1
|
Tao Z, Liu Y, Li S, Li B, Fan X, Liu C, Hu C, Liu H, Li Z. Global warming potential assessment under reclaimed water and livestock wastewater irrigation coupled with co-application of inhibitors and biochar. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 353:120143. [PMID: 38301477 DOI: 10.1016/j.jenvman.2024.120143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 12/11/2023] [Accepted: 01/09/2024] [Indexed: 02/03/2024]
Abstract
The application of nitrification inhibitors (nitrapyrin) and urease inhibitors (N-(N-butyl) thiophosphoric triamide) under conventional water resources has been considered as an effective means to improve nitrogen utilization efficiency and mitigate soil greenhouse gas emissions. However, it is not known whether the inhibitors still have an inhibitory effect under unconventional water resources (reclaimed water and livestock wastewater) irrigation and whether their use in combination with biochar improves the mitigation effect. Therefore, unconventional water resources were used for irrigation, with groundwater (GW) control. Nitrapyrin and N-(N-butyl) thiophosphoric triamide were used alone or in combination with biochar in a pot experiment, and CO2, N2O, and CH4 emissions were measured. The results showed that irrigation of unconventional water resources exacerbated global warming potential (GWP). All exogenous substance treatments increased CO2 and CH4 emissions and suppressed N2O emissions, independent of the type of water, compared to no substances (NS). The inhibitors were ineffective in reducing the GWP whether or not in combination with biochar, and the combined application of inhibitors with biochar further increased the GWP. This study suggests that using inhibitors and biochar in combination to regulate the greenhouse effect under unconventional water resources irrigation should be done with caution.
Collapse
Affiliation(s)
- Zhen Tao
- Agricultural Water and Soil Environmental Field Science Observation Research Station, Institute of Farmland Irrigation of CAAS, Xinxiang, 453002, China
| | - Yuan Liu
- Agricultural Water and Soil Environmental Field Science Observation Research Station, Institute of Farmland Irrigation of CAAS, Xinxiang, 453002, China
| | - Siyi Li
- Agricultural Water and Soil Environmental Field Science Observation Research Station, Institute of Farmland Irrigation of CAAS, Xinxiang, 453002, China
| | - Baogui Li
- Agricultural Water and Soil Environmental Field Science Observation Research Station, Institute of Farmland Irrigation of CAAS, Xinxiang, 453002, China; College of Land Science and Technology, China Agricultural University, Haidian District, Beijing, 100193, China
| | - Xiangyang Fan
- Agricultural Water and Soil Environmental Field Science Observation Research Station, Institute of Farmland Irrigation of CAAS, Xinxiang, 453002, China
| | - Chuncheng Liu
- Agricultural Water and Soil Environmental Field Science Observation Research Station, Institute of Farmland Irrigation of CAAS, Xinxiang, 453002, China
| | - Chao Hu
- Agricultural Water and Soil Environmental Field Science Observation Research Station, Institute of Farmland Irrigation of CAAS, Xinxiang, 453002, China
| | - Hongen Liu
- Resources and Environment College, Henan Agricultural University, Zhengzhou, 450002, China
| | - Zhongyang Li
- Agricultural Water and Soil Environmental Field Science Observation Research Station, Institute of Farmland Irrigation of CAAS, Xinxiang, 453002, China; National Research and Observation Station of Shangqiu Agro-ecology System, Shangqiu, 476000, China.
| |
Collapse
|
2
|
Ming Y, Ningxi G, Jiatong Z, Zhanhan H, Zixuan C, Di S, Hongtao Z. Enhanced-efficiency nitrogen fertilizer provides a reliable option for mitigating global warming potential in agroecosystems worldwide. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:168080. [PMID: 37898212 DOI: 10.1016/j.scitotenv.2023.168080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 10/18/2023] [Accepted: 10/21/2023] [Indexed: 10/30/2023]
Abstract
Enhanced-efficiency nitrogen fertilizer (EENF), developed to improve synchronization between crop nitrogen demand and nitrogen supply, can guarantee global food security and mitigate nitrogen fertilizer-induced environmental consequences. However, comprehensive assessments of how EENF affects CH4 and CO2 emissions from paddies and drylands and the associated benefits are lacking. Here, we present the results of a global meta-analysis conducted to assess the above issues. Our results showed that, on average, applying nitrification inhibitors and coated controlled-release urea to paddy fields significantly decreased CH4 emissions by 24.0 % and 25.3 %, respectively, likely due to the weakened inhibition of NH4+ on CH4 oxidation. A similar effect on CO2 emission was observed when farmers used nitrification inhibitors and coated controlled-release urea in the drylands. The meta-analysis results revealed that all EENF products could help mitigate the global warming potential of paddies and drylands. After incorporating the benefit of global warming potential mitigation into the cost-benefit analysis, coated controlled-release urea application in paddies and drylands produced the largest environmental gains of $ 76.34 ha-1 and $ 79.35 ha-1, respectively. However, the relatively lower purchasing cost and larger yield increase of urease inhibitors resulted in the largest net profits for farmers. Moreover, a greater economic return was generally achieved by applying EENF to paddy fields than by applying EENF to drylands. These findings highlight the role of EENF in mitigating the global warming potential of global paddy and dryland fields, which has facilitated the comprehensive recognition of EENF-induced impacts.
Collapse
Affiliation(s)
- Yang Ming
- College of Land and Environment, Shenyang Agricultural University, Shenyang 110866, Liaoning, China
| | - Guo Ningxi
- College of Land and Environment, Shenyang Agricultural University, Shenyang 110866, Liaoning, China
| | - Zhang Jiatong
- College of Land and Environment, Shenyang Agricultural University, Shenyang 110866, Liaoning, China
| | - Hou Zhanhan
- College of Land and Environment, Shenyang Agricultural University, Shenyang 110866, Liaoning, China
| | - Chen Zixuan
- College of Water Conservancy, Shenyang Agricultural University, Shenyang 110866, Liaoning, China
| | - Sun Di
- College of Water Conservancy, Shenyang Agricultural University, Shenyang 110866, Liaoning, China.
| | - Zou Hongtao
- College of Land and Environment, Shenyang Agricultural University, Shenyang 110866, Liaoning, China
| |
Collapse
|
3
|
Liu X, Wang W, Sardans J, Fang Y, Li Z, Tariq A, Zeng F, Peñuelas J. Legacy effects of slag and biochar application on greenhouse gas emissions mitigation in paddy field: A three-year study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167442. [PMID: 37788782 DOI: 10.1016/j.scitotenv.2023.167442] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/07/2023] [Accepted: 09/26/2023] [Indexed: 10/05/2023]
Abstract
The utilization of slag and biochar in croplands has been proposed as a management approach to mitigate greenhouse gas (GHG) emissions, specifically methane (CH4) and nitrous oxide (N2O), from agricultural fields. However, there is limited understanding of the long-term effects of single and combined applications of slag and biochar on GHG emissions in rice paddy fields. We investigated the legacy effects of one-year applications of slag, biochar, and slag+biochar on CH4 and N2O emissions, physicochemical properties, and rice yields during a three-year period (2016-2018) in southeast China. Over the study period, the application of slag reduced CH4 emissions by 24 %, biochar by 45 %, and the combined application of slag+biochar by 44 %. Across the study period, slag, biochar, and slag+biochar applications resulted in respective N2O emissions increases of 78 %, 63 %, and 80 %. Methane emissions contributed to approximately 70 % of the global warming potential (GWP) in the paddy field, which was reduced by 20 % with biochar application and by 15 % with the combined application of slag+biochar. Additionally, the total rice yield in the slag, biochar, and slag+biochar treatments increased by 7 %, 5 %, and 10 %, respectively, compared to the control group. Based on our findings, we recommend the combined application of slag+biochar as a sustainable rice management strategy to effectively reduce GHG emissions from paddy fields while enhancing yield production.
Collapse
Affiliation(s)
- Xuyang Liu
- Key Laboratory of Humid Subtropical Eco-geographical Process, Ministry of Education, Fujian Normal University, Fuzhou 350117, China; Institute of Geography, Fujian Normal University, Fuzhou 350117, China
| | - Weiqi Wang
- Key Laboratory of Humid Subtropical Eco-geographical Process, Ministry of Education, Fujian Normal University, Fuzhou 350117, China; Institute of Geography, Fujian Normal University, Fuzhou 350117, China.
| | - Jordi Sardans
- CSIC, Global Ecology Unit, CREAF-CSIC-UAB, Bellaterra, 08193 Barcelona, Catalonia, Spain; CREAF, Cerdanyola del Vallès, 08193 Barcelona, Catalonia, Spain.
| | - Yunying Fang
- Australian Rivers Institute and School of Environment and Science, Griffith University, Nathan Campus, 4111 Queensland, Australia
| | - Zimin Li
- Université catholique de Louvain (UCLouvain), Earth and Life Institute, Soil Science, Croix du Sud 2/L7.05.10, 1348 Louvain-la-Neuve, Belgium
| | - Akash Tariq
- Xinjiang Key Laboratory of Desert Plant Root Ecology and Vegetation Restoration, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China; Cele National Station of Observation and Research for Desert-Grassland Ecosystems, Cele 848300, China
| | - Fanjiang Zeng
- Xinjiang Key Laboratory of Desert Plant Root Ecology and Vegetation Restoration, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China; Cele National Station of Observation and Research for Desert-Grassland Ecosystems, Cele 848300, China
| | - Josep Peñuelas
- CSIC, Global Ecology Unit, CREAF-CSIC-UAB, Bellaterra, 08193 Barcelona, Catalonia, Spain; CREAF, Cerdanyola del Vallès, 08193 Barcelona, Catalonia, Spain
| |
Collapse
|
4
|
Chakraborty R, Purakayastha TJ, Pendall E, Dey S, Jain N, Kumar S. Nitrification and urease inhibitors mitigate global warming potential and ammonia volatilization from urea in rice-wheat system in India: A field to lab experiment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 898:165479. [PMID: 37459989 DOI: 10.1016/j.scitotenv.2023.165479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 07/02/2023] [Accepted: 07/09/2023] [Indexed: 07/25/2023]
Abstract
The efficacy of alternative nitrogenous fertilizers for mitigating greenhouse gas and ammonia emissions from a rice-wheat cropping system in northern India was addressed in a laboratory incubation experiment using soil from a 10-year residue management field experiment (crop residue removal, CRR, vs. incorporation, CRI). Neem coated urea (NCU), standard urea (U), urea ammonium sulfate (UAS), and two alternative fertilizers, urea + urease inhibitor NBPT (UUI) and urea + urease inhibitor NBPT + nitrification inhibitor DMPSA (UUINI) were compared to non-fertilized controls for four weeks in incubation under anaerobic condition. Effects of fertilizers on global warming potential (GWP) and ammonia volatilization were dependent on residue treatment. Relative to standard urea, NCU reduced GWP by 11 % in CRI but not significantly in CRR; conversely, UAS reduced GWP by 12 % in CRR but not significantly in CRI. UUI and UUINI reduced GWP in both residue treatments and were more effective in CRI (21 % and 26 %) than CRR (15 % and 14 %). Relative to standard urea, NCU increased ammonia volatilization by 8 % in CRI but not significantly in CRR. Ammonia volatilization was reduced most strongly by UUI (40 % in CRI and 37 % in CRR); it was reduced 28-29 % by UUINI and 12-15 % by UAS. Overall, the urease inhibitor, alone and in combination with the nitrification inhibitor, was more effective in mitigating greenhouse gas and ammonia emissions than NCU. However, these products need to be tested in field settings to validate findings from the controlled laboratory experiment.
Collapse
Affiliation(s)
- Ranabir Chakraborty
- Division of Soil Science and Agricultural Chemistry, Indian Council of Agricultural Research-Indian Agricultural Research Institute, New Delhi 110012, India; Indian Council of Agricultural Research-National Bureau of Soil Survey and Land Use Planning, Regional Centre, Bangalore 560012, India
| | - Tapan Jyoti Purakayastha
- Division of Soil Science and Agricultural Chemistry, Indian Council of Agricultural Research-Indian Agricultural Research Institute, New Delhi 110012, India.
| | - Elise Pendall
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW 2751, Australia
| | - Saptaparnee Dey
- Division of Soil Science and Agricultural Chemistry, Indian Council of Agricultural Research-Indian Agricultural Research Institute, New Delhi 110012, India
| | - Niveta Jain
- Division of Environment Science, Indian Council of Agricultural Research-Indian Agricultural Research Institute, New Delhi 110012, India
| | - Sarvendra Kumar
- Division of Soil Science and Agricultural Chemistry, Indian Council of Agricultural Research-Indian Agricultural Research Institute, New Delhi 110012, India
| |
Collapse
|
5
|
Iboko MP, Dossou-Yovo ER, Obalum SE, Oraegbunam CJ, Diedhiou S, Brümmer C, Témé N. Paddy rice yield and greenhouse gas emissions: Any trade-off due to co-application of biochar and nitrogen fertilizer? A systematic review. Heliyon 2023; 9:e22132. [PMID: 38045115 PMCID: PMC10692810 DOI: 10.1016/j.heliyon.2023.e22132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 10/27/2023] [Accepted: 11/05/2023] [Indexed: 12/05/2023] Open
Abstract
Combined application of biochar and nitrogen (N) fertilizer could offer opportunities to increase rice yield and reduce methane emissions from paddy fields. However, this strategy may increase nitrous oxide (N2O) emissions, hence its interactive effects on GHG emissions, global warming potential (GWP) and GHG intensity (GHGI) remained poorly understood. We conducted a systematic review to i) evaluate the overall effects of combined application of biochar and N fertilizer rates on GHGs emissions, GWP, rice yield, and GHGI, ii) determine the quantities of biochar and N-fertilizer application that increase rice yield and reduce GHGs emissions and GHGI, and iii) examine the effects of biochar and different types of nitrogen fertilizers on rice yield, GHGs, GWP, and GHGI using data from 45 research articles and 183 paired observations. The extracted data were grouped based on biochar and N rates used by researchers as well as N fertiliser types. Accordingly, biochar rates were grouped into low (≤9 tons/ha), medium (>9 and ≤ 20 ton/ha) and high (>20 tons/ha), while N rates were grouped into three categories: low (≤140 kg N/ha), medium (>140 and ≤ 240 kg N/ha), and high (>240 kg N/ha). For fertiliser types, N rates were grouped as: low (≤150 kg N/ha), medium (>150 and ≤250 kg N/ha), and high (>250 kg N/ha) and N types into: urea, NPK, NPK plus urea (NPK_urea) and NPK plus (NH4)2SO4 (NPK_(NH4)2SO4). Results showed that biochar and N fertiliser significantly affected GHGs emissions, GWP, GHGI and rice yield. Compared to control (i.e., sole N application), co-application of high biochar and medium N rates significantly decreased CH4 emission (82 %) while low biochar with low N rates enhanced CH4 emission (114 %). In contrast, high biochar combined with low N decreased N2O emission by 91 % whereas medium biochar and high N rates resulted in 82 % increase in N2O emission relative to control. The highest GWP and GHGI were observed under co-application of medium biochar and low N rates. Highest rice yield was observed under low biochar rate and high N rate. Regardless of N fertiliser type and biochar rates, increasing N rates increased rice yield and N2O emissions. The highest GWP and GHGI were recorded under sole NPK application. Combination of low biochar and medium N produced low GHGs emissions, high grain yield, and the lowest GHGI, and could be recommended to smallholder farmers to increase rice yield and reduce greenhouse gas emissions from paddy rice field. Further studies should be conducted to evaluate the effects of biochar properties on soil characteristics and greenhouse gas emissions.
Collapse
Affiliation(s)
- Maduabuchi P. Iboko
- Graduate Research Program, Climate Change and Agriculture, Université des Sciences, des Techniques et des Technologies de Bamako (USTTB), Mali
- Graduate Research Program, Climate Change and Agriculture, Institut Polytechnique Rural de Formation et de Recherche Appliquée, Katibougou, Mali
- School of Agriculture, University of Cape Coast, Cape Coast, Ghana
| | | | - Sunday E. Obalum
- Department of Soil Science, University of Nigeria, Nsukka, 410001, Nigeria
| | - Chidozie J. Oraegbunam
- Global Station for Food, Land & Water Resources, Research Faculty of Agriculture, Hokkaido University, Kita 9 Nishi 9 Kita-Ku, Sapporo, Hokkaido, 060-8589, Japan
| | - Siméon Diedhiou
- Graduate Research Program, Climate Change and Agriculture, Université des Sciences, des Techniques et des Technologies de Bamako (USTTB), Mali
- Graduate Research Program, Climate Change and Agriculture, Institut Polytechnique Rural de Formation et de Recherche Appliquée, Katibougou, Mali
- School of Agriculture, University of Cape Coast, Cape Coast, Ghana
| | - Christian Brümmer
- Thünen Institute of Climate-Smart Agriculture, Bundesallee 50, 38116, Braunschweig, Germany
| | - Niaba Témé
- Labo Biotechnologie, Institute D'Economie Rurale, Sotuba, Mali
| |
Collapse
|
6
|
Shrestha RK, Jacinthe PA, Lal R, Lorenz K, Singh MP, Demyan SM, Ren W, Lindsey LE. Biochar as a negative emission technology: A synthesis of field research on greenhouse gas emissions. JOURNAL OF ENVIRONMENTAL QUALITY 2023; 52:769-798. [PMID: 36905388 DOI: 10.1002/jeq2.20475] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 02/28/2023] [Indexed: 05/06/2023]
Abstract
Biochar is one of the few nature-based technologies with potential to help achieve net-zero emissions agriculture. Such an outcome would involve the mitigation of greenhouse gas (GHG) emission from agroecosystems and optimization of soil organic carbon sequestration. Interest in biochar application is heightened by its several co-benefits. Several reviews summarized past investigations on biochar, but these reviews mostly included laboratory, greenhouse, and mesocosm experiments. A synthesis of field studies is lacking, especially from a climate change mitigation standpoint. Our objectives are to (1) synthesize advances in field-based studies that have examined the GHG mitigation capacity of soil application of biochar and (2) identify limitations of the technology and research priorities. Field studies, published before 2022, were reviewed. Biochar has variable effects on GHG emissions, ranging from decrease, increase, to no change. Across studies, biochar reduced emissions of nitrous oxide (N2 O) by 18% and methane (CH4 ) by 3% but increased carbon dioxide (CO2 ) by 1.9%. When biochar was combined with N-fertilizer, it reduced CO2 , CH4 , and N2 O emissions in 61%, 64%, and 84% of the observations, and biochar plus other amendments reduced emissions in 78%, 92%, and 85% of the observations, respectively. Biochar has shown potential to reduce GHG emissions from soils, but long-term studies are needed to address discrepancies in emissions and identify best practices (rate, depth, and frequency) of biochar application to agricultural soils.
Collapse
Affiliation(s)
- Raj K Shrestha
- Horticulture and Crop Science, The Ohio State University, Columbus, Ohio, USA
| | - Pierre-Andre Jacinthe
- Department of Earth Sciences, Indiana University Purdue University Indianapolis, Indianapolis, Indiana, USA
| | - Rattan Lal
- CFAES Rattan Lal Center for Carbon Management and Sequestration, The Ohio State University, Columbus, Ohio, USA
| | - Klaus Lorenz
- CFAES Rattan Lal Center for Carbon Management and Sequestration, The Ohio State University, Columbus, Ohio, USA
| | - Maninder P Singh
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, Michigan, USA
| | - Scott M Demyan
- School of Environment and Natural Resources, The Ohio State University, Columbus, Ohio, USA
| | - Wei Ren
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, Kentucky, USA
| | - Laura E Lindsey
- Horticulture and Crop Science, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
7
|
Ma Z, Lu M, Jin H, Sheng X, Wei H, Yang Q, Qi L, Huang J, Chen L, Dou X. Greenhouse gas emissions and environmental drivers in different natural wetland regions of China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 330:121754. [PMID: 37137407 DOI: 10.1016/j.envpol.2023.121754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/28/2023] [Accepted: 04/29/2023] [Indexed: 05/05/2023]
Abstract
Wetlands sequestrate carbon at the highest rate than any other ecosystems on Earth. However, the spatial and temporal dynamics of GHGs emissions from the wetland ecosystems in China are still elusive. We synthesized 166 publications that contain 462 in situ measurements of GHGs emissions from the natural wetlands in China, and further analyzed the variability and the drivers of GHGs emissions in eight subdivisions of China's wetlands. The results show that the current studies are mainly concentrated in the estuaries, Sanjiang Plain, and Zoige wetlands. The average CO2 emissions, CH4 fluxes and N2O fluxes from Chinese wetlands were 218.84 mg·m-2·h-1, 1.95 mg·m-2·h-1 and 5.8 × 10-2 mg·m-2·h-1, respectively. The global warming potential (GWP) of China's wetlands was estimated to be 1881.36 TgCO2-eq·yr-1, with CO2 emissions contributing more than 65% to the GWP value. The combined GWP values of Qinghai-Tibet Plateau wetlands, coastal wetlands and northeastern wetlands account for 84.8% of GWP of China's wetlands. Correlation analysis showed that CO2 emissions increased with the increasing mean annual temperature, elevation, annual rainfall, and wetland water level, but decreased with soil pH. CH4 fluxes increased with the mean annual temperature and soil water content but decreased with the redox potential. This study analyzed the drivers of GHGs emissions from wetland ecosystems at the national scale, and GWP values of eight wetland subregions of China were comprehensively assessed. Our results are potentially useful for the global GHGs inventory, and can help assess the response of GHGs emissions of wetland ecosystem to environmental and climate change.
Collapse
Affiliation(s)
- Zhiheng Ma
- Key Laboratory of Soil Ecology and Health in Universities of Yunnan Province, School of Ecology and Environmental Sciences, Yunnan University, Kunming, 650500, PR China; State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Meng Lu
- Key Laboratory of Soil Ecology and Health in Universities of Yunnan Province, School of Ecology and Environmental Sciences, Yunnan University, Kunming, 650500, PR China
| | - Hui Jin
- Key Laboratory of Soil Ecology and Health in Universities of Yunnan Province, School of Ecology and Environmental Sciences, Yunnan University, Kunming, 650500, PR China
| | - Xiongjie Sheng
- Key Laboratory of Soil Ecology and Health in Universities of Yunnan Province, School of Ecology and Environmental Sciences, Yunnan University, Kunming, 650500, PR China
| | - Hao Wei
- Key Laboratory of Soil Ecology and Health in Universities of Yunnan Province, School of Ecology and Environmental Sciences, Yunnan University, Kunming, 650500, PR China
| | - Qiong Yang
- Key Laboratory of Soil Ecology and Health in Universities of Yunnan Province, School of Ecology and Environmental Sciences, Yunnan University, Kunming, 650500, PR China
| | - Lanlan Qi
- Key Laboratory of Soil Ecology and Health in Universities of Yunnan Province, School of Ecology and Environmental Sciences, Yunnan University, Kunming, 650500, PR China
| | - Jingxin Huang
- Key Laboratory of Soil Ecology and Health in Universities of Yunnan Province, School of Ecology and Environmental Sciences, Yunnan University, Kunming, 650500, PR China; School of Energy and Environmental Science, Yunnan Normal University, Kunming, 650500, PR China
| | - Liding Chen
- Key Laboratory of Soil Ecology and Health in Universities of Yunnan Province, School of Ecology and Environmental Sciences, Yunnan University, Kunming, 650500, PR China; State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaolin Dou
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
8
|
Low-Cost Detection of Methane Gas in Rice Cultivation by Gas Chromatography-Flame Ionization Detector Based on Manual Injection and Split Pattern. Molecules 2022; 27:molecules27133968. [PMID: 35807216 PMCID: PMC9267938 DOI: 10.3390/molecules27133968] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/08/2022] [Accepted: 06/17/2022] [Indexed: 02/05/2023] Open
Abstract
Rice cultivation is one of the most significant human-created sources of methane gas. How to accurately measure the methane concentration produced by rice cultivation has become a major problem. The price of the automatic gas sampler used as a national standard for methane detection (HJ 38-2017) is higher than that of gas chromatography, which greatly increases the difficulty of methane detection in the laboratory. This study established a novel methane detection method based on manual injection and split pattern by changing the parameters of the national standard method without adding any additional automatic gas samplers. The standard curve and correlation coefficient obtained from the parallel determination of methane standard gas were y = 2.4192x + 0.1294 and 0.9998, respectively. Relative standard deviation (RSD, <2.82%), recycle rate (99.67−102.02%), limit of detection (LOD, 0.0567 ppm) and limit of quantification (LOQ, 0.189 ppm) of this manual injection method are satisfying, demonstrating that a gas chromatography-flame ionization detector (GC-FID), based on manual injection at a split ratio (SR) of 5:1, could be an effective and accurate method for methane detection. Methane gases produced by three kinds of low-methane rice treated with oxantel pamoate acid, fumaric acid and alcohol, were also collected and detected using the proposed manual injection approach Good peak shapes were obtained, indicating that this approach could also be used for quantification of methane concentration.
Collapse
|
9
|
He T, Yuan J, Xiang J, Lin Y, Luo J, Lindsey S, Liao X, Liu D, Ding W. Combined biochar and double inhibitor application offsets NH 3 and N 2O emissions and mitigates N leaching in paddy fields. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 292:118344. [PMID: 34637831 DOI: 10.1016/j.envpol.2021.118344] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 09/22/2021] [Accepted: 10/08/2021] [Indexed: 06/13/2023]
Abstract
The effects of combined biochar and double inhibitor application on gaseous nitrogen (N; nitrous oxide [N2O] and ammonia [NH3]) emissions and N leaching in paddy soils remain unclear. We investigated the effects of biochar application at different rates and double inhibitor application (hydroquinone [HQ] and dicyandiamide [DCD]) on NH3 and N2O emissions, N leaching, as well as rice yield in a paddy field, with eight treatments, including conventional urea N application at 280 kg N ha-1 (CN); reduced N application at 240 kg N ha-1 (RN); RN + 7.5 t ha-1 biochar (RNB1); RN + 15 t ha-1 biochar (RNB2); RN + HQ + DCD (RNI); RNB1 + HQ + DCD (RNIB1); RNB2 + HQ + DCD (RNIB2); and a control without N fertilizer. When compared with N leaching under RN, biochar application reduced total N leaching by 26.9-34.8% but stimulated NH3 emissions by 13.2-27.1%, mainly because of enhanced floodwater and soil NH4+-N concentrations and pH, and increased N2O emission by 7.7-21.2%, potentially due to increased soil NO3--N concentrations. Urease and nitrification inhibitor addition decreased NH3 and N2O emissions, and total N leaching by 20.1%, 21.5%, and 22.1%, respectively. Compared with RN, combined biochar (7.5 t ha-1) and double inhibitor application decreased NH3 and N2O emissions, with reductions of 24.3% and 14.6%, respectively, and reduced total N leaching by up to 45.4%. Biochar application alone or combined with double inhibitors enhanced N use efficiency from 26.2% (RN) to 44.7% (RNIB2). Conversely, double inhibitor application alone or combined with biochar enhanced rice yield and reduced yield-scaled N2O emissions. Our results suggest that double inhibitor application alone or combined with 7.5 t ha-1 biochar is an effective practice to mitigate NH3 and N2O emission and N leaching in paddy fields.
Collapse
Affiliation(s)
- Tiehu He
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Junji Yuan
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Jian Xiang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, 210037, China
| | - Yongxin Lin
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Jiafa Luo
- AgResearch Limited, Ruakura Research Centre, Hamilton, 3240, New Zealand
| | - Stuart Lindsey
- AgResearch Limited, Ruakura Research Centre, Hamilton, 3240, New Zealand
| | - Xia Liao
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Deyan Liu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Weixin Ding
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China.
| |
Collapse
|