1
|
Flores-Ramírez R, Mendoza-Rivera SP, García-Grajales J, Buenrostro-Silva A, Sanjuan-Meza EU, Berumen-Rodríguez AA, Espinosa-Reyes G. Persistent organic pollutants in the olive ridley turtle (Lepidochelys olivacea) during the nesting stage in the "La Escobilla" Sanctuary, Oaxaca, Mexico. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:10911-10919. [PMID: 38214861 DOI: 10.1007/s11356-024-31833-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 12/29/2023] [Indexed: 01/13/2024]
Abstract
Persistent organic pollutants (POPs) are chemical substances widely distributed in the environment by the runoff from anthropic activities and can be distributed and bioaccumulated or biomagnified in the environment, affecting the health of organisms. The sea turtle, Lepidochelys olivacea, is a long-lived organism, with migratory habits and feeding behaviors that allow exposure to various pollutants. This work aimed to determine long-term exposure to POPs in adult olive ridley turtles (L. olivacea), sampled during the nesting season, in "La Escobilla" Sanctuary. Blood samples were collected and processed to obtain plasma. The quantification of POPs in blood was carried out with an extraction technique with a focused ultrasound probe. Twenty-seven POP analytes were determined. The concentrations of hexachlorocyclohexane, endosulfan isomers, dichlorodiphenyltrichloroethane, total polychlorinated biphenyls, and the total sum of POPs found in plasma are higher than those reported in other studies, which reported effects such as hematological and biochemical changes in blood, changes in immune system cells and enzymatic activity related to oxidative stress. These results are important to demonstrate the chronic exposure to POPs in olive ridley turtles in marine ecosystems and to highlight the importance of assessing the associated health risks, considering that these contaminants could be transferred to the offspring and affect future generations of this reptile. It is important to carry out studies that develop conservation strategies for the olive ridley turtle. Also, it is necessary to control the emissions of pollutants into the atmosphere, as well as reduce urban, agricultural, and industrial waste in the environment and marine ecosystems.
Collapse
Affiliation(s)
- Rogelio Flores-Ramírez
- Facultad de Medicina - Coordinación para la Inoovación y la Aplicación de la Ciencia y la Tecnología (CIACyT). Centro de Investigación Aplicada en Ambiente y Salud (CIAAS), Universidad Autónoma de San Luis Potosí, Av. Sierra Leona No. 550, CP 78210, Colonia Lomas Segunda Sección, San Luis Potosí, SLP, México
| | - Sagrario Paola Mendoza-Rivera
- Facultad de Medicina - Coordinación para la Inoovación y la Aplicación de la Ciencia y la Tecnología (CIACyT). Centro de Investigación Aplicada en Ambiente y Salud (CIAAS), Universidad Autónoma de San Luis Potosí, Av. Sierra Leona No. 550, CP 78210, Colonia Lomas Segunda Sección, San Luis Potosí, SLP, México
| | - Jesus García-Grajales
- Universidad del Mar Campus Puerto Escondido, Km. 2.5 Carretera Federal Puerto Escondido-Sola de Vega, 71980, San Pedro Mixtepec, Oaxaca, México
| | - Alejandra Buenrostro-Silva
- Universidad del Mar Campus Puerto Escondido, Km. 2.5 Carretera Federal Puerto Escondido-Sola de Vega, 71980, San Pedro Mixtepec, Oaxaca, México
| | - Eleno Uriel Sanjuan-Meza
- Facultad de Medicina - Coordinación para la Inoovación y la Aplicación de la Ciencia y la Tecnología (CIACyT). Centro de Investigación Aplicada en Ambiente y Salud (CIAAS), Universidad Autónoma de San Luis Potosí, Av. Sierra Leona No. 550, CP 78210, Colonia Lomas Segunda Sección, San Luis Potosí, SLP, México
| | - Alejandra Abigail Berumen-Rodríguez
- Facultad de Medicina - Coordinación para la Inoovación y la Aplicación de la Ciencia y la Tecnología (CIACyT). Centro de Investigación Aplicada en Ambiente y Salud (CIAAS), Universidad Autónoma de San Luis Potosí, Av. Sierra Leona No. 550, CP 78210, Colonia Lomas Segunda Sección, San Luis Potosí, SLP, México
| | - Guillermo Espinosa-Reyes
- Facultad de Medicina - Coordinación para la Inoovación y la Aplicación de la Ciencia y la Tecnología (CIACyT). Centro de Investigación Aplicada en Ambiente y Salud (CIAAS), Universidad Autónoma de San Luis Potosí, Av. Sierra Leona No. 550, CP 78210, Colonia Lomas Segunda Sección, San Luis Potosí, SLP, México.
| |
Collapse
|
2
|
Aguilar-Aguilar A, de León-Martínez LD, Forgionny A, Acelas Soto NY, Mendoza SR, Zárate-Guzmán AI. A systematic review on the current situation of emerging pollutants in Mexico: A perspective on policies, regulation, detection, and elimination in water and wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167426. [PMID: 37774864 DOI: 10.1016/j.scitotenv.2023.167426] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 09/22/2023] [Accepted: 09/26/2023] [Indexed: 10/01/2023]
Abstract
Emerging pollutants (EPs) emerged as a group of new compounds whose presence in the environment has been widely detected in Mexico. In this country, different concentrations of pharmaceutical compounds, pesticides, dyes, and microplastics have been reported, which vary depending on the region and the analyzed matrix (i.e., wastewater, surface water, groundwater). The evidence of the EPs' presence focuses on the detection of them, but there is a gap in information regarding is biomonitoring and their effects in health in Mexico. The presence of these pollutants in the country associated with lack of proper regulations in the discharge and disposal of EPs. Therefore, this review aims to provide a comprehensive view of the current environmental status, policies, and frameworks regarding Mexico's situation. The review also highlights the lack of information about biomonitoring since EPs are present in water even after their treatment, leading to a critical situation, which is high exposure to humans and animals. Although, technologies to efficiently eliminate EPs are available, their application has been reported only at a laboratory scale thus far. Here, an overview of health and environmental impacts and a summary of the research works reported in Mexico from 2014 to 2023 were presented. This review concludes with a concrete point of view and perspective on the status of the EPs' research in Mexico as an alert for government entities about the necessity of measures to control the EPs disposal and treatment.
Collapse
Affiliation(s)
- Angélica Aguilar-Aguilar
- Centro de Investigación y Estudios de Posgrado, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, San Luis Potosí 78210, Mexico
| | | | - Angélica Forgionny
- Grupo de Materiales con Impacto, Mat&mpac, Facultad de Ciencias Básicas, Universidad de Medellín, Medellín 55450, Colombia
| | - Nancy Y Acelas Soto
- Grupo de Materiales con Impacto, Mat&mpac, Facultad de Ciencias Básicas, Universidad de Medellín, Medellín 55450, Colombia
| | - Sergio Rosales Mendoza
- Centro de Investigación en Ciencias de la Salud y Biomedicina, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Manuel Nava No. 201, San Luis Potosí 78210, Mexico
| | - Ana I Zárate-Guzmán
- Centro de Investigación y Estudios de Posgrado, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, San Luis Potosí 78210, Mexico.
| |
Collapse
|
3
|
González-Moscoso M, Meza-Figueroa D, Martínez-Villegas NV, Pedroza-Montero MR. GLYPHOSATE IMPACT on human health and the environment: Sustainable alternatives to replace it in Mexico. CHEMOSPHERE 2023; 340:139810. [PMID: 37598951 DOI: 10.1016/j.chemosphere.2023.139810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/10/2023] [Accepted: 08/11/2023] [Indexed: 08/22/2023]
Abstract
Glyphosate is a broad-spectrum, non-selective herbicide used to control weeds and protect agricultural crops, and it is classified as potentially carcinogenic by the International Agency for Research on Cancer. In Mexico, the use of pesticides is a common practice, including glyphosate. However, on December 31st, 2020, the Mexican government decreed the prohibition of this herbicide as of January 2024. In this review, we investigate the association between glyphosate and cancer risk and found that most of the studies focused using animals showing negative effects such as genotoxicity, cytotoxicity and neurotoxicity, some studies used cancer cell lines showing proliferative effects due to glyphosate exposure. To our knowledge, in Mexico, there are no scientific reports on the association of glyphosate with any type of cancer. In addition, we reviewed the toxicological effects of the herbicide glyphosate, and the specific case of the current situation of the use and environmental damage of this herbicide in Mexico. We found that few studies have been published on glyphosate, and that the largest number of publications are from the International Agency for Research on Cancer classification to date. Additionally, we provide data on glyphosate stimulation at low doses as a biostimulant in crops and analytical monitoring techniques for the detection of glyphosates in different matrices. Finally, we have tried to summarize the actions of the Mexican government to seek sustainable alternatives and replace the use of glyphosate, to obtain food free of this herbicide and take care of the health of the population and the environment.
Collapse
Affiliation(s)
- Magín González-Moscoso
- Departamento de Nanotecnología, Universidad Politécnica de Chiapas (UPChiapas), Carretera Tuxtla Gutierrez.-Portillo Zaragoza Km 21+500, Col. Las Brisas, Suchiapa, 29150, Chiapas, Mexico.
| | - Diana Meza-Figueroa
- Departamento de Geología, Universidad de Sonora, Rosales y Encinas, Hermosillo, 83000, Sonora, Mexico
| | | | - Martín Rafael Pedroza-Montero
- Departamento de Investigación en Física, Universidad de Sonora, Rosales y Encinas, Hermosillo, 83000, Sonora, Mexico
| |
Collapse
|
4
|
Esposito M, Canzanella S, Iaccarino D, Bruno T, Esposito E, Di Nocera F, Arienzo M, Ferrara L, Gallo P. Levels of non-dioxin-like PCBs (NDL-PCBs) in liver of loggerhead turtles (Caretta caretta) from the Tyrrhenian Sea (Southern Italy). CHEMOSPHERE 2022; 308:136393. [PMID: 36096300 DOI: 10.1016/j.chemosphere.2022.136393] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 09/05/2022] [Accepted: 09/06/2022] [Indexed: 06/15/2023]
Abstract
The levels of six non-dioxin-like polychlorinated biphenyls (PCBs 28, 52, 101, 138, 153, and 180) were determined in the liver of 84 loggerhead turtles (Caretta caretta) stranded along the coasts of the Tyrrhenian Sea in Campania Region (Southern Italy), from 2017 to 2021. The average value of the sum (∑6PCBIND) was 28.0 ± 52.2 ng/g (w.w.). The hexachlorobiphenyls PCB 153 and PCB 138 and the heptachlorobiphenyl PCB 180 were the main contributors to the ∑6PCBIND. A weak positive correlation was found between CCL and highly chlorinated PCBs, with adult females having lower PCB concentrations than juvenile females and adult males. This study provides more comprehensive information on the levels of NDL-PCB in Mediterranean loggerhead turtles and sets the basis for assessing anthropogenic impacts on this species.
Collapse
Affiliation(s)
- Mauro Esposito
- Istituto Zooprofilattico Sperimentale Del Mezzogiorno, Via Salute, 2 - Portici, Italy; Centro di Referenza Nazionale per l'Analisi e Studio di Correlazione tra Ambiente, Animale e Uomo, IZS Mezzogiorno, Portici, Italy
| | - Silvia Canzanella
- Istituto Zooprofilattico Sperimentale Del Mezzogiorno, Via Salute, 2 - Portici, Italy; Centro di Referenza Nazionale per l'Analisi e Studio di Correlazione tra Ambiente, Animale e Uomo, IZS Mezzogiorno, Portici, Italy.
| | - Doriana Iaccarino
- Istituto Zooprofilattico Sperimentale Del Mezzogiorno, Via Salute, 2 - Portici, Italy
| | - Teresa Bruno
- Istituto Zooprofilattico Sperimentale Del Mezzogiorno, Via Salute, 2 - Portici, Italy
| | - Emanuele Esposito
- Istituto Zooprofilattico Sperimentale Del Mezzogiorno, Via Salute, 2 - Portici, Italy
| | - Fabio Di Nocera
- Istituto Zooprofilattico Sperimentale Del Mezzogiorno, Via Salute, 2 - Portici, Italy
| | - Michele Arienzo
- Department of Earth Sciences, Environment and Resources, University of Naples Federico II, Via Vicinale Cupa Cintia 21, 80126, Naples, Italy
| | - Luciano Ferrara
- Department of Chemical Sciences, University of Naples Federico II, Via Vicinale Cupa Cintia 21, 80126, Naples, Italy
| | - Pasquale Gallo
- Istituto Zooprofilattico Sperimentale Del Mezzogiorno, Via Salute, 2 - Portici, Italy
| |
Collapse
|
5
|
Niu B, Cai J, Song W, Zhao G. Intermediate accumulation and toxicity reduction during the selective photoelectrochemical process of atrazine in complex water bodies. WATER RESEARCH 2021; 205:117663. [PMID: 34555742 DOI: 10.1016/j.watres.2021.117663] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/08/2021] [Accepted: 09/09/2021] [Indexed: 06/13/2023]
Abstract
Selective removal of atrazine (ATZ) in wastewater and clarification of the degradation intermediate-toxicity correlation are of great importance. A newly molecularly imprinted, {001} facets-exposed TiO2 (MI-TiO2,001) photoanode with strong catalytic and selective ability was designed. ATZ was selectively removed from pesticide wastewater, reaching 1.9 µg L-1, approximately 1/10 of the concentration achieved with nonselective treatment. This selective removal originated from the preferential adsorption and enrichment of ATZ onto MI-TiO2,001. The highly specific recognition relied on the halogen bond and strong hydrogen bond formed between the Cl atom and triazine ring π orbital of ATZ and the surface -OH group of MI-TiO2,001 as well as the recognition of MI-TiO2,001 to the shape and size of ATZ. The specific interaction leads to different accumulations of intermediates. The correlation of intermediate and toxicity was also discussed. Aquatic toxicity was rapidly reduced through the direct dealkylation path, and due to the accumulation of highly toxic 2‑hydroxy-4-ethylamino-6-isopropylamino-s-triazine, there will be transient fluctuations via the dechlorination-hydroxylation path first. The final product was identified as nearly nontoxic cyanuric acid, the selective accumulation of which indicated that there was almost 100% removal of aquatic toxicity and cytotoxicity with only 9.8% removal of total organic carbon. This work provides new insight into the correlation of pollutant degradation intermediates and changes in toxicity.
Collapse
Affiliation(s)
- Baoling Niu
- School of Chemical Science and Engineering, Shanghai Key Lab of Chemical Assessment and Sustainability, Tongji University, Shanghai 200092, China
| | - Junzhuo Cai
- School of Chemical Science and Engineering, Shanghai Key Lab of Chemical Assessment and Sustainability, Tongji University, Shanghai 200092, China
| | - Wenjing Song
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guohua Zhao
- School of Chemical Science and Engineering, Shanghai Key Lab of Chemical Assessment and Sustainability, Tongji University, Shanghai 200092, China.
| |
Collapse
|