1
|
Aqdam MM, Baltzer JL, Branfireun BA, Low G, Low M, Laird BD, Swanson HK. Factors and mechanisms driving among-lake variability of mercury concentrations in a benthivorous fish in the canadian subarctic. CHEMOSPHERE 2025; 372:144078. [PMID: 39800326 DOI: 10.1016/j.chemosphere.2025.144078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 12/18/2024] [Accepted: 01/03/2025] [Indexed: 01/18/2025]
Abstract
Wild-caught fish are an important subsistence food source in remote northern regions, but they can also be a source of exposure to mercury (Hg), which has known health hazards. We investigated factors and mechanisms that control variability of Hg concentrations in Lake Whitefish (Coregonus clupeaformis) among remote subarctic lakes in Northwest Territories, Canada. Integrating variables that reflect fish ecology, in-lake conditions, and catchment attributes, we aimed to not only determine factors that best explain among-lake variability of fish Hg, but also to provide a whole-ecosystem understanding of interactions that drive among-lake variability of fish Hg. Size-standardized concentrations of total Hg ([THg]) in Lake Whitefish varied threefold (0.05-0.15 mg/kg wet weight) and differed significantly among the twelve study lakes. Stepwise multiple regressions revealed that 84% of among-lake variability in size-standardized fish [THg] was explained by positive relationships with two variables, catchment to lake area ratios (CA:LA) and methyl Hg concentrations ([MeHg]) in benthic invertebrates. Piecewise structural equation modeling indicated that [MeHg] in benthic invertebrates were positively related to [THg] in sediment and [MeHg] in water, which in turn were both positively related to concentrations of dissolved organic carbon (DOC) in water. Fish [THg] and all proximate in-lake drivers were ultimately driven by catchment attributes and were higher in lakes within lower-elevation, relatively larger, proportionally more forested catchments. Revealing interactive processes that influence fish Hg levels, our findings improve the current knowledge about causes of Hg variability among subarctic lakes and highlight factors that can help guide future work.
Collapse
Affiliation(s)
- Mehdi M Aqdam
- Department of Biology, Wilfrid Laurier University, Waterloo, ON, Canada; Azimuth Consulting Group Inc., Vancouver, BC, Canada.
| | | | | | - George Low
- Dehcho Aboriginal Aquatic Resources & Oceans Management, Hay River, NT, Canada
| | - Mike Low
- Dehcho Aboriginal Aquatic Resources & Oceans Management, Hay River, NT, Canada
| | - Brian D Laird
- School of Public Health and Health Systems, University of Waterloo, ON, Canada
| | - Heidi K Swanson
- Department of Biology, Wilfrid Laurier University, Waterloo, ON, Canada.
| |
Collapse
|
2
|
Mauffret A, Chouvelon T, Wessel N, Cresson P, Bănaru D, Baudrier J, Bustamante P, Chekri R, Jitaru P, Le Loc'h F, Mialet B, Vaccher V, Harmelin-Vivien M. Trace elements, dioxins and PCBs in different fish species and marine regions: Importance of the taxon and regional features. ENVIRONMENTAL RESEARCH 2023; 216:114624. [PMID: 36309213 DOI: 10.1016/j.envres.2022.114624] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/27/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
Chemical contaminant concentrations in wild organisms are used to assess environmental status under the European Marine Strategy Framework Directive. However, this approach is challenged by the complex intra- and inter-species variability, and the different regional features. In this study, concentrations in trace elements (As, Cd, Hg and Pb), polychlorinated biphenyls (PCBs), polychlorodibenzo-para-dioxines (PCDDs) and polychlorodibenzofuranes (PCDFs) were monitored in 8 fish species sampled on the continental shelf of three French regions: the Eastern English Channel (EEC) and Bay of Biscay (BoB) in the Northeast Atlantic Ocean, and the Gulf of Lions (GoL) in Western Mediterranean Sea. Our objectives were to identify species or regions more likely to be contaminated and to assess how to take this variability into account in environmental assessment. While concentrations were higher in benthic and demersal piscivores, PCB and PCDD/F concentrations (lipid-weight) were similar in most teleost species. For Cd, Hg and Pb, the trophic group accumulating the highest concentrations depended on the contaminant and region. Concentrations in Hg, PCBs and PCDD/Fs were higher in the EEC and/or GoL than in BoB. Cadmium and Pb concentrations were highest in the BoB. Lipid content accounted for 35%-84% of organic contaminant variability. Lipid normalisation was employed to enhance robustness in the identification of spatial patterns. Contaminant patterns in chondrichthyans clearly differed from that in teleosts. In addition, trophic levels accounted for ≤1% and ≤33% of the contaminant variability in teleost fishes in the EEC and BoB, respectively. Therefore, developing taxa-specific thresholds might be a more practical way forward for environmental assessment than normalisation to trophic levels.
Collapse
Affiliation(s)
- Aourell Mauffret
- Ifremer, CCEM, Rue de L'île d'Yeu, BP 21105, 44311 Nantes Cedex 03, France.
| | - Tiphaine Chouvelon
- Ifremer, CCEM, Rue de L'île d'Yeu, BP 21105, 44311 Nantes Cedex 03, France; Observatoire Pelagis, UAR 3462 La Rochelle Université/CNRS, 5 Allées de L'Océan, 17000 La Rochelle, France
| | - Nathalie Wessel
- Ifremer, ODE/Vigies, Rue de L'île d'Yeu, BP 21105, 44311 Nantes Cedex 03, France
| | - Pierre Cresson
- Ifremer, Channel and North Sea Fisheries Research Unit, 50 Quai Gambetta, BP 699, 62321 Boulogne sur Mer, France
| | - Daniela Bănaru
- Aix-Marseille Université, Université de Toulon, CNRS, IRD, Mediterranean Institute of Oceanography (MIO), UM110, Marseille, France
| | - Jérôme Baudrier
- Ifremer, Biodivenv, 79 Route de Pointe-Fort, 97 231 Le Robert, France
| | - Paco Bustamante
- Littoral Environnement et Sociétés (LIENSs), UMR 7266 CNRS, La Rochelle Université, 2 rue Olympe de Gouges 17000 La Rochelle, France; Institut Universitaire de France (IUF), 1 rue Descartes 75005 Paris, France
| | - Rachida Chekri
- Anses, Laboratory for Food Safety, 14 Rue Pierre et Marie Curie, 94700 Maisons-Alfort, France
| | - Petru Jitaru
- Anses, Laboratory for Food Safety, 14 Rue Pierre et Marie Curie, 94700 Maisons-Alfort, France
| | - François Le Loc'h
- University of Brest, CNRS, IRD, Ifremer, LEMAR, 29280 Plouzane, France
| | - Benoit Mialet
- Littoral Environnement et Sociétés (LIENSs), UMR 7266 CNRS, La Rochelle Université, 2 rue Olympe de Gouges 17000 La Rochelle, France
| | - Vincent Vaccher
- Oniris, INRAE, UMR 1329, Laboratoire d'Étude des Résidus et Contaminants dans Les Aliments (LABERCA), F-44307, Nantes, France
| | - Mireille Harmelin-Vivien
- Aix-Marseille Université, Université de Toulon, CNRS, IRD, Mediterranean Institute of Oceanography (MIO), UM110, Marseille, France
| |
Collapse
|
3
|
Hilgendag IR, Swanson HK, Lewis CW, Ehrman AD, Power M. Mercury biomagnification in benthic, pelagic, and benthopelagic food webs in an Arctic marine ecosystem. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 841:156424. [PMID: 35662606 DOI: 10.1016/j.scitotenv.2022.156424] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 05/27/2022] [Accepted: 05/30/2022] [Indexed: 06/15/2023]
Abstract
Mercury (Hg) is a ubiquitous toxic metal that biomagnifies in food webs, and can reach high concentrations in top predators. Evaluating Hg biomagnification in Arctic marine food webs is critical for understanding Hg dynamics and estimating exposure to understudied fish and wildlife consumed by humans. The majority of studies conducted on Hg biomagnification in the Arctic have focused on pelagic food webs. Benthic and benthopelagic food webs in Arctic marine ecosystems also support many species of subsistence and commercial importance, and data are lacking for these systems. In this study, we investigated food web structure and Hg biomagnification for the benthic, pelagic, and benthopelagic marine food webs of inner Frobisher Bay in Nunavut. Stable isotope ratios of carbon (δ13C) and nitrogen (δ15N), as well as total (THg) and methyl (MeHg) mercury concentrations were measured in fish, invertebrates, and zooplankton. Biomagnification in each food web was quantified with Trophic Magnification Slopes (TMS) and Trophic Magnification Factors (TMF). The highest TMS and TMF values were exhibited by the benthopelagic food web (TMS = 0.201; TMF = 1.59), followed by the pelagic food web (TMS = 0.183; TMF = 1.52), and lastly the benthic food web (TMS = 0.079; TMF = 1.20), with δ15N explaining 88%, 79%, and 9% of variation in Hg concentrations, respectively. TMS and TMF values were generally low compared to other Arctic marine food webs. Results from food web structure analyses indicated that the benthic food web had the greatest trophic diversity, trophic redundancy, and largest isotopic niche area of all food webs studied. Greater food web complexity may thus result in reduced MeHg biomagnification, but further study is required. Acquiring Hg and food web structure data is critical for predicting the effects of climate-induced environmental change on Hg dynamics, especially in the context of Arctic marine ecosystems.
Collapse
Affiliation(s)
- Isabel R Hilgendag
- Department of Biology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada.
| | - Heidi K Swanson
- Department of Biology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | | | - Ashley D Ehrman
- Fisheries and Oceans Canada, Freshwater Institute, 501 University Crescent, Winnipeg, Manitoba R3T 2N6, Canada
| | - Michael Power
- Department of Biology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
4
|
McKinney MA, Chételat J, Burke SM, Elliott KH, Fernie KJ, Houde M, Kahilainen KK, Letcher RJ, Morris AD, Muir DCG, Routti H, Yurkowski DJ. Climate change and mercury in the Arctic: Biotic interactions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 834:155221. [PMID: 35427623 DOI: 10.1016/j.scitotenv.2022.155221] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 03/18/2022] [Accepted: 04/08/2022] [Indexed: 06/14/2023]
Abstract
Global climate change has led to profound alterations of the Arctic environment and ecosystems, with potential secondary effects on mercury (Hg) within Arctic biota. This review presents the current scientific evidence for impacts of direct physical climate change and indirect ecosystem change on Hg exposure and accumulation in Arctic terrestrial, freshwater, and marine organisms. As the marine environment is elevated in Hg compared to the terrestrial environment, terrestrial herbivores that now exploit coastal/marine foods when terrestrial plants are iced over may be exposed to higher Hg concentrations. Conversely, certain populations of predators, including Arctic foxes and polar bears, have shown lower Hg concentrations related to reduced sea ice-based foraging and increased land-based foraging. How climate change influences Hg in Arctic freshwater fishes is not clear, but for lacustrine populations it may depend on lake-specific conditions, including interrelated alterations in lake ice duration, turbidity, food web length and energy sources (benthic to pelagic), and growth dilution. In several marine mammal and seabird species, tissue Hg concentrations have shown correlations with climate and weather variables, including climate oscillation indices and sea ice trends; these findings suggest that wind, precipitation, and cryosphere changes that alter Hg transport and deposition are impacting Hg concentrations in Arctic marine organisms. Ecological changes, including northward range shifts of sub-Arctic species and altered body condition, have also been shown to affect Hg levels in some populations of Arctic marine species. Given the limited number of populations and species studied to date, especially within Arctic terrestrial and freshwater systems, further research is needed on climate-driven processes influencing Hg concentrations in Arctic ecosystems and their net effects. Long-term pan-Arctic monitoring programs should consider ancillary datasets on climate, weather, organism ecology and physiology to improve interpretation of spatial variation and time trends of Hg in Arctic biota.
Collapse
Affiliation(s)
- Melissa A McKinney
- Department of Natural Resource Sciences, McGill University, Sainte-Anne-de-Bellevue, QC H9X 3 V9, Canada.
| | - John Chételat
- Ecotoxicology & Wildlife Health, Environment and Climate Change Canada, National Wildlife Research Centre, Carleton University, Ottawa, ON K1A 0H3, Canada
| | - Samantha M Burke
- Minnow Aquatic Environmental Services, Guelph, ON N1H 1E9, Canada
| | - Kyle H Elliott
- Department of Natural Resource Sciences, McGill University, Sainte-Anne-de-Bellevue, QC H9X 3 V9, Canada
| | - Kim J Fernie
- Ecotoxicology & Wildlife Health, Environment and Climate Change Canada, Burlington, ON L7S 1A1, Canada
| | - Magali Houde
- Aquatic Contaminants Research Division, Environment and Climate Change Canada, Montréal, QC H2Y 5E7, Canada
| | - Kimmo K Kahilainen
- Lammi Biological Station, University of Helsinki, FI-16900 Lammi, Finland
| | - Robert J Letcher
- Ecotoxicology & Wildlife Health, Environment and Climate Change Canada, National Wildlife Research Centre, Carleton University, Ottawa, ON K1A 0H3, Canada
| | - Adam D Morris
- Northern Contaminants Program, Crown-Indigenous Relations and Northern Affairs Canada, Gatineau, QC J8X 2V6, Canada
| | - Derek C G Muir
- Aquatic Contaminants Research Division, Environment and Climate Change Canada, Burlington, ON L7S 1A1, Canada
| | - Heli Routti
- Norwegian Polar Institute, Fram Centre, NO-9296 Tromsø, Norway
| | - David J Yurkowski
- Arctic Aquatic Research Division, Fisheries and Oceans Canada, Winnipeg, MB R3T 2N6, Canada
| |
Collapse
|
5
|
Jordan-Ward R, von Hippel FA, Zheng G, Salamova A, Dillon D, Gologergen J, Immingan T, Dominguez E, Miller P, Carpenter D, Postlethwait JH, Byrne S, Buck CL. Elevated mercury and PCB concentrations in Dolly Varden (Salvelinus malma) collected near a formerly used defense site on Sivuqaq, Alaska. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 826:154067. [PMID: 35217049 PMCID: PMC9078153 DOI: 10.1016/j.scitotenv.2022.154067] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 02/11/2022] [Accepted: 02/17/2022] [Indexed: 04/13/2023]
Abstract
Environmental pollution causes adverse health effects in many organisms and contributes to health disparities for Arctic communities that depend on subsistence foods, including the Yupik residents of Sivuqaq (St. Lawrence Island), Alaska. Sivuqaq's proximity to Russia made it a strategic location for U.S. military defense sites during the Cold War. Two radar surveillance stations were installed on Sivuqaq, including at the Northeast Cape. High levels of persistent organic pollutants and toxic metals continue to leach from the Northeast Cape formerly used defense (FUD) site despite remediation efforts. We quantified total mercury (Hg) and polychlorinated biphenyl (PCB) concentrations, and carbon and nitrogen stable isotope signatures, in skin and muscle samples from Dolly Varden (Salvelinus malma), an important subsistence species. We found that Hg and PCB concentrations significantly differed across locations, with the highest concentrations found in fish collected near the FUD site. We found that 89% of fish collected from near the FUD site had Hg concentrations that exceeded the U.S. Environmental Protection Agency's (EPA) unlimited Hg-contaminated fish consumption screening level for subsistence fishers (0.049 μg/g). All fish sampled near the FUD site exceeded the EPA's PCB guidelines for cancer risk for unrestricted human consumption (0.0015 μg/g ww). Both Hg and PCB concentrations had a significant negative correlation with δ13C when sites receiving input from the FUD site were included in the analysis, but these relationships were insignificant when input sites were excluded. δ15N had a significant negative correlation with Hg concentration, but not with PCB concentration. These results suggest that the Northeast Cape FUD site remains a point source of Hg and PCB pollution and contributes to higher concentrations in resident fish, including subsistence species. Moreover, elevated Hg and PCB levels in fish near the FUD site may pose a health risk for Sivuqaq residents.
Collapse
Affiliation(s)
- Renee Jordan-Ward
- Department of Biological Sciences, Northern Arizona University, 617 S. Beaver St., Flagstaff, AZ 86011, USA
| | - Frank A von Hippel
- Department of Community, Environment and Policy, Mel & Enid Zuckerman College of Public Health, University of Arizona, 1295 N. Martin Ave., P.O. Box 245210, Tucson, AZ 85724, USA.
| | - Guomao Zheng
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Amina Salamova
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA
| | - Danielle Dillon
- Department of Biological Sciences, Northern Arizona University, 617 S. Beaver St., Flagstaff, AZ 86011, USA
| | - Jesse Gologergen
- Alaska Community Action on Toxics, 1225 E. International Airport Road, Suite 220, Anchorage, AK 99518, USA
| | - Tiffany Immingan
- Alaska Community Action on Toxics, 1225 E. International Airport Road, Suite 220, Anchorage, AK 99518, USA
| | - Elliott Dominguez
- Department of Biological Sciences, Northern Arizona University, 617 S. Beaver St., Flagstaff, AZ 86011, USA
| | - Pamela Miller
- Alaska Community Action on Toxics, 1225 E. International Airport Road, Suite 220, Anchorage, AK 99518, USA
| | - David Carpenter
- Institute for Health and the Environment, University at Albany, 5 University Place, Rensselaer, NY 12144, USA
| | - John H Postlethwait
- Institute of Neuroscience, University of Oregon, 1254 University of Oregon, Eugene, OR 97403, USA
| | - Samuel Byrne
- Middlebury College, Department of Biology and Global Health Program, 14 Old Chapel Rd, Middlebury, VT 05753, USA
| | - C Loren Buck
- Department of Biological Sciences, Northern Arizona University, 617 S. Beaver St., Flagstaff, AZ 86011, USA
| |
Collapse
|
6
|
Moslemi-Aqdam M, Baker LF, Baltzer JL, Branfireun BA, Evans MS, Laird BD, Low G, Low M, Swanson HK. Understanding among-lake variability of mercury concentrations in Northern Pike (Esox lucius): A whole-ecosystem study in subarctic lakes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 822:153430. [PMID: 35090925 DOI: 10.1016/j.scitotenv.2022.153430] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 01/04/2022] [Accepted: 01/22/2022] [Indexed: 06/14/2023]
Abstract
Mercury concentrations ([Hg]) in fish reflect complex biogeochemical and ecological interactions that occur at a range of spatial and biological scales. Elucidating these interactions is crucial to understanding and predicting fish [Hg], particularly at northern latitudes, where environmental perturbations are having profound effects on land-water-animal interactions, and where fish are a critical subsistence food source. Using data from eleven subarctic lakes that span an area of ~60,000 km2 in the Dehcho Region of Northwest Territories (Canada), we investigated how trophic ecology and growth rates of fish, lake water chemistry, and catchment characteristics interact to affect [Hg] in Northern Pike (Esox lucius), a predatory fish of widespread subsistence and commercial importance. Results from linear regression and piecewise structural equation models showed that 83% of among-lake variability in Northern Pike [Hg] was explained by fish growth rates (negative) and concentrations of methyl Hg ([MeHg]) in benthic invertebrates (positive). These variables were in turn influenced by concentrations of dissolved organic carbon, MeHg (water), and total Hg (sediment) in lakes, which were ultimately driven by catchment characteristics. Lakes in relatively larger catchments and with more temperate/subpolar needleleaf and mixed forests had higher [Hg] in Northern Pike. Our results provide a plausible mechanistic understanding of how interacting processes at scales ranging from whole catchments to individual organisms influence fish [Hg], and give insight into factors that could be considered for prioritizing lakes for monitoring in subarctic regions.
Collapse
Affiliation(s)
| | - Leanne F Baker
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
| | | | | | - Marlene S Evans
- Water Science and Technology Directorate, Environment and Climate Change Canada, Saskatoon, SK, Canada
| | - Brian D Laird
- School of Public Health Sciences, University of Waterloo, Waterloo, ON, Canada
| | - George Low
- Dehcho Aboriginal Aquatic Resources & Oceans Management, Hay River, NT, Canada
| | - Mike Low
- Dehcho Aboriginal Aquatic Resources & Oceans Management, Hay River, NT, Canada
| | - Heidi K Swanson
- Department of Biology, University of Waterloo, Waterloo, ON, Canada; Water Institute, University of Waterloo, Waterloo, ON, Canada
| |
Collapse
|
7
|
Makaras T, Stankevičiūtė M. Swimming behaviour in two ecologically similar three-spined (Gasterosteus aculeatus L.) and nine-spined sticklebacks (Pungitius pungitius L.): a comparative approach for modelling the toxicity of metal mixtures. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:14479-14496. [PMID: 34617211 DOI: 10.1007/s11356-021-16783-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 09/23/2021] [Indexed: 06/13/2023]
Abstract
Sticklebacks (Gasterosteiformes) are increasingly used in ecological and evolutionary research and have become well established as role model species for biologists. However, ecotoxicology studies concerning behavioural effects in sticklebacks regarding stress responses, mainly induced by chemical mixtures, have hardly been addressed. For this purpose, we investigated the swimming behaviour (including mortality rate based on 96-h LC50 values) of two ecologically similar three-spined (Gasterosteus aculeatus) and nine-spined sticklebacks (Pungitius pungitius) to short-term (up to 24 h) metal mixture (MIX) exposure. We evaluated the relevance and efficacy of behavioural responses of test species in the early toxicity assessment of chemical mixtures. Fish exposed to six (Zn, Pb, Cd, Cu, Ni, and Cr) metals in the mixture were either singled out by the Water Framework Directive as priority or as relevant substances in surface water, which was prepared according to the environmental quality standards (EQSs) of these metals set for inland waters in the European Union (EU) (Directive 2013/39/EU). The performed behavioural analysis showed the main effect on the interaction between time, species, and treatment variables. Although both species exposed to MIX revealed a decreasing tendency in swimming activity, these species' responsiveness to MIX was somewhat different. Substantial changes in the activity of G. aculeatus were established after a 3-h exposure to MIX solutions, which was 1.43-fold lower, while in the case of P. pungitius, 1.96-fold higher than established 96-h LC50 values for each species. This study demonstrated species-specific differences in response sensitivity to metal-based water pollution, indicating behavioural insensitivity of P. pungitius as model species for aquatic biomonitoring and environmental risk assessments.
Collapse
Affiliation(s)
- Tomas Makaras
- Nature Research Centre, Akademijos Str. 2, 08412, Vilnius, Lithuania.
| | | |
Collapse
|
8
|
da Silva Montes C, Ferreira MAP, Giarrizzo T, Amado LL, Rocha RM. The legacy of artisanal gold mining and its impact on fish health from Tapajós Amazonian region: A multi-biomarker approach. CHEMOSPHERE 2022; 287:132263. [PMID: 34826937 DOI: 10.1016/j.chemosphere.2021.132263] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/31/2021] [Accepted: 09/14/2021] [Indexed: 06/13/2023]
Abstract
Tapajós Region, is an area with intense historical artisanal and small-scale gold mining. Therefore, the core objective of this study was to evaluate the environmental status of different rivers located in this region, using biomarker endpoints in Serrasalmus rhombeus as a tool. Fish and sediment were collected from two rivers, Tropas and Crepori, affluent of Tapajós River, located inside a Federal Protection Area and in a Reference site. Mercury concentration in sediment and fish were traced, and biomarkers in gills and liver were analyzed. Results showed a clear difference between these two rivers compared to the Reference site. Fish tissues presented biomarker responses according to the site of collection. Catalase (CAT) activity was statistically higher in fish gills from Crepori, confirming the capacity of mercury interference with redox equilibrium. High levels of lipid peroxidation were also noted to contribute greatly in incidence of morphological changes in the liver and gills, suggesting that mercury bioaccumulation during continuous exposure promote biological responses in a cumulative manner, from molecules to tissues. This study also indicates adaptation in fish defense mechanisms given the conditions in the Tropas River, as well as a variation in biomarker responses to that of the Crepori river. In summary, Tapajós affluents presented high mercury levels in fish tissues leading to biomarker responses, demonstrating a hazardous signal of a long history of mercury pollution.
Collapse
Affiliation(s)
- Caroline da Silva Montes
- Laboratory of Cellular Ultrastructure and Immunohistochemistry, Institute of Biological Sciences, Federal University of Pará (UFPA), Belém, Pará, Brazil.
| | - Maria Auxiliadora Pantoja Ferreira
- Laboratory of Cellular Ultrastructure and Immunohistochemistry, Institute of Biological Sciences, Federal University of Pará (UFPA), Belém, Pará, Brazil
| | - Tommaso Giarrizzo
- Laboratory of Fisheries Biology - Aquatic Resource Management, Federal University of Pará (UFPA), Belém, Pará, Brazil
| | - Lílian Lund Amado
- Laboratory of Ecotoxicology and Laboratory of Marine Environmental Monitoring Research (LAPMAR) Federal University of Pará (UFPA), Belém, Pará, Brazil
| | - Rossineide Martins Rocha
- Laboratory of Cellular Ultrastructure and Immunohistochemistry, Institute of Biological Sciences, Federal University of Pará (UFPA), Belém, Pará, Brazil
| |
Collapse
|
9
|
Gopakumar A, Giebichenstein J, Raskhozheva E, Borgå K. Mercury in Barents Sea fish in the Arctic polar night: Species and spatial comparison. MARINE POLLUTION BULLETIN 2021; 169:112501. [PMID: 34044291 DOI: 10.1016/j.marpolbul.2021.112501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 05/11/2021] [Accepted: 05/12/2021] [Indexed: 06/12/2023]
Abstract
Although mercury (Hg) in polar ecosystems has been well-studied, there is little information on Hg in the Arctic during low-productivity seasons like the polar night. We quantified Hg concentrations, carbon, and nitrogen stable isotope ratios (δ13C and δ15N) in the muscle of polar cod (Boreogadus saida), Atlantic cod (Gadus morhua), and capelin (Mallotus villosus) sampled from the North-West and North-East Barents Sea during November-December 2019. Hg concentrations varied between species (14-175 ng/g dw), dependent on region, but were well below the toxicity threshold for fish health and the EU-accepted threshold for human consumption. Interspecific differences were observed only in the North-East region, with Atlantic cod having highest Hg concentrations, explained by its larger size, higher trophic position and benthopelagic feeding. Spatial differences in polar cod with higher Hg concentrations in the North-East than the North-West were likely due to a combination of differences in food web structure and Hg exposure.
Collapse
Affiliation(s)
- Anjali Gopakumar
- Section for Aquatic Biology and Toxicology, Department of Biosciences, University of Oslo, Postboks 1066, Blindern 0316, Oslo, Norway.
| | - Julia Giebichenstein
- Section for Aquatic Biology and Toxicology, Department of Biosciences, University of Oslo, Postboks 1066, Blindern 0316, Oslo, Norway.
| | - Evgeniia Raskhozheva
- Murmansk Marine Biological Institute of the Russian Academy of Sciences, 17 Vladimirskaya st., Murmansk 183010, Russia.
| | - Katrine Borgå
- Section for Aquatic Biology and Toxicology, Department of Biosciences, University of Oslo, Postboks 1066, Blindern 0316, Oslo, Norway.
| |
Collapse
|
10
|
Li C, Shi J, Cao Q, Luo Y, Liang H, Du C, Gao Y, Shi J. Role of H +, HF, SO 42- and kaolin in fixing Hg of coal fire sponge. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 772:145510. [PMID: 33770854 DOI: 10.1016/j.scitotenv.2021.145510] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 01/24/2021] [Accepted: 01/25/2021] [Indexed: 06/12/2023]
Abstract
Coal fire sponges (CFS) are common in coal-fire areas. Due to the enrichment of Hg in CFS, large amounts of Hg are released by CFS into the atmosphere via natural weathering or solar radiation. Therefore, CFS should be of concern in Hg pollution management and control globally. In addition, CFS changes the Hg cycle path by capturing Hg from coal fires that would have entered the atmosphere. In this study, the concentration, distribution, species, and enrichment mechanism of CFS Hg were investigated. The results showed that the Hg concentration in CFS ranged from 1008 to 35,310 ng/g, with an average of 8932 ng/g (CFS number, n = 153). The Hg concentration of CFS in different types of land was found to be significantly inhomogeneous. To determine the status of subterranean spontaneous combustion, the Hg concentration was added, which can improve the effect of coal-fire monitoring. Compared to the background area topsoil, CFS was enriched in Hg, acid, SO42-, and total fluoride. The Hg species in CFS was primarily HgSO4, followed by HgO. However, the primary Hg species in the surrounding topsoil were HgCl2 and HgO. By the simulation experiment, it was determined that hydrofluoric acid (HF) was beneficial to activate the stable species in the coal-fire areas. HgCl2, HgO, or Hg0 were ionized by acid liquor or HF, which can promote Hg migration and increase the adsorbed ratio; in the presence of SO42-, the primary Hg species was HgSO4. Ultimately, Hg was absorbed by clay minerals and organic matter. The high-efficiency activation of steady Hg species by the coal-fire HF should be studied further.
Collapse
Affiliation(s)
- Chunhui Li
- MOE Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; State Key Laboratory of Coal Resources and Safe Mining, China University of Mining and Technology, Beijing 100083, China.
| | - Jingxuan Shi
- MOE Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qingyi Cao
- State Key Laboratory of Coal Resources and Safe Mining, China University of Mining and Technology, Beijing 100083, China
| | - Yating Luo
- MOE Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Handong Liang
- State Key Laboratory of Coal Resources and Safe Mining, China University of Mining and Technology, Beijing 100083, China.
| | - Chuan Du
- State Key Laboratory of Coal Resources and Safe Mining, China University of Mining and Technology, Beijing 100083, China
| | - Yu Gao
- MOE Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jiyan Shi
- MOE Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
11
|
Branfireun BA, Cosio C, Poulain AJ, Riise G, Bravo AG. Mercury cycling in freshwater systems - An updated conceptual model. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 745:140906. [PMID: 32758756 DOI: 10.1016/j.scitotenv.2020.140906] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 07/08/2020] [Accepted: 07/09/2020] [Indexed: 06/11/2023]
Abstract
The widely accepted conceptual model of mercury (Hg) cycling in freshwater lakes (atmospheric deposition and runoff of inorganic Hg, methylation in bottom sediments and subsequent bioaccumulation and biomagnification in biota) is practically accepted as common knowledge. There is mounting evidence that the dominant processes that regulate inputs, transformations, and bioavailability of Hg in many lakes may be missing from this picture, and the fixation on the temperate stratified lake archetype is impeding our exploration of understudied, but potentially important sources of methylmercury to freshwater lakes. In this review, the importance of understudied biogeochemical processes and sites of methylmercury production are highlighted, including the complexity of redox transformations of Hg within the lake system itself, the complex assemblage of microbes found in biofilms and periphyton (two vastly understudied important sources of methylmercury in many freshwater ecosystems), and the critical role of autochthonous and allochthonous dissolved organic matter which mediates the net supply of methylmercury from the cellular to catchment scale. A conceptual model of lake Hg in contrasting lakes and catchments is presented, highlighting the importance of the autochthonous and allochthonous supply of dissolved organic matter, bioavailable inorganic mercury and methylmercury and providing a framework for future convergent research at the lab and field scales to establish more mechanistic process-based relationships within and among critical compartments that regulate methylmercury concentrations in freshwater ecosystems.
Collapse
Affiliation(s)
- Brian A Branfireun
- Department of Biology and Centre for Environment & Sustainability, The University of Western Ontario, London, Canada.
| | - Claudia Cosio
- Université de Reims Champagne-Ardenne, UMR I-02 SEBIO, Reims, France
| | | | - Gunnhild Riise
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, P.O. Box 5003, 1432 Ås, Norway
| | - Andrea G Bravo
- Spanish National Research Council | CSIC, Institut de Ciències del Mar, Barcelona, Spain.
| |
Collapse
|