1
|
Liu S, Li X, Qin S, Zhang H, Zhang T, Zhu J, Lin L, Lian L, Xie F, Tan H, Zhao F. Comprehensive study of flusulfinam in paddy water-sediment microcosms: Enantioselective fate, degradation pathways, and toxicity assessment. JOURNAL OF HAZARDOUS MATERIALS 2025; 488:137342. [PMID: 39893985 DOI: 10.1016/j.jhazmat.2025.137342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/27/2024] [Accepted: 01/21/2025] [Indexed: 02/04/2025]
Abstract
Flusulfinam, a novel chiral herbicide, demonstrates effective weed control in paddy fields. Nevertheless, a comprehensive investigation into its environmental fate in paddy systems, particularly at the enantiomeric level, remains deficient. Herein, paddy water-sediment microcosms were constructed across four sites to explore the enantiomeric behavior of flusulfinam. Enantioselective environmental behavior results show S-flusulfinam was found to preferentially accumulate in sediment, while R-flusulfinam showed preferential degradation in water and the overall system. Following this, the metabolic pathway of flusulfinam in the microcosms was also proposed. Eight metabolites were identified for the first time, and the synthesis and quantification of main metabolites M299 and M100 further substantiated the proposed flusulfinam metabolic pathways. In addition, enantioselective of R-M299 was also found in the Anhui microcosms. As predicted by Toxicity Estimation Software Tool, acute toxicity assessments revealed that M299 and M100 exhibit lower toxicity toward Danio rerio larvae and Selenastrum capricornutumwere compared to flusulfinam. Then, Illumina sequencing revealed that the degradation of flusulfanam had a significant impact on the abundance of key microbial genera, including Anaeromyxobacter, Nitrospira, Reyranella, and Sphingomonas. Overall, this study offers novel insights into the enantioselective fate of flusulfinam in paddy water-sediment ecosystems, provides a valuable reference for the assessment of environmental and ecological risks associated with flusulfinam. Finally, the R-flusulfinam is considered the safer enantiomer, as evidenced by its preferential degradation in microcosms systems and our prior research highlighting the high efficacy and low toxicity characteristic of R-flusulfinam.
Collapse
Affiliation(s)
- Shiling Liu
- Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi 530004, China
| | - Xiaoli Li
- Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi 530004, China
| | - Siying Qin
- Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi 530004, China
| | - Heng Zhang
- Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi 530004, China
| | - Tengfei Zhang
- Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi 530004, China
| | - Junqi Zhu
- Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi 530004, China
| | - Lu Lin
- Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi 530004, China
| | - Lei Lian
- Qingdao Kingagroot Compounds Co., Ltd., Qingdao, Shandong 266000, China
| | - Fayang Xie
- Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi 530004, China
| | - Huihua Tan
- Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi 530004, China.
| | - Feng Zhao
- Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi 530004, China.
| |
Collapse
|
2
|
Sun D, Yang T, Wang M, Pang J, Li F. Sub-chronic exposure of hexaconazole may induce metabolic and neuropathic diseases: The evidence from gut microbiota. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2025; 210:106398. [PMID: 40262859 DOI: 10.1016/j.pestbp.2025.106398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 01/10/2025] [Accepted: 03/26/2025] [Indexed: 04/24/2025]
Abstract
The high-frequency detection and long persistence of hexaconazole (Hex) in agricultural products and environment poses potential risk to non-targeted organisms which should pay special attention to. Intestinal flora plays an important role in host health by prevention the occurrence of various diseases. Therefore, in this study, the disturbance of Hex on intestinal function and flora in rats had been studied at environmental related concentrations to evaluate the potential risk of Hex. Our results showed that Hex exposure induced serious oxidative stress and inflammation in intestinal tract. Meanwhile, it notably decreased the tight connectivity in colonic cell leading to the dysfunction of intestinal barrier. Moreover, 16sRNA gene sequencing showed that Hex exposure significantly disturbed the composition and structures of gut microbiota by decrease beneficial bacteria and increase pathogenic bacteria. Further, the metabolites and SCFAs that related to neuropathic and metabolic diseases in colonic contents were also significantly affected by Hex exposure. The pathways of membrane transport, replication and repair, lipid metabolism, and neurodegenerative diseases had been seriously interfered. The obtained results referred that Hex exposure may pose potential risk to metabolic system causing obesity, metabolic syndrome, and cardiovascular as well as nervous system inducing Parkinson's diseases, Alzheimer's diseases, and depression. Our study provided a new sight to study the mechanisms of Hex induced toxicity effects from the aspect of gut microbiota which could help for prevention the risk induced by Hex.
Collapse
Affiliation(s)
- Dali Sun
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang 561113, China.
| | - Tianming Yang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang 561113, China
| | - Min Wang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang 561113, China
| | - Junxiao Pang
- College of Food Science and Engineering, Guiyang University, Guiyang 550005, China
| | - Fumin Li
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang 561113, China
| |
Collapse
|
3
|
Liu K, Li H, Chang AK, Pei Y, Li J, Ai J, Liu W, Wang T, Xu L, Li R, Yu Q, Zhang N, Wang N, Liu Y, Jiang Z, Chen L, Liang X. Evaluation of the Safety of Fenbuconazole Monomers via Enantioselective Toxicokinetics, Molecular Docking and Enantiomer Conversion Analyses. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:9894-9905. [PMID: 40209038 DOI: 10.1021/acs.jafc.4c13065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/12/2025]
Abstract
Fenbuconazole, a chiral triazole fungicide, is produced and used as a racemate. Previous toxicological research on fenbuconazole in nontarget organisms primarily used the racemate, necessitating an investigation into each enantiomer's distribution and elimination for safety assessment. In this study, the absolute configurations of fenbuconazole enantiomers were first confirmed by ECD, designating them as S-(+)-fenbuconazole and R-(-)-fenbuconazole based on their optical activity. The UHPLC-QQQ/MS method was selected to systematically study the toxicokinetics and enantiomer conversion of fenbuconazole enantiomers in mice. The results revealed significant enantioselectivity, with S-(+)-fenbuconazole exhibiting 15.11 times higher AUC0-∞ than R-(-)-fenbuconazole, indicating greater blood absorption. In the distribution experiment involving the 14 examined tissues, S-(+)-fenbuconazole consistently exceeded R-(-)-fenbuconazole levels, except in the stomach. Notably, S-(+)-fenbuconazole concentration in the liver was second only to the stomach and was 4.35 times higher than R-(-)-fenbuconazole, suggesting a greater propensity for hepatic accumulation. Molecular docking studies further demonstrated a stronger interaction between S-(+)-fenbuconazole and the CYP2B enzyme in the liver, implying higher hepatotoxic potential. Both enantiomers were rarely excreted in urine or feces, with a cumulative excretion rate below 2.5‰. Enantiomer conversion occurred unidirectionally (R → S) in mice, and the rates were generally low in most tissue. Thus, enantiomeric conversion was not the primary factor driving the enantioselectivity. In summary, R-(-)-fenbuconazole exhibited poor absorption, limited distribution, and a weak interaction with the CYP2B enzyme, which may be considered a low-risk product that could guide monomer development and promote the reduction of pesticide usage.
Collapse
Affiliation(s)
- Kai Liu
- School of Pharmaceutical Sciences, Liaoning University, 66 Chongshan Road, Shenyang 110036, Liaoning Province, P. R. China
| | - Haoran Li
- School of Pharmaceutical Sciences, Liaoning University, 66 Chongshan Road, Shenyang 110036, Liaoning Province, P. R. China
| | - Alan Kueichieh Chang
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou 325035, Zhejiang Province, P. R. China
| | - Ying Pei
- School of Pharmaceutical Sciences, Liaoning University, 66 Chongshan Road, Shenyang 110036, Liaoning Province, P. R. China
| | - Jianxin Li
- School of Pharmaceutical Sciences, Liaoning University, 66 Chongshan Road, Shenyang 110036, Liaoning Province, P. R. China
| | - Jiao Ai
- School of Pharmaceutical Sciences, Liaoning University, 66 Chongshan Road, Shenyang 110036, Liaoning Province, P. R. China
| | - Wenbao Liu
- School of Pharmaceutical Sciences, Liaoning University, 66 Chongshan Road, Shenyang 110036, Liaoning Province, P. R. China
| | - Tingting Wang
- School of Pharmaceutical Sciences, Liaoning University, 66 Chongshan Road, Shenyang 110036, Liaoning Province, P. R. China
| | - Liuping Xu
- School of Pharmaceutical Sciences, Liaoning University, 66 Chongshan Road, Shenyang 110036, Liaoning Province, P. R. China
| | - Ruiyun Li
- School of Pharmaceutical Sciences, Liaoning University, 66 Chongshan Road, Shenyang 110036, Liaoning Province, P. R. China
| | - Qing Yu
- School of Pharmaceutical Sciences, Liaoning University, 66 Chongshan Road, Shenyang 110036, Liaoning Province, P. R. China
| | - Nan Zhang
- School of Pharmaceutical Sciences, Liaoning University, 66 Chongshan Road, Shenyang 110036, Liaoning Province, P. R. China
| | - Nan Wang
- School of Pharmaceutical Sciences, Liaoning University, 66 Chongshan Road, Shenyang 110036, Liaoning Province, P. R. China
| | - Yuhui Liu
- School of Pharmaceutical Sciences, Liaoning University, 66 Chongshan Road, Shenyang 110036, Liaoning Province, P. R. China
| | - Zhen Jiang
- Department of Analytical Chemistry, College of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, Liaoning Province, PR China
| | - Lijiang Chen
- School of Pharmaceutical Sciences, Liaoning University, 66 Chongshan Road, Shenyang 110036, Liaoning Province, P. R. China
| | - Xiao Liang
- School of Pharmaceutical Sciences, Liaoning University, 66 Chongshan Road, Shenyang 110036, Liaoning Province, P. R. China
| |
Collapse
|
4
|
Zhang Y, Di S, Zhao H, Qi P, Liu Z, Wang Z, Wang X. Enantioselective Behaviors and Risk Assessments of Chiral Pesticide Mefentrifluconazole in Four Types of Fruits and Vegetables. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:7140-7150. [PMID: 40074677 DOI: 10.1021/acs.jafc.4c12466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2025]
Abstract
Mefentrifluconazole was the first novel isopropyl alcohol triazole fungicide. Existing research indicated that R-mefentrifluconazole had high activity and low toxicity, presenting potential for monocase application, while limited data existed on its enantioselective dissipation in crops. Here, after confirming the absolute configuration, the enantioselective dissipation and risk assessments of chiral mefentrifluconazole in soybeans, peanuts, tomatoes, grapes, and soil were conducted. The preferential dissipation of R-mefentrifluconazole was verified in soybean plants, soybeans, peanut plants, tomatoes, and grapes. The preferential dissipation of S-mefentrifluconazole was verified in the peanut shells and soil. The stereoisomeric excess variations of mefentrifluconazole in soybean plants, soybean, peanut plants, and peanut shells exceeded 10%, and the enantiomer toxicity and behavior differences should be considered in risk assessments. The dietary risks of acute (0.020-1.250%) and chronic (0.054-18.328%) of mefentrifluconazole in these crops were acceptable. R-Mefentrifluconazole might be recommended for use as a monocase product.
Collapse
Affiliation(s)
- Yuxuan Zhang
- College of Food & Health, Zhejiang Agriculture and Forestry University, Hangzhou 311300, P. R. China
- State Key Laboratory of Agricultural Products Safety/Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, P. R. China
- Agricultural Ministry Key Laboratory for Pesticide Residue Detection, Hangzhou 310021, P. R. China
| | - Shanshan Di
- State Key Laboratory of Agricultural Products Safety/Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, P. R. China
- Agricultural Ministry Key Laboratory for Pesticide Residue Detection, Hangzhou 310021, P. R. China
| | - Huiyu Zhao
- State Key Laboratory of Agricultural Products Safety/Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, P. R. China
- Agricultural Ministry Key Laboratory for Pesticide Residue Detection, Hangzhou 310021, P. R. China
| | - Peipei Qi
- State Key Laboratory of Agricultural Products Safety/Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, P. R. China
- Agricultural Ministry Key Laboratory for Pesticide Residue Detection, Hangzhou 310021, P. R. China
| | - Zhenzhen Liu
- State Key Laboratory of Agricultural Products Safety/Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, P. R. China
- Agricultural Ministry Key Laboratory for Pesticide Residue Detection, Hangzhou 310021, P. R. China
| | - Zhiwei Wang
- State Key Laboratory of Agricultural Products Safety/Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, P. R. China
- Agricultural Ministry Key Laboratory for Pesticide Residue Detection, Hangzhou 310021, P. R. China
| | - Xinquan Wang
- State Key Laboratory of Agricultural Products Safety/Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, P. R. China
- Agricultural Ministry Key Laboratory for Pesticide Residue Detection, Hangzhou 310021, P. R. China
| |
Collapse
|
5
|
Dong Z, Zhou R, Wan W, Li H, Zhou W, Wu T, Ding L, Xu X, Liu D, He G, Fan J, Li Y, Li B. Adsorption-desorption of propyrisulfuron in six typical agricultural soils of China: Kinetics, thermodynamics, influence of 38 environmental factors and its mechanisms. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 368:125653. [PMID: 39798792 DOI: 10.1016/j.envpol.2025.125653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 01/04/2025] [Accepted: 01/06/2025] [Indexed: 01/15/2025]
Abstract
Propyrisulfuron, a novel sulfonylurea herbicide, effectively suppresses intracellular acetolactate synthase activity for weed control, but its adsorption behavior in the soil environment remains unclear. To assess potential agroecosystem risks, the adsorption-desorption behavior and mechanism of propyrisulfuron in six typical agricultural soils of China were investigated using a batch equilibrium method, Density Functional Theory (DFT), Fourier Transform Infrared Spectroscopy (FTIR), and Scanning Electron Microscopy equipped with Energy Dispersive X-ray (SEM-EDX) techniques. It is indicated that the adsorption-desorption of propyrisulfuron in six soils reached equilibrium at 36 h under the optimum water-to-soil ratio (WSr) of 5:1. Adsorption kinetics followed the quasi-second-order kinetic model, while the Freundlich model best described the adsorption process at equilibrium. The adsorption and desorption were significantly and positively correlated with soil clay content, and 38 environmental factors had varying degrees of influence on its adsorption properties, especially those influenced by microplastics (MPs). Furthermore, the adsorption of propyrisulfuron in six soils was primarily a spontaneous, non-homogeneous, and non-ideal physical process, and special strong forces, such as hydrogen bonding might be involved. Consequently, due to its continuous application, potential persistent residues and pollution may occur in some soils. The investigations systematically reported the adsorption-desorption behavior of propyrisulfuron in various agricultural soils for the first time, providing scientific guidance for environmental risk assessment of groundwater pollution caused by its continuous application in agro-ecosystems.
Collapse
Affiliation(s)
- Zemin Dong
- College of Land Resources and Environment, Jiangxi Agricultural University, Nanchang, 330045, PR China; Jiangxi Agricultural Technology Extension Center, Nanchang, 330046, PR China
| | - Rendan Zhou
- College of Land Resources and Environment, Jiangxi Agricultural University, Nanchang, 330045, PR China; Center of Analysis and Testing, Jiangxi Science&Technology Narmal University, Nanchang, 330100, PR China
| | - Wengen Wan
- Jiangxi Agricultural Technology Extension Center, Nanchang, 330046, PR China
| | - Han Li
- .Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, 510650, PR China
| | - Wenwen Zhou
- College of Land Resources and Environment, Jiangxi Agricultural University, Nanchang, 330045, PR China
| | - Tianqi Wu
- College of Land Resources and Environment, Jiangxi Agricultural University, Nanchang, 330045, PR China
| | - Lei Ding
- Jiangxi Agricultural Technology Extension Center, Nanchang, 330046, PR China
| | - Xiaoqin Xu
- Jiangxi Agricultural Technology Extension Center, Nanchang, 330046, PR China
| | - Dingwei Liu
- Jiangxi Agricultural Technology Extension Center, Nanchang, 330046, PR China
| | - Guangwei He
- Jiangxi Agricultural Technology Extension Center, Nanchang, 330046, PR China
| | - Jing Fan
- Jiangxi Agricultural Technology Extension Center, Nanchang, 330046, PR China
| | - Yuqi Li
- College of Land Resources and Environment, Jiangxi Agricultural University, Nanchang, 330045, PR China
| | - Baotong Li
- College of Land Resources and Environment, Jiangxi Agricultural University, Nanchang, 330045, PR China.
| |
Collapse
|
6
|
Margoum C, Bedos C, Munaron D, Nélieu S, Achard AL, Pesce S. Characterizing environmental contamination by plant protection products along the land-to-sea continuum:a focus on France and French overseas territories. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:2975-2992. [PMID: 39279021 DOI: 10.1007/s11356-024-34945-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 09/05/2024] [Indexed: 09/18/2024]
Abstract
Environmental compartments are contaminated by a broad spectrum of plant protection products (PPPs) that are currently widely used in agriculture or, for some of them, whose use was banned many years ago. The aim of this study is to draw up an overview of the levels of contamination of soils, continental aquatic environments, seawaters and atmosphere by organic PPPs in France and the French overseas territories, based on data from the scientific publications and the grey literature. It is difficult to establish an exhaustive picture of the overall contamination of the environment because the various compartments monitored, the monitoring frequencies, the duration of the studies and the lists of substances are not the same. Of the 33 PPPs most often recorded at high concentration levels in at least one compartment, 5 are insecticides, 9 are fungicides, 15 are herbicides and 4 are transformation products. The PPP contamination of the environment shows generally a seasonal variation according to crop cycles. On a pluriannual scale, the contamination trends are linked to the level of use driven by the pest pressure, and especially to the ban of PPP. Overall, the quality of the data acquired has been improved thanks to new, more integrative sampling strategies and broad-spectrum analysis methods that make it possible to incorporate the search for emerging contaminants such as PPP transformation products. Taking into account additional information (such as the quantities applied, agricultural practices, meteorological conditions, the properties of PPPs and environmental conditions) combined with modelling tools will make it possible to better assess and understand the fate and transport of PPPs in the environment, inter-compartment transfers and to identify their potential impacts. Simultaneous monitoring of all environmental compartments as well as biota in selected and limited relevant areas would also help in this assessment.
Collapse
Affiliation(s)
| | - Carole Bedos
- UMR ECOSYS, Université Paris-Saclay, INRAE, 91120, Palaiseau, AgroParisTech, France
| | | | - Sylvie Nélieu
- UMR ECOSYS, Université Paris-Saclay, INRAE, 91120, Palaiseau, AgroParisTech, France
| | | | | |
Collapse
|
7
|
Li J, Liu K, Chang AK, Ai J, Li H, Xu L, Wang T, Li R, Liu W, Chen L, Liang X. Toxicity Risk Assessment of Clethodim Enantiomers in Rats and Mice: Insights from Stereoselective Effects. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:1580-1588. [PMID: 39746712 DOI: 10.1021/acs.jafc.4c07912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Clethodim is a chiral herbicide with two enantiomers. The herbicidal activity of (-)-clethodim is 1.3-2.0-fold that of (+)-clethodim, but the absolute configurations of (-)-clethodim have not been clarified. In this study, enantiomers 1 and 2 resolved from a racemate by preparative HPLC equipped with a Chiralpak IA column were confirmed as R-(-)-clethodim and S-(+)-clethodim, respectively. Both enantiomers showed significant stereoselectivity in vivo. The AUC0-72h of R-(-)-clethodim was 4.50 and 4.90 times that of S-(+)-clethodim in plasma after intragastric and intravenous administration, respectively. However, the bioavailability of R-(-)-clethodim (12.96%) was lower than that of S-(+)-clethodim (14.14%). S-(+)-clethodim was found in a relatively high abundance in most tissues. No mutual transformation between the two enantiomers was observed in vivo, indicating that configuration conversion did not contribute to the differences in the content of the enantiomers in the plasma and tissues. This may be due to the binding of clethodim enantiomers to serum albumin and acetyl-CoA carboxylase, which was verified by the molecular docking experiment. In summary, the findings from this study provided novel insights into the stereoselective risk assessment of the chiral clethodim and valuable evidence for toxicity risk assessments.
Collapse
Affiliation(s)
- Jianxin Li
- School of Pharmaceutical Sciences, Liaoning University, 66 Chongshan Road, Shenyang 110036, Liaoning Province, P. R. China
| | - Kai Liu
- School of Pharmaceutical Sciences, Liaoning University, 66 Chongshan Road, Shenyang 110036, Liaoning Province, P. R. China
| | - Alan Kueichieh Chang
- School of Life and Environmental Sciences, Wenzhou University, Wenzhou 325035, Zhejiang Province, P. R. China
| | - Jiao Ai
- School of Pharmaceutical Sciences, Liaoning University, 66 Chongshan Road, Shenyang 110036, Liaoning Province, P. R. China
| | - Haoran Li
- School of Pharmaceutical Sciences, Liaoning University, 66 Chongshan Road, Shenyang 110036, Liaoning Province, P. R. China
| | - Liuping Xu
- School of Pharmaceutical Sciences, Liaoning University, 66 Chongshan Road, Shenyang 110036, Liaoning Province, P. R. China
| | - Tingting Wang
- School of Pharmaceutical Sciences, Liaoning University, 66 Chongshan Road, Shenyang 110036, Liaoning Province, P. R. China
| | - Ruiyun Li
- School of Pharmaceutical Sciences, Liaoning University, 66 Chongshan Road, Shenyang 110036, Liaoning Province, P. R. China
| | - Wenbao Liu
- School of Pharmaceutical Sciences, Liaoning University, 66 Chongshan Road, Shenyang 110036, Liaoning Province, P. R. China
| | - Lijiang Chen
- School of Pharmaceutical Sciences, Liaoning University, 66 Chongshan Road, Shenyang 110036, Liaoning Province, P. R. China
| | - Xiao Liang
- School of Pharmaceutical Sciences, Liaoning University, 66 Chongshan Road, Shenyang 110036, Liaoning Province, P. R. China
| |
Collapse
|
8
|
Dutta B, Panja AS, Nigam VK, Nanjappan SK, Ravichandiran V, Bandopadhyay R. Computational and biochemical characterization of the immobilized esterase of Salinicoccus roseus for pesticide degradation. Sci Rep 2024; 14:30661. [PMID: 39730374 DOI: 10.1038/s41598-024-73165-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 09/16/2024] [Indexed: 12/29/2024] Open
Abstract
The continuous exposure of chemical pesticides in agriculture, their contamination in soil and water pose serious threat to the environment. Current study used an approach to evaluate various pesticides like Hexaconazole, Mancozeb, Pretilachlor, Organophosphate and λ-cyhalothrin degradation capability of esterase. The enzyme was isolated from Salinicoccus roseus. Genome analysis unveiled the carboxylesterase genes underlying the degradation of pesticides, and was located between 2070Mbp to 2080Mbp region. Herein, partially purified esterase was immobilized into beads by mixing with an equal volume (1:1) of sodium alginate solution [2.5% (w/v)].Scanning electron microscopy (SEM) of the beads showed the microspheres for enhanced enzyme-substrate reaction, wide peak at 3316, 1635 and 696 cm- 1 in Fourier-transform infrared spectroscopy (FTIR) represented intermolecular hydrogen bonding, and thermogravimetric analysis (TGA) reaffirmed the binding of esterase entrapped into the beads. Maximum degradation rate (after 4 days) for free enzyme accounted 83.2% in Hexaconazole. Degradation rate moderately increased 4% in the presence of immobilized esterase. Degradation products were detected by liquid chromatography-mass spectrometry (LC-MS). Cytotoxicity test (root length and mitotic index) revealed differences in various treatments. Enzyme kinetics parameters, Michaëlis-Menten constant (KM) 6.61 mM and maximum velocity (Vmax) 1.89 µmol/min/mg increased after immobilization. Further, molecular docking results validated that esterase contributed to pesticide degradation by catalytic triad of Ser93-His222-Phe24, ligand interactions, and specific binding pockets. Additionally, molecular dynamics (MD) simulations confirmed the protein-ligand conformational stability. Hence, present study highlighted an effective method for improving the catalytic properties of esterase, and also potential candidate for bioremediation of pesticides.
Collapse
Affiliation(s)
- Bhramar Dutta
- Department of Botany, The University of Burdwan, Purba Bardhaman, 713104, West Bengal, India
| | - Anindya Sundar Panja
- Post-Graduate Department of Biotechnology and Biochemistry, Oriental Institute of Science and Technology, Vidyasagar University, Midnapore, 721102, West Bengal, India
| | - Vinod Kumar Nigam
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi, 835215, Jharkhand, India
| | - Satheesh Kumar Nanjappan
- Department of Natural Products, National Institute of Pharmaceutical Education & Research (NIPER), Kolkata, Maniktala, Kolkata, 700054, West Bengal, India
| | - Velayutham Ravichandiran
- Department of Natural Products, National Institute of Pharmaceutical Education & Research (NIPER), Kolkata, Maniktala, Kolkata, 700054, West Bengal, India
| | - Rajib Bandopadhyay
- Department of Botany, The University of Burdwan, Purba Bardhaman, 713104, West Bengal, India.
| |
Collapse
|
9
|
Fang K, Liu T, Tian G, Sun W, You X, Wang X. Assessing the stereoselective bioactivity and biotoxicity of penthiopyrad in soil environment for efficacy improvement and hazard reduction. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136476. [PMID: 39536355 DOI: 10.1016/j.jhazmat.2024.136476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/30/2024] [Accepted: 11/09/2024] [Indexed: 11/16/2024]
Abstract
Penthiopyrad, a chiral pesticide, has been widely used in agricultural production. However, systematic evaluation of stereoselective bioactivity and biotoxicity of penthiopyrad in soil environment is insufficient. In this study, the stereoselective bioactivity of penthiopyrad against three soil-borne disease pathogens and its stereoselective biotoxicity to soil non-target organisms were investigated. The present results showed that the bioactivities of S-penthiopyrad were 546, 76 and 1.1-fold higher than those of R-penthiopyrad due to their different interaction modes with SDH in different target pathogens. S-penthiopyrad was more persistent in the soil environment and had stronger bioaccumulation than R-penthiopyrad. The accumulation of penthiopyrad in earthworms induced the response of detoxification system, resulting in the significant increases in the activity of detoxifying enzymes, such as GST, CarE, and CYP450. Additionally, both S-penthiopyrad and R-penthiopyrad induced cell apoptosis, intestinal damage and differentially expressed genes in earthworms, especially S-penthiopyrad. Furthermore, S-penthiopyrad has stronger binding capacity with COL6A and ACE proteins, while R-penthiopyrad has stronger binding capacity with CYP450 family proteins, which may be the main reason for the differences in biotoxicity between PEN enantiomers. Considering the differences in bioactivity and biotoxicity of penthiopyrad enantiomers, as well as the modes of action of pesticides on target and non-target organisms, S-penthiopyrad has greater potential for future development.
Collapse
Affiliation(s)
- Kuan Fang
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences (CAAS), Qingdao 266101, PR China
| | - Tong Liu
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences (CAAS), Qingdao 266101, PR China.
| | - Guo Tian
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences (CAAS), Qingdao 266101, PR China
| | - Wei Sun
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences (CAAS), Qingdao 266101, PR China
| | - Xiangwei You
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences (CAAS), Qingdao 266101, PR China
| | - Xiuguo Wang
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences (CAAS), Qingdao 266101, PR China.
| |
Collapse
|
10
|
Yang X, Jiang S, Jin Z, Li T. Application of Asymmetric Catalysis in Chiral Pesticide Active Molecule Synthesis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:17153-17165. [PMID: 39051451 DOI: 10.1021/acs.jafc.4c02343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
The different configurations of chiral pesticides generally have significant influence on their biological activities. Chiral agrochemicals with high optical purities have become a prominent topic in the research field of new pesticides due to their advantages including lower toxicity, higher efficiency, and reduced residue levels. However, most commercially available pesticides that possess chiral elements are still used in their racemic forms. To date, asymmetric catalysis has emerged as a versatile tool for the enantioselective synthesis of various chiral agrochemicals and novel chiral pesticide active molecules. This perspective provides a comprehensive overview of the applications of diverse asymmetric catalytic approaches in the facile preparation of numerous novel pesticide active molecules, and our own outlook on the future development of this highly active research direction is also presented at the end of this review.
Collapse
Affiliation(s)
- Xiaoqun Yang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Shichun Jiang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Zhichao Jin
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Tingting Li
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| |
Collapse
|
11
|
Tian Y, Wu F, Lv X, Luan X, Li F, Xu G, Niu W. Enantioselective Surface-Enhanced Raman Scattering by Chiral Au Nanocrystals with Finely Modulated Chiral Fields and Internal Standards. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2403373. [PMID: 39004880 DOI: 10.1002/adma.202403373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/27/2024] [Indexed: 07/16/2024]
Abstract
The chiral discrimination of enantiomers is crucial for drug screening and agricultural production. Surface-enhanced Raman scattering (SERS) is proposed for discriminating enantiomers benefiting from chiral plasmonic materials. However, the mechanism of enantioselective SERS is unclear, and fluctuating SERS intensities may result in errors. Herein, this work demonstrates a reliable SERS substrate using chiral Au nanocrystals with finely modulated chiral fields and internal standards. Chiral electromagnetic fields are enhanced after modulation, which is conducive to increasing the difference in the enantiomeric SERS intensity, as evidenced by the experimental and simulation results. Furthermore, the SERS stability is improved by the corrective effect of the internal standards, and the relative standard deviation is significantly reduced. Using finely modulated chiral fields and internal standards, L- and D-phenylalanine exhibit a stable six times difference in SERS ratio. Theoretical simulations reveal that linearly polarized light can also excite the chiral fields of chiral Au nanocrystals, indicating non-chiral far-field light is converted into chiral near-field sources by chiral Au nanocrystals. Thus, the mechanism of enantioselective SERS can be elucidated by the scattering difference of chiral molecules in chiral near fields. This study will pave the way for the development of enantioselective SERS and related chiroptical technologies.
Collapse
Affiliation(s)
- Yu Tian
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Fengxia Wu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Xiali Lv
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Xiaoxi Luan
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Fenghua Li
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Guobao Xu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Wenxin Niu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| |
Collapse
|
12
|
Dai JJ, Chen GY, Xu L, Zhu H, Yang FQ. Applications of Nanozymes in Chiral-Molecule Recognition through Electrochemical and Ultraviolet-Visible Analysis. Molecules 2024; 29:3376. [PMID: 39064954 PMCID: PMC11280305 DOI: 10.3390/molecules29143376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 07/07/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
Chiral molecules have similar physicochemical properties, which are different in terms of physiological activities and toxicities, rendering their differentiation and recognition highly significant. Nanozymes, which are nanomaterials with inherent enzyme-like activities, have garnered significant interest owing to their high cost-effectiveness, enhanced stability, and straightforward synthesis. However, constructing nanozymes with high activity and enantioselectivity remains a significant challenge. This review briefly introduces the synthesis methods of chiral nanozymes and systematically summarizes the latest research progress in enantioselective recognition of chiral molecules based on electrochemical methods and ultraviolet-visible absorption spectroscopy. Moreover, the challenges and development trends in developing enantioselective nanozymes are discussed. It is expected that this review will provide new ideas for the design of multifunctional chiral nanozymes and broaden the application field of nanozymes.
Collapse
Affiliation(s)
| | | | | | | | - Feng-Qing Yang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China; (J.-J.D.); (G.-Y.C.); (L.X.); (H.Z.)
| |
Collapse
|
13
|
Abomosallam M, Hendam BM, Abdallah AA, Refaat R, El-Hak HNG. Neuroprotective effect of Withania somnifera leaves extract nanoemulsion against penconazole-induced neurotoxicity in albino rats via modulating TGF-β1/Smad2 signaling pathway. Inflammopharmacology 2024; 32:1903-1928. [PMID: 38630361 PMCID: PMC11136823 DOI: 10.1007/s10787-024-01461-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 03/12/2024] [Indexed: 05/30/2024]
Abstract
Penconazole (PEN) is a systemic triazole fungicide used to control various fungal diseases on grapes, stone fruits, cucurbits, and strawberries. Still, it leaves residues on treated crops after collection with many hazardous effects on population including neurotoxicity. Withania somnifera leaves extract (WSLE) is known for its memory and brain function enhancing ability. To evoke such action efficiently, WSLE bioactive metabolites are needed to cross the blood-brain barrier, that could limit the availability of such compounds to be localized within the brain. Therefore, in the present study, the association between PEN exposure and neurotoxicity was evaluated, and formulated WSLE nanoemulsion was investigated for improving the permeability of the plant extract across the blood-brain barrier. The rats were divided into five groups (n = 6). The control group was administered distilled water, group II was treated with W. somnifera leaves extract nanoemulsion (WSLE NE), group III received PEN, group IV received PEN and WSLE, and group V received PEN and WSLE NE. All rats were gavaged daily for 6 weeks. Characterization of compounds in WSLE using LC-MS/MS analysis was estimated. Neurobehavioral disorders were evaluated in all groups. Oxidative stress biomarkers, antioxidant enzyme activities, and inflammatory cytokines were measured in brain tissue. Furthermore, the gene expression patterns of GFAP, APP, vimentin, TGF-β1, Smad2 and Bax were measured. Histopathological changes and immunohistochemical expression in the peripheral sciatic nerve and cerebral cortex were evaluated. A total of 91 compounds of different chemo-types were detected and identified in WSLE in both ionization modes. Our data showed behavioral impairment in the PEN-treated group, with significant elevation of oxidative stress biomarkers, proinflammatory cytokines, neuronal damage, and apoptosis. In contrast, the PEN-treated group with WSLE NE showed marked improvement in behavioral performance and histopathological alteration with a significant increase in antioxidant enzyme activity and anti-inflammatory cytokines compared to the group administered WSLE alone. The PEN-treated group with WSLE NE in turn significantly downregulated the expression levels of GFAP, APP, vimentin, TGF-β1, Smad2 and Bax in brain tissue. In conclusion, WSLE NE markedly enhanced the permeability of plant extract constituents through the blood brain barrier to boost its neuroprotective effect against PEN-induced neurotoxicity.
Collapse
Affiliation(s)
- Mohamed Abomosallam
- Forensic Medicine and Toxicology Department, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Basma M Hendam
- Department of Husbandry and Development of Animal Wealth, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Amr A Abdallah
- Central Agricultural Pesticides Laboratory, Agricultural Research Center, Giza, Egypt
| | - Rasha Refaat
- Phytochemistry and Plant Systematics Department, National Research Centre, Dokki, Cairo, Egypt
| | - Heba Nageh Gad El-Hak
- Zoology Department, Faculty of Science, Suez Canal University, 10, Ismailia, 41522, Egypt.
| |
Collapse
|
14
|
Li H, Liu K, Chang AK, Pei Y, Li J, Ai J, Liu W, Wang T, Xu L, Li R, Yu Q, Zhang N, Jiang Z, He T, Liang X. Some evidence supporting the use of optically pure R-(-)-diniconazole: Toxicokinetics and configuration conversion on chiral diniconazole. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 937:173475. [PMID: 38795985 DOI: 10.1016/j.scitotenv.2024.173475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/14/2024] [Accepted: 05/21/2024] [Indexed: 05/28/2024]
Abstract
Diniconazole is a chiral pesticide that exists in two enantiomers, R-(-)-diniconazole and S-(+)-diniconazole, with the R-enantiomer being much more active than the S-enantiomer. Previous enantioselective toxicology studies of diniconazole focused mostly on simple environmental model organisms. In this study, we evaluated the toxicokinetics of the two diniconazole enantiomers in rats and mice to provide a more comprehensive risk assessment. The two enantiomers displayed clear differences in their stereoselective contents in vivo. The t1/2 of R-(-)-diniconazole was 7.06 ± 3.35 h, whereas that of S-(+)-diniconazole was 9.14 ± 4.60 h, indicating that R-(-)-diniconazole was eliminated faster in vivo. The excretion rates of R-(-)-diniconazole and S-(+)-diniconazole were 4.08 ± 0.50 % and 2.68 ± 0.58 %, respectively, indicating more excretion of R-(-)-diniconazole. S-(+)-diniconazole had a higher bioavailability than R-(-)-diniconazole (52.19 % vs. 42.44 %). S-(+)-Diniconazole was also found in relatively high abundance in tissues such as the stomach, large intestine, small intestine, cecum, liver, kidney, brain, and testes, with the abundance being 1.71-2.48-fold that of R-(-)-diniconazole. The selective degradation of both enantiomers in the tissues and their mutual conversion in vivo were not observed, and this could indicate that configuration conversion did not contribute to the differences in the content of enantiomers in the tissues. Instead, such differences were mainly caused by the differences in affinity of each enantiomer for the tissues. Furthermore, investigation of the interconversion between optically pure R-(-)-diniconazole and S-(+)-diniconazole monomers in soil revealed no interconversion. All of the above results indicated no interconversion between R-(-)-diniconazole and S-(+)-diniconazole in vivo and in the soil, and that S-(+)-diniconazole tends to have a greater potential to accumulate in vivo. Thus, if only R-(-)-diniconazole is used as a pesticide, the negative impact on mammals and the environment will be reduced, suggesting that in agriculture, the application of optically pure R-(-)-diniconazole may be a better strategy.
Collapse
Affiliation(s)
- Haoran Li
- School of Pharmaceutical Sciences, Liaoning University, 66 Chongshan Road, Shenyang 110036, Liaoning Province, PR China
| | - Kai Liu
- School of Pharmaceutical Sciences, Liaoning University, 66 Chongshan Road, Shenyang 110036, Liaoning Province, PR China
| | - Alan Kueichieh Chang
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou 325035, Zhejiang Province, PR China
| | - Ying Pei
- School of Pharmaceutical Sciences, Liaoning University, 66 Chongshan Road, Shenyang 110036, Liaoning Province, PR China
| | - Jianxin Li
- School of Pharmaceutical Sciences, Liaoning University, 66 Chongshan Road, Shenyang 110036, Liaoning Province, PR China
| | - Jiao Ai
- School of Pharmaceutical Sciences, Liaoning University, 66 Chongshan Road, Shenyang 110036, Liaoning Province, PR China
| | - Wenbao Liu
- School of Pharmaceutical Sciences, Liaoning University, 66 Chongshan Road, Shenyang 110036, Liaoning Province, PR China
| | - Tingting Wang
- School of Pharmaceutical Sciences, Liaoning University, 66 Chongshan Road, Shenyang 110036, Liaoning Province, PR China
| | - Liuping Xu
- School of Pharmaceutical Sciences, Liaoning University, 66 Chongshan Road, Shenyang 110036, Liaoning Province, PR China
| | - Ruiyun Li
- School of Pharmaceutical Sciences, Liaoning University, 66 Chongshan Road, Shenyang 110036, Liaoning Province, PR China
| | - Qing Yu
- School of Pharmaceutical Sciences, Liaoning University, 66 Chongshan Road, Shenyang 110036, Liaoning Province, PR China
| | - Nan Zhang
- School of Pharmaceutical Sciences, Liaoning University, 66 Chongshan Road, Shenyang 110036, Liaoning Province, PR China
| | - Zhen Jiang
- Department of Analytical Chemistry, College of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, Liaoning Province, PR China
| | - Tianyi He
- Northeast Yucai Foreign Language School, 1 Gaorong Road, Shenyang 110179, Liaoning Province, PR China
| | - Xiao Liang
- School of Pharmaceutical Sciences, Liaoning University, 66 Chongshan Road, Shenyang 110036, Liaoning Province, PR China.
| |
Collapse
|
15
|
Liu T, Ren X, Fang J, Yu Z, Wang X. Multiomics Sequencing and AlphaFold2 Analysis of the Stereoselective Behavior of Mefentrifluconazole for Bioactivity Improvement and Risk Reduction. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:21348-21357. [PMID: 38051155 DOI: 10.1021/acs.est.3c05327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
As the first isopropanol chiral triazole fungicide, mefentrifluconazole has broad prospects for application. In this study, the stereoselective stability, bioactivity, fate, and biotoxicity were systematically investigated. Our results indicated that the stability of mefentrifluconazole enantiomers differed between environmental media, and they were stable in water and sediment in the dark. The bactericidal activity of R-mefentrifluconazole against the four target pathogens was 4.6-43 times higher than that of S-mefentrifluconazole. In the water-sediment system, S-mefentrifluconazole dissipated faster than R-mefentrifluconazole in water; however, its accumulation capacity was higher than that of R-mefentrifluconazole in sediment and zebrafish. S-Mefentrifluconazole induced more differentially expressed genes (DEGs) and differentially expressed proteins (DEPs) in zebrafish than did R-mefentrifluconazole. Multiomics sequencing results showed that S-mefentrifluconazole enhanced the antioxidant, detoxification, immune, and metabolic functions of zebrafish by interacting with related proteins. Based on AlphaFold2 modeling and molecular docking, mefentrifluconazole enantiomers had different binding modes with key target proteins in pathogens and zebrafish, which may be the main reason for the stereoselective differences in bioactivity and biotoxicity. Based on its excellent bioactivity and low biotoxicity, the R-enantiomer can be developed to improve the bioactivity and reduce the risk of mefentrifluconazole.
Collapse
Affiliation(s)
- Tong Liu
- Key Laboratory of Tobacco Pest Monitoring & Integrated Management, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Xiangyu Ren
- Key Laboratory of Tobacco Pest Monitoring & Integrated Management, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Jianwei Fang
- Key Laboratory of Tobacco Pest Monitoring & Integrated Management, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Zihan Yu
- College of Plant Science, Jilin University, Changchun 130062, P.R. China
| | - Xiuguo Wang
- Key Laboratory of Tobacco Pest Monitoring & Integrated Management, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| |
Collapse
|
16
|
Ding J, Sun Y, Mortimer M, Guo LH, Yang F. Enantiomer-specific burden of metalaxyl and myclobutanil in non-occupationally exposed population with evidence from dietary intake and urinary excretion. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 267:115623. [PMID: 37890250 DOI: 10.1016/j.ecoenv.2023.115623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/27/2023] [Accepted: 10/21/2023] [Indexed: 10/29/2023]
Abstract
Metalaxyl (MET) and myclobutanil (MYC) are two widely used chiral fungicides that may pose health risks to non-occupationally exposed populations. Here, the two fungicides were enantiomer-specific quantified in the dietary food and urine of residents in an Eastern China city, to determine the exposure and excretion of these contaminants in different populations. Results indicate that residues of MET and MYC varied with different food items at 0.42-0.86 ng/g fresh weight (FW) and 0.18-0.33 ng/g FW, respectively. In urine samples, the residual levels after creatinine adjusting (CR) ranged from 10.2 to 1715.4 ng/g CR for MET and were below the detection limit up to 320.7 ng/g CR for MYC. Significant age- and gender-related differences were separately found in urinary MET and MYC of different populations. Monte-Carlo simulations suggested that children had higher daily dietary intake (DDI) but lower urinary excretion (DUE) rates than youths, and thus may suffer higher body burdens. The residues of antifungally ineffective enantiomers (S-MET and R-MYC) were slightly higher than their antipodes in foods. Moreover, the enantiomer-selective urinary excretion resulted in higher retention of S-MET and R-MYC in the human body. Our results suggest that both dietary intake and urinary excretion should be enantiomer-specifically considered when assessing the exposure risk and body burden of chiral fungicides in the non-occupationally exposed population. Furthermore, substitutive application of enantiomer-enriched fungicide formulations can not only benefit the antifungal efficacy but also be safer for human health.
Collapse
Affiliation(s)
- Jinjian Ding
- Institute of Environmental and Health Sciences, China Jiliang University, 310018 Hangzhou, China; Key Laboratory for Identification and Health Hazard Prevention of Environmental Emerging Contaminants, China Jiliang University and Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Yan Sun
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, 310058 Hangzhou, China
| | - Monika Mortimer
- Institute of Environmental and Health Sciences, China Jiliang University, 310018 Hangzhou, China; Key Laboratory for Identification and Health Hazard Prevention of Environmental Emerging Contaminants, China Jiliang University and Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Liang-Hong Guo
- Institute of Environmental and Health Sciences, China Jiliang University, 310018 Hangzhou, China; Key Laboratory for Identification and Health Hazard Prevention of Environmental Emerging Contaminants, China Jiliang University and Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Fangxing Yang
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, 310058 Hangzhou, China; Innovation center of Yangtze River Delta, Zhejiang University, 314100 Jiashan, China.
| |
Collapse
|
17
|
Deng Y, Zheng M, Liu R, Zeng H, Diao J, Xiao R, Su X. Exploring the repairing mechanisms of reduced graphene oxide (rGo) on the dysregulation of Xenopus Laevis larva hypothalamus-pituitary-thyroid (HPT) axis caused by chiral triazole fungicide metconazole. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 195:105529. [PMID: 37666585 DOI: 10.1016/j.pestbp.2023.105529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/04/2023] [Accepted: 07/10/2023] [Indexed: 09/06/2023]
Abstract
Replacing chair fungicide racemate marketed product by its enantiomer with high activity and low environmental risk for application is a more environmentally friendly methods to control crop diseases. Moreover, carbon-based nanomaterials, with the desirable chemical and mechanical properties, exhibits latent reduce fungicide toxicity capability, while the mechanism is still poorly understood. Therefore, the present study characterized the toxicity of rac-metconazole (Mez; (1RS,5RS;1RS,5SR)-5-(4-chlorobenzyl)-2,2-dimethyl-1-(1H)) and its two cis-enantiomers as well as the repairing effect of reduced graphene oxide (rGo) on Xenopus Laevis larva by examining growth appearance indexes, Mez bioaccumulation, and hypothalamus-pituitary-thyroid (HPT) axis related hormone contents and gene expression after 14 and 28 days exposure. Compared with two cis-Mez, rac-Mez was preferentially bioaccumulated in tadpoles, and rac-Mez treatment showed a higher toxicity effect on tadpole including growth stage and body weight inhibition by dysregulating tadpole thyroid stimulating hormone (TSH) and thyroid hormone (TH) contents and related gene expression. Enantioselectivity was observed in two cis-Mez treatments. Compared with R,S-Mez, S,R-Mez treatment showed more severe damage on tadpole HPT axis related physiological and biochemical processes. rGo could effectively decrease the toxicity of Mez, especially shown the capacity of repairing the hormone dysregulation caused by R,S-Mez treatment. Moreover, the addition of rGo can decrease the bioaccumulation of Mez in tadpoles. Therefore, R,S-Mez is less toxic to Xenopus Laevis larva growth, and its toxicity could be effectively repaired by the addition of rGO.
Collapse
Affiliation(s)
- Yue Deng
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Meiling Zheng
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing 100193, China
| | - Rui Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing 100193, China
| | - Haixia Zeng
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Jingling Diao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing 100193, China
| | - Ran Xiao
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Xiaoxuan Su
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400715, China.
| |
Collapse
|
18
|
Zhong Y, Chen Y, Chen L, Hu Y, Xiao X, Xia L, Li G. Chiral-Controlled Cyclic Chemiluminescence Reactions for the Analysis of Enantiomer Amino Acids. Anal Chem 2023; 95:6971-6979. [PMID: 37068187 DOI: 10.1021/acs.analchem.3c00362] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2023]
Abstract
The similarity and complexity of chiral amino acids (AAs) in complex samples remain a significant challenge in their analysis. In this work, the chiral metal-organic framework (MOF)-controlled cyclic chemiluminescence (CCL) reaction is developed and utilized in the analysis of enantiomer AAs. The chiral MOF of d-Co0.75Zn0.25-MOF-74 is designed and prepared by modifying the Co0.75Zn0.25-MOF-74 with d-tartaric acid. The developed chiral bimetallic MOF can not only offer the chiral recognize sites but also act as the catalyst in the cyclic luminol-H2O2 reaction. Moreover, a distinguishable CCL signal can be obtained on enantiomer AAs via the luminol-H2O2 reaction with the control of d-Co0.75Zn0.25-MOF-74. The amplified difference of enantiomer AAs can be quantified by the decay coefficient (k-values) which are calculated from the exponential decay fitting of their obtained CCL signals. According to simulation results, the selective recognition of 19 pairs of AAs is controlled by the pore size of the MOF-74 and their hydrogen-bond interaction with d-tartaric acid on the chiral MOF. Furthermore, the k-values can also be used to estimate the change of chiral AAs in complex samples. Consequently, this chiral MOF-controlled CCL reaction is applied to differentiate enantiomer AAs involved in the quality monitoring of dairy products and auxiliary diagnosis, which provides a new approach for chiral studies and their potential applications.
Collapse
Affiliation(s)
- Yanhui Zhong
- School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| | - Yanlong Chen
- School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| | - Linyuan Chen
- School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| | - Yufei Hu
- School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| | - Xiaohua Xiao
- School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| | - Ling Xia
- School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| | - Gongke Li
- School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
19
|
Yang N, Pang J, Huang Z, Zhang Q, Wang Z, Sun D. Enantioselective toxicity effect and mechanism of hexaconazole enantiomers to human breast cancer cells. Food Chem Toxicol 2023; 173:113612. [PMID: 36681264 DOI: 10.1016/j.fct.2023.113612] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/03/2023] [Accepted: 01/12/2023] [Indexed: 01/20/2023]
Abstract
The toxicity effects of chiral pesticides on living organisms have attracted an increasing public attention. This study aims to investigate the toxicity effect and mechanism of hexaconazole (HEX) to human breast cancer cell (MCF-7) at enantiomer levels. HEX exposure obviously inhibited cells activities in a dose-dependent manner. Under the conditions of VIP >1 and p < 0.05, a total of 255 and 177 differential metabolites (DMs), 17 and 15 amino acid- and lipid-related metabolic pathways were disturbed after (+)-HEX and (-)-HEX exposure, respectively. HEX exposure may affect cell membrane function, signal transduction, and cell differentiation. We further investigated the mechanism of enantioselective differences by using molecular docking which showed that CYP17A1 was the main enzyme that leading to endocrine disrupting effects with the binding energy of -6.30 and -6.08 kcal/mol compared to CYP19A1 enzyme which were -5.81 and -5.93 kcal/mol for (+)-HEX and (-)-HEX, respectively. The docking results explained the reasons why (+)-HEX achieved higher cytotoxicity and induced more seriously metabolic profiles than its antipode. These findings could provide a new insight to understand the enantioselective cytotoxicity effect and mechanism of HEX and will be conducive to assessing its risk to human health at enantiomer levels.
Collapse
Affiliation(s)
- Na Yang
- School of Public Health/the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, China
| | - Junxiao Pang
- Key Laboratory of Critical Technology for Degradation of Pesticide Residues in Agro-products in Guizhou Ecological Environment, Food and Pharmaceutical Engineering Institute, Guiyang University, Guiyang, 550005, China
| | - Zhoubing Huang
- School of Public Health/the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, China
| | - Qinghai Zhang
- School of Public Health/the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, China
| | - Zelan Wang
- School of Public Health/the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, China
| | - Dali Sun
- School of Public Health/the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, China.
| |
Collapse
|
20
|
Luo G, Pang J, Sun D, Zhang Q. Stereoselective Toxicokinetic and Distribution Study on the Hexaconazole Enantiomers in Mice. TOXICS 2023; 11:145. [PMID: 36851020 PMCID: PMC9966998 DOI: 10.3390/toxics11020145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/28/2023] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
Hexaconazole (Hex) has been widely used in agricultural products, and its residues may pose a potential risk to human health. However, the metabolic behavior of Hex enantiomers in mammal organisms is still unknown, which is important for evaluating the differences in their toxicity. In this study, the distribution of S-(+)- and R-(-)-Hex in mice was detected by an ultra-high performance liquid chromatography coupled with tandem mass spectrometry (UPLC-MS/MS), and the mechanism differences in the toxicokinetic behavior were analyzed by molecular docking. Good linearities, accuracies, and precisions were achieved for S-(+)- and R-(-)-Hex, with recoveries of 88.7~104.2% and RSDs less than 9.45% in nine tissues of mice. This established method was then used to detect the toxicokinetic of Hex enantiomers in mice after oral administration within 96 h. The results showed that the half-lives of S-(+)- and R-(-)-Hex were 3.07 and 3.71 h in plasma. Hex was mainly accumulated in the liver, followed by the kidneys, brain, lungs, spleen, and heart. The enantiomeric fraction (EF) values of Hex enantiomers in most of the samples were below 1, indicating that S-(+)-Hex decreased faster than its antipode. The molecular docking showed that the binding of S-(+)-Hex with P450arom was much more stable than R-(-)-Hex, which verified the fact that S-(+)-Hex was prefer to decrease in most of the tissues. The results of this study could be helpful for further evaluating the potential toxic risk of Hex enantiomers and for the development and usage of its pure monomer.
Collapse
Affiliation(s)
- Guofei Luo
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang 550025, China
| | - Junxiao Pang
- Food and Pharmaceutical Engineering Institute, Guiyang University, Guiyang 550005, China
| | - Dali Sun
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang 550025, China
| | - Qinghai Zhang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang 550025, China
| |
Collapse
|
21
|
Ates N, Uzal N, Yetis U, Dilek FB. Removal of pesticides from secondary treated urban wastewater by reverse osmosis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:8732-8745. [PMID: 35404035 DOI: 10.1007/s11356-022-20077-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 03/31/2022] [Indexed: 06/14/2023]
Abstract
The residues of pesticides that reach water resources from agricultural activities in several ways contaminate drinking water resources and threaten aquatic life. This study aimed to investigate the performance of three reverse osmosis (RO) membranes (BW30-LE, SW30-XLE, and GE-AD) in rejecting four different pesticides (tributyl phosphate, flutriafol, dicofol, and irgarol) from secondary treated urban wastewater and also to elucidate the mechanisms underlying the rejection of these pesticides. RO experiments were conducted using pesticide-spiked wastewater samples under 10 and 20 bar transmembrane pressures (TMP) and membrane performances were evaluated. Overall, all the membranes tested exhibited over 95% rejection performances for all pesticides at both TMPs. The highest rejections for tributyl phosphate (99.0%) and irgarol (98.3%) were obtained with the BW30-LE membrane, while for flutriafol (99.9%) and dicofol (99.1%) with the GE-AD membrane. The increase in TMP from 10 to 20 bar did not significantly affect the rejections of all pesticides. The rejection performances of RO membranes were found to be governed by projection area as well as molecular weight and hydrophobicity/hydrophilicity of pesticides. Among the membranes tested, the SW30-XLE membrane was the most prone to fouling due to the higher roughness.
Collapse
Affiliation(s)
- Nuray Ates
- Department of Environmental Engineering, Erciyes University, Kayseri, Turkey.
| | - Nigmet Uzal
- Department of Civil Engineering, Abdullah Gul University, Kayseri, Turkey
| | - Ulku Yetis
- Department of Environmental Engineering, Middle East Technical University, Ankara, Turkey
| | - Filiz B Dilek
- Department of Environmental Engineering, Middle East Technical University, Ankara, Turkey
| |
Collapse
|
22
|
Sun Z, Dzakpasu M, Zhang D, Liu G, Wang Z, Qu M, Chen R, Wang XC, Zheng Y. Enantioselectivity and mechanisms of chiral herbicide biodegradation in hydroponic systems. CHEMOSPHERE 2022; 307:135701. [PMID: 35842049 DOI: 10.1016/j.chemosphere.2022.135701] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 07/01/2022] [Accepted: 07/11/2022] [Indexed: 06/15/2023]
Abstract
This study demonstrates the enantioselective removal dynamics and mechanisms of the chiral herbicide metolachlor in a hydroponic system of Phragmites australis. It presents the first work to elucidate plant-microbial driven enantioselective degradation processes of chiral chemicals. The results showed a degradation efficiency of up to 95.07 ± 2.81% in the hydroponic system driven by a notably high degradation rate constant of 0.086 d-1. P. australis was demonstrated to rapidly increase the contribution of biodegradation pathways in the hydroponic system to 82.21 ± 4.81% within 4 d with an enantiomeric fraction (EF) drop to 0.26 ± 0.02 to favour the enantioselective degradation of S-Metolachlor (kS-Metolachlor = 0.568 d-1 and kR-Metolachlor = 0.147 d-1). Comparatively, the biodegradation pathways in the control constituted less than 25%, with an EF value of circa 0.5. However, the enantioselective biodegradation pathways exhibited complete reversal after about 4 d to favour R-Metolachlor. Plants promoted the degradation of R-Metolachlor, evidenced by an increase in EF to 0.59 ± 0.03. Nonetheless, metolachlor showed an inhibitory effect on plants reflected by the reduction of plant growth rate, chlorophyll content, and electron transport rate to -7.85 ± 1.52%, 1.33 ± 0.43 mg g-1, 4.03 ± 1.33 μmol (m2 s)-1, respectively. However, rhizosphere microorganisms aided plants to catalyze excessive reactive oxygen species production by the antioxidant enzymes to protect plants from oxidative damage and restore their physiological activities. High-throughput analysis of microbial communities demonstrated the enrichment of Massilia (40.63%) and Pseudomonas (8.16%) in the initial stage to promote the rapid degradation of S-Metolachlor. By contrast, the proliferation of Brevundimonas (32.29%) and Pseudarthrobacter (11.03%) in the terminal stage was closely associated with the degradation of R-Metolachlor. Moreover, as symbiotic bacteria of plants, these bacteria aided plants protection from reactive oxygen damages and promoted the recovery of plant metabolic functions and photosynthesis. Overall, these results demonstrate biodegradation mediated by plant-microbe mechanisms as the main driver for the enantioselective degradation of metolachlor in hydroponic systems.
Collapse
Affiliation(s)
- Zhuanzhuan Sun
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China
| | - Mawuli Dzakpasu
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China; International Science & Technology Cooperation Center for Urban Alternative Water Resources Development, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China
| | - Dongxian Zhang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China
| | - Guochen Liu
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China
| | - Zhenzhen Wang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China
| | - Miaowen Qu
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China
| | - Rong Chen
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China
| | - Xiaochang C Wang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China; International Science & Technology Cooperation Center for Urban Alternative Water Resources Development, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China
| | - Yucong Zheng
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China.
| |
Collapse
|
23
|
Ji C, Guo D, He R, Zhao M, Fan J. Triticonazole enantiomers induced enantioselective metabolic phenotypes in Fusarium graminearum and HepG2 cells. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:75978-75988. [PMID: 35665887 DOI: 10.1007/s11356-022-21137-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 05/23/2022] [Indexed: 06/15/2023]
Abstract
The management of Fusarium head blight relies heavily on triazole fungicides. Most of triazole fungicides are chiral, and their enantioselective effects on metabolic phenotypes are poorly understood. Herein, we analyzed the bioactivity of triticonazole against Fusarium graminearum, and 1H-nuclear magnetic resonance-based metabolomics was used to assess the metabolic disturbances of triticonazole enantiomers in Fusarium graminearum and human hepatocarcinoma cells. Results indicated that the bioactivity of R-triticonazole was 4.28-fold higher than its antipode since it bound stronger with fungal CYP51B and induced more abnormal metabolic processes of Fusarium graminearum, including lipid metabolism, glycolysis, and amino acid metabolism. In human hepatocarcinoma cells, pathways of "alanine, aspartic acid and glutamate metabolism" and "pyruvate metabolism" were disturbed significantly by R-triticonazole; "phenylalanine metabolism" and "taurine-hypotaurine metabolism" were abnormal in the exposure of S-triticonazole. These results suggested that R- and S-triticonazole could affect different metabolic pathways of human hepatocarcinoma cells, and the massively use of inefficient S-triticonazole should be avoided. Our data will help to better understand the enantioselectivity of chiral pesticides and provide a reference for the development of green pesticides.
Collapse
Affiliation(s)
- Chenyang Ji
- Zhejiang Provincial Key Laboratory of Pollution Exposure and Health Intervention Technology, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou, 310015, China
| | - Dong Guo
- Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, School of Chemistry, South China Normal University, Guangzhou, 510006, China
| | - Rujian He
- Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, School of Chemistry, South China Normal University, Guangzhou, 510006, China
| | - Meirong Zhao
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Jun Fan
- Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, School of Chemistry, South China Normal University, Guangzhou, 510006, China.
| |
Collapse
|
24
|
Effect of Iron Complex Source on MWWTP Effluent Treatment by Solar Photo-Fenton: Micropollutant Degradation, Toxicity Removal and Operating Costs. Molecules 2022; 27:molecules27175521. [PMID: 36080290 PMCID: PMC9458207 DOI: 10.3390/molecules27175521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 08/23/2022] [Accepted: 08/25/2022] [Indexed: 12/03/2022] Open
Abstract
Benzophenone-3, fipronil and propylparaben are micropollutants that are potential threats to ecosystems and have been detected in aquatic environments. However, studies involving the investigation of new technologies aiming at their elimination from these matrices, such as advanced oxidation processes, remain scarce. In this study, different iron complexes (FeCit, FeEDTA, FeEDDS and FeNTA) were evaluated for the degradation of a mixture of these micropollutants (100 µg L−1 each) spiked in municipal wastewater treatment plant (MWWTP) effluent at pH 6.9 by solar photo-Fenton. Operational parameters (iron and H2O2 concentration and Fe/L molar ratio) were optimized for each complex. Degradation efficiencies improved significantly by increasing the concentration of iron complexes (1:1 Fe/L) from 12.5 to 100 µmol L−1 for FeEDDS, FeEDTA and FeNTA. The maximum degradation reached with FeCit for all iron concentrations was limited to 30%. Different Fe/L molar ratios were required to maximize the degradation efficiency for each ligand: 1:1 for FeNTA and FeEDTA, 1:3 for FeEDDS and 1:5 for FeCit. Considering the best Fe/L molar ratios, higher degradation rates were reached using 5.9 mmol L−1 H2O2 for FeNTA and FeEDTA compared to 1.5 and 2.9 mmol L−1 H2O2 for FeEDDS and FeCit, respectively. Acute toxicity to Canton S. strain D. melanogaster flies reduced significantly after treatment for all iron complexes, indicating the formation of low-toxicity by-products. FeNTA was considered the best iron complex source in terms of the kinetic constant (0.10 > 0.063 > 0.051 > 0.036 min−1 for FeCit, FeNTA, FeEDTA and FeEDDS, respectively), organic carbon input and cost-benefit (USD 327 m−3 > USD 20 m−3 > USD 16 m−3 > USD 13 m−3 for FeEDDS, FeCit, FeEDTA and FeNTA, respectively) when compared to the other tested complexes.
Collapse
|
25
|
Li J, Zhou H, Zuo W, An W, Zhang Y, Zhao Q. Simultaneous enantioselective determination of two succinate- dehydrogenase-inhibitor fungicides in plant-origin foods by ultra-high performance liquid chromatography-tandem mass spectrometry. J Chromatogr A 2022; 1677:463325. [PMID: 35853420 DOI: 10.1016/j.chroma.2022.463325] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 07/06/2022] [Accepted: 07/08/2022] [Indexed: 11/16/2022]
Abstract
Fluindapyr and penthiopyrad are two new succinate-dehydrogenase-inhibitor fungicides both employed as racemic mixtures of enantiomers to control various fungal pathogens. In the present work, a robust and highly-sensitive method for simultaneous determination of fluindapyr and penthiopyrad enantiomers in plant-origin foods (cereals, fruits and vegetables) was developed using UPLC-MS/MS combined with a chiral stationary phase. Rapid baseline chiral separation of four stereoisomers of fluindapyr and penthiopyrad was obtained within 4.2 min on chiral MX(2)-RH column under reversed-phase conditions (with the eluent of acetonitrile/0.1% formic acid in water =70/30 (V:V) and column temperature maintained at 30 °C). The plant-origin samples were extracted quickly with acetonitrile and purified with multi-walled carbon nanotubes. Excellent linearity for the target analytes was observed in the concentration ranging from 1 to 250 µg/L with regression coefficient no less than 0.9967. The mean recoveries of fluindapyr and penthiopyrad enantiomers from six matrices were 77.1-107.2%, with all relative standard deviations values lower than 9.1%. The limit of quantification of four stereoisomers of two target chiral fungicides was 5 µg/kg. The analysis of real samples reveal that the developed method is suitable for the simultaneous chiral determination of fluindapyr and penthiopyrad residues in cereals, fruits and vegetables samples at enantiomeric level and can support their further investigation on enantioselective environmental behaviors and residue surveillance.
Collapse
Affiliation(s)
- Jing Li
- Citrus Research Institute, Southwest University, Chongqing 400712, China; Laboratory of Citrus Quality and Safety Risk Assessment for Citrus Products, Ministry of Agriculture and Rural Affairs, Chongqing 400712, China; National Citrus Engineering Research Center, Chongqing 400712, China.
| | - Huyi Zhou
- Citrus Research Institute, Southwest University, Chongqing 400712, China; Laboratory of Citrus Quality and Safety Risk Assessment for Citrus Products, Ministry of Agriculture and Rural Affairs, Chongqing 400712, China; National Citrus Engineering Research Center, Chongqing 400712, China
| | - Wei Zuo
- Citrus Research Institute, Southwest University, Chongqing 400712, China; Laboratory of Citrus Quality and Safety Risk Assessment for Citrus Products, Ministry of Agriculture and Rural Affairs, Chongqing 400712, China; National Citrus Engineering Research Center, Chongqing 400712, China
| | - Wenjin An
- Citrus Research Institute, Southwest University, Chongqing 400712, China; Laboratory of Citrus Quality and Safety Risk Assessment for Citrus Products, Ministry of Agriculture and Rural Affairs, Chongqing 400712, China; National Citrus Engineering Research Center, Chongqing 400712, China
| | - Yaohai Zhang
- Citrus Research Institute, Southwest University, Chongqing 400712, China; Laboratory of Citrus Quality and Safety Risk Assessment for Citrus Products, Ministry of Agriculture and Rural Affairs, Chongqing 400712, China; National Citrus Engineering Research Center, Chongqing 400712, China
| | - Qiyang Zhao
- Citrus Research Institute, Southwest University, Chongqing 400712, China; Laboratory of Citrus Quality and Safety Risk Assessment for Citrus Products, Ministry of Agriculture and Rural Affairs, Chongqing 400712, China; National Citrus Engineering Research Center, Chongqing 400712, China
| |
Collapse
|
26
|
Peluso P, Chankvetadze B. Recognition in the Domain of Molecular Chirality: From Noncovalent Interactions to Separation of Enantiomers. Chem Rev 2022; 122:13235-13400. [PMID: 35917234 DOI: 10.1021/acs.chemrev.1c00846] [Citation(s) in RCA: 96] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
It is not a coincidence that both chirality and noncovalent interactions are ubiquitous in nature and synthetic molecular systems. Noncovalent interactivity between chiral molecules underlies enantioselective recognition as a fundamental phenomenon regulating life and human activities. Thus, noncovalent interactions represent the narrative thread of a fascinating story which goes across several disciplines of medical, chemical, physical, biological, and other natural sciences. This review has been conceived with the awareness that a modern attitude toward molecular chirality and its consequences needs to be founded on multidisciplinary approaches to disclose the molecular basis of essential enantioselective phenomena in the domain of chemical, physical, and life sciences. With the primary aim of discussing this topic in an integrated way, a comprehensive pool of rational and systematic multidisciplinary information is provided, which concerns the fundamentals of chirality, a description of noncovalent interactions, and their implications in enantioselective processes occurring in different contexts. A specific focus is devoted to enantioselection in chromatography and electromigration techniques because of their unique feature as "multistep" processes. A second motivation for writing this review is to make a clear statement about the state of the art, the tools we have at our disposal, and what is still missing to fully understand the mechanisms underlying enantioselective recognition.
Collapse
Affiliation(s)
- Paola Peluso
- Istituto di Chimica Biomolecolare ICB, CNR, Sede secondaria di Sassari, Traversa La Crucca 3, Regione Baldinca, Li Punti, I-07100 Sassari, Italy
| | - Bezhan Chankvetadze
- Institute of Physical and Analytical Chemistry, School of Exact and Natural Sciences, Tbilisi State University, Chavchavadze Avenue 3, 0179 Tbilisi, Georgia
| |
Collapse
|
27
|
Guo C, Di S, Chen X, Wang Y, Qi P, Wang Z, Zhao H, Gu Y, Xu H, Lu Y, Wang X. Evaluation of chiral triticonazole in three kinds of fruits: enantioseparation, degradation, and dietary risk assessment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:32855-32866. [PMID: 35020143 DOI: 10.1007/s11356-021-17896-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 11/28/2021] [Indexed: 06/14/2023]
Abstract
The enantioselective behaviors of chiral pesticides would affect the accuracy of risk assessment. This study evaluated the enantioselectivity of chiral triticonazole (a widely used fungicide) in three kinds of fruits. Firstly, the enantioseparation of triticonazole enantiomers was carried out within 1.2 min utilizing CHIRALPAK OJ-3 column with a mixture of CO2 and methanol (93:7, v/v) using SFC-MS/MS. Secondly, field trials were conducted to clarify the enantioselective degradation and residue of S-( +)-triticonazole and R-(-)-triticonazole in fruits. The initial concentrations of rac-triticonazole were 25.1-93.1 ng/g, and enantioselective degradation was observed in pear, peach, and jujube after 2 h, 10 days, and 3 days, respectively. The degradation of S-( +)-triticonazole was fastest in pear (T1/2, 2.01 days), while the T1/2 of R-(-)-triticonazole was 5.02 days. The residue concentrations of rac-triticonazole were less than the MRL set by EU (10 ng/g) on the 3rd and 21st day in pear and peach, respectively, which were lower than 10 ng/g in jujube on the 30th day (no MRL). Finally, we found that the dietary intake risks of rac-triticonazole in fruits were low for 2-7 age, 20-50 age/female, and 20-50 age/male. The current study could provide complimentary references for the rational usage, MRL formulation, and risk assessment of chiral triticonazole.
Collapse
Affiliation(s)
- Chao Guo
- Institute of Fermentation Engineering, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, People's Republic of China
- State Key Laboratory for Managing Biotic and Chemical Threats To the Quality and Safety of Agro-Products/Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, People's Republic of China
| | - Shanshan Di
- State Key Laboratory for Managing Biotic and Chemical Threats To the Quality and Safety of Agro-Products/Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, People's Republic of China
| | - Xiaolong Chen
- Institute of Fermentation Engineering, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, People's Republic of China
| | - Yanhua Wang
- State Key Laboratory for Managing Biotic and Chemical Threats To the Quality and Safety of Agro-Products/Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, People's Republic of China
| | - Peipei Qi
- State Key Laboratory for Managing Biotic and Chemical Threats To the Quality and Safety of Agro-Products/Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, People's Republic of China
| | - Zhiwei Wang
- State Key Laboratory for Managing Biotic and Chemical Threats To the Quality and Safety of Agro-Products/Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, People's Republic of China
| | - Huiyu Zhao
- State Key Laboratory for Managing Biotic and Chemical Threats To the Quality and Safety of Agro-Products/Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, People's Republic of China
| | - Yuanlin Gu
- State Key Laboratory for Managing Biotic and Chemical Threats To the Quality and Safety of Agro-Products/Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, People's Republic of China
- College of Agriculture, Northeast Agricultural University, No.600 Changjiang Road, Harbin, 150030, People's Republic of China
| | - Hao Xu
- State Key Laboratory for Managing Biotic and Chemical Threats To the Quality and Safety of Agro-Products/Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, People's Republic of China
| | - Yuele Lu
- Institute of Fermentation Engineering, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, People's Republic of China.
| | - Xinquan Wang
- State Key Laboratory for Managing Biotic and Chemical Threats To the Quality and Safety of Agro-Products/Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, People's Republic of China
| |
Collapse
|
28
|
Particularities of Fungicides and Factors Affecting Their Fate and Removal Efficacy: A Review. SUSTAINABILITY 2022. [DOI: 10.3390/su14074056] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Systemic fungicide use has increased over the last decades, despite the susceptibility of resistance development and the side effects to human health and the environment. Although herbicides and insecticides are detected more frequently in environmental samples, there are many fungicides that have the ability to enter water bodies due to their physicochemical properties and their increasing use. Key factors affecting fungicide fate in the environment have been discussed, including the non-target effects of fungicides. For instance, fungicides are associated with the steep decline in bumblebee populations. Secondary actions of certain fungicides on plants have also been reported recently. In addition, the use of alternative eco-friendly disease management approaches has been described. Constructed Wetlands (CWs) comprise an environmentally friendly, low cost, and efficient fungicide remediation technique. Fungicide removal within CWs is dependent on plant uptake and metabolism, absorption in porous media and soil, hydrolysis, photodegradation, and biodegradation. Factors related to the efficacy of CWs on the removal of fungicides, such as the type of CW, plant species, and the physicochemical parameters of fungicides, are also discussed in this paper. There are low-environmental-risk fungicides, phytohormones and other compounds, which could improve the removal performance of CW vegetation. In addition, specific parameters such as the multiple modes of action of fungicides, side effects on substrate microbial communities and endophytes, and plant physiological response were also studied. Prospects and challenges for future research are suggested under the prism of reducing the risk related to fungicides and enhancing CW performance.
Collapse
|
29
|
Huang T, Jiang H, Zhao Y, He J, Cheng H, Martyniuk CJ. A comprehensive review of 1,2,4-triazole fungicide toxicity in zebrafish (Danio rerio): A mitochondrial and metabolic perspective. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 809:151177. [PMID: 34699814 DOI: 10.1016/j.scitotenv.2021.151177] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/18/2021] [Accepted: 10/19/2021] [Indexed: 06/13/2023]
Abstract
In this critical review, we synthesize data from peer-reviewed literature reporting on triazole fungicide exposures in the zebrafish model. Based on their mode of action in plants (potent inhibitors of ergosterol synthesis), we focused attention on mechanisms related to cellular, lipid, and steroid metabolism. Evidence from several studies reveals that zebrafish exposed to triazoles present with impaired mitochondrial oxidative phosphorylation and oxidative stress, as well as dysregulation of lipid metabolism. Such metabolic disruptions are expected to underscore developmental delays, deformity, and aberrant locomotor activity and behaviors often observed following exposure. We begin by summarizing physiological and behavioral effects observed with triazole fungicide exposure in zebrafish. We then discuss mechanisms that may underlie adverse apical effects, focusing on mitochondrial bioenergetics and metabolism. Using computational approaches, we also identify novel biomarkers of triazole fungicide exposure. Extracting and analyzing data contained in the Comparative Toxicogenomics Database (CTD) revealed that transcriptional signatures responsive to different triazoles are related to metabolism of lipids and lipoproteins, biological oxidations, and fatty acid, triacylglycerol, and ketone body metabolism among other processes. Pathway and sub-network analysis identified several transcripts that are responsive in organisms exposed to triazole fungicides, several of which include lipid-related genes. Knowledge gaps and recommendations for future investigations include; (1) targeted metabolomics for metabolites in glycolysis, Krebs cycle, and the electron transport chain; (2) additional studies conducted at environmentally relevant concentrations to characterize the potential for endocrine disruption, given that studies point to altered cholesterol (precursor for steroid hormones), as well as altered estrogen receptor alpha and thyroid hormone expression; (3) studies into the potential role for lipid peroxidation and oxidation of lipid biomolecules as a mechanism of triazole-induced toxicity, given the strong evidence for oxidative damage in zebrafish following exposure to triazole fungicides.
Collapse
Affiliation(s)
- Tao Huang
- Beijing Key Laboratory of Urban Hydrological Cycle and Sponge City Technology, College of Water Sciences, Beijing Normal University, Beijing 100875, China; Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, UF Genetics Institute, Interdisciplinary Program in Biomedical Sciences, University of Florida, Gainesville, FL 32611, USA
| | - Haibo Jiang
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, Jilin 130117, China
| | - Yuanhui Zhao
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, Jilin 130117, China
| | - Jia He
- Beijing Key Laboratory of Urban Hydrological Cycle and Sponge City Technology, College of Water Sciences, Beijing Normal University, Beijing 100875, China.
| | - Hongguang Cheng
- Beijing Key Laboratory of Urban Hydrological Cycle and Sponge City Technology, College of Water Sciences, Beijing Normal University, Beijing 100875, China.
| | - Christopher J Martyniuk
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, UF Genetics Institute, Interdisciplinary Program in Biomedical Sciences, University of Florida, Gainesville, FL 32611, USA.
| |
Collapse
|
30
|
Lidi G, Xingfang H, Shili Q, Hongtao C, Xuan Z, Bingbing W. l-Cysteine modified metal-organic framework as a chiral stationary phase for enantioseparation by capillary electrochromatography. RSC Adv 2022; 12:6063-6075. [PMID: 35424547 PMCID: PMC8981955 DOI: 10.1039/d1ra07909c] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 01/11/2022] [Indexed: 12/02/2022] Open
Abstract
A new kind of chiral zirconium based metal-organic framework, l-Cys-PCN-222, was synthesized using l-cysteine (l-Cys) as a chiral modifier by a solvent-assisted ligand incorporation approach and utilized as the chiral stationary phase in the capillary electrochromatography system. l-Cys-PCN-222 was characterized by X-ray diffraction, thermogravimetric analysis, X-ray photoelectron spectroscopy, Fourier-transform infrared spectra, nitrogen adsorption/desorption, circular dichroism spectrum, zeta-potential and so on. The results revealed that l-Cys-PCN-222 had the advantages of good crystallinity, high specific surface area (1818 m2 g-1), thermal stability and chiral recognition performance. Meanwhile, the l-Cys-PCN-222-bonded open-tubular column was prepared using l-Cys-PCN-222 particles as the solid phase by 'thiol-ene' click chemistry reaction and characterized by scanning electron microscopy, which proved the successful bonding of l-Cys-PCN-222 to the column inner wall. Finally, the stability, reproducibility and chiral separation performance of the l-Cys-PCN-222-bonded OT column were measured. Relative standard deviations (RSD) of the column efficiencies for run-to-run, day-to-day, column-to-column and runs were 1.39-6.62%, and did not obviously change after 200 runs. The enantiomeric separation of 17 kinds of chiral compounds including acidic, neutral and basic amino acids, imidazolinone and aryloxyphenoxypropionic pesticides, and fluoroquinolones were achieved in the l-Cys-PCN-222-bonded OT column. These results demonstrated that the chiral separation system of the chiral metal-organic frameworks (CMOFs) coupled with capillary electrochromatography has good application prospects.
Collapse
Affiliation(s)
- Gao Lidi
- College of Chemistry and Chemical Engineering, Qiqihar University Qiqihar Heilongjiang 161006 China +86 0452 2738214
| | - Hu Xingfang
- College of Chemistry and Chemical Engineering, Qiqihar University Qiqihar Heilongjiang 161006 China +86 0452 2738214
| | - Qin Shili
- College of Chemistry and Chemical Engineering, Qiqihar University Qiqihar Heilongjiang 161006 China +86 0452 2738214
| | - Chu Hongtao
- College of Chemistry and Chemical Engineering, Qiqihar University Qiqihar Heilongjiang 161006 China +86 0452 2738214
| | - Zhao Xuan
- College of Chemistry and Chemical Engineering, Qiqihar University Qiqihar Heilongjiang 161006 China +86 0452 2738214
| | - Wang Bingbing
- College of Food and Bioengineering, Qiqihar University Qiqihar 161006 China
| |
Collapse
|
31
|
Sharma SK, Paniraj ASR, Tambe YB. Developments in the Catalytic Asymmetric Synthesis of Agrochemicals and Their Synthetic Importance. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:14761-14780. [PMID: 34847666 DOI: 10.1021/acs.jafc.1c05553] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Catalytic asymmetric synthesis has become an essential tool for the enantioselective synthesis of pharmaceuticals, natural products, and agrochemicals (mainly fungicides, herbicides, insecticides, and pheromones). With continuous growing interest in both modern agricultural chemistry and catalytic asymmetric synthesis chemistry, this review provides a comprehensive overview of some earlier reports as well as the recent successful applications of various catalytic asymmetric syntheses methodologies, such as enantioselective hydroformylation, enantioselective hydrogenation, asymmetric Sharpless epoxidation and dihydroxylation, asymmetric cyclopropanation or isomerization, organocatalyzed asymmetric synthesis, and so forth, which have been used as key steps in the preparation of chiral agrochemicals (on R&D, piloting, and commercial scales). Chiral agrochemicals can also lead the new generation of such chemicals having specific and novel modes of action for achieving sustainable crop protection and production. Some perspectives and challenges for these catalytic asymmetric methodologies in the synthesis of chiral agrochemicals are also briefly discussed in the final section of the manuscript. This review will provide the insight regarding understanding, development, and evaluation of catalytic asymmetric systems for the synthesis of chiral agrochemicals among the agrochemists.
Collapse
Affiliation(s)
- Sandeep Kumar Sharma
- Rallis Research Centre, No. 73/1C and 73/1D, Byregowda Industrial Estate, Srigandhanagar, Hegganhalli, Bangalore 560091, Karnataka, India
| | - Alilugatta Sheshagiri Rao Paniraj
- Rallis Research Centre, No. 73/1C and 73/1D, Byregowda Industrial Estate, Srigandhanagar, Hegganhalli, Bangalore 560091, Karnataka, India
| | - Yashwant Bhikaji Tambe
- Rallis Research Centre, No. 73/1C and 73/1D, Byregowda Industrial Estate, Srigandhanagar, Hegganhalli, Bangalore 560091, Karnataka, India
| |
Collapse
|
32
|
An overview of analytical methods for enantiomeric determination of chiral pollutants in environmental samples and biota. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116370] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
33
|
Gou Y, Geng Z, Zhong L, Wei J, Liu J, Deng X, Li M, Yuan J, Wang Y, Guo L. A new strategy for quality evaluation and control of Chinese patent medicine based on chiral isomer ratio analysis: With Yuanhuzhitong tablet as an example. Biomed Chromatogr 2021; 35:e5211. [PMID: 34216391 DOI: 10.1002/bmc.5211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 06/22/2021] [Accepted: 06/29/2021] [Indexed: 11/11/2022]
Abstract
Chiral compounds commonly exist in traditional Chinese medicine (TCM), but little research on the quality control of TCM has been conducted. In this study, a new strategy is proposed, taking Yuanhuzhitong tablet [YHZT, consisting of Radix Angelicae Dahuricae and Rhizoma Corydalis (Yan Hu Suo, YHS)] for example, which is based on chiral isomer ratio analysis to monitor the production process of Chinese patent medicine companies. In the process of content determination for tetrahydropalmatine (THP) in YHZT from different companies, noticeable differences were observed in their chromatographic behaviors. It is known that THP has two enantiomers, naturally coexisting in YHS as a racemic mixture, so we prepared THP twice and subsequently performed chiral separation analysis using supercritical fluid chromatography. As a result, the peak area ratios of two enantiomers from different companies varied remarkably, demonstrating that some companies did not probably manufacture YHZT products in accordance with the prescription proportion, used inferior or extracted YSH crude materials in the production process, and added raw chemical medicine in the production to reach the standard and lower the costs. In conclusion, the peak area ratio of chiral isomers could be taken as a key quality index.
Collapse
Affiliation(s)
- Yan Gou
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,National Medical Products Administration Key Laboratory for Quality Evaluation of Traditional Chinese Medicine (Traditional Chinese Patent Medicine), Sichuan Institute for Drug Control (Sichuan Testing Center of Medical Devices), Chengdu, China
| | - Zhao Geng
- National Medical Products Administration Key Laboratory for Quality Evaluation of Traditional Chinese Medicine (Traditional Chinese Patent Medicine), Sichuan Institute for Drug Control (Sichuan Testing Center of Medical Devices), Chengdu, China.,State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao
| | - Lian Zhong
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,National Medical Products Administration Key Laboratory for Quality Evaluation of Traditional Chinese Medicine (Traditional Chinese Patent Medicine), Sichuan Institute for Drug Control (Sichuan Testing Center of Medical Devices), Chengdu, China
| | - Jinchao Wei
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao
| | - Juanru Liu
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaohong Deng
- National Medical Products Administration Key Laboratory for Quality Evaluation of Traditional Chinese Medicine (Traditional Chinese Patent Medicine), Sichuan Institute for Drug Control (Sichuan Testing Center of Medical Devices), Chengdu, China
| | - Min Li
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jun Yuan
- National Medical Products Administration Key Laboratory for Quality Evaluation of Traditional Chinese Medicine (Traditional Chinese Patent Medicine), Sichuan Institute for Drug Control (Sichuan Testing Center of Medical Devices), Chengdu, China
| | - Yitao Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao
| | - Li Guo
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
34
|
Guo S, He F, Song B, Wu J. Future direction of agrochemical development for plant disease in China. Food Energy Secur 2021. [DOI: 10.1002/fes3.293] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Affiliation(s)
- Shengxin Guo
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering Key Laboratory of Green Pesticide and Agricultural Bioengineering Ministry of Education Guizhou University Guiyang China
| | - Feng He
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering Key Laboratory of Green Pesticide and Agricultural Bioengineering Ministry of Education Guizhou University Guiyang China
| | - Baoan Song
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering Key Laboratory of Green Pesticide and Agricultural Bioengineering Ministry of Education Guizhou University Guiyang China
| | - Jian Wu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering Key Laboratory of Green Pesticide and Agricultural Bioengineering Ministry of Education Guizhou University Guiyang China
| |
Collapse
|