1
|
Zhao H, Yang M, Chen B, Liu B, Zhang B. Transport of microplastic-antibiotic co-contaminants in tidal zones. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 372:126072. [PMID: 40097062 DOI: 10.1016/j.envpol.2025.126072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 03/06/2025] [Accepted: 03/15/2025] [Indexed: 03/19/2025]
Abstract
Microplastics (MPs) and antibiotics (ATs) are emerging contaminants with recognized negative effects on marine ecosystems. MPs can adsorb and transport ATs, posing combined toxic effects to marine organisms. Despite growing concerns, research remains limited on the MP-AT co-contaminants in tidal zones, which are home to numerous aquatic species and represent a particularly susceptible ecosystem. This study used polyethylene (PE) MPs and tetracycline (TC) to investigate the influence under various conditions, including sediment sizes, tidal cycles, and MP sizes, on the transport of MP-AT co-contaminants in tidal zones using a tidal cycle simulation system, which was designed to replicate the tidal dynamics and provide insights into the movement and behavior of contaminants. It was observed that MP-AT co-contaminants in tidal sediments exist in three distinct transport states. Smaller MP-AT co-contaminants (State 1) pass through sand pores and are widely distributed in the upper sediment layers, whereas larger MP-AT co-contaminants (State 2) concentrate in layers 1-5 due to size limitations. Agglomerated MP-AT co-contaminants (State 3), unable to pass through sand pores, accumulate at the bottom. Tidal cycles enhance MP-AT co-contaminant retention, while sand size (125-212 μm) limitedly affects their distribution. MP size played a crucial role, with larger MPs settling in layers 1-5 and smaller MPs remaining more dispersed. These findings emphasize the importance of MP size in affecting contaminant transport in tidal environments. Results from this research will contribute to the development of transport models and help predict the long-term environmental impact of MP-AT co-contaminants.
Collapse
Affiliation(s)
- Hemeihui Zhao
- Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University, St. John's, Newfoundland, A1B 3X5, Canada
| | - Min Yang
- Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University, St. John's, Newfoundland, A1B 3X5, Canada
| | - Bing Chen
- Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University, St. John's, Newfoundland, A1B 3X5, Canada
| | - Bo Liu
- Center for Freshwater Research and Education, Lake Superior State University (LSSU), Sault Ste. Marie, MI 49783, USA
| | - Baiyu Zhang
- Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University, St. John's, Newfoundland, A1B 3X5, Canada.
| |
Collapse
|
2
|
Li Y, Zhang Y, Wang D, Zhao J, Yu H, Chen Y, Yang J. Effect of antibiotics on diverse aquatic plants in aquatic ecosystems. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2025; 281:107289. [PMID: 40023060 DOI: 10.1016/j.aquatox.2025.107289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 01/14/2025] [Accepted: 02/12/2025] [Indexed: 03/04/2025]
Abstract
The widespread presence of antibiotics in aquatic ecosystems, mainly due to their use in medicine and veterinary practices, poses a significant environmental challenge. Aquatic plants play a vital role in maintaining ecosystem stability, but their responses to antibiotics vary by species, influenced by differences in their traits and interactions with environmental factors. However, the specific ways antibiotics affect these plants remain poorly understood. In this study, we conducted a meta-analysis of 167 peer-reviewed studies to investigate the mechanisms of antibiotic uptake and their effects on different types of aquatic plants-submerged, emergent, and floating. Our analysis shows that antibiotics, particularly common ones like sulfonamides, tetracyclines, and quinolones, impact aquatic plants through multiple pathways. Submerged and floating plants often face widespread, direct exposure, resulting in "full-coverage" impacts, while emergent plants experience mixed exposure patterns, affecting both submerged and aerial parts and leading to "partial-coverage" impacts. These findings provide a foundation for phytoremediation strategies, enabling the rational selection and management of aquatic plant types to mitigate antibiotic pollution. Our study underscores the ecological risks posed by antibiotic contamination in aquatic ecosystems and offers a theoretical framework for developing effective restoration strategies.
Collapse
Affiliation(s)
- Yiting Li
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, PR China
| | - Yani Zhang
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, PR China
| | - Dongyao Wang
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, PR China
| | - Jiamei Zhao
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, PR China
| | - Huan Yu
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, PR China
| | - Yun Chen
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, PR China
| | - Jiqiang Yang
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, PR China.
| |
Collapse
|
3
|
Liu R, Long Q, Liu Y, Wang L. Screening of priority antibiotics in Fenhe River Basin based on the environmental exposure, ecological effects, and human health risk. CHEMOSPHERE 2025; 370:143953. [PMID: 39708951 DOI: 10.1016/j.chemosphere.2024.143953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/27/2024] [Accepted: 12/13/2024] [Indexed: 12/23/2024]
Abstract
Antibiotics in surface water have attracted increasing attention because of their potential threats to aquatic ecosystems and public health. Therefore, it is crucial to develop a priority antibiotic list and establish a regulatory framework for antibiotic control. Taking the Fenhe River Basin in North China as the study area, a method to rank priority antibiotics based on their environmental exposure, ecological effects, and human health risks was established. Twenty antibiotics were detected, with the highest average concentration (118.30 ng/L) of sulfonamides. Among them, azithromycin had the lowest BioWIN3 value, and its logKow value was >4, which means that it has poor biodegradability, is relatively easily adsorbed in the soil or sediment, and is persistent. Additionally, based on a survey of local species with different nutritional structures, the ecological risk thresholds of antibiotics were calculated. The results showed that quinolones had the lowest risk threshold of average value 287.23 ng/L, with a greater potential for a negative effect on the ecological environment. Based on the threshold, norfloxacin, ofloxacin, and erythromycin were identified as the pollutants of ecological risk, their peak concentrations were approximately 2.4 times, 2 times, and 9 times their risk thresholds, respectively, which mainly distributed in the middle reaches. Regarding human health risks, ciprofloxacin posed the highest health risk, with an average health risk entropy of 2.81. Finally, the calculated results of the priority rating of antibiotics showed that ciprofloxacin, enrofloxacin, erythromycin, and azithromycin were the highest-priority antibiotics and should be prioritized in risk management.
Collapse
Affiliation(s)
- Ruimin Liu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, No. 19, Xinjiekouwai Street, Beijing, 100875, China.
| | - Qingfeng Long
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, No. 19, Xinjiekouwai Street, Beijing, 100875, China
| | - Yue Liu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, No. 19, Xinjiekouwai Street, Beijing, 100875, China
| | - Linfang Wang
- Shanxi Key Laboratory of Sorghum Genetic and Germplasm Innovation, Sorghum Research Institute, Shanxi Agricultural University, Jinzhong, 030600, China
| |
Collapse
|
4
|
Chen YR, Duan YP, Zhang ZB, Gao YF, Dai CM, Tu YJ, Gao J. Comprehensive evaluation of antibiotics pollution the Yangtze River basin, China: Emission, multimedia fate and risk assessment. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133247. [PMID: 38141293 DOI: 10.1016/j.jhazmat.2023.133247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 11/12/2023] [Accepted: 12/11/2023] [Indexed: 12/25/2023]
Abstract
Antibiotics have attracted global attention because of their potential ecological and health risks. The emission, multimedia fate and risk of 18 selected antibiotics in the entire Yangtze River basin were evaluated by using a level Ⅳ fugacity model. High antibiotic emissions were found in the middle and lower reaches of the Yangtze River basin. The total antibiotic emissions in the Yangtze River basin exceeded 1600 tons per year between 2013 and 2021. The spatial distribution of antibiotics concentration was the upper Yangtze River > middle Yangtze River > lower Yangtze River, which is positively correlated with animal husbandry size in the basin. Temperature and precipitation increases may decrease the antibiotic concentrations in the environment. Transfer fluxes showed that source emission inputs, advection processes, and degradation fluxes contributed more to the total input and output. High ecological risks in the water environment were found in 2018, 2019, 2020, and 2021. The comprehensive health risk assessment through drinking water and fish consumption routes showed that a small part of the Yangtze River basin is at medium risk, and children have a relatively high degree of health risk. This study provides a scientific basis for the pollution control of antibiotics at the basin scale.
Collapse
Affiliation(s)
- Yu-Ru Chen
- School of Environmental and Geographical Sciences, Shanghai Normal University, No. 100 Guilin Rd., Shanghai 200234, PR China
| | - Yan-Ping Duan
- School of Environmental and Geographical Sciences, Shanghai Normal University, No. 100 Guilin Rd., Shanghai 200234, PR China; Yangtze Delta Wetland Ecosystem National Filed Scientific Observation and Research Station, PR China.
| | - Zhi-Bo Zhang
- College of Civil Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China
| | - Yao-Feng Gao
- School of Environmental and Geographical Sciences, Shanghai Normal University, No. 100 Guilin Rd., Shanghai 200234, PR China
| | - Chao-Meng Dai
- College of Civil Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China.
| | - Yao-Jen Tu
- School of Environmental and Geographical Sciences, Shanghai Normal University, No. 100 Guilin Rd., Shanghai 200234, PR China; Yangtze Delta Wetland Ecosystem National Filed Scientific Observation and Research Station, PR China
| | - Jun Gao
- School of Environmental and Geographical Sciences, Shanghai Normal University, No. 100 Guilin Rd., Shanghai 200234, PR China; Yangtze Delta Wetland Ecosystem National Filed Scientific Observation and Research Station, PR China
| |
Collapse
|
5
|
Zheng Y, Su Z, Liu D, Huang B, Mu Q, Li Y, Wen D. Metagenomics reveals the influence of small microplastics on microbial communities in coastal sediments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 914:169982. [PMID: 38215846 DOI: 10.1016/j.scitotenv.2024.169982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/04/2024] [Accepted: 01/05/2024] [Indexed: 01/14/2024]
Abstract
The ecological impact of microplastics (MPs) in coastal environments has been widely studied. However, the influence of small microplastics in the actual environment is often overlooked due to measurement challenges. In this study, Hangzhou Bay (HZB), China, was selected as our study area. High-throughput metagenomic sequencing and micro-Raman spectrometry were employed to analyze the microbial communities and microplastics of coastal sediment samples, respectively. We aimed to explore the ecological impact of MPs with small sizes (≤ 100 μm) in real coastal sediment environments. Our results revealed that as microplastic size decreased, the environmental behavior of MPs underwent alterations. In the coastal sediments, no significant correlations were observed between the detected MPs and the whole microbial communities, but small MPs posed potential hazards to eukaryotic communities. Moreover, these small MPs were more prone to microbial degradation and significantly affected carbon metabolism in the habitat. This study is the first to reveal the comprehensive impact of small MPs on microbial communities in a real coastal sediment environment.
Collapse
Affiliation(s)
- Yuhan Zheng
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Zhiguo Su
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Dantong Liu
- China Aviation Planning and Design Institute(Group)CO., LTD, Beijing 100120, China
| | - Bei Huang
- Marine Ecological Environmental Monitoring Center of Zhejiang Province, Zhoushan 316021, China
| | - Qinglin Mu
- Marine Ecological Environmental Monitoring Center of Zhejiang Province, Zhoushan 316021, China
| | - Yunong Li
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Donghui Wen
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China.
| |
Collapse
|
6
|
Su D, Wei Y, Chelimuge, Ma Y, Chen Y, Liu Z, Ben W, Wang Y. Distribution, ecological risks and priority of pharmaceuticals in the coastal water of Qinhuangdao, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:167955. [PMID: 37875199 DOI: 10.1016/j.scitotenv.2023.167955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/12/2023] [Accepted: 10/18/2023] [Indexed: 10/26/2023]
Abstract
Although there has been a surge of interest in research focused on the presence of pharmaceuticals in the marine environment, study on the distribution and risks of pharmaceuticals in coastal waters remains inadequately documented due to the specific features of the marine environment, such as strong dilution, high salinity, and complex hydrodynamics. In this study, thirty pharmaceuticals with diverse physicochemical properties were analyzed in a coastal sea with low hydrodynamic energy caused by various artificial structures. The results indicate that 14 compounds were detected in seawater, with concentrations ranging from <1 to 201.4 ng L-1, among which caffeine, metoprolol, and atenolol were detected at high levels. Statistical analysis reveals the prevalence of the most target pharmaceuticals with downward trends in concentrations from estuary to offshore region, demonstrating the significant impacts of riverine inputs on the coastal water. Nevertheless, the distribution patterns of caffeine and atenolol were intricate, suggesting that they may have also originated from other unknown sources. A newly-developed method combining risk quotient (RQ) and species sensitivity distribution (SSD) models was used in ecological risk assessment. The results indicate generally higher risks of target pharmaceuticals in the estuary compared to the offshore region, with caffeine, carbamazepine, and norfloxacin identified as the top three priority pollutants.
Collapse
Affiliation(s)
- Du Su
- Research Center for Marine Science, Hebei Normal University of Science and Technology, Qinhuangdao 066004, China; Hebei Key Laboratory of Ocean Dynamics, Resources and Environments, Qinhuangdao 066000, China
| | - Yuhong Wei
- Research Center for Marine Science, Hebei Normal University of Science and Technology, Qinhuangdao 066004, China; Hebei Key Laboratory of Ocean Dynamics, Resources and Environments, Qinhuangdao 066000, China
| | - Chelimuge
- Research Center for Marine Science, Hebei Normal University of Science and Technology, Qinhuangdao 066004, China
| | - Yue Ma
- Research Center for Marine Science, Hebei Normal University of Science and Technology, Qinhuangdao 066004, China; Hebei Key Laboratory of Ocean Dynamics, Resources and Environments, Qinhuangdao 066000, China
| | - Yang Chen
- Research Center for Marine Science, Hebei Normal University of Science and Technology, Qinhuangdao 066004, China; Hebei Key Laboratory of Ocean Dynamics, Resources and Environments, Qinhuangdao 066000, China
| | - Zhiliang Liu
- Research Center for Marine Science, Hebei Normal University of Science and Technology, Qinhuangdao 066004, China; Hebei Key Laboratory of Ocean Dynamics, Resources and Environments, Qinhuangdao 066000, China.
| | - Weiwei Ben
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuang-qing Road, Beijing 100085, China
| | - Yibo Wang
- Research Center for Marine Science, Hebei Normal University of Science and Technology, Qinhuangdao 066004, China; Hebei Key Laboratory of Ocean Dynamics, Resources and Environments, Qinhuangdao 066000, China
| |
Collapse
|
7
|
Li Y, Su Z, Dai T, Zheng Y, Chen W, Zhao Y, Wen D. Moderate anthropogenic disturbance stimulates versatile microbial taxa contributing to denitrification and aromatic compound degradation. ENVIRONMENTAL RESEARCH 2023; 238:117106. [PMID: 37699472 DOI: 10.1016/j.envres.2023.117106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/29/2023] [Accepted: 09/06/2023] [Indexed: 09/14/2023]
Abstract
Wastewater treatment plants (WWTPs) effluent often contains a significant amount of residual organic pollutants and nutrients, causing disturbance to the coastal effluent receiving areas (ERA). Microbial communities in coastal ERA sediments may benefit from the coexistence of organic pollutants and nutrients, promoting the emergence of versatile taxa that are capable of eliminating these substances simultaneously. However, the identification and exploration of versatile taxa in natural environments under anthropogenic disturbances remain largely uncharted territory. In this study, we specifically focused on the versatile taxa coupled by the degradation of aromatic compounds (ACs) and denitrification, using Hangzhou Bay in China as our study area. We explored how WWTPs effluent disturbance would affect the versatile taxa, and particularly examined the role of disturbance intensity in shaping their composition. Intriguingly, we found that versatile taxa were mainly derived from denitrifiers like Pseudomonas, suggesting the fulfilled potential of denitrifiers regarding ACs degradation. We also discovered that moderate disturbance stimulated the diversity of versatile taxa, resulting in strengthened functional redundancy. Through correlation network analysis, we further demonstrated that moderate disturbance enhanced the community-level cooperation. Thus, moderate disturbance serves as a catalyst for versatile taxa to maintain community function, making them more resilient to effluent disturbances. Additionally, we identified COD and NO3--N concentrations as significant environmental factors influencing the versatile taxa. Overall, our findings reveal the role of effluent disturbances in the promotion of versatile taxa, and highlight moderate disturbance can foster more robust versatile taxa that are better equipped to handle effluent disturbances.
Collapse
Affiliation(s)
- Yunong Li
- College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Zhiguo Su
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Tianjiao Dai
- School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing, 100083, China
| | - Yuhan Zheng
- College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Weidong Chen
- College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Yanan Zhao
- College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Donghui Wen
- College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China.
| |
Collapse
|
8
|
Guo X, Lv M, Song L, Ding J, Man M, Fu L, Lu S, Hou L, Chen L. Profiling of the spatiotemporal distribution, risks, and prioritization of pharmaceuticals and personal care products in coastal waters of the northern Yellow Sea, China. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132163. [PMID: 37515990 DOI: 10.1016/j.jhazmat.2023.132163] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/14/2023] [Accepted: 07/25/2023] [Indexed: 07/31/2023]
Abstract
Pharmaceuticals and personal care products (PPCPs) have aroused global concerns due to their ubiquitous occurrence and detrimental effects. The spatiotemporal distributions of 64 PPCPs and their synergetic ecological risks were comprehensively investigated in the seawater of Yantai Bay, and 1 H-benzotriazole (BT), ethenzamide, phenazone, propyphenazone, 4-hydroxybenzophenone and N, N'-diphenylurea were first determined in the seawater of China. Fifty-six PPCPs were detected and their concentrations were 27.5-182 ng/L, with BT contributing around 58.0%. Higher PPCP concentrations were observed in winter and spring, with the concentrations of antioxidants, analgesic/anti-inflammatory drugs and human-used antibiotics significantly higher in winter, while those of aquaculture-used antibiotics and UV filters significantly higher in summer, which was closely related with their usage patterns. Positive correlations were observed for PPCP concentrations between surface and bottom water, except summer, during which time the weak vertical exchange and varied environmental behaviors among different PPCPs resulted in the distinct compositions and concentrations. Terrestrial inputs and mariculture resulted in higher PPCP concentrations in the area located adjacent to the coast and aquaculture bases. The PPCP mixtures posed medium to high risk to crustaceans, and bisphenol A was identified as a high-risk pollutant that needs special attention.
Collapse
Affiliation(s)
- Xiaotong Guo
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Min Lv
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China.
| | - Lehui Song
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Jing Ding
- School of Environmental and Material Engineering, Yantai University, Yantai 264005, China
| | - Mingsan Man
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Longwen Fu
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Shuang Lu
- School of Environmental and Material Engineering, Yantai University, Yantai 264005, China
| | - Lijun Hou
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China
| | - Lingxin Chen
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| |
Collapse
|
9
|
He R, Wu X, Mu H, Chen L, Hu H, Wang J, Ren H, Wu B. Priority control sequence of 34 typical pollutants in effluents of Chinese wastewater treatment plants. WATER RESEARCH 2023; 243:120338. [PMID: 37473511 DOI: 10.1016/j.watres.2023.120338] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 06/14/2023] [Accepted: 07/10/2023] [Indexed: 07/22/2023]
Abstract
The identification of the priority control sequence of pollutants in effluents of wastewater treatment plants (WWTPs) has important implications for the management of water quality. This study chose 34 typical pollutants based on their representativeness and detection rates in municipal wastewater. The occurrence frequency and concentration of these pollutants in 168 Chinese WWTP effluents were measured at the national level. The data on in vitro toxicity (67 assays) and in vivo toxicity (216 species) for target pollutants were obtained from the public toxicity database and our experimental data. An environmental health prioritization index (EHPi) method was proposed to integrate the occurrence frequency, concentration, removal rate, and in vitro and in vivo toxicity to determine the priority control sequence of target pollutants. Ethynyl estradiol, 17β-estradiol, estrone, diclofenac, and atrazine were the top 5 pollutants identified by the EHPi score. Several pollutants with high EHPi scores showed spatial differences. Besides the EHPi method which was from the single pollutant perspective, the combined toxicity of pollutants (300 pairs of binary combinations) was also measured based on in vitro toxicity assays to evaluate the key pollutants from the pollutant-pollutant interacting perspective. The pollutants (such as ofloxacin and acetaminophen) that could have significant synergetic effects with many other pollutants are worthy of prior attention. This study shed new light on the identification of the priority control sequence of pollutants in WWTP effluents. The results provide meaningful data for the effective management and control of wastewater water quality.
Collapse
Affiliation(s)
- Ruonan He
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Xingyue Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Hongxin Mu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Ling Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Haidong Hu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Jinfeng Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Hongqiang Ren
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Bing Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
10
|
Xu N, Shen Y, Jiang L, Jiang B, Li Y, Yuan Q, Zhang Y. Occurrence and risk levels of antibiotic pollution in the coastal waters of eastern China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27500-5. [PMID: 37162672 DOI: 10.1007/s11356-023-27500-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 05/04/2023] [Indexed: 05/11/2023]
Abstract
In order to preliminarily explore the distribution of antibiotic pollution in the coastal waters of eastern China, the concentrations of 13 antibiotics in 5 representative coastal rivers in Jiangsu and 21 sampling sites in the coastal waters of Jiangsu were analyzed. The total antibiotic concentrations in the 5 rivers ranged from 33.14 to 417.78 ng L-1, and the total antibiotic concentrations in the 21 sampling sites ranged from 0.90 to 86.33 ng L-1. Macrolides exhibited the highest total concentration and the maximum detection frequency in both coastal rivers and the coastal waters. The concentrations of antibiotics in a sampling site decreased as the distance of the sampling site from the coastline increased, indicating that river inputs are important sources of antibiotic pollution in the coastal waters of Jiangsu. The detection frequencies of roxithromycin, lincomycin, azithromycin, and sulfamethoxazole in the rivers and sampling sites were above 70%. Correlation analysis showed that the concentrations of antibiotics were positively correlated with the levels of chemical oxygen demand, total phosphorus, and total nitrogen. Risk assessments revealed that roxithromycin and ofloxacin posed medium ecological and resistance risks, respectively, to the most sensitive aquatic organisms in the coastal waters of Jiangsu. The results of this study highlight the significance of monitoring and controlling the concentrations of antibiotic contaminants in the coastal waters of Jiangsu.
Collapse
Affiliation(s)
- Ning Xu
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing, 211816, People's Republic of China
| | - Yi Shen
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing, 211816, People's Republic of China
| | - Lei Jiang
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing, 211816, People's Republic of China
| | - Bin Jiang
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing, 211816, People's Republic of China
| | - Ying Li
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing, 211816, People's Republic of China
| | - Qingbin Yuan
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing, 211816, People's Republic of China
| | - Yunhai Zhang
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing, 211816, People's Republic of China.
| |
Collapse
|
11
|
Guo X, Ni N, Shi M, Zhang X, Yuan Q, Wang N, Zhang S, Luo Y. The persistent, bioaccumulative, toxic, and resistance (PBTR) risk assessment framework of antibiotics in the drinking water sources. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 326:116776. [PMID: 36435122 DOI: 10.1016/j.jenvman.2022.116776] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/08/2022] [Accepted: 11/10/2022] [Indexed: 06/10/2023]
Abstract
Antibiotics are emerging pollutants largely considered to have a lower risk based on persistent, bioaccumulative, toxic (PBT) risk assessments. However, an increasing number of studies have illustrated that antibiotics are responsible for the global increase in antimicrobial resistance (AMR), which suggests that the risk of antibiotics has been largely underestimated by using PBT risk assessment. Here, we designed an integrated innovation risk assessment framework of persistent, bioaccumulative, toxic, and resistance (PBTR) that accounts for antibiotic resistance to better represent the antibiotic environmental risk. This novel antibiotic risk assessment framework was further verified via application to 39 target antibiotics in the 23 drinking water sources of the lower Yangtze River (LYR), China, during the normal and flood seasons. In contrast with the PBT assessment, single toxicity assessment and single resistance assessment, in the PBTR assessment, 7 of 39 target antibiotics with bacterial insensitivity were observed to represent a more prominent risk, as were the sites sampled during the flood season with low concentrations but high pollution loads, which confirmed that the sensitivity of PBTR risk assessment was instructive. The PBTR risk assessment for the screened priority antibiotics contributes not only representative data but also an innovative approach for identifying resistance risks. Using the positive matrix factorization (PMF) model, the sources of priority antibiotics can be predicted and thus supported the corresponding policy. Overall, this study first constructed a PBTR risk assessment framework, then applied it to facilitate the accurate management of antibiotic pollution at the basin level.
Collapse
Affiliation(s)
- Xinyan Guo
- Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Nanjing Institute of Environmental Science, Ministry of Ecology and Environment of the People's Republic of China, Nanjing, 210042, China
| | - Ni Ni
- Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Nanjing Institute of Environmental Science, Ministry of Ecology and Environment of the People's Republic of China, Nanjing, 210042, China
| | - Mali Shi
- Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Nanjing Institute of Environmental Science, Ministry of Ecology and Environment of the People's Republic of China, Nanjing, 210042, China
| | - Xiaohui Zhang
- Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Nanjing Institute of Environmental Science, Ministry of Ecology and Environment of the People's Republic of China, Nanjing, 210042, China
| | - Qingbin Yuan
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Na Wang
- Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Nanjing Institute of Environmental Science, Ministry of Ecology and Environment of the People's Republic of China, Nanjing, 210042, China.
| | - Shenghu Zhang
- Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Nanjing Institute of Environmental Science, Ministry of Ecology and Environment of the People's Republic of China, Nanjing, 210042, China.
| | - Yi Luo
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
12
|
Shan J, Ren T, Li X, Jin M, Wang X. Study of microplastics as sorbents for rapid detection of multiple antibiotics in water based on SERS technology. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 284:121779. [PMID: 36041262 DOI: 10.1016/j.saa.2022.121779] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 08/19/2022] [Accepted: 08/20/2022] [Indexed: 06/15/2023]
Abstract
Online monitoring of antibiotics in the environment attracts more and more attention. Surface-enhanced Raman scattering (SERS) is a promising technique for the detection of trace amounts of antibiotics in the environment, which is fast, non-invasive and sensitive. To investigate the enrichment of trace amounts of antibiotics in water, polyethylene microplastics (PE MPs) were prepared as sorbents to simply concentrate enrofloxacin, ciprofloxacin hydrochloride monohydrate and triclosan in water, followed by the SERS measurement of antibiotics extract washed from MPs on an AgNPs@Si SERS substrate. Limit of detection of Rhodamine 6G is 2.1 × 10-12 M achieved from the AgNPs@Si SERS, indicating a high enhancement. The detection results show that SERS peaks of the antibiotics could be observed from the spectra of the extracts eluted from MPs, indicating MPs could adsorb and desorb antibiotics from water. Besides, for enrofloxacin and triclosan, the intensity of SERS measured from the MPs extracts are higher than that of directly from the spiked water, demonstrating the proposed method could lower the detectable concentration of hydrophobic antibiotics in water. Moreover, the proposed MPs sorbents combined with SERS method was applied to detect the antibiotics in real river water, with minimal detection of 10-10 M, 10-8 M, and 10-8 M achieved for enrofloxacin, ciprofloxacin hydrochloride monohydrate and triclosan, respectively. The proposed method provides a promising simple, rapid and low reagent consuming means for monitoring antibiotics in water.
Collapse
Affiliation(s)
- Jiajia Shan
- School of Ocean Science and Technology, Dalian University of Technology, Panjin 124221, China.
| | - Tao Ren
- School of Ocean Science and Technology, Dalian University of Technology, Panjin 124221, China
| | - Xinjing Li
- School of Ocean Science and Technology, Dalian University of Technology, Panjin 124221, China
| | - Mengke Jin
- School of Ocean Science and Technology, Dalian University of Technology, Panjin 124221, China
| | - Xue Wang
- School of Ocean Science and Technology, Dalian University of Technology, Panjin 124221, China
| |
Collapse
|
13
|
Cao L, Liu R, Wang L, Liu Y, Li L, Wang Y. Reliable and Representative Estimation of Extrapolation Model Application in Deriving Water Quality Criteria for Antibiotics. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2023; 42:191-204. [PMID: 36342347 DOI: 10.1002/etc.5512] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 07/18/2022] [Accepted: 11/01/2022] [Indexed: 06/16/2023]
Abstract
Deriving water quality benchmarks based on the species sensitivity distribution (SSD) is crucial for assessing the ecological risks of antibiotics. The application of extrapolation methods such as interspecies correlation estimation (ICE) and acute-to-chronic ratios (ACRs) can effectively supplement insufficient toxicity data for these emerging contaminants. Acute-to-chronic ratios can predict chronic toxicity from acute toxicity, and ICE can extrapolate an acute toxicity value from one species to another species. The present study explored the impact of two extrapolation methods on the reliability of SSDs by analyzing different scenarios. The results show that, compared with the normal and Weibull distributions, the logistic model was the best-fitting model. For most antibiotics, SSDs derived by extrapolation have high reliability, with 82.9% of R2 values being higher than 0.9, and combining ICE and ACR methods can bring a maximum increase of 10% in R2 . Based on the results of Monte Carlo simulation, the statistical uncertainty brought by ICE in SSD is 10-40 times larger than that brought by ACR, and combining the two methods could reduce uncertainty. In addition, the sensitivity test showed that whether the toxicity data came from extrapolation or actual measurement, the lower the value of toxicity endpoints was, the greater the bias caused by the corresponding species in every scenario. Combining the two aforementioned extrapolation methods could effectively increase the stability of SSD, with their bias nearly equal to 1. Environ Toxicol Chem 2023;42:191-204. © 2022 SETAC.
Collapse
Affiliation(s)
- Leiping Cao
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, China
| | - Ruimin Liu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, China
| | - Linfang Wang
- Sorghum Research Institute, Shanxi Agricultural University/Shanxi Academy of Agricultural Sciences, Jinzhong, China
| | - Yue Liu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, China
| | - Lin Li
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, China
| | - Yue Wang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, China
| |
Collapse
|
14
|
Wang N, Shen W, Zhang S, Cheng J, Qi D, Hua J, Kang G, Qiu H. Occurrence and distribution of antibiotics in coastal water of the Taizhou Bay, China: impacts of industrial activities and marine aquaculture. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:81670-81684. [PMID: 35737266 DOI: 10.1007/s11356-022-21412-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 06/07/2022] [Indexed: 06/15/2023]
Abstract
The occurrence, spatial distribution, and source analysis of antibiotics in global coastal waters and estuaries are not well documented or understood. Therefore, the distribution of 14 antibiotics in inflowing river and bay water of Taizhou Bay, East China Sea, was studied. Thirteen antibiotics, excluding roxithromycin (ROM), were all detected in inflowing river and bay water. The total antibiotic concentrations in bay water ranged from 3126.62 to 26,531.48 ng/L, which were significantly higher than those in the inflowing river (17.20-25,090.25 ng/L). Macrolides (MAs) and sulfonamides (SAs) were dominant in inflowing river (accounting for 24.40% and 74.9% of the total antibiotic concentrations, respectively), while SAs in bay water (93.6% of the total concentrations). Among them, clindamycin (CLI) (concentration range: ND-8414 ng/L, mean 1437.59 ng/L) and sulfadimidine (SMX) (ND-25,184.00 ng/L, mean concentrations: 9107.88 ng/L) were the highest in those surface water samples. Source analysis showed that MAs and SAs in the inflowing river mainly came from the wastewater discharge of the surrounding residents and pharmaceutical companies, while SAs in the bay water mainly came from surrounding industrial activities and mariculture. However, the contribution of the inflowing river to the bay water cannot be ignored. The risk assessment showed that SMX and ofloxacin (OFX) have potential ecological risks. These data will support the various sectors of the environment in developing management strategies and to prevent antibiotic pollution.
Collapse
Affiliation(s)
- Ning Wang
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, 219 Ningliu Road, Nanjing, 210044, China
- Ministry of Ecology and Environment, Nanjing Institute of Environmental Sciences, Nanjing, 210042, China
| | - Weitao Shen
- Key Laboratory of Environment Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - ShengHu Zhang
- Ministry of Ecology and Environment, Nanjing Institute of Environmental Sciences, Nanjing, 210042, China.
| | - Jie Cheng
- Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, China
| | - Dan Qi
- Ministry of Ecology and Environment, Nanjing Institute of Environmental Sciences, Nanjing, 210042, China
| | - Jing Hua
- Ministry of Ecology and Environment, Nanjing Institute of Environmental Sciences, Nanjing, 210042, China
| | - Guodong Kang
- Ministry of Ecology and Environment, Nanjing Institute of Environmental Sciences, Nanjing, 210042, China
| | - Hui Qiu
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, 219 Ningliu Road, Nanjing, 210044, China
| |
Collapse
|
15
|
Madikizela LM, Ncube S. Health effects and risks associated with the occurrence of pharmaceuticals and their metabolites in marine organisms and seafood. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 837:155780. [PMID: 35537516 DOI: 10.1016/j.scitotenv.2022.155780] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/21/2022] [Accepted: 05/04/2022] [Indexed: 06/14/2023]
Abstract
Pharmaceuticals and their metabolites are continuously invading the marine environment due to their input from the land such as their disposal into the drains and sewers which is mostly followed by their transfer into wastewater treatment plants (WWTPs). Their incomplete removal in WWTPs introduces pharmaceuticals into oceans and surface water. To date, various pharmaceuticals and their metabolites have been detected in marine environment. Their occurrence in marine organisms raises concerns regarding toxic effects and development of drug resistant genes. Therefore, it is crucial to review the health effects and risks associated with the presence of pharmaceuticals and their metabolites in marine organisms and seafood. This is an important study area which is related to the availability of seafood and its quality. Hence, this study provides a critical review of the information available in literature which relates to the occurrence and toxic effects of pharmaceuticals in marine organisms and seafood. This was initiated through conducting a literature search focussing on articles investigating the occurrence and effects of pharmaceuticals and their metabolites in marine organisms and seafood. In general, most studies on the monitoring of pharmaceuticals and their metabolites in marine environment are conducted in well developed countries such as Europe while research in developing countries is still limited. Pharmaceuticals present in freshwater are mostly found in seawater and marine organisms. Furthermore, the toxicity caused by different pharmaceutical mixtures was observed to be more severe than that of individual compounds.
Collapse
Affiliation(s)
- Lawrence Mzukisi Madikizela
- Institute for Nanotechnology and Water Sustainability, College of Science, Engineering and Technology, University of South Africa, Florida Science Campus, 1710, South Africa.
| | - Somandla Ncube
- Department of Chemistry, Sefako Makgatho Health Sciences University, P.O Box 60, Medunsa 0204, South Africa
| |
Collapse
|
16
|
Occurrence, Comparison and Priority Identification of Antibiotics in Surface Water and Sediment in Urbanized River: A Case Study of Suzhou Creek in Shanghai. SUSTAINABILITY 2022. [DOI: 10.3390/su14148757] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Antibiotics in water have attracted increasing attention due to their potential threat to aquatic ecosystems and public health. Most previous studies have focused on heavily polluted environments, while ignoring urbanized rivers with high population density. Taking Suzhou Creek in Shanghai as an example, this study attempted to explore the antibiotic pollution characteristics of typical urbanized rivers. Further, it screened out priority antibiotics so as to provide reference for the regular monitoring of antibiotics in urban surface water in the study’s later stage. Four classes of 27 antibiotics in surface water samples and sediment samples were detected and analyzed by SPE-UPLC-MS/MS under both wet season and dry season. Results demonstrate that the total amount of antibiotics detected reached 1936.9 ng/L and 337.3 ng/g in water samples and sediment samples, respectively. Through Pearson correlation analysis, it can be shown that there is a very significant correlation between a variety of antibiotics in water and sediment. The results of ecological risk assessment based on risk quotient (RQ) show that certain antibiotics presented high and medium risk to the surrounding ecosystem. Finally, the priority antibiotics selected by optimized priority screening method were EM, SPD, CLR and RTM. Therefore, we have proven that the antibiotics being discharged in urbanized rivers show different types of antibiotics, while presenting a toxicological risk to certain species.
Collapse
|
17
|
Wang X, Huang N, Wang J, Lu C, Li G, Li F, Hu Z, Bi X, Wu L, Tian Y. Occurrence and removal of 25 antibiotics during sewage treatment processes and potential risk analysis. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2022; 85:1800-1812. [PMID: 35358072 DOI: 10.2166/wst.2022.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The occurrence and removal of 25 antibiotics, including ten quinolones (QNs), four macrolides (MLs), four tetracyclines (TCs) and seven sulfonamides (SNs), were analysed at two sewage treatment plants (STPs) with different treatment units in Guangxi Province, China. The results showed that 14 and 16 antibiotics were detected in the influent of the two STPs, with concentrations ranging from 13.7-4265.2 ng/L and 14.5-10761.7 ng/L, respectively. Among the antibiotics, TCs were the main type in the study area, accounting for more than 79% of the total concentration of all antibiotics. The antibiotic removal efficiencies of the different process units ranged from -56.73% to 100.0%. It was found that the SN removal efficiency of the multistage composite mobile bed membrane bioreactor (MBBR) process was better than that of the continuous-flow Intermission biological reactor (IBR) process, while the IBR process was better than the MBBR process in terms of removing TCs and MLs; however, there was no obvious difference in the QN removal efficiencies of these two processes. Redundancy analysis (RDA) showed a strong correlation between antibiotic concentration and chemical oxygen demand (COD). Risk assessments indicated that algae, followed by invertebrates and fish, were the most sensitive aquatic organisms to the detected antibiotics.
Collapse
Affiliation(s)
- Xinting Wang
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, PR China E-mail:
| | - Ning Huang
- Guangxi Zhuang Autonomous Region Ecological and Environmental Monitoring Centre, Nanning 530028, PR China
| | - Jin Wang
- Guangxi Zhuang Autonomous Region Ecological and Environmental Monitoring Centre, Nanning 530028, PR China
| | - Chunliu Lu
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, PR China E-mail:
| | - Guangying Li
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, PR China E-mail:
| | - Fang Li
- Guangxi Zhuang Autonomous Region Ecological and Environmental Monitoring Centre, Nanning 530028, PR China
| | - Zaoshi Hu
- Guangxi Zhuang Autonomous Region Ecological and Environmental Monitoring Centre, Nanning 530028, PR China
| | - Xiaoyu Bi
- Guangxi Zhuang Autonomous Region Ecological and Environmental Monitoring Centre, Nanning 530028, PR China
| | - Lieshan Wu
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, PR China E-mail:
| | - Yan Tian
- Guangxi Zhuang Autonomous Region Ecological and Environmental Monitoring Centre, Nanning 530028, PR China
| |
Collapse
|
18
|
Lu S, Lin C, Lei K, Xin M, Gu X, Lian M, Wang B, Liu X, Ouyang W, He M. Profiling of the spatiotemporal distribution, risks, and prioritization of antibiotics in the waters of Laizhou Bay, northern China. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127487. [PMID: 34655873 DOI: 10.1016/j.jhazmat.2021.127487] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 09/25/2021] [Accepted: 10/08/2021] [Indexed: 06/13/2023]
Abstract
We investigated the spatiotemporal distributions, risks, and prioritization of 15 widely used antibiotics in Laizhou Bay (LZB). Water samples (145) were collected from LZB and its estuaries and analyzed. Twelve antibiotics, with total concentrations of 241-1450 and 69-289 ng L-1 in estuarine water and seawater, respectively, were detected, with the contributions of norfloxacin, ciprofloxacin, and amoxicillin exceeding 70%. Amoxicillin was firstly determined, which contributed to 20% and 46% of the total antibiotics during summer and spring, respectively. Higher antibiotic concentrations were observed in the sea located adjacent to aquaculture bases and the Yellow River Estuary, which are significantly influenced by mariculture and riverine inputs, respectively. Veterinary antibiotics showed higher total concentrations in summer compared to spring, indicating a higher degree of their usage in mariculture in summer. The antibiotic mixtures posed high risk to algae and low to medium risks to crustaceans and fish. Amoxicillin and norfloxacin were identified as high-risk pollutants. Additionally, amoxicillin and ciprofloxacin showed medium to high resistance development risks. Previous studies on antibiotics in the LZB did not determined amoxicillin and thus underestimated antibiotic contamination, ecological risk, and resistance development risk. Amoxicillin, norfloxacin, and ciprofloxacin should be prioritized in risk management.
Collapse
Affiliation(s)
- Shuang Lu
- State Key Laboratory of Environmental Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Chunye Lin
- State Key Laboratory of Environmental Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing 100875, China.
| | - Kai Lei
- State Key Laboratory of Environmental Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing 100875, China; School of Biological and Environmental Engineering, Xi'an University, Xi'an 710065, China
| | - Ming Xin
- First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Xiang Gu
- State Key Laboratory of Environmental Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Maoshan Lian
- State Key Laboratory of Environmental Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Baodong Wang
- First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Xitao Liu
- State Key Laboratory of Environmental Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Wei Ouyang
- State Key Laboratory of Environmental Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing 100875, China; Advanced Interdisciplinary Institute of Environment and Ecology, Beijing Normal University, Zhuhai 519087, China
| | - Mengchang He
- State Key Laboratory of Environmental Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
19
|
Han QF, Song C, Sun X, Zhao S, Wang SG. Spatiotemporal distribution, source apportionment and combined pollution of antibiotics in natural waters adjacent to mariculture areas in the Laizhou Bay, Bohai Sea. CHEMOSPHERE 2021; 279:130381. [PMID: 33878699 DOI: 10.1016/j.chemosphere.2021.130381] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 03/01/2021] [Accepted: 03/22/2021] [Indexed: 05/20/2023]
Abstract
The spatiotemporal distribution, source apportionment and combined pollution of 14 antibiotics in natural waters adjacent to mariculture farms of Laizhou Bay in the Bohai Sea were studied. The contribution proportion and quantity of each potential pollution source to antibiotics in natural water bodies were quantitatively described. The correlations between heavy metals and antibiotics and their underlying mechanisms in natural and aquaculture water environment were analyzed. Fourteen antibiotics were detected in natural water and sediment in the coastal area of Laizhou Bay. The maximum concentrations of sulfamethazine and trimethoprim in water reached tens or even hundreds of μg/L in winter. Trimethoprim was the main antibiotic in natural water bodies in winter and summer, and enrofloxacin was the principal antibiotic in sediments. Enrofloxacin, ciprofloxacin and oxytetracycline were detected in all underground water samples; thus, control of these antibiotics needs to be made a priority to mitigate groundwater contamination. PCA-MLR revealed that the potential sources of antibiotics in natural waters of Laizhou Bay include the mariculture wastewater (18.3%), the domestic sewage (63.3%) and the livestock wastewater (18.4%). Therefore, the antibiotic burden of Laizhou Bay was principally from the domestic sewage. In natural water, the concentration of Cu was positively correlated with antibiotics, which might be related to the common sources, the competitive adsorption in sediments and the easy complexation characteristic of Cu and antibiotics. Positive correlations among antibiotics and heavy metals were observed in mariculture sediments, while negative relationships were observed in natural sediments.
Collapse
Affiliation(s)
- Q F Han
- Qingdao Municipal Bureau of Ecology and Environment, Qingdao, Shandong, 266003, China; Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong, 266237, China
| | - C Song
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong, 266237, China
| | - X Sun
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture of Ministry of Education, National Demonstration Center for Experimental Mechanical Engineering Education at Shandong University, School of Mechanical Engineering, Shandong University, Jinan, 250061, Shandong, China
| | - S Zhao
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong, 266237, China.
| | - S G Wang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong, 266237, China.
| |
Collapse
|
20
|
Zheng D, Yin G, Liu M, Chen C, Jiang Y, Hou L, Zheng Y. A systematic review of antibiotics and antibiotic resistance genes in estuarine and coastal environments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 777:146009. [PMID: 33676219 DOI: 10.1016/j.scitotenv.2021.146009] [Citation(s) in RCA: 121] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 02/05/2021] [Accepted: 02/16/2021] [Indexed: 05/26/2023]
Abstract
Antibiotics and antibiotic resistance genes (ARGs) are prevalent in estuarine and coastal environments due to substantial terrestrial input, aquaculture effluent, and sewage discharge. In this article, based on peer-reviewed papers, the sources, spatial patterns, driving factors, and environmental implications of antibiotics and ARGs in global estuarine and coastal environments are discussed. Riverine runoff, WWTPs, sewage discharge, and aquaculture, are responsible for the prevalence of antibiotics and ARGs. Geographically, pollution due to antibiotics in low- and middle-income countries is higher than that in high-income countries, and ARGs show remarkable latitudinal variations. The distribution of antibiotics is driven by antibiotic usage and environmental variables (heavy metals, nutrients, organic pollutants, etc.), while ARGs are affected by antibiotics residues, environmental variables, microbial communities, and mobile genetic elements (MGEs). Antibiotics and ARGs alter microbial communities and biogeochemical cycles, as well as pose threats to marine organisms and human health. Our results provide comprehensive insights into the transport and environmental behaviors of antibiotics and ARGs in global estuarine and coastal environments.
Collapse
Affiliation(s)
- Dongsheng Zheng
- Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, Shanghai 200241, China; School of Geographic Sciences, East China Normal University, Shanghai 200241, China
| | - Guoyu Yin
- Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, Shanghai 200241, China; School of Geographic Sciences, East China Normal University, Shanghai 200241, China.
| | - Min Liu
- Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, Shanghai 200241, China; School of Geographic Sciences, East China Normal University, Shanghai 200241, China
| | - Cheng Chen
- Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, Shanghai 200241, China; School of Geographic Sciences, East China Normal University, Shanghai 200241, China
| | - Yinghui Jiang
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China
| | - Lijun Hou
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China
| | - Yanling Zheng
- Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, Shanghai 200241, China; School of Geographic Sciences, East China Normal University, Shanghai 200241, China
| |
Collapse
|
21
|
Enhanced Degradation of Sulfonamide Antibiotics by UV Irradiation Combined with Persulfate. Processes (Basel) 2021. [DOI: 10.3390/pr9020226] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
In this study, the degradation of sulfonamide antibiotics was investigated through persulfate-enhanced UV advanced oxidation process. Factors that may affect the degradation efficiency were analyzed. Results showed that the persulfate imposed a significant enhancement on the UV oxidation process during the sulfathiazole degradation. The combined process of UV/persulfate can effectively remove about 96% of sulfathiazole within 60 min. With the increase in the dosage of persulfate, the removal efficiency increased as well. Different water matrix almost had no effect on the removal efficiency. Two intermediates were found during the sulfathiazole degradation. It can be predicted that the combined process of UV/persulfate has a broad application prospect for removing sulfonamide antibiotics in water treatment.
Collapse
|