1
|
Bu W, Yu M, Ma X, Shen Z, Ruan J, Qu Y, Huang R, Xue P, Ma Y, Tang J, Zhao X. Gender-specific effects of prenatal polystyrene nanoparticle exposure on offspring lung development. Toxicol Lett 2025; 407:1-16. [PMID: 40088994 DOI: 10.1016/j.toxlet.2025.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 02/21/2025] [Accepted: 03/08/2025] [Indexed: 03/17/2025]
Abstract
Nanoplastics are widely present in the environment. Exposure to environmental pollutants during pregnancy can have adverse effects on fetal development and health. Establishing a link between nanoplastics and Bronchopulmonary Dysplasia (BPD) requires further investigation. In this study, we examined the impact of prenatal exposure to 80 nm polystyrene nanoparticles (PS-NPs) on offspring lung development, taking into account potential gender-specific effects. Pregnant female mice were exposed to PS-NPs through oropharyngeal aspiration, and critical data on lung development were collected at postnatal days 1, 7, and 21. We found that exposure to PS-NPs reduced birth weight in female offspring and significantly increased lung weight in both male and female offspring by PND 21. Maternal exposure led to a reduction in alveolar numbers across offspring, with distinct underlying mechanisms observed between sexes. In female offspring, the reduction in alveolar numbers was linked to disrupted surfactant protein expression, significant inflammation, and increased apoptosis and fibrosis. In male offspring, impaired angiogenesis was the primary factor contributing to the increased risk of BPD. The impact on alveolar development was substantial in both genders. This study underscores the gender-specific impacts of prenatal nanoplastic exposure on lung development and offers new evidence and direction for future research on the cross-generational respiratory toxicity of PS-NPs.
Collapse
Affiliation(s)
- Wenxia Bu
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China
| | - Mengjiao Yu
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China
| | - Xinyi Ma
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China
| | - Zhaoping Shen
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China
| | - Jialing Ruan
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China
| | - Yi Qu
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China
| | - Ruiyao Huang
- Department of Clinical Medicine, Nantong University Xinglin College, Nantong 226000, China
| | - Peng Xue
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China
| | - Yuanyuan Ma
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China.
| | - Juan Tang
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China.
| | - Xinyuan Zhao
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China.
| |
Collapse
|
2
|
Liu Y, Zhang L, Wang J, Sui X, Li J, Gui Y, Wang H, Zhao Y, Xu Y, Cao W, Wang P, Zhang Y. Prenatal PM 2.5 Exposure Associated with Neonatal Gut Bacterial Colonization and Early Children's Cognitive Development. ENVIRONMENT & HEALTH (WASHINGTON, D.C.) 2024; 2:802-815. [PMID: 39568692 PMCID: PMC11574624 DOI: 10.1021/envhealth.4c00050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 06/02/2024] [Accepted: 06/06/2024] [Indexed: 11/22/2024]
Abstract
Previous research indicated that fine particulate matter (PM2.5) exposure affected both offspring neurodevelopment and the colonization of gut microbiota (GM), while the underlying mechanism remained unclear. Our study aimed to evaluate the impacts of prenatal PM2.5 exposure on child cognitive development and investigate the role of neonatal GM colonization in the association. Based on the Shanghai Maternal-Child Pairs Cohort, 361 maternal-child pairs were recruited. Prenatal PM2.5 exposure concentrations were estimated using a high-spatial-resolution prediction model, and child neurodevelopment was assessed by the Ages and Stages Questionnaire. Multivariable linear regression models, logistic regression models, linear discriminant analysis effect size, and random forest model were applied to explore the associations among PM2.5 exposure, GM colonization, and children's neurodevelopment. The present study revealed a negative correlation between PM2.5 exposure throughout pregnancy and child neurodevelopment. Prenatal PM2.5 exposure was associated with an increased risk of suspected developmental delay (SDD) (OR = 1.683, 95% CI: 1.138, 2.489) in infants aged 2 months. Additionally, potential operational taxonomic unit markers were identified for PM2.5-related neurotoxicity, demonstrating promising classification potential for early SDD screening (AUC = 71.27%). Prenatal PM2.5 exposure might disrupt the composition, richness, and evenness of meconium GM, thereby influencing cognitive development and the occurrence of SDD in offspring. Seven PM2.5-related genera, Ruminococcus gnavus group, Romboutsia, Burkholderiaceae Caballeronia Paraburkholderia, Blautia, Alistipes, Parabacteroides, and Bacteroides, were validated as correlated with prenatal PM2.5 exposure and the occurrence of SDD. Moreover, alterations of GM related to PM2.5 exposure and SDD might be accompanied by changes in functional pathways of amino acid, lipid, and vitamin metabolism as indicated by differentially enriched species in the Kyoto Encyclopedia of Genes and Genomes.
Collapse
Affiliation(s)
- Yang Liu
- Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China (Fudan University), Shanghai 200032, China
- Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai 200032, China
| | - Liyi Zhang
- Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China (Fudan University), Shanghai 200032, China
- Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai 200032, China
| | - Jieming Wang
- Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China (Fudan University), Shanghai 200032, China
- Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai 200032, China
| | - Xinyao Sui
- Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China (Fudan University), Shanghai 200032, China
- Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai 200032, China
| | - Jiufeng Li
- Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China (Fudan University), Shanghai 200032, China
- Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai 200032, China
| | - Yuyan Gui
- Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China (Fudan University), Shanghai 200032, China
- Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai 200032, China
| | - Hang Wang
- Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China (Fudan University), Shanghai 200032, China
- Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai 200032, China
| | - Yue Zhao
- Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China (Fudan University), Shanghai 200032, China
- Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai 200032, China
| | - Yaqi Xu
- Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China (Fudan University), Shanghai 200032, China
- Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai 200032, China
| | - Weizhao Cao
- Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China (Fudan University), Shanghai 200032, China
- Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai 200032, China
| | - Pengpeng Wang
- Department of Environmental and Occupational Health, School of Public Health, Zhengzhou University, Henan 450001, China
| | - Yunhui Zhang
- Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China (Fudan University), Shanghai 200032, China
- Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai 200032, China
| |
Collapse
|
3
|
Wang JT, Hu W, Xue Z, Cai X, Zhang SY, Li FQ, Lin LS, Chen H, Miao Z, Xi Y, Guo T, Zheng JS, Chen YM, Lin HL. Mapping multi-omics characteristics related to short-term PM 2.5 trajectory and their impact on type 2 diabetes in middle-aged and elderly adults in Southern China. JOURNAL OF HAZARDOUS MATERIALS 2024; 468:133784. [PMID: 38382338 DOI: 10.1016/j.jhazmat.2024.133784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/29/2024] [Accepted: 02/12/2024] [Indexed: 02/23/2024]
Abstract
The relationship between PM2.5 and metabolic diseases, including type 2 diabetes (T2D), has become increasingly prominent, but the molecular mechanism needs to be further clarified. To help understand the mechanistic association between PM2.5 exposure and human health, we investigated short-term PM2.5 exposure trajectory-related multi-omics characteristics from stool metagenome and metabolome and serum proteome and metabolome in a cohort of 3267 participants (age: 64.4 ± 5.8 years) living in Southern China. And then integrate these features to examine their relationship with T2D. We observed significant differences in overall structure in each omics and 193 individual biomarkers between the high- and low-PM2.5 groups. PM2.5-related features included the disturbance of microbes (carbohydrate metabolism-associated Bacteroides thetaiotaomicron), gut metabolites of amino acids and carbohydrates, serum biomarkers related to lipid metabolism and reducing n-3 fatty acids. The patterns of overall network relationships among the biomarkers differed between T2D and normal participants. The subnetwork membership centered on the hub nodes (fecal rhamnose and glycylproline, serum hippuric acid, and protein TB182) related to high-PM2.5, which well predicted higher T2D prevalence and incidence and a higher level of fasting blood glucose, HbA1C, insulin, and HOMA-IR. Our findings underline crucial PM2.5-related multi-omics biomarkers linking PM2.5 exposure and T2D in humans.
Collapse
Affiliation(s)
- Jia-Ting Wang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Wei Hu
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Zhangzhi Xue
- Westlake Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang Province, 310030, China; School of Medicine, School of Life Sciences, Westlake University, Hangzhou, Zhejiang Province, 310030, China
| | - Xue Cai
- Westlake Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang Province, 310030, China; School of Medicine, School of Life Sciences, Westlake University, Hangzhou, Zhejiang Province, 310030, China
| | - Shi-Yu Zhang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Fan-Qin Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Li-Shan Lin
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Hanzu Chen
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Zelei Miao
- Westlake Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang Province, 310030, China; School of Medicine, School of Life Sciences, Westlake University, Hangzhou, Zhejiang Province, 310030, China
| | - Yue Xi
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Tiannan Guo
- Westlake Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang Province, 310030, China; School of Medicine, School of Life Sciences, Westlake University, Hangzhou, Zhejiang Province, 310030, China
| | - Ju-Sheng Zheng
- Westlake Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang Province, 310030, China; School of Medicine, School of Life Sciences, Westlake University, Hangzhou, Zhejiang Province, 310030, China.
| | - Yu-Ming Chen
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| | - Hua-Liang Lin
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| |
Collapse
|
4
|
Zhou Y, Xu B, Wang L, Sun Q, Zhang C, Li S. Effects of inhaled fine particulate matter on the lung injury as well as gut microbiota in broilers. Poult Sci 2024; 103:103426. [PMID: 38335666 PMCID: PMC10869302 DOI: 10.1016/j.psj.2024.103426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 12/27/2023] [Accepted: 01/02/2024] [Indexed: 02/12/2024] Open
Abstract
Fine particulate matter (PM2.5) has been widely regarded as an important environmental risk factor that has widely influenced health of both animals and humans. Lung injury is the main cause of PM2.5 affecting respiratory tract health. Gut microbiota participates in the development of lung injury in many pathological processes. However, there is still unknown the specific effects of PM2.5 on the gut-lung axis in broilers. Thus, we conducted a broiler model based on 3-wk-old male Arbor Acres broiler to explore the underlying mechanism. Our results showed that PM2.5 exposure triggered TLR4 signaling pathway and induced the increase of IL-6, IFN-γ, TNF-α expression as well as the decrease of IL-10 expression in the lung. Inhaled PM2.5 exposure significantly altered the gut microbiota diversity and community. Specifically, PM2.5 exposure decreased α diversity and altered β diversity of gut microbiota, and reduced the abundance of DTU089, Oscillospirales, Staphylococcus, and increased the Escherichia-Shigella abundance, leading to the increase of gut-derived lipopolysaccharides (LPS). Moreover, PM2.5 significantly disrupted the intestinal epithelial barrier by reducing the expression of muc2 and claudin-1 to increase intestinal permeability, which possibly facilitated the LPS translocation into the blood. Spearman analysis revealed that gut microbiota dysbiosis was positively related to TLR4, TNF-α, and IFN-γ expression in the lung. In summary, our results showed that PM2.5 exposure induced lung injury by causing inflammation and triggering TLR4 signaling pathway, and also induced gut microbiota dysbiosis resulting in the overproduction of gut-derived LPS. And gut microbiota dysbiosis may be associated with lung injury. The above results provide basis data to comprehend the potential role of gut microbiota dysbiosis in the lung injury as well as providing a new regulatory target for alleviating lung injury associated with environmental pollutants.
Collapse
Affiliation(s)
- Ying Zhou
- Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Bin Xu
- Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Linyi Wang
- Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Quanyou Sun
- Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Chaoshuai Zhang
- Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Shaoyu Li
- Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, Zhengzhou, China.
| |
Collapse
|
5
|
Gu W, Wang R, Chai Y, Zhang L, Chen R, Li R, Pan J, Zhu J, Sun Q, Liu C. β3 adrenergic receptor activation alleviated PM 2.5-induced hepatic lipid deposition in mice. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 907:168167. [PMID: 39491202 DOI: 10.1016/j.scitotenv.2023.168167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/11/2023] [Accepted: 10/26/2023] [Indexed: 11/05/2024]
Abstract
Increasing energy expenditure through activation of hepatocytes is a potential approach to treat fine particulate matter (PM2.5) induced metabolic-associated fatty liver disease (MAFLD). Beta-3 adrenergic receptor (β3-AR) agonists could stimulate brown adipose tissue (BAT) energy expenditure, but it has never been investigated in MAFLD. The objective of this study is to explore the therapeutic effects of administering CL-316,243, a selective agonist of β3-AR, on hepatic lipid metabolism disturbances induced by PM2.5. Firstly, C57BL/6 N mice were intraperitoneally injected with CL-316,243 for one week. CL-316,243 significantly upregulated expression of β3-AR in the liver, accompanied with reduced serum triglyceride (TG) and free fatty acids (FFA). Next, mice were subjected to PM2.5 exposure for 4 weeks, and CL-316,243 was daily intraperitoneally injected in the fourth week of PM2.5 exposure. Exposure to PM2.5 led to a significant increase in hepatic TG and monounsaturated fatty acids (MUFAs), accompanied with elevated activity of SCD1, increased levels of TG synthesis enzymes and inhibited COX4 activity. Furthermore, the administration of CL-316,243 alleviated PM2.5-induced hepatic lipid deposition by enhancing SCD1 activity, TG lipolysis, fatty acid oxidation and TG synthesis via β3-AR/PKA/CREB/PPAR signaling pathway. Therefore, β3-AR activation may serve as a potential therapeutic approach for PM2.5 exposure-induced MAFLD.
Collapse
Affiliation(s)
- Weijia Gu
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, China; Zhejiang International Science and Technology Cooperation Base of Air Pollution and Health, Hangzhou, China
| | - Ruiqing Wang
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yanxi Chai
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, China
| | - Lu Zhang
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, China; Zhejiang International Science and Technology Cooperation Base of Air Pollution and Health, Hangzhou, China
| | - Rucheng Chen
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, China; Zhejiang International Science and Technology Cooperation Base of Air Pollution and Health, Hangzhou, China
| | - Ran Li
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, China; Zhejiang International Science and Technology Cooperation Base of Air Pollution and Health, Hangzhou, China
| | - Jing Pan
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, China
| | - Junyao Zhu
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, China
| | - Qinghua Sun
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, China; Zhejiang International Science and Technology Cooperation Base of Air Pollution and Health, Hangzhou, China
| | - Cuiqing Liu
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, China; Zhejiang International Science and Technology Cooperation Base of Air Pollution and Health, Hangzhou, China.
| |
Collapse
|
6
|
Cao Y, Zang T, Qiu T, Xu Z, Chen X, Fan X, Zhang Q, Huang Y, Liu J, Wu N, Shen N, Bai J, Li G, Huang J, Liu Y. Does PM 1 exposure during pregnancy impact the gut microbiota of mothers and neonates? ENVIRONMENTAL RESEARCH 2023; 231:116304. [PMID: 37268213 DOI: 10.1016/j.envres.2023.116304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 05/12/2023] [Accepted: 05/31/2023] [Indexed: 06/04/2023]
Abstract
BACKGROUND Ambient air pollutant exposure can change the composition of gut microbiota at 6-months of age, but there is no epidemiological evidence on the impacts of exposure to particulate matter with an aerodynamic diameter ≤1 μm (PM1) during pregnancy on gut microbiota in mothers and neonates. We aimed to determine if gestational PM1 exposure is associated with the gut microbiota of mothers and neonates. METHODS Leveraging a mother-infant cohort from the central region of China, we estimated the exposure concentrations of PM1 during pregnancy based on residential address records. The gut microbiota of mothers and neonates was analyzed using 16 S rRNA V3-V4 gene sequences. Functional pathway analyses of 16 S rRNA V3-V4 bacterial communities were conducted using Tax4fun. The impact of PM1 exposure on α-diversity, composition, and function of gut microbiota in mothers and neonates was evaluated using multiple linear regression, controlling for nitrogen dioxide (NO2) and ozone (O3). Permutation multivariate analysis of variance (PERMANOVA) was used to analyze the interpretation degree of PM1 on the sample differences at the OTU level using the Bray-Curtis distance algorithm. RESULTS Gestational PM1 exposure was positively associated with the α-diversity of gut microbiota in neonates and explained 14.8% (adj. P = 0.026) of the differences in community composition among neonatal samples. In contrast, gestational PM1 exposure had no impact on the α- and β-diversity of gut microbiota in mothers. Gestational PM1 exposure was positively associated with phylum Actinobacteria of gut microbiota in mothers, and genera Clostridium_sensu_stricto_1, Streptococcus, Faecalibacterium of gut microbiota in neonates. At Kyoto Encyclopedia of Genes and Genomes pathway level 3, the functional analysis results showed that gestational PM1 exposure significantly down-regulated Nitrogen metabolism in mothers, as well as Two-component system and Pyruvate metabolism in neonates. While Purine metabolism, Aminoacyl-tRNA biosynthesis, Pyrimidine metabolism, and Ribosome in neonates were significantly up-regulated. CONCLUSIONS Our study provides the first evidence that exposure to PM1 has a significant impact on the gut microbiota of mothers and neonates, especially on the diversity, composition, and function of neonatal meconium microbiota, which may have important significance for maternal health management in the future.
Collapse
Affiliation(s)
- Yanan Cao
- School of Public Health, Wuhan University, Wuhan, 430071, China
| | - Tianzi Zang
- Center for Women's and Children's Health, Wuhan University School of Nursing, Wuhan University, Wuhan, 430071, China
| | - Tianlai Qiu
- Center for Women's and Children's Health, Wuhan University School of Nursing, Wuhan University, Wuhan, 430071, China
| | - Zhihu Xu
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, Beijing, 100191, China
| | - Xiangxu Chen
- Center for Women's and Children's Health, Wuhan University School of Nursing, Wuhan University, Wuhan, 430071, China
| | - Xiaoxiao Fan
- Center for Women's and Children's Health, Wuhan University School of Nursing, Wuhan University, Wuhan, 430071, China
| | - Qianping Zhang
- Center for Women's and Children's Health, Wuhan University School of Nursing, Wuhan University, Wuhan, 430071, China
| | - Yingjuan Huang
- Center for Women's and Children's Health, Wuhan University School of Nursing, Wuhan University, Wuhan, 430071, China
| | - Jun Liu
- Center for Women's and Children's Health, Wuhan University School of Nursing, Wuhan University, Wuhan, 430071, China
| | - Ni Wu
- Center for Women's and Children's Health, Wuhan University School of Nursing, Wuhan University, Wuhan, 430071, China
| | - Natalie Shen
- Emory University Rollins School of Public Health, 1520 Clifton Road, Atlanta, GA, 30322, USA
| | - Jinbing Bai
- Emory University Nell Hodgson Woodruff School of Nursing, 1520 Clifton Road, Atlanta, GA, 30322, USA
| | - Guoxing Li
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, Beijing, 100191, China
| | - Jing Huang
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, Beijing, 100191, China.
| | - Yanqun Liu
- Center for Women's and Children's Health, Wuhan University School of Nursing, Wuhan University, Wuhan, 430071, China.
| |
Collapse
|
7
|
Liao M, Braunstein Z, Rao X. Sex differences in particulate air pollution-related cardiovascular diseases: A review of human and animal evidence. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 884:163803. [PMID: 37137360 DOI: 10.1016/j.scitotenv.2023.163803] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 04/24/2023] [Accepted: 04/24/2023] [Indexed: 05/05/2023]
Abstract
Cardiovascular disease (CVD) is the leading cause of mortality globally. In the past several decades, researchers have raised significant awareness about the sex differences in CVD and the importance of heart disease in women. Besides physiological disparities, many lifestyles and environmental factors such as smoking and diet may affect CVD in a sex-dependent manner. Air pollution is a well-recognized environmental risk factor for CVD. However, the sex differences in air pollution-related CVD have been largely neglected. A majority of the previously completed studies have either evaluated only one sex (generally male) as study subjects or did not compare the sex differences. Some epidemiological and animal studies have shown that there are sex differences in the sensitivity to particulate air pollution as evidenced by the different morbidity and mortality rates of CVD induced by particulate air pollution, although this was not conclusive. In this review, we attempt to evaluate the sex differences in air pollution-related CVD and the underlying mechanisms by reviewing both epidemiological and animal studies. This review may provide a better understanding of the sex differences in environmental health research, enabling improved prevention and therapeutic strategies for human health in the future.
Collapse
Affiliation(s)
- Minyu Liao
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zachary Braunstein
- Department of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Xiaoquan Rao
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
8
|
Gestation and lactation triphenyl phosphate exposure disturbs offspring gut microbiota in a sex-dependent pathway. Food Chem Toxicol 2023; 172:113579. [PMID: 36563926 DOI: 10.1016/j.fct.2022.113579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 10/17/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
Triphenyl phosphate (TPhP) is an Organophosphate flame retardant (OPFR) that has been widely used in many commercial products. Following its widely usage, its health risk has been concerned. In this study, mice were exposed to TPhP (1 mg/kg) during pregnancy and lactation (E0-PND21), the effect of TPhP on gut microbiota and its role in TPhP mediated lipid metabolism disturbance of offspring was investigated. Our results showed that TPhP disturbed the gut microbiota in dam or offspring at different extent, with male offspring experiencing major effects. Both the composition, abundance or network of gut microbiome was affected in male offspring. In male offspring, expression of genes along gut-liver axis including FXR, CYP7A1, SREBP-1c and ChREBP was significantly up-regulated, and expression of SHP, FGF15 and ASBT was significantly down-regulated. Consistent with this, lipid accumulation in the liver, and increased level of triglyceride, total cholestrol and total bile acid in the serum was observed. The changed abundance of Ruminococcaceae, Clostridiaceae, and Bacteroidaceae shows strong correlation with disturbed lipid metabolism in male offspring. Our research showed that indirect TPhP exposure during early life stage could affect the gut microbiota and gene expression along gut-liver axis in offspring at sex-dependent pathways, with males experiencing more effects.
Collapse
|
9
|
Yi W, Ji Y, Gao H, Luo S, Pan R, Song J, He Y, Li Y, Wu Y, Yan S, Liang Y, Sun X, Jin X, Mei L, Cheng J, Su H. Effects of urban particulate matter on gut microbiome and partial schizophrenia-like symptoms in mice: Evidence from shotgun metagenomic and metabolomic profiling. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159305. [PMID: 36216056 DOI: 10.1016/j.scitotenv.2022.159305] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 09/29/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Epidemiological evidence reported that particulate matter (PM) was associated with increased schizophrenia (SCZ) risk. Disturbance of gut microbiome was involved in SCZ. However, it remains unclear whether PM induces SCZ-like symptoms and how gut microbiome regulates them. Therefore, a multi-omics animal experiment was conducted to verify how urban PM induces SCZ-like behavior and altered gut microbiota and metabolic pathways. METHODS Using a completely random design, mice were divided into three groups: PM group, control group and MK801 group, which received daily tracheal instillation of PM solution, sterile PBS solution and intraperitoneal injection of MK801 (establish SCZ model), respectively. After a 14-day intervention, feces were collected for multi-omics testing (shotgun metagenomic sequencing and untargeted metabolomic profiling), followed by open field test, tail suspension test, and passive avoidance test. Besides, fecal microbiome of PM group and control group were transplanted into "pseudo-sterile" mice, then behavioral tests were conducted. RESULTS Similar to MK801 group, mice in PM group showed SCZ-like symptoms, including increased spontaneous activity, excitability, anxiety and decreased learning and spatial memory. PM exposure significantly increased the relative abundance of Verrucomicrobia and decreased that of Fibrobacteres et al. The metabolism pathways of estrogen signaling (estriol, 16-glucuronide-estriol and 21-desoxycortisol) and choline metabolism (phosphocholine) were significantly altered by PM exposure. Verrucomicrobia was negatively correlated with the level of estriol, which was correlated with decreased learning and spatial memory. Fibrobacteres and Deinococcus-Thermus were positively correlated with the level of phosphocholine, which was correlated with increased spontaneous activity, excitability and anxiety. Fecal microbiome transplantation from PM group mice reproduced excitability and anxiety symptoms. CONCLUSIONS Exposure to PM may affect composition of gut microbiome and alterations of estrogen signaling pathway and choline metabolism pathway, which were associated with partial SCZ-like behaviors. But whether gut microbiome regulates these metabolic pathways and behaviors remains to be determined.
Collapse
Affiliation(s)
- Weizhuo Yi
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, China
| | - Yifu Ji
- Anhui Mental Health Center, Hefei, Anhui, China
| | - Hua Gao
- Anhui Mental Health Center, Hefei, Anhui, China
| | - Shengyong Luo
- Anhui Academy of Medical Sciences, Hefei, Anhui, China
| | - Rubing Pan
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, China
| | - Jian Song
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, China
| | - Yangyang He
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, China
| | - Yuxuan Li
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, China
| | - Yudong Wu
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, China
| | - Shuangshuang Yan
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, China
| | - Yunfeng Liang
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, China
| | - Xiaoni Sun
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, China
| | - Xiaoyu Jin
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, China
| | - Lu Mei
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, China
| | - Jian Cheng
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, China
| | - Hong Su
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, China.
| |
Collapse
|
10
|
Jiang P, Yuan GH, Jiang BR, Zhang JY, Wang YQ, Lv HJ, Zhang Z, Wu JL, Wu Q, Li L. Effects of microplastics (MPs) and tributyltin (TBT) alone and in combination on bile acids and gut microbiota crosstalk in mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 220:112345. [PMID: 34020283 DOI: 10.1016/j.ecoenv.2021.112345] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 05/11/2021] [Accepted: 05/12/2021] [Indexed: 06/12/2023]
Abstract
Microplastics (MPs) and tributyltin (TBT) are both potential environmental pollutants that enter organisms through the food chain and affect bodily functions. However, the effects and mechanisms of MPs and TBT exposure (especially the co-exposure of both pollutants) on mammals remain unclear. In this study, Ф5μm MPs (5MP) was administered alone or in combination with TBT to investigate the health risk of oral exposure in mice. All three treatments induced inflammation in the liver, altered gut microbiota composition and disturbed fecal bile acids profiles. In addition to decreasing triglyceride (TG) and increasing aspartate aminotransferase (AST) and macrophage-expressed gene 1 (Mpeg1), 5MP induced hepatic cholestasis by stimulating the expression of the cholesterol hydroxylase enzymes CYP8B1 and CYP27A1, and inhibiting multidrug resistance-associated protein 2 and 3 (MRP2, MRP3), and bile-salt export pump (BSEP) to prevent bile acids for entering the blood and bile. Correspondingly, 5MP treatment decreased 7-ketolithocholic acid (7-ketoLCA) and taurocholic acid (TCA), which were positively correlated with decreased Bacteroides and Marvinbryantia and negatively correlated with increased Bifidobacterium. In addition, TBT increased interferon γ (IFNγ) and Mpeg1 levels to induce inflammation, accompanied by decreased 7-ketoLCA, tauro-alpha-muricholic acid (T-alpha-MCA) and alpha-muricholic acid (alpha-MCA) levels, which were negatively related to Coriobacteriaceae_UCG-002 and Bifidobacterium. Co-exposure to 5MP and TBT also decreased TG and induced bile acids accumulation in the liver due to inhibited BSEP, which might be attributed to the co-regulation of decreased T-alpha-MCA and Harryflintia. In conclusion, the administration of 5MP and TBT alone and in combination could cause gut microbiome dysbiosis and subsequently alter bile acids profiles, while the combined exposure of 5MP and TBT weakened the toxic effects of 5MP and TBT alone.
Collapse
Affiliation(s)
- Ping Jiang
- Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, Jiangsu 211166, PR China; Key Lab of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, Jiangsu 211166, PR China
| | - Ge-Hui Yuan
- Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, Jiangsu 211166, PR China
| | - Bao-Rong Jiang
- Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, Jiangsu 211166, PR China
| | - Jing-Yi Zhang
- Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, Jiangsu 211166, PR China
| | - Yu-Qian Wang
- Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, Jiangsu 211166, PR China
| | - Hui-Jie Lv
- Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, Jiangsu 211166, PR China
| | - Zhan Zhang
- Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, Jiangsu 211166, PR China; Key Lab of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, Jiangsu 211166, PR China
| | - Jia-Lin Wu
- Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, Jiangsu 211166, PR China
| | - Qian Wu
- Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, Jiangsu 211166, PR China; Key Lab of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, Jiangsu 211166, PR China
| | - Lei Li
- Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, Jiangsu 211166, PR China; Key Lab of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, Jiangsu 211166, PR China.
| |
Collapse
|
11
|
Zhang X, Zhang J, Wu Y, Nan B, Huang Q, Du X, Tian M, Liu L, Xin Y, Li Y, Duan J, Chen R, Sun Z, Shen H. Dynamic recovery after acute single fine particulate matter exposure in male mice: Effect on lipid deregulation and cardiovascular alterations. JOURNAL OF HAZARDOUS MATERIALS 2021; 414:125504. [PMID: 33652219 DOI: 10.1016/j.jhazmat.2021.125504] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 02/18/2021] [Accepted: 02/21/2021] [Indexed: 06/12/2023]
Abstract
Many studies have linked airborne fine particulate matter (PM2.5) exposure to cardiovascular diseases. We performed a time-series analysis to investigate whether the disruption of lipid metabolism recovered or lasted after acute PM2.5 exposure in mice. Targeted lipidomic analysis showed that four major plasma membrane phospholipids along with cholesterol esters (CE) were significantly altered on 7th post-exposure day (PED7), and the alteration reached a peak on PED14. On PED21, the phosphatidylcholine (PC) decrease was more marked than on PED14, and its resurgence was indirectly linked to triglyceride (TG) increase. Homocysteine (HCY), lactate dehydrogenase (LDH), and α-hydroxybutyrate dehydrogenase (α-HBDH) levels increased but glucose levels decreased markedly in a dose- and time-dependent manner throughout the experimental period. Network analysis showed that the lasting lipid deregulation on PED21 correlated to myocardial markers and glucose interruption, during which high-density lipoprotein cholesterol (HDL-C) decreased. The present data implied that the constructional membrane lipids were initially interrupted by PM2.5, and the subsequent rehabilitation resulted in the deregulation of storage lipids; the parallel myocardial and glucose effects may be enhanced by the lasting HDL-C lipid deregulation on PED21. These myocardial and lipidomic events were early indicators of cardiovascular risk, resulting from subsequent exposure to and accumulation of PM2.5.
Collapse
Affiliation(s)
- Xi Zhang
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Jie Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, PR China
| | - Yan Wu
- Department of Health Inspection and Quarantine, School of Public Health, Fujian Medical University, Fuzhou, Fujian 350122, PR China
| | - Bingru Nan
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Qingyu Huang
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China
| | - Xiaoyan Du
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Meiping Tian
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China
| | - Liangpo Liu
- School of Public Health, Shanxi Medical University, Taiyuan 030001, PR China
| | - Yuntian Xin
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yanbo Li
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Junchao Duan
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Rui Chen
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Zhiwei Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Heqing Shen
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China; State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, PR China.
| |
Collapse
|