro
- South Australian Health and Medical Research Institute, Preclinical, Imaging and Research Laboratories, Adelaide, 5086, Australia
| | - Albert L Juhasz
- Future Industries Institute, STEM, University of South Australia, SA, Australia
| |
Collapse
|
8
|
Caporale AG, Porfido C, Roggero PP, Di Palma A, Adamo P, Pinna MV, Garau G, Spagnuolo M, Castaldi P, Diquattro S. Long-term effect of municipal solid waste compost on the recovery of a potentially toxic element (PTE)-contaminated soil: PTE mobility, distribution and bioaccessibility. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:122858-122874. [PMID: 37979102 PMCID: PMC10724333 DOI: 10.1007/s11356-023-30831-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 10/30/2023] [Indexed: 11/19/2023]
Abstract
Compost from municipal solid waste (MSWC) can represent a resource for the environmental management of soils contaminated with potentially toxic elements (PTEs), since it can reduce their mobility and improve soil fertility. However, the long-term impact of compost on soil recovery has been poorly investigated. To this end, the influence of a MSWC added at different rates (i.e. 1.5, 3.0 and 4.5% w/w) to a multi-PTE-contaminated (e.g. Sb 412 mg kg-1, Pb 2664 mg kg-1 and Zn 7510 mg kg-1) sub-acidic soil (pH 6.4) was evaluated after 6 years since its addition. The MSWC significantly enhanced soil fertility parameters (i.e. total organic carbon, Olsen P and total N) and reduced the PTE labile fractions. The distribution maps of PTEs detected through µXRF analysis revealed the presence of Zn and Pb carbonates in the amended soils, or the formation of complexes between these PTEs and the functional groups of MSWC. A higher oral, inhalation and dermal bioaccessibility of each PTE was detected in the soil fine-grained fractions (< 2 and 2-10 µm) than in coarse particles (10-20 and 20-50 µm). The MSWC amendment generally did not modify the PTE bioaccessibility, while the relative bioaccessibility of cationic PTEs was greater than that of anionic ones (e.g. Cd > Zn > Pb > Sb > As). Pb and Sb showed the highest hazard quotients (e.g. 2.2 and 10 for Sb and Pb, respectively, in children). Overall, the results indicated that the MSWC used can be an effective option for the recovery of PTE-contaminated soils, even in the long term.
Collapse
Affiliation(s)
- Antonio Giandonato Caporale
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, Portici, 80055, Naples, Italy
| | - Carlo Porfido
- Department of Soil, Plant and Food Sciences, University of Bari "Aldo Moro", Via G. Amendola 165/A, 70126, Bari, Italy
| | - Pier Paolo Roggero
- Dipartimento Di Agraria, University of Sassari, Viale Italia 39, 07100, Sassari, Italy
- Nucleo Di Ricerca Sulla Desertificazione, University of Sassari, Viale Italia 39, 07100, Sassari, Italy
| | - Anna Di Palma
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, Portici, 80055, Naples, Italy
- Research Institute On Terrestrial Ecosystems, National Research Council (IRET-CNR) Monterotondo Scalo, Rome, Italy
| | - Paola Adamo
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, Portici, 80055, Naples, Italy
| | - Maria Vittoria Pinna
- Dipartimento Di Agraria, University of Sassari, Viale Italia 39, 07100, Sassari, Italy
| | - Giovanni Garau
- Dipartimento Di Agraria, University of Sassari, Viale Italia 39, 07100, Sassari, Italy
| | - Matteo Spagnuolo
- Department of Soil, Plant and Food Sciences, University of Bari "Aldo Moro", Via G. Amendola 165/A, 70126, Bari, Italy
| | - Paola Castaldi
- Dipartimento Di Agraria, University of Sassari, Viale Italia 39, 07100, Sassari, Italy.
- Nucleo Di Ricerca Sulla Desertificazione, University of Sassari, Viale Italia 39, 07100, Sassari, Italy.
| | - Stefania Diquattro
- Dipartimento Di Agraria, University of Sassari, Viale Italia 39, 07100, Sassari, Italy
- Nucleo Di Ricerca Sulla Desertificazione, University of Sassari, Viale Italia 39, 07100, Sassari, Italy
| |
Collapse
|
9
|
El Rasafi T, Haouas A, Tallou A, Chakouri M, Aallam Y, El Moukhtari A, Hamamouch N, Hamdali H, Oukarroum A, Farissi M, Haddioui A. Recent progress on emerging technologies for trace elements-contaminated soil remediation. CHEMOSPHERE 2023; 341:140121. [PMID: 37690564 DOI: 10.1016/j.chemosphere.2023.140121] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/16/2023] [Accepted: 09/07/2023] [Indexed: 09/12/2023]
Abstract
Abiotic stresses from potentially toxic elements (PTEs) have devastating impacts on health and survival of all living organisms, including humans, animals, plants, and microorganisms. Moreover, because of the rapid growing industrial activities together with the natural processes, soil contamination with PTEs has pronounced, which required an emergent intervention. In fact, several chemical and physical techniques have been employed to overcome the negative impacts of PTEs. However, these techniques have numerous drawback and their acceptance are usually poor as they are high cost, usually ineffectiveness and take longer time. In this context, bioremediation has emerged as a promising approach for reclaiming PTEs-contaminated soils through biological process using bacteria, fungus and plants solely or in combination. Here, we comprehensively reviews and critically discusses the processes by which microorganisms and hyperaccumulator plants extract, volatilize, stabilize or detoxify PTEs in soils. We also established a multi-technology repair strategy through the combination of different strategies, such as the application of biochar, compost, animal minure and stabilized digestate for stimulation of PTE remediation by hyperaccumulators plants species. The possible use of remote sensing of soil in conjunction with geographic information system (GIS) integration for improving soil bio-remediation of PTEs was discussed. By synergistically combining these innovative strategies, the present review will open very novel way for cleaning up PTEs-contaminated soils.
Collapse
Affiliation(s)
- Taoufik El Rasafi
- Health and Environment Laboratory, Faculty of Sciences Ain Chock, Hassan II University, Casablanca, B.P 5366, Maarif, Casablanca, Morocco.
| | - Ayoub Haouas
- Department of Physical and Chemical Sciences, University of L'Aquila, Via Vetoio, 67100, L'Aquila, Italy
| | - Anas Tallou
- Department of Soil, Plant and Food Sciences - University of Bari "Aldo Moro", Italy
| | - Mohcine Chakouri
- Team of Remote Sensing and GIS Applied to Geosciences and Environment, Department of Earth Sciences, Sultan Moulay Slimane University, Beni Mellal, Morocco
| | - Yassine Aallam
- Laboratory of Agro-Industrial and Medical Biotechnologies, Faculty of Science and Techniques, University of Sultan Moulay Slimane, Beni Mellal, Morocco; Mohammed VI Polytechnic (UM6P) University, Ben Guerir, Morocco
| | - Ahmed El Moukhtari
- Ecology and Environment Laboratory, Faculty of Sciences Ben Msik, Hassan II University, PO 7955, Sidi Othmane, Casablanca, Morocco
| | - Noureddine Hamamouch
- Faculty of Sciences Dhar El Mahraz, University Sidi Mohamed Ben Abdellah, Fes, Morocco
| | - Hanane Hamdali
- Laboratory of Agro-Industrial and Medical Biotechnologies, Faculty of Science and Techniques, University of Sultan Moulay Slimane, Beni Mellal, Morocco
| | | | - Mohamed Farissi
- Laboratory of Biotechnology and Sustainable Development of Natural Resources, Polydisciplinary Faculty, USMS, Beni Mellal, Morocco
| | - Abdelmajid Haddioui
- Laboratory of Agro-Industrial and Medical Biotechnologies, Faculty of Science and Techniques, University of Sultan Moulay Slimane, Beni Mellal, Morocco
| |
Collapse
|
10
|
Luo S, Zhen Z, Teng T, Wu W, Yang G, Yang C, Li H, Huang F, Wei T, Lin Z, Zhang D. New mechanisms of biochar-assisted vermicomposting by recognizing different active di-(2-ethylhexyl) phthalate (DEHP) degraders across pedosphere, charosphere and intestinal sphere. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:131990. [PMID: 37418964 DOI: 10.1016/j.jhazmat.2023.131990] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 06/24/2023] [Accepted: 07/02/2023] [Indexed: 07/09/2023]
Abstract
Biochar-assisted vermicomposting can significantly accelerate soil DEHP degradation, but little information is known about the underlying mechanisms as different microspheres exist in soil ecosystem. In this study, we identified the active DEHP degraders in biochar-assisted vermicomposting by DNA stable isotope probing (DNA-SIP) and surprisingly found their different compositions in pedosphere, charosphere and intestinal sphere. Thirteen bacterial lineages (Laceyella, Microvirga, Sphingomonas, Ensifer, Skermanella, Lysobacter, Archangium, Intrasporangiaceae, Pseudarthrobacter, Blastococcus, Streptomyces, Nocardioides and Gemmatimonadetes) were responsible for in situ DEHP degradation in pedosphere, whereas their abundance significantly changed in biochar or earthworm treatments. Instead, some other active DEHP degraders were identified in charosphere (Serratia marcescens and Micromonospora) and intestinal sphere (Clostridiaceae, Oceanobacillus, Acidobacteria, Serratia marcescens and Acinetobacter) with high abundance. In biochar-assisted vermicomposting, the majority of active DEHP degraders were found in charosphere, followed by intestinal sphere and pedosphere. Our findings for the first time unraveled the spatial distribution of active DEHP degraders in different microspheres in soil matrices, explained by DEHP dynamic adsorption on biochar and desorption in earthworm gut. Our work highlighted that charosphere and intestinal sphere exhibited more contribution to the accelerated DEHP biodegradation than pedosphere, providing novel insight into the mechanisms of biochar and earthworm in improving contaminant degradation.
Collapse
Affiliation(s)
- Shuwen Luo
- Faculty of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Zhen Zhen
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Tingting Teng
- College of New Energy and Environment, Jilin University, Changchun 130021, PR China; Key Laboratory of Groundwater Resources and Environment Ministry of Education, Jilin University, Changchun 130021, PR China
| | - Weilong Wu
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Guiqiong Yang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Changhong Yang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Huijun Li
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Fengcheng Huang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Ting Wei
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Zhong Lin
- Faculty of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang 524088, PR China; Shenzhen Research Institute of Guangdong Ocean University, Shenzhen 518108, PR China.
| | - Dayi Zhang
- College of New Energy and Environment, Jilin University, Changchun 130021, PR China; Key Laboratory of Groundwater Resources and Environment Ministry of Education, Jilin University, Changchun 130021, PR China.
| |
Collapse
|
11
|
Zhen Z, Luo S, Chen Y, Li G, Li H, Wei T, Huang F, Ren L, Liang YQ, Lin Z, Zhang D. Performance and mechanisms of biochar-assisted vermicomposting in accelerating di-(2-ethylhexyl) phthalate biodegradation in farmland soil. JOURNAL OF HAZARDOUS MATERIALS 2023; 443:130330. [PMID: 36372018 DOI: 10.1016/j.jhazmat.2022.130330] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 10/24/2022] [Accepted: 11/03/2022] [Indexed: 06/16/2023]
Abstract
Biochar and earthworms can accelerate di-(2-ethylhexyl) phthalate (DEHP) degradation in soils. However, little is known regarding the effect of biochar-assisted vermicomposting on soil DEHP degradation and the underlying mechanisms. Therefore, the present study investigated DEHP degradation performance and bacterial community changes in farmland soils using earthworms, biochar, or their combination. Biochar-assisted vermicomposting significantly improved DEHP degradation through initial physical adsorption on biochar and subsequent rapid biodegradation in the soil, earthworm gut, and charosphere. Burkholderiaceae, Pseudomonadaceae, and Flavobacteriaceae were the potential DEHP degraders and were enriched in biochar-assisted vermicomposting. In particularly, Burkholderiaceae and Sphingomonadaceae were enriched in the earthworm gut and charosphere, possibly explaining the mechanism of accelerated DEHP degradation in biochar-assisted vermicomposting. Soil pH, soil organic matter, and humus (humic acid, fulvic acid, and humin) increased by earthworms or biochar enhanced DEHP degradation. These findings imply that biochar-assisted vermicomposting enhances DEHP removal not only through rapid physical sorption but also through the improvement of soil physicochemical characteristics and promotion of degraders in the soil, earthworm gut, and charosphere. Overall, biochar-assisted vermicomposting is a suitable method for the remediation of organic-contaminated farmland soils.
Collapse
Affiliation(s)
- Zhen Zhen
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Shuwen Luo
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Yijie Chen
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Gaoyang Li
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Huijun Li
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Ting Wei
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Fengcheng Huang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Lei Ren
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Yan-Qiu Liang
- Faculty of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Zhong Lin
- Faculty of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang 524088, PR China; Shenzhen Research Institute of Guangdong Ocean University, Shenzhen 518108, PR China.
| | - Dayi Zhang
- College of New Energy and Environment, Jilin University, Changchun 130021, PR China; Key Laboratory of Groundwater Resources and Environment Ministry of Education, Jilin University, Changchun 130021, PR China.
| |
Collapse
|
12
|
Kumar V, Radziemska M. Impact of physiochemical properties, microbes and biochar on bioavailability of toxic elements in the soil: a review. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2022; 44:3725-3742. [PMID: 34811628 DOI: 10.1007/s10653-021-01157-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 11/04/2021] [Indexed: 06/13/2023]
Abstract
The pollution of toxic elements (TEs) in the ecosystem exhibits detrimental effects on the human health. In this paper, we debated remediation approaches for TEs polluted soils via immobilization methods employing numerous amendments with reverence to type of soil and metals, and amendment, immobilization competence, fundamental processes and field applicability. We argued the influence of pH, soil organic matter, textural properties, microbes, speciation and biochar on the bioavailability of TEs. All these properties of soil, microbes and biochar are imperative for effective and safe application of these methods in remediation of TEs contamination in the ecosystem. Further, the application of physiochemical properties, microbes and biochar as amendments has significant synergistic impacts not only on absorption of elements but also on diminution of toxic elements.
Collapse
Affiliation(s)
- Vinod Kumar
- Department of Botany, Government Degree College, Ramban, Jammu, 182144, India.
| | - Maja Radziemska
- Institute of Environmental Engineering, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776, Warsaw, Poland
| |
Collapse
|
13
|
Jack Bean Development in Multimetal Contaminated Soil Amended with Coffee Waste-Derived Biochars. Processes (Basel) 2022. [DOI: 10.3390/pr10102157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Coffee waste-derived biochar was found to immobilize heavy metals in contaminated soil, although there are few studies involving these materials. Given the large amount of waste generated in the coffee industry, this presents a relevant opportunity to contribute to the circular economy and environmental sustainability. Therefore, the objective of this study was to evaluate the effects of the application of biochars derived from coffee grounds and coffee parchment in the remediation of a Cd, Zn and Pb contaminated soil and at the development of jack beans (Canavalia ensiformis) in this area’s revegetation. The biochars were pyrolyzed at 700 °C, and the treatments were: contaminated soil (CT); contaminated soil + calcium carbonate (CaCO3); contaminated soil + 5% (weight (w)/weitght (w)) coffee ground biochar and contaminated soil + 5% (w/w) coffee parchment biochar. These treatments were incubated for 90 days, followed by the cultivation of jack beans for 60 days. Soil samples, soil solution and plants were analyzed for nutrients and heavy metals. The addition of coffee grounds and coffee parchment biochars significantly reduced the contents of heavy metals in the soil compared to the Control (32.13 and 42.95%, respectively, for Zn; 26.28 and 33.06%, respectively, for Cd and 28.63 and 29.67%, respectively, for Pb), all of which had a superior performance than the CaCO3 treatment. Thus, following the observed reduction in the soil soluble fraction of metals, its uptake by the plants was also reduced, especially limiting Cd and Pb accumulation in plant dry matter. In addition, coffee parchment biochar promoted a greater accumulation of nutrients in the shoots, i.e., for K and P (1450 and 21.5 mg pot−1, respectively, dry matter basis) compared to the control (54.4 and 9.3 mg pot−1, respectively). Therefore, coffee parchment biochar use in association with jack beans may represent a viable tool for the remediation of metal contamination concomitantly with revegetation of the contaminated area.
Collapse
|
14
|
Luo Y, Li Z, Xu H, Xu X, Qiu H, Cao X, Zhao L. Development of phosphorus composite biochar for simultaneous enhanced carbon sink and heavy metal immobilization in soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 831:154845. [PMID: 35358526 DOI: 10.1016/j.scitotenv.2022.154845] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 03/04/2022] [Accepted: 03/22/2022] [Indexed: 06/14/2023]
Abstract
As a porous and carbon material, biochar is focused on respectively in sequestrating carbon and stabilizing metals in soil, while few studies attempted to design biochar for simultaneously achieving these two targets. This study proposed to produce phosphorus-composite biochar for synchronously enhancing carbon sequestration and heavy metals immobilization. Two phosphorus materials from tailings, Ca(H2PO4)2 and Ca5(PO4)3(OH), were selected as modifier to load into biomass prior to pyrolysis. Results showed that incorporating P not only increased pyrolytic C retention in biochar by 36.1-50.1%, but also obtained biochar with higher stability by chemically formation of COP, C-PO3 and C2-PO2. After 90-day incubation with soil, more C was sequestrated in the P-biochar amended soil (59.6-67.0%) than those pristine biochar (43.2-46.6%). Highly soluble Ca(H2PO4)2 was more efficient than Ca5(PO4)3(OH) in this regard. Meanwhile, these P-composite biochar exhibited more Pb/Cd immobilization (31.3-92.3%) compared with the pristine biochar (9.5-47.2%), which was mainly due to the formation of stable precipitates Pb5(PO4)3Cl and Cd3(PO4)2, especially for Ca5(PO4)3(OH) modification. Additionally, P-composite biochar "intelligently" altered soil microbial community, i.e., they suppressed Actinobacteria proliferation, which is correlated to carbon degradation, while promoted Proteobacteria growth, facilitating phosphate dissolution for ready reaction with heavy metals to form precipitate, benefiting the Pb and Cd immobilization. A dual functions biochar was engineered via simply loading phosphorous prior to pyrolysis and simultaneously enhanced carbon sequestration and heavy metal immobilization.
Collapse
Affiliation(s)
- Ying Luo
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhaopeng Li
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Huacheng Xu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Xiaoyun Xu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hao Qiu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xinde Cao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; China-UK Low Carbon College, Shanghai Jiao Tong University, Shanghai 201306, China
| | - Ling Zhao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; China-UK Low Carbon College, Shanghai Jiao Tong University, Shanghai 201306, China.
| |
Collapse
|
15
|
Yi S, Li F, Wu C, Wei M, Tian J, Ge F. Synergistic leaching of heavy metal-polycyclic aromatic hydrocarbon in co-contaminated soil by hydroxamate siderophore: Role of cation-π and chelation. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127514. [PMID: 34879514 DOI: 10.1016/j.jhazmat.2021.127514] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/05/2021] [Accepted: 10/13/2021] [Indexed: 06/13/2023]
Abstract
Exploring a novel green efficient bioeluant is a golden key to unlock the ex-situ scale remediation of soil contaminated with heavy metals (HMs) and polycyclic aromatic hydrocarbons (PAHs). Hydroxamate siderophore (HDS) produced by Pseudomonas fluorescens HMP01, with certain hydrophobicity and strong coordination because of its special chemical structure (e.g., hydroxamic acid and dihydroxy quinoline chromophore), was used to investigate the bioleaching efficiency of HMs and PAHs from actual contaminated soils and underlying mechanisms. Results showed that leaching efficiency for HMs and PAHs from the co-contaminated soil was higher than that of single contaminated soil due to the cation-π interaction and coordination, which was closely related to the spacial configuration changes of the complex. HDS not only increased the bioleaching efficiency of cationic HMs by chelation (the leaching amount of Cd2+, Pb2+, Hg2+, Cu2+, Zn2+, and Ni2+ achieved 27.5, 110.4, 6.9, 477.7, 10,606.9, and 137.4 mg/kg HDS, respectively) but also enhanced the bioleaching amount of PAHs by solubilization (the leaching amount of phenanthrene reached 90.2 mg/kg HDS. Also, the residual HDS in soils caused no significant ecological risk. As expected, HDS is a desirable bioeluant to promote the scale application of the ex-situ remediation of soil contaminated with HMs and PAHs.
Collapse
Affiliation(s)
- Shengwei Yi
- College of Environment Science and Resources, Xiangtan University, Xiangtan 411105, PR China; Hunan Engineering Laboratory for High-Efficiency Purification Technology and its Application on Complex Heavy Metal Wastewater Treatment, Xiangtan 411105, PR China; Scientific Research Innovation Platform of Environmental Behavior and Control Principle about Novel Pollutants in Hunan Provincial Universities, Xiangtan 411105, PR China
| | - Feng Li
- College of Environment Science and Resources, Xiangtan University, Xiangtan 411105, PR China; Hunan Engineering Laboratory for High-Efficiency Purification Technology and its Application on Complex Heavy Metal Wastewater Treatment, Xiangtan 411105, PR China; Scientific Research Innovation Platform of Environmental Behavior and Control Principle about Novel Pollutants in Hunan Provincial Universities, Xiangtan 411105, PR China.
| | - Chen Wu
- College of Environment Science and Resources, Xiangtan University, Xiangtan 411105, PR China; Hunan Engineering Laboratory for High-Efficiency Purification Technology and its Application on Complex Heavy Metal Wastewater Treatment, Xiangtan 411105, PR China; Scientific Research Innovation Platform of Environmental Behavior and Control Principle about Novel Pollutants in Hunan Provincial Universities, Xiangtan 411105, PR China
| | - Ming Wei
- College of Environment Science and Resources, Xiangtan University, Xiangtan 411105, PR China; Hunan Engineering Laboratory for High-Efficiency Purification Technology and its Application on Complex Heavy Metal Wastewater Treatment, Xiangtan 411105, PR China; Scientific Research Innovation Platform of Environmental Behavior and Control Principle about Novel Pollutants in Hunan Provincial Universities, Xiangtan 411105, PR China
| | - Jiang Tian
- College of Environment Science and Resources, Xiangtan University, Xiangtan 411105, PR China; Hunan Engineering Laboratory for High-Efficiency Purification Technology and its Application on Complex Heavy Metal Wastewater Treatment, Xiangtan 411105, PR China; Scientific Research Innovation Platform of Environmental Behavior and Control Principle about Novel Pollutants in Hunan Provincial Universities, Xiangtan 411105, PR China
| | - Fei Ge
- College of Environment Science and Resources, Xiangtan University, Xiangtan 411105, PR China; Hunan Engineering Laboratory for High-Efficiency Purification Technology and its Application on Complex Heavy Metal Wastewater Treatment, Xiangtan 411105, PR China; Scientific Research Innovation Platform of Environmental Behavior and Control Principle about Novel Pollutants in Hunan Provincial Universities, Xiangtan 411105, PR China
| |
Collapse
|
16
|
The Effects of Rabbit Manure-Derived Biochar on Soil Health and Quality Attributes of Two Mine Tailings. SUSTAINABILITY 2022. [DOI: 10.3390/su14031866] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Biochar amendment is becoming a promising technology for mining soil restoration. The addition of biochar can improve soil microbiological parameters related to soil quality, such as enzyme activities. The aim of the present research was to evaluate the effect of rabbit manure (RM) and two rabbit manure biochars prepared at two pyrolysis temperatures (300 and 600 °C) on the biochemical properties of two mining soils in the Portman area (Spain) in the presence or absence of vegetation. Soils were amended with the RM, the two biochars and a mixture of the rabbit manure and biochars (50/50 w/w) at a rate of 10% in a mesocosms experiment to study the changes in dehydrogenase, phosphomonoesterase, β-glucosidase activities, geometric mean of enzyme activities (GMea) and soil microbial biomass (SMB). Changes in individual enzyme activities were not always consistent. However, when using the GMea as a measure of soil quality, our results showed an increase in the GMea (217–360 times) after the addition of rabbit manure to mining soils, while this increase was from 81–270 times following the addition of rabbit manure with biochar prepared at 300 °C. Therefore, the use of biochar prepared at low temperatures could be a promising direction for the improvement of soil quality and soil carbon sequestration.
Collapse
|
17
|
Garau M, Sizmur T, Coole S, Castaldi P, Garau G. Impact of Eisenia fetida earthworms and biochar on potentially toxic element mobility and health of a contaminated soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:151255. [PMID: 34710424 DOI: 10.1016/j.scitotenv.2021.151255] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 10/11/2021] [Accepted: 10/22/2021] [Indexed: 06/13/2023]
Abstract
This study aimed to evaluate the influence of Eisenia fetida (Savigny), added to an acidic soil contaminated with potentially toxic elements (PTEs; As, Sb, Cd, Pb, Zn) and amended with a softwood-derived biochar (2 and 5% w/w), on the mobility of PTEs and soil health (i.e. nutrient availability, enzyme activity and soil basal respiration). The PTEs bioaccumulation by E. fetida and the acute ecotoxicity effects of the amended soils were also evaluated. The interaction between earthworms and biochar led to a significant increase in soil pH, organic matter, dissolved organic carbon content, cation exchange capacity, and exchangeable Ca compared to the untreated soil. Moreover, the water-soluble and readily exchangeable PTE fraction decreased (with the exception of Sb) between 1.2- and 3.0-fold in the presence of biochar and earthworms. Earthworms, biochar, and their combination, led to a reduction of phosphomonoesterase activity which in soils amended with biochar and earthworms decreased between 2.2- and 2.5-fold with respect to the untreated soil. On the other hand, biochar and earthworms also enhanced soil basal respiration and protease activity. Although the survival rate and the weight loss of E. fetida did not change significantly with the addition of 2% biochar, adding the highest biochar percentage (5%) resulted in a survival rate that was ~2-fold lower and a weight loss that was 2.5-fold higher than the other treatments. The PTE bioaccumulation factors for E. fetida, which were less than 1 for all elements (except Cd), followed the order Cd > As>Zn > Cu > Pb > Sb and were further decreased by biochar addition. Overall, these results highlight that E. fetida and biochar, especially at 2% rate, could be used for the restoration of soil functionality in PTE-polluted environments, reducing at the same time the environmental risks posed by PTEs, at least in the short time.
Collapse
Affiliation(s)
- Matteo Garau
- Dipartimento di Agraria, University of Sassari, Viale Italia 39, 07100 Sassari, Italy
| | - Tom Sizmur
- Department of Geography and Environmental Science, University of Reading, Reading RG6 6DW, UK
| | - Sean Coole
- Department of Geography and Environmental Science, University of Reading, Reading RG6 6DW, UK
| | - Paola Castaldi
- Dipartimento di Agraria, University of Sassari, Viale Italia 39, 07100 Sassari, Italy.
| | - Giovanni Garau
- Dipartimento di Agraria, University of Sassari, Viale Italia 39, 07100 Sassari, Italy
| |
Collapse
|
18
|
Su J, Weng X, Luo Z, Huang H, Wang W. Impact of Biochar on Soil Properties, Pore Water Properties, and Available Cadmium. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2021; 107:544-552. [PMID: 33999280 DOI: 10.1007/s00128-021-03259-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 05/05/2021] [Indexed: 06/12/2023]
Abstract
Some effects of biochar on soil properties (such as pore water DOC) are not very clear. The changes of soil properties [cation exchange capacity (CEC)], pore water properties [pH, dissolved organic carbon (DOC), and Cd concentration (CPW-Cd)], Cd concentration measured by diffusive gradients in thin films (CDGT-Cd), and available Cd content (Cd in weak acid extractable state and reducible state, CBCR-Cd) determined by the BCR sequential extraction procedure over time after biochar addition were studied by soil incubation and potted corn experiments with five soils from a mining area. The results showed increases of 20.3%-64.6% in CEC and 0.34-1.02 in pH (both p < 0.05) in the soil incubation after adding biochar. The DOC concentration was reduced by 8.2%-33.2% (p < 0.05). CPW-Cd, CDGT-Cd, and CBCR-Cd decreased by 14.2%-47.2%, 15.3%-47.9%, and 22.3%-61.4%, respectively. During the corn cultivation phase, CEC increased by 5.1%-29.0%, and DOC concentration decreased by 10.4%-41.3% (p < 0.05). CPW-Cd, CDGT-Cd, and CBCR-Cd decreased by 5.9%-22.4%, 7.2%-25.1%, and 10.5%-64.8%, respectively. Biochar effectively increased the biomass of corn roots and reduced the concentration of Cd in the roots. Biochar altered the properties of soil and pore water, reduced the bioavailability of Cd in soil, and mitigated the harm to corn caused by Cd.
Collapse
Affiliation(s)
- Jiao Su
- School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China
| | - Xia Weng
- School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China
| | - Zijian Luo
- School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China
| | - Huchen Huang
- School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China
| | - Weisheng Wang
- School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China.
| |
Collapse
|
19
|
Peñalver-Alcalá A, Álvarez-Rogel J, Conesa HM, González-Alcaraz MN. Biochar and urban solid refuse ameliorate the inhospitality of acidic mine tailings and foster effective spontaneous plant colonization under semiarid climate. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 292:112824. [PMID: 34033987 DOI: 10.1016/j.jenvman.2021.112824] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/30/2021] [Accepted: 05/17/2021] [Indexed: 06/12/2023]
Abstract
Phytomanagement is considered a suitable option in line with nature-based solutions to reduce environmental risks associated to metal(loid) mine tailings. We aimed at assessing the effectiveness of biochar from pruning trees combined with compost from urban solid refuse (USR) to ameliorate the conditions of barren acidic (pH ~5.5) metal(loid) mine tailing soils (total concentrations in mg kg-1: As ~220, Cd ~40, Mn ~1800, Pb ~5300 and Zn ~8600) from Mediterranean semiarid areas and promote spontaneous plant colonization. Two months after amendment addition were enough to observe improvements in chemical and physico-chemical tailing soil properties (reduced acidity, salinity and water-soluble metals and increased organic carbon and nutrients content), which resulted in lowered ecotoxicity for the soil invertebrate Enchytraeus crypticus. Recalcitrant organic carbon provided by biochar remained in soil whereas labile organic compounds provided by USR were consumed over time. These improvements were consistent for at least one year and led to lower bulk density, higher water retention capacity and higher scores for microbial/functional-related parameters in the amended tailing soil. Spontaneous growth of native vegetation was favored with amendment addition, but adult plants of remarkable size were only found after three years. This highlights the existence of a time-lag between the positive effects of the amendment on tailing soil properties being observed and these improvements being translated into effective spontaneous plant colonization.
Collapse
Affiliation(s)
- Antonio Peñalver-Alcalá
- Department of Agricultural Engineering of the E.T.S.I.A. & Soil Ecology and Biotechnology Unit of the Institute of Plant Biotechnology, Technical University of Cartagena, 30203, Cartagena, Spain
| | - José Álvarez-Rogel
- Department of Agricultural Engineering of the E.T.S.I.A. & Soil Ecology and Biotechnology Unit of the Institute of Plant Biotechnology, Technical University of Cartagena, 30203, Cartagena, Spain
| | - Héctor M Conesa
- Department of Agricultural Engineering of the E.T.S.I.A. & Soil Ecology and Biotechnology Unit of the Institute of Plant Biotechnology, Technical University of Cartagena, 30203, Cartagena, Spain
| | - M Nazaret González-Alcaraz
- Department of Agricultural Engineering of the E.T.S.I.A. & Soil Ecology and Biotechnology Unit of the Institute of Plant Biotechnology, Technical University of Cartagena, 30203, Cartagena, Spain; Department of Biology & CESAM, University of Aveiro, 3810-193, Aveiro, Portugal.
| |
Collapse
|