1
|
Nie R, Xu X, Xu P, Zhuge Y, Zheng T, Yu X, Yao R, Tan H, Li G, Zhao X, Du Q. Taxonomic and functional responses of benthic macroinvertebrates to wastewater effluents in the receiving river of ecologically vulnerable karst areas in Southwest China. ENVIRONMENTAL RESEARCH 2025; 278:121666. [PMID: 40268223 DOI: 10.1016/j.envres.2025.121666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 04/17/2025] [Accepted: 04/21/2025] [Indexed: 04/25/2025]
Abstract
Discharges of wastewater effluents have a profound impact on the health of receiving river ecosystems, especially with regard to benthic macroinvertebrate communities. However, the effects of different wastewater types on the taxonomy and function of benthic macroinvertebrates in the receiving rivers in vulnerable karst regions of China are still rarely known. Here, we collected benthic macroinvertebrate samples from the Yanjin River, which could be divided into reaches mainly influenced by industrial, domestic and mixed wastewater, as well as from its adjacent Guanyinsi River, which was unaffected by wastewater. We found that both taxonomic and functional structures of benthic macroinvertebrates in the receiving river differed significantly under the influence of various wastewater types, which was linked to fluctuations in nutrient-related water quality, despite seasonal variation. Watershed-scale anthropogenic activities played important roles in determining the water quality, thereby indirectly driving the functional trait adaptation of benthic macroinvertebrate communities. Notably, we observed that the expansion of cropland dramatically decreased the functional diversities of benthic macroinvertebrates. Threshold responses of multi-faceted diversities in benthic macroinvertebrates to pollutants suggested that the critical concentrations of chemical oxygen demand (CODMn) and ammonia nitrogen (NH4-N) were 4.16 mg/L and 0.23 mg/L, respectively. Our study provided insights into the impacts of anthropogenic activities on benthic macroinvertebrates from both taxonomic and functional perspectives, highlighting the need to incorporate watershed-scale human activity management into water quality control strategies for urban river ecosystems, tailored to local conditions.
Collapse
Affiliation(s)
- Rui Nie
- State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing, 100038, China; Department of Water Ecology and Environment, China Institute of Water Resources and Hydropower Research, Beijing, 100038, China
| | - Xuming Xu
- State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing, 100038, China; Department of Water Ecology and Environment, China Institute of Water Resources and Hydropower Research, Beijing, 100038, China.
| | - Peijie Xu
- State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing, 100038, China; Department of Water Ecology and Environment, China Institute of Water Resources and Hydropower Research, Beijing, 100038, China; College of Hydraulic and Environmental Engineering, China Three Gorges University, Yichang, 443002, China
| | - Yisi Zhuge
- State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing, 100038, China; Department of Water Ecology and Environment, China Institute of Water Resources and Hydropower Research, Beijing, 100038, China
| | - Tong Zheng
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China
| | - Xiao Yu
- State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing, 100038, China; Department of Water Ecology and Environment, China Institute of Water Resources and Hydropower Research, Beijing, 100038, China
| | - Rui Yao
- State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing, 100038, China; Department of Water Ecology and Environment, China Institute of Water Resources and Hydropower Research, Beijing, 100038, China
| | - Hongwu Tan
- State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing, 100038, China; Department of Water Ecology and Environment, China Institute of Water Resources and Hydropower Research, Beijing, 100038, China
| | - Guoqiang Li
- State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing, 100038, China; Department of Water Ecology and Environment, China Institute of Water Resources and Hydropower Research, Beijing, 100038, China
| | - Xiaohui Zhao
- College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Qiang Du
- State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing, 100038, China; Department of Water Ecology and Environment, China Institute of Water Resources and Hydropower Research, Beijing, 100038, China
| |
Collapse
|
2
|
Valente-Neto F, Dala-Corte RB, Cunico AM, Magalhães ALB, Godoy BS, Leal CG, Castro DMP, Macedo DR, Lima-Junior DP, Gubiani ÉA, Roque FDO, Teresa FB, Oliveira FJM, Becker FG, Brejão GL, Brito J, Zuanon J, Vitule JRS, Dias-Silva K, Casatti L, Lima LB, Montag LFA, Callisto M, Dos Santos MR, Hamada N, Pamplin PAZ, Pompeu PS, Leitão RP, Ruaro R, Couceiro SRM, Abilhoa V, Súarez YR, Martins RT. Cost-effective alternatives to facilitate biomonitoring and bioassessment of neotropical streams. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 965:178654. [PMID: 39892239 DOI: 10.1016/j.scitotenv.2025.178654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 01/24/2025] [Accepted: 01/24/2025] [Indexed: 02/03/2025]
Abstract
A reliable response of bioindicators to environmental variation is a cornerstone for effective bioassessment and biomonitoring. Fish and aquatic macroinvertebrates are widely used as bioindicators of different human impacts in freshwater ecosystems, but the cost-effectiveness of their usage can be improved through the use of surrogates. We investigated congruence patterns between using different taxonomic and numeric resolutions for aquatic macroinvertebrates and fish to assess community-environment relationships. We also tested whether dataset characteristics (e.g., area sampled, species pool) could explain the variation in the effectiveness of using different taxonomic and numerical resolutions. We used a Brazilian nationwide database encompassing multiple datasets with a gradient of riparian deforestation each. Our findings suggest that families and genera can effectively represent macroinvertebrate genera and fish species, respectively, when using community matrices for assessing community-environment relationships, with an acceptable loss of information. EPT (Ephemeroptera, Plecoptera, and Trichoptera) and Characiformes or Siluriformes may be used as a surrogate, in some cases, for the entire assemblages of macroinvertebrates and fish, respectively, but their use may result in higher loss of information. Presence-absence data also presented a minimal loss of information compared to abundance data, for both macroinvertebrates and fish. The variation in congruence levels among macroinvertebrate datasets was less predicted by dataset characteristics than fish. Across distinct resolutions, on average, 10 % and 19 % of the variation in community composition of macroinvertebrates and fish, respectively, was explained by broad-scale environmental variables, and the effect size was negatively affected by the dataset's sample size and spatial extent for fish. Whereas identification at species (fish) and genus (macroinvertebrates) level and quantification of all individuals still provide the best scenario, we provide evidence that coarser taxonomical resolution and presence-absence data can be used as cost-effective alternatives to facilitate biomonitoring and bioassessment of freshwaters in the Neotropical region impacted by deforestation.
Collapse
Affiliation(s)
- Francisco Valente-Neto
- Laboratório de Interações Multitróficas e Biodiversidade, Departamento de Biologia Animal, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, SP, Brazil.
| | - Renato B Dala-Corte
- Departamento de Ecologia, Universidade Federal de Goiás, Goiânia, GO, Brazil; Princeton School of Public and International Affairs, Princeton University, Princeton, NJ, USA
| | - Almir M Cunico
- Laboratório de Ecologia, Pesca e Ictiologia, Departamento de Biodiversidade, Setor Palotina, Universidade Federal do Paraná, Palotina, PR, Brazil
| | - André L B Magalhães
- Programa de Pós-Graduação em Ecologia de Biomas Tropicais, Departamento de Biodiversidade, Instituto de Ciências Exatas e Biológicas, Universidade Federal de Ouro Preto (UFOP), Ouro Preto, MG, Brazil
| | - Bruno S Godoy
- Núcleo de Ecologia Aquática e Pesca da Amazônia, Universidade Federal do Pará, Belém, PA, Brazil
| | | | - Diego M P Castro
- Laboratório de Ecologia de Bentos, Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Diego R Macedo
- Departamento de Geografia, Instituto de Geociências, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Dilermando P Lima-Junior
- Laboratório de Ecologia e Conservação de Ecossistemas Aquáticos, Universidade Federal de Mato Grosso, Pontal do Araguaia, MT, Brazil
| | - Éder A Gubiani
- Laboratório de Ictiologia e Estatística Pesqueira, Instituto Neotropical de Pesquisas Ambientais, Grupo de Pesquisas em Recursos Pesqueiros e Limnologia, Programa de Pós-Graduação em Conservação e Manejo de Recursos Naturais, Programa de Pós-Graduação em Recursos Pesqueiros e Engenharia de Pesca, Universidade Estadual do Oeste do Paraná, Toledo, PR, Brazil
| | - Fabio de O Roque
- Universidade Federal de Mato Grosso do Sul, Campo Grande, MS, Brazil; Knowledge Center on Biodiversity, Belo Horizonte, MG, Brazil
| | - Fabrício B Teresa
- Laboratório de Biogeografia e Ecologia Aquática, Universidade Estadual de Goiás, Anápolis, GO, Brazil
| | - Fagner Junior Machado Oliveira
- Laboratório de Ecologia e Conservação de Ecossistemas Aquáticos, Universidade Federal de Mato Grosso, Pontal do Araguaia, MT, Brazil
| | - Fernando G Becker
- Laboratório de Ecologia de Paisagens, Departamento de Ecologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Gabriel L Brejão
- Universidade Estadual Paulista (UNESP), Instituto de Biociências, Rio Claro, SP, Brazil
| | - Janaina Brito
- Secretaria de Educação do Estado de Mato Grosso, Diretoria Regional de Educação, Barra do Garças, MT, Brazil
| | - Jansen Zuanon
- Instituto Nacional de Pesquisas da Amazônia, Manaus, AM, Brazil; Universidade Santa Cecília, Santos, SP, Brazil
| | - Jean R S Vitule
- Laboratório de Ecologia e Conservação, Setor de Tecnologia, Departamento de Engenharia Ambiental, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | - Karina Dias-Silva
- Programa de Pós-Graduação em Ecologia, Universidade Federal do Pará, Belém, PA, Brazil
| | - Lilian Casatti
- Universidade Estadual Paulista (UNESP), Departamento de Ciências Biológicas, São José do Rio Preto, SP, Brazil
| | - Luciano B Lima
- Laboratório de Ecologia e Conservação de Ecossistemas Aquáticos, Universidade Federal de Mato Grosso, Pontal do Araguaia, MT, Brazil
| | - Luciano F A Montag
- Laboratório de Ecologia e Conservação, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA, Brazil
| | - Marcos Callisto
- Laboratório de Ecologia de Bentos, Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Mireile R Dos Santos
- Departamento de Ciências e Biologia, Colégio Pedro II, Campus São Cristóvão II, Rio de Janeiro, RJ, Brazil
| | - Neusa Hamada
- Coordenação de Biodiversidade, Instituto Nacional de Pesquisas da Amazônia, Manaus, AM, Brazil
| | - Paulo A Z Pamplin
- Instituto de Ciência e Tecnologia, Universidade Federal de Alfenas, Poços de Caldas, MG, Brazil
| | - Paulo S Pompeu
- Departamento de Ecologia e Conservação, Universidade Federal de Lavras, Lavras, MG, Brazil
| | - Rafael P Leitão
- Laboratório de Ecologia de Peixes, Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Renata Ruaro
- Laboratório de Biomonitoramento e Ecologia Aplicada, Programa de Pós-graduação em Ciência e Tecnologia Ambiental, Universidade Tecnológica Federal do Paraná, Curitiba, PR, Brazil
| | - Sheyla R M Couceiro
- Laboratório de Ecologia e Taxonomia de Invertebrados Aquáticos, Universidade Federal do Oeste do Pará, Santarém, PA, Brazil
| | - Vinícius Abilhoa
- Museu de História Natural Capão da Imbuia, Prefeitura de Curitiba, Curitiba, PR, Brazil
| | - Yzel R Súarez
- Laboratório de Ecologia, Centro de Estudos em Recursos Naturais, Universidade Estadual de Mato Grosso do Sul, Dourados, MS, Brazil
| | - Renato T Martins
- Coordenação de Biodiversidade, Instituto Nacional de Pesquisas da Amazônia, Manaus, AM, Brazil
| |
Collapse
|
3
|
Linares MS, Macedo DR, Marques JC, Hughes RM, Callisto M. Biodiversity spatial distribution of benthic macroinvertebrate assemblages is influenced by anthropogenic disturbances at multiple spatial extents. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 960:178365. [PMID: 39778455 DOI: 10.1016/j.scitotenv.2024.178365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 12/12/2024] [Accepted: 12/31/2024] [Indexed: 01/11/2025]
Abstract
Understanding the patterns and mechanisms of biodiversity and its organization in space is essential for developing effective conservation strategies. Zeta diversity is an index of how taxa are shared by several sites, providing information on how ecological filters, including anthropogenic disturbances, influence biodiversity distribution. This study documents how anthropogenic disturbances at multiple spatial extents affect the spatial variation of benthic macroinvertebrate assemblages in lotic ecosystems. To test the relation between zeta diversity and anthropogenic disturbances, we used three disturbance metrics. (a) For in-stream disturbances, we used the percentage of fine sediment in the substrate (PCT_FN). (b) For local/riparian disturbances, we used the Local Disturbance Index (LDI). (c) For catchment disturbances we used the Catchment Disturbance Index (CDI). Our results showed that differing anthropogenic disturbances were differently important for spatial biodiversity variation in benthic macroinvertebrate assemblages. Relatively rarer taxa were usually more susceptible to in-stream and local/riparian-scale disturbances or local environmental filters. On the other hand, relatively common taxa were usually more related to catchment-scale disturbances or landscape resistance to dispersal. These results indicate that conservation efforts to maintain headwater ecosystem biodiversity must incorporate multiple spatial extents because relatively rare and relatively common taxa appear to be affected to different degrees by different anthropogenic disturbances at different spatial extents.
Collapse
Affiliation(s)
- Marden S Linares
- Universidade Federal de Minas Gerais, Instituto de Geociências, Programa de Pós-Graduação em Análise e Modelagem de Sistemas Ambientais, Av. Antônio Carlos 6627, Pampulha, 31270-901 Belo Horizonte, MG, Brazil; Universidade Federal de Minas Gerais, Instituto de Geociências, Departamento de Geografia, Av. Antônio Carlos 6627, Pampulha, 31270-901 Belo Horizonte, MG, Brazil; Universidade Federal de Minas Gerais, Instituto de Ciências Biológicas, Departamento de Genética, Ecologia e Evolução, Laboratório de Ecologia de Bentos, Av. Antônio Carlos 6627, Pampulha, 31270-901 Belo Horizonte, MG, Brazil.
| | - Diego R Macedo
- Universidade Federal de Minas Gerais, Instituto de Geociências, Departamento de Geografia, Av. Antônio Carlos 6627, Pampulha, 31270-901 Belo Horizonte, MG, Brazil
| | - João Carlos Marques
- MARE - Marine and Environmental Sciences Centre, ARNET - Aquatic Research Network, University of Coimbra, Portugal
| | - Robert M Hughes
- Amnis Opes Institute, 2895 SE Glenn, Corvallis, OR 97333, USA; Oregon State University, Department of Fisheries, Wildlife, & Conservation Sciences, Nash 104, Corvallis, OR 97331, USA
| | - Marcos Callisto
- Universidade Federal de Minas Gerais, Instituto de Ciências Biológicas, Departamento de Genética, Ecologia e Evolução, Laboratório de Ecologia de Bentos, Av. Antônio Carlos 6627, Pampulha, 31270-901 Belo Horizonte, MG, Brazil
| |
Collapse
|
4
|
Liu K, Huang Y, Wang W, Mou J, Lin J, Zhang S, Lin L, Sun J, Gao Z, Lin H, He X. Multiple environmental gradients shape the functional structure of macrobenthic communities across the Pacific Arctic shelf. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 953:176055. [PMID: 39241879 DOI: 10.1016/j.scitotenv.2024.176055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 08/28/2024] [Accepted: 09/03/2024] [Indexed: 09/09/2024]
Abstract
The Pacific Arctic shelf is undergoing significant environmental changes that are expected to impact the functioning of Arctic benthic ecosystem. By utilizing trait-based methods, we can better understand the effects of environmental changes on the functional structure of macrobenthic communities, offering a more detailed interpretation that complements traditional biodiversity assessments based on community structure. Using Biological Trait Analysis (BTA), we investigated shifts in the functional composition of macrobenthic communities across the subarctic to Arctic regions of the Pacific Arctic shelf, examining how these communities are responding to various environmental gradients. The study analyzed data from 14 environmental variables and 355 taxa, using 13 functional traits coded with 51 modalities collected from 78 boxcore stations. Multivariate statistics, including fuzzy correspondence analysis (FCA) and RLQ/fourth-corner combined analysis, were utilized. We find that the northern Bering Sea (NB) and southeastern Chukchi Sea (SEC) shelves exhibit shared functional similarities (e.g., small, chitinous skeletons, gregarious behavior, and low body flexibility) and significant regional differences from other subregions. The analysis revealed that sediment characteristics and sea ice cover influenced macrobenthic trait composition. The ongoing retreat of sea ice is expected to lead to rapid functional shifts in the Pacific Arctic shelves, potentially causing the migration of smaller, deposit-feeding, shorter-lived taxa to the Arctic seas. This could result in structural transformation in Arctic communities characterized by greater longevity, suspension-feeding, and larger size. These findings can inform future polar environmental management and help develop adaptive management strategies.
Collapse
Affiliation(s)
- Kun Liu
- Laboratory of Marine Biodiversity, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Yaqin Huang
- Laboratory of Marine Biodiversity, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Weibo Wang
- Laboratory of Marine Biodiversity, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Jianfeng Mou
- Laboratory of Marine Biodiversity, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Junhui Lin
- Laboratory of Marine Biodiversity, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Shuyi Zhang
- Laboratory of Marine Biodiversity, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Longshan Lin
- Laboratory of Marine Biodiversity, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Jun Sun
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences (Wuhan), Wuhan 430074, China
| | - Zhongyong Gao
- Laboratory of Marine Biodiversity, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Heshan Lin
- Laboratory of Marine Biodiversity, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China.
| | - Xuebao He
- Laboratory of Marine Biodiversity, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China.
| |
Collapse
|
5
|
Guan Q, He F, Li Z, Cai Y, Kang Y, Zhang Z, Wu H. Contrasting diversity patterns and drivers of aquatic macroinvertebrates in floodplain and non-floodplain wetlands. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 945:174045. [PMID: 38908590 DOI: 10.1016/j.scitotenv.2024.174045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/14/2024] [Accepted: 06/14/2024] [Indexed: 06/24/2024]
Abstract
Understanding diversity patterns and underlying drivers is one of the central topics in the fields of biogeography and community ecology. Aquatic macroinvertebrates are widely distributed in various wetlands and play vital ecological roles. Previous studies mainly have focused on macroinvertebrate diversity in a single type of wetland. Our understanding of the differences in diversity patterns and underlying drivers between different wetland types remains limited. Here, we compared diversity patterns and community assembly of floodplain wetlands (FWs) and non-floodplain wetlands (NWs) in the Sanjiang Plain, Northeast China. We found that the taxonomic richness and abundance were higher in NWs than those in FWs. Nineteen taxa were identified as habitat specialists in the NWs, whereas only four taxa were designated as habitat specialists in the FWs. In addition, the FW and NW assemblages exhibited contrasting compositions. Spatial and environmental variables explained the largest variations in the macroinvertebrate assemblages of NWs and FWs, respectively. Normalised stochasticity ratios and Sloan neutral models confirmed that the macroinvertebrate community assembly of both wetland types was driven largely by stochastic processes. Stochastic processes were more prominent in shaping macroinvertebrate communities of FWs, whereas a stronger dispersal limitation was detected in NWs. Our results revealed contrasting diversity patterns and assembly mechanisms of macroinvertebrate communities in FWs and NWs. We underscore the importance of flood disturbance in shaping wetland ecosystems in the Sanjiang Plain and highlight that conservation and restoration actions cover different types of wetland habitats.
Collapse
Affiliation(s)
- Qiang Guan
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China; Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
| | - Fengzhi He
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China; Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
| | - Zhengfei Li
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Yongjiu Cai
- Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
| | - Yujuan Kang
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China; Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China; University of Chinese Academy of Sciences, Beijing, China
| | - Zhongsheng Zhang
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China; Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
| | - Haitao Wu
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China; Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China.
| |
Collapse
|
6
|
Madureira KH, Ferreira V, Callisto M. Rehabilitation of tropical urban streams improves their structure and functioning. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:171935. [PMID: 38527547 DOI: 10.1016/j.scitotenv.2024.171935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/19/2024] [Accepted: 03/22/2024] [Indexed: 03/27/2024]
Abstract
Urban streams are affected by a complex combination of stressors, which modify physical habitat structure, flow regime, water quality, biological community composition, and ecosystem processes and services, thereby altering ecosystem structure and functioning. Rehabilitation projects have been undertaken in several countries to rehabilitate urban streams. However, stream rehabilitation is still rarely reported for neotropical regions. In addition, most studies focus on structural aspects, such as water quality, sediment control, and flood events, without considering ecosystem function indicators. Here, we evaluated the structure and functioning of three 15-y old rehabilitated urban stream sites in comparison with three stream sites in the best available ecological condition (reference), three sites with moderate habitat alteration, and three severely degraded sites. Compared to degraded streams, rehabilitated streams had higher habitat diversity, sensitive macroinvertebrate taxa richness, and biotic index scores, and lower biochemical oxygen demand, primary production, sediment deposition, and siltation. However, rehabilitated streams had higher primary production than moderate and reference streams, and lower canopy cover, habitat diversity, sensitive macroinvertebrate taxa richness, and biotic index scores than reference streams. These results indicate that rehabilitated streams have better structural and functional condition than degraded streams, but do not strongly differ from moderately altered streams, nor have they reached reference stream condition. Nonetheless, we conclude that rehabilitation is effective in removing streams from a degraded state by improving ecosystem structure and functioning. Furthermore, the combined use of functional and structural indicators facilitated an integrative assessment of stream ecological condition and distinguished stream conditions beyond those based on water quality indicators.
Collapse
Affiliation(s)
- Karoline H Madureira
- Universidade Federal de Minas Gerais, Instituto de Ciências Biológicas, Departamento de Genética, Ecologia e Evolução, Laboratório de Ecologia de Bentos, Avenida Antônio Carlos, 6627, CP 486, CEP 31270-901 Belo Horizonte, Minas Gerais, Brazil.
| | - Verónica Ferreira
- MARE - Marine and Environmental Sciences Centre, ARNET - Aquatic Research Network, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal.
| | - Marcos Callisto
- Universidade Federal de Minas Gerais, Instituto de Ciências Biológicas, Departamento de Genética, Ecologia e Evolução, Laboratório de Ecologia de Bentos, Avenida Antônio Carlos, 6627, CP 486, CEP 31270-901 Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|
7
|
Ikayaja EO, Arimoro FO. Organophosphate pesticide residue impact on water quality and changes in macroinvertebrate community in an Afrotropical stream flowing through farmlands. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:489. [PMID: 38689125 DOI: 10.1007/s10661-024-12659-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 04/25/2024] [Indexed: 05/02/2024]
Abstract
River Chanchaga has experienced significant agricultural practices around its catchment, which involved the indiscriminate use of pesticides. However, residents of the study area are not well aware of the negative impact of pesticides on water quality and macroinvertebrates. In this study, the first report on the influence of organophosphate pesticide contamination on the abundance of the macroinvertebrate community was provided. Sampling for the determination of organophosphate pesticide residues was carried out during the peak of the two seasons, while macroinvertebrates and physicochemical variables were observed for 6 months. We examined 11 organophosphate pesticide residues using gas chromatography coupled with mass spectrometry, 12 water quality variables, and 625 macroinvertebrate individuals. The concentration of recorded organophosphate pesticide residues ranged from 0.01 to 0.52 μg/L. From the Canonical Correspondence Analysis plot, malathion, chlorine, and paraffin show a positive correlation with Unima sp., Hydrocanthus sp., Chironomus sp., and Potadoma sp. At station 3, depth shows a positive correlation with Biomphalaria sp. and Zyxomma sp., indicating poor water quality as most of these macroinvertebrates are indicators of water pollution. Diuron and carbofuran show a negative correlation with Lestes sp. and Pseudocloeon sp., and these are pollution-sensitive macroinvertebrates. The total mean concentration of organophosphate pesticide residues was above international drinking water standards set by the World Health Organization except for paraffin, chlorpyrifos, and diuron. In conclusion, the observations recorded from this research are useful in managing pesticide applications around the river catchment.
Collapse
Affiliation(s)
- Eunice O Ikayaja
- Ecology and Environmental Biology Unit, Department of Animal Biology, Federal University of Technology Minna, Minna, P.M.B. 65, Nigeria.
| | - Francis O Arimoro
- Ecology and Environmental Biology Unit, Department of Animal Biology, Federal University of Technology Minna, Minna, P.M.B. 65, Nigeria
| |
Collapse
|
8
|
Anacléto MJP, Linares MS, Faria APJ, da Silva Azevedo EP, Brasil LS, Juen L, Ligeiro R. Trichoptera Life Stages Present Distinct Responses to Environmental Conditions in Amazonian Streams. NEOTROPICAL ENTOMOLOGY 2024; 53:314-322. [PMID: 38110657 DOI: 10.1007/s13744-023-01108-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 11/24/2023] [Indexed: 12/20/2023]
Abstract
Biological communities have their biodiversity patterns affected by environmental, spatial, and biogeographic factors that vary from taxa to taxa, and often between life stages. This is especially true when there are differences in the habitat the species use in each of them. Individuals of the insect order Trichoptera are mostly aquatic in their larval stage and terrestrial in their adult stage, which may result in different behaviors and environmental requirements. Our goal was to evaluate the congruence between the larval and adult stages of Trichoptera in Amazonian streams regarding their abundance, richness, and assemblage composition. Additionally, we tried to identify the main environmental factors related to each life stage. For this, larvae and adults of Trichoptera were sampled in the same sites at 12 streams in the Caxiuanã National Forest, Pará state, Brazil. Adult assemblages had greater richness of genera and abundance of individuals than the larval ones, and there was no congruence in the genera composition between these life stages. Our results also showed that different environmental variables structured Trichoptera larvae and adults. Since the sampling of larvae and adults proved to be complementary in the studied streams, we advise that Trichoptera diversity surveys consider both life stages of these organisms.
Collapse
Affiliation(s)
- Maria José P Anacléto
- Programa de Pós-Graduação Em Ecologia, Instituto de Ciências Biológicas, Univ Federal Do Pará, Belém, PA, Brazil.
- Lab de Ecologia e Conservação, Instituto de Ciências Biológicas, Univ Federal Do Pará, Belém, PA, Brazil.
| | - Marden Seabra Linares
- Instituto de Biociências, Depto de Botânica e Ecologia, Univ Federal de Mato Grosso, Cuiabá, MT, Brazil
- Programa de Pós-Graduação em Ciências Ambientais, Instituto de Ciências Naturais, Humanas e Sociais, Univ Federal de Mato Grosso, Sinop, MT, Brazil
| | - Ana Paula Justino Faria
- Lab de Ecologia e Conservação, Instituto de Ciências Biológicas, Univ Federal Do Pará, Belém, PA, Brazil
- Lab de Zoologia, Univ Estadual Do Piauí, Núcleo de Pesquisa em Insetos Aquáticos, Campo Maior, PI, Brazil
| | | | - Leandro Schlemmer Brasil
- Lab de Ecologia e Conservação, Instituto de Ciências Biológicas, Univ Federal Do Pará, Belém, PA, Brazil
- Instituto de Ciências Biológicas e da Saúde, Univ Federal de Mato Grosso, Pontal do Araguaia, MT, Brazil
| | - Leandro Juen
- Programa de Pós-Graduação Em Ecologia, Instituto de Ciências Biológicas, Univ Federal Do Pará, Belém, PA, Brazil
- Lab de Ecologia e Conservação, Instituto de Ciências Biológicas, Univ Federal Do Pará, Belém, PA, Brazil
| | - Raphael Ligeiro
- Programa de Pós-Graduação Em Ecologia, Instituto de Ciências Biológicas, Univ Federal Do Pará, Belém, PA, Brazil
- Lab de Ecologia e Conservação, Instituto de Ciências Biológicas, Univ Federal Do Pará, Belém, PA, Brazil
| |
Collapse
|
9
|
McKenzie M, Brooks A, Callisto M, Collins AL, Durkota JM, Death RG, Jones JI, Linares MS, Matthaei CD, Monk WA, Murphy JF, Wagenhoff A, Wilkes M, Wood PJ, Mathers KL. Freshwater invertebrate responses to fine sediment stress: A multi-continent perspective. GLOBAL CHANGE BIOLOGY 2024; 30:e17084. [PMID: 38273567 PMCID: PMC10952627 DOI: 10.1111/gcb.17084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 10/20/2023] [Accepted: 11/10/2023] [Indexed: 01/27/2024]
Abstract
Excessive fine sediment (particles <2 mm) deposition in freshwater systems is a pervasive stressor worldwide. However, understanding of ecological response to excess fine sediment in river systems at the global scale is limited. Here, we aim to address whether there is a consistent response to increasing levels of deposited fine sediment by freshwater invertebrates across multiple geographic regions (Australia, Brazil, New Zealand and the UK). Results indicate ecological responses are not globally consistent and are instead dependent on both the region and the facet of invertebrate diversity considered, that is, taxonomic or functional trait structure. Invertebrate communities of Australia were most sensitive to deposited fine sediment, with the greatest rate of change in communities occurring when fine sediment cover was low (below 25% of the reach). Communities in the UK displayed a greater tolerance with most compositional change occurring between 30% and 60% cover. In both New Zealand and Brazil, which included the most heavily sedimented sampled streams, the communities were more tolerant or demonstrated ambiguous responses, likely due to historic environmental filtering of invertebrate communities. We conclude that ecological responses to fine sediment are not generalisable globally and are dependent on landscape filters with regional context and historic land management playing important roles.
Collapse
Affiliation(s)
| | - Andrew Brooks
- Department of Planning and Environment, Surface Water ScienceNSW GovernmentWollongongNew South WalesAustralia
| | - Marcos Callisto
- Laboratory of Ecology of Benthos, Department of Genetics, Ecology and EvolutionInstitute of Biological Sciences, Federal University of Minas GeraisBelo HorizonteBrazil
| | - Adrian L. Collins
- Net Zero and Resilient Farming, Rothamsted ResearchOkehamptonDevonUK
| | | | - Russell G. Death
- Innovative River Solutions, School of Agriculture and EnvironmentMassey UniversityPalmerston NorthNew Zealand
| | - J. Iwan Jones
- School of Biological and Behavioural SciencesQueen Mary University of LondonLondonUK
| | - Marden S. Linares
- Laboratory of Ecology of Benthos, Department of Genetics, Ecology and EvolutionInstitute of Biological Sciences, Federal University of Minas GeraisBelo HorizonteBrazil
| | | | - Wendy A. Monk
- Faculty of Forestry and Environmental ManagementEnvironment and Climate Change Canada, Canadian Rivers Institute, University of New BrunswickFrederictonNew BrunswickCanada
| | - John F. Murphy
- School of Biological and Behavioural SciencesQueen Mary University of LondonLondonUK
| | | | - Martin Wilkes
- School of Life SciencesUniversity of EssexColchesterUK
| | - Paul J. Wood
- Geography and EnvironmentLoughborough UniversityLoughboroughUK
| | - Kate L. Mathers
- Geography and EnvironmentLoughborough UniversityLoughboroughUK
| |
Collapse
|
10
|
Huynh KC, Ha LM, Tran NS, Nguyen TC, Nguyen GT, Van Nguyen C. Impacts of dyke systems on the distribution of benthic invertebrate communities and physicochemical characteristics of surface water in An Giang, Vietnam. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:89293-89310. [PMID: 37452243 DOI: 10.1007/s11356-023-28760-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 07/08/2023] [Indexed: 07/18/2023]
Abstract
The dyke system plays a vital role in cultivating rice intensively in the Vietnamese Mekong Delta, which protects rice paddy fields from annual floods. This study aimed to examine whether the full-dyke system (FD, which restricts water exchange for a long time) can cause degradation of surface water quality and reduction in benthic invertebrate biodiversity. The surface water quality and benthic invertebrate community were compared between the FD and semi-dyke systems (SD, which permits water exchange during flooding season) using a large number of samples collected seasonally in 2019. The results showed that the surface water quality within the FD system had significantly higher concentrations of TSS, COD, BOD5, N-NO3-, N-TKN, P-PO43-, and TP than compared to the SD system (p < 0.05), indicating greater pollution levels. The benthic invertebrate community was less diverse in the FD system than in the SD system. Only 17 species (belonging to 4 families) were detected in the FD system, and 30 species (belonging to 5 families) were detected in the SD system. The benthic invertebrate community structure changes and biodiversity loss were associated with degraded water quality. The P-PO43- and TP parameters were negatively correlated with the number of species, density, and biomass in the FD system and with the Shannon-Wiener (H') index in the SD system. In conclusion, the FD system has been degrading water quality and causing biodiversity loss.
Collapse
Affiliation(s)
- Khanh Cong Huynh
- College of Environment and Natural Resources, Can Tho University, Can Tho City, 900000, Vietnam.
- Graduate School of Fisheries and Environmental Sciences, Nagasaki University, Nagasaki City, 852-8043, Japan.
| | - Linh Manh Ha
- Graduate School of Fisheries and Environmental Sciences, Nagasaki University, Nagasaki City, 852-8043, Japan
- Faculty of Natural Science and Technology, Tay Bac University, Son La City, 34155, Vietnam
| | - Nam Sy Tran
- College of Environment and Natural Resources, Can Tho University, Can Tho City, 900000, Vietnam
| | - Thuan Cong Nguyen
- College of Environment and Natural Resources, Can Tho University, Can Tho City, 900000, Vietnam
| | - Giao Thanh Nguyen
- College of Environment and Natural Resources, Can Tho University, Can Tho City, 900000, Vietnam
| | - Cong Van Nguyen
- College of Environment and Natural Resources, Can Tho University, Can Tho City, 900000, Vietnam
| |
Collapse
|
11
|
Paiva FF, Melo DBD, Dolbeth M, Molozzi J. Functional threshold responses of benthic macroinvertebrates to environmental stressors in reservoirs. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 329:116970. [PMID: 36528939 DOI: 10.1016/j.jenvman.2022.116970] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 11/30/2022] [Accepted: 12/03/2022] [Indexed: 06/17/2023]
Abstract
Reservoirs are aquatic ecosystems created by humans to supply water needs. They can impair aquatic diversity due to the lack of connectivity, reduced water volume, and pressures exerted by surrounding human activities. These changes are expected to produce abrupt fluctuations in the reservoirs' environment, thus influencing the structure and functioning of aquatic communities. Therefore, this study aimed to understand the impact of a range of environmental stressors in reservoirs on benthic macroinvertebrates by analyzing their functional threshold response. Biological data were collected in six reservoirs from the semi-arid region of Northeast Brazil, as case study. A total of 37.874 benthic macroinvertebrates belonging to 35 taxa were collected. Nevertheless, almost 90% of this abundance belonged to three species alone, considered generalists, with multivoltine reproduction and from the gatherer-collectors feeding group. Increases in environmental stressors such as salinity, nitrate, ammonia, and dissolved solids led to the selection of macroinvertebrates with specific traits (e.g., protected body, gill respiration, and large body size). These functional traits showed differences in their threshold response depending on the stressors and are indicators of the effects of these stressors on the reservoirs. Some of the potential sensitive traits (with a negative threshold response to the stressor) could also associate with other stressors, demonstrating that tolerance of benthic macroinvertebrates is defined by a set of functional characteristics. Overall, the increase in stressor' gradients selected functionally tolerant organisms with high resistance capacity, but these were represented by dominant species. This resulted in low diversity in the reservoirs, which may compromise ecosystem functioning, and raises concerns about adequate management of the systems.
Collapse
Affiliation(s)
- Franciely Ferreira Paiva
- Programa de Pós-Graduação em Ecologia e Conservação - Universidade Estadual da Paraíba. Rua Baraúnas, N° 351, Bairro Universitário, Complexo Três Marias, CEP 58429-500, Campina Grande, Paraíba, Brazil.
| | - Dalescka Barbosa de Melo
- Programa de Pós-Graduação em Ecologia e Conservação - Universidade Estadual da Paraíba. Rua Baraúnas, N° 351, Bairro Universitário, Complexo Três Marias, CEP 58429-500, Campina Grande, Paraíba, Brazil
| | - Marina Dolbeth
- Centro Interdisciplinar de Investigação Marinha e Ambiental - Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, 4050-123, Matosinhos, Porto, Portugal
| | - Joseline Molozzi
- Departamento de Biologia/Programa de Pós-Graduação Em Ecologia e Conservação- Universidade Estadual da Paraíba.Rua Baraúnas, N° 351, Bairro Universitário, Complexo Três Marias, CEP 58429-500, Campina Grande, Paraíba, Brazil
| |
Collapse
|
12
|
Lee DY, Lee DS, Park YS. Taxonomic and Functional Diversity of Benthic Macroinvertebrate Assemblages in Reservoirs of South Korea. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 20:673. [PMID: 36612995 PMCID: PMC9819676 DOI: 10.3390/ijerph20010673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 12/27/2022] [Accepted: 12/27/2022] [Indexed: 06/17/2023]
Abstract
Numerous community indices have been developed to quantify the various aspects of communities. However, indices including functional aspects have been less focused on. Here, we examined how community composition varies in response to the environment and discovered the relationship between taxonomic diversity and functional diversity while considering the environment. Macroinvertebrate communities were collected from 20 reservoirs in South Korea. To characterize functional diversity, functional traits in four categories were considered: generation per year, adult lifespan, adult size, and functional feeding groups. Based on their community composition, we classified the reservoirs using hierarchical cluster analysis. Physicochemical and land use variables varied considerably between clusters. Non-metric multidimensional scaling indicated differences between reservoirs and clusters in terms of structure, functional diversity, and environmental variables. A self-organizing map was used to categorize functional traits, and network association analysis was used to unravel relationships between functional traits. Our results support the characteristics of species' survival strategies such as r- and K-selection. Functional richness exhibited a relationship with taxonomic diversity. Our findings suggest that different types of diversity could play complementary roles in identifying biodiversity. Our findings should prove useful in developing new criteria for assessing freshwater ecosystem health, as well as in evaluating and predicting future alteration of benthic macroinvertebrate communities facing anthropogenic disturbances.
Collapse
|
13
|
Ao S, Ye L, Liu X, Cai Q, He F. Elevational patterns of trait composition and functional diversity of stream macroinvertebrates in the Hengduan Mountains region, Southwest China. ECOLOGICAL INDICATORS 2022; 144:109558. [DOI: 10.1016/j.ecolind.2022.109558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
|
14
|
Mutshekwa T, Mugwedi L, Wasserman RJ, Cuthbert RN, Dondofema F, Dalu T. Pesticides drive differential leaf litter decomposition and mosquito colonisation dynamics in lentic conditions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 839:156320. [PMID: 35640753 DOI: 10.1016/j.scitotenv.2022.156320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 05/23/2022] [Accepted: 05/25/2022] [Indexed: 06/15/2023]
Abstract
Global contamination of freshwater ecosystems by chemical compounds, such as pesticides, may exert high pressure on biologically-driven organic matter decomposition. These pollutants may also impair the quality of organic substrates for colonising invertebrates and reduce primary productivity by decreasing the abundance of phytoplankton. In southern Africa, increasing pesticide usage associated with macadamia plantations, in particular, presents a growing risk to freshwater ecosystems. Here, we examined macadamia (Macadamia integrifolia) leaf litter decomposition following exposure to three pesticides (i.e., Karate Zeon 10 CS (lambda-cyhalothrin), Mulan 20 AS (acetamiprid), Pyrinex 250 CS (chlorpyrifos)) used commonly in macadamia plantations, via an ex-situ microcosm approach. We examined mosquito colonisation of these microcosms as semi-aquatic macroinvertebrates which form a significant component of aquatic communities within standing waters. Macadamia leaf litter tended to decompose faster when exposed to Karate and Pyrinex pesticide treatments. Additionally, chlorophyll-a, conductivity, total dissolved solids, and pH differed among pesticide treatments and controls, with pesticides (Karate Zeon and Mulan) tending to reduce chlorophyll-a concentrations. Overall, pesticide treatments promoted mosquito (i.e., Culex spp.) and pupal abundances. In terms of dominant aquatic mosquito group abundances (i.e., Anopheles spp., Culex spp.), the effect of pesticides differed significantly among pesticide types, with Pyrinex and Mulan treatments having higher mosquito abundances in comparison to Karate Zeon and pesticide-free treatments. These findings collectively demonstrate that common pesticides used in the macadamia plantation may exert pressure on adjacent freshwater communities by shaping leaf-litter decomposition, semi-aquatic macroinvertebrate colonisation dynamics, and chlorophyll-a.
Collapse
Affiliation(s)
- Thendo Mutshekwa
- Aquatic Systems Research Group, Department of Geography and Environmental Sciences, University of Venda, Thohoyandou 0950, South Africa.
| | - Lutendo Mugwedi
- Aquatic Systems Research Group, Department of Geography and Environmental Sciences, University of Venda, Thohoyandou 0950, South Africa
| | - Ryan J Wasserman
- Department of Zoology and Entomology, Rhodes University, Makhanda 6140, South Africa; School of Science, Monash University Malaysia, Bandar Sunway, Selangor Darul Ehsan, Malaysia; South African Institute for Aquatic Biodiversity, Makhanda 6140, South Africa
| | - Ross N Cuthbert
- South African Institute for Aquatic Biodiversity, Makhanda 6140, South Africa; School of Biological Sciences, Queen's University Belfast, Belfast BT9 5DL, United Kingdom
| | - Farai Dondofema
- Aquatic Systems Research Group, Department of Geography and Environmental Sciences, University of Venda, Thohoyandou 0950, South Africa
| | - Tatenda Dalu
- South African Institute for Aquatic Biodiversity, Makhanda 6140, South Africa; School of Biology and Environmental Sciences, University of Mpumalanga, Nelspruit 1200, South Africa; Wissenshaftskolleg zu Berlin Institute for Advanced Study, Berlin 14193, Germany.
| |
Collapse
|
15
|
The Impacts of Different Anthropogenic Disturbances on Macroinvertebrate Community Structure and Functional Traits of Glacier-Fed Streams in the Tianshan Mountains. WATER 2022. [DOI: 10.3390/w14081298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Macroinvertebrates are sensitive to environmental disturbances, however, the effects of human activities on macroinvertebrate community structures and functional traits in glacier-fed streams are concerning. To elucidate the effects of horse, cattle and sheep grazing, hot spring scenic development, and historic iron ore mine development on macroinvertebrate communities, we conducted a study in three glacier-fed streams of the Tianshan Mountains in northwest China in April 2021. Our results showed that the species richness and density significantly decreased due to grazing (p < 0.05). There were more taxa with resilience traits such as “small size at maturity” in the grazing stream. The EPT richness and density affected by hot spring scenic development significantly decreased compared to the undisturbed point (p < 0.05). There was a significant increase in taxa with resistance traits such as “bi-or-multivoltine” in the hot spring stream. The stream affected by historic mine development is currently in the self-recovery stage following the closure of the mine ten years ago. Additionally, the species richness, EPT richness, and density at the mining site were significantly higher than the source site (p < 0.05), reflecting that the habitat fragmentation caused by previous mining activities prevented the upward dispersal of macroinvertebrates. The taxa in the mining stream were also characterized by higher resistance traits such as “abundant occurrence in drift”. These results were attributed to the impacts of human disturbance on habitat stability, habitat heterogeneity, water quality, and material cycling of stream ecosystems, indicating human disturbance on the efficiency of resource utilization and functional diversification. In addition, our results showed that functional indicators of macroinvertebrate communities are helpful for monitoring and evaluating habitat conditions.
Collapse
|
16
|
Liu S, Li X, Tan L, Fornacca D, Fang Y, Zhu L, Rao C, Cao Y, Huang J, Ren G, Cai Q, Xiao W. The ecological niche and terrestrial environment jointly influence the altitudinal pattern of aquatic biodiversity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 800:149404. [PMID: 34399334 DOI: 10.1016/j.scitotenv.2021.149404] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 07/23/2021] [Accepted: 07/28/2021] [Indexed: 06/13/2023]
Abstract
The altitudinal distribution of biodiversity in alpine ecosystems has captured academic attention, especially in streams because of their sensitivity to climate change. In the past years, research mainly focused on understanding the role played by alpine streams' internal factors such as aquatic environmental variables, as well as physical and hydrological conditions, on the shaping of benthic macroinvertebrate communities. More recently, external factors such as terrestrial environments were included in analyses worldwide. In particular, the inherent properties constituting the ecological niche of specific species were considered as factors regulating dispersal and influencing community construction. The objective of this study was to reveal the distribution pattern and the driving factors regulating aquatic biodiversity in alpine streams. We hypothesized that the altitudinal distribution of aquatic macroinvertebrates could be explained by the interaction of the aquatic environment with both species' ecological niche and the terrestrial environment surrounding their habitat, and that rare species display a more pronounced pattern than widespread dominant species. To test these hypotheses, samples were collected from two alpine streams situated on opposite slopes of Biluo Snow Mountain in Yunnan Province, China. Results of statistical analyses showed poor explanatory power from aquatic environmental factors, while the differences in vegetation type and the ecological niche of the species played an important role in determining the distribution pattern of aquatic biodiversity. Furthermore, we found that the altitudinal distribution pattern of aquatic biodiversity exhibits a bimodal type, with rare species fitting the bimodal peaks. These findings call for a better inclusion and further investigation on the effects of the terrestrial environment on aquatic ecosystems.
Collapse
Affiliation(s)
- Shuoran Liu
- Institute of Eastern-Himalaya Biodiversity Research, Dali University, Dali 671003, China; Collaborative Innovation Center for Biodiversity and Conservation in the Three Parallel Rivers Region of China, Dali 671003, China
| | - Xianfu Li
- Institute of Eastern-Himalaya Biodiversity Research, Dali University, Dali 671003, China; Collaborative Innovation Center for Biodiversity and Conservation in the Three Parallel Rivers Region of China, Dali 671003, China
| | - Lu Tan
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Davide Fornacca
- Institute of Eastern-Himalaya Biodiversity Research, Dali University, Dali 671003, China; Collaborative Innovation Center for Biodiversity and Conservation in the Three Parallel Rivers Region of China, Dali 671003, China
| | - Yihao Fang
- Institute of Eastern-Himalaya Biodiversity Research, Dali University, Dali 671003, China; Collaborative Innovation Center for Biodiversity and Conservation in the Three Parallel Rivers Region of China, Dali 671003, China
| | - Lin Zhu
- Fu-gong Administration Bureau, Gao-li-gong Mountain National Nature Reserve, Nujiang 673400, China
| | - Caihong Rao
- Fu-gong Administration Bureau, Gao-li-gong Mountain National Nature Reserve, Nujiang 673400, China
| | - Yindi Cao
- Institute of Eastern-Himalaya Biodiversity Research, Dali University, Dali 671003, China; Collaborative Innovation Center for Biodiversity and Conservation in the Three Parallel Rivers Region of China, Dali 671003, China
| | - Jimin Huang
- Institute of Eastern-Himalaya Biodiversity Research, Dali University, Dali 671003, China; Collaborative Innovation Center for Biodiversity and Conservation in the Three Parallel Rivers Region of China, Dali 671003, China
| | - Guopeng Ren
- Institute of Eastern-Himalaya Biodiversity Research, Dali University, Dali 671003, China; Collaborative Innovation Center for Biodiversity and Conservation in the Three Parallel Rivers Region of China, Dali 671003, China
| | - Qinghua Cai
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| | - Wen Xiao
- Institute of Eastern-Himalaya Biodiversity Research, Dali University, Dali 671003, China; Collaborative Innovation Center for Biodiversity and Conservation in the Three Parallel Rivers Region of China, Dali 671003, China.
| |
Collapse
|
17
|
Wang C, Liu H, Li Y, Dong B, Qiu C, Yang J, Zong Y, Chen H, Zhao Y, Zhang Y. Study on habitat suitability and environmental variable thresholds of rare waterbirds. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 785:147316. [PMID: 33932675 DOI: 10.1016/j.scitotenv.2021.147316] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/16/2021] [Accepted: 04/19/2021] [Indexed: 06/12/2023]
Abstract
The conservation level of rare waterbirds reflects the quality of the regional ecological environment and wetlands, and suitable habitat patches and good environmental conditions are bases to support the activities of rare species in habitats. Establishing these conditions is also an important goal of habitat landscape and functional restoration. However, lack of these conditions limits population protection and habitat restoration of rare species. Based on the random forest (RF) algorithm and threshold indicator taxa analysis (TITAN), this paper performed habitat suitability assessment and environmental variable threshold analysis of rare waterbird species in Yancheng coastal wetlands. The results showed that the suitable area proportion of three waterbird species at different habitat sites was less than 20%. The unsuitable area proportions of red-crowned cranes and oriental storks at the CA habitat site were the highest, reaching 86.73% and 85.17%, respectively. In addition, analysis of the importance of environmental variables showed that the main influencing variables affecting the suitable habitat distribution of the three rare waterbirds were habitat type (T_hab), habitat area (A_hab), vegetation coverage (P_fvc), distance to farmland (D_far), distance to reeds (D_ree), ponds density (Ponds), distance to water surface (D_wat) and distance to main roads or seawalls (D_swa). These variables covered the type, area, coverage and distance indicators. With the exception of D_far, Ponds and D_swa, rare waterbirds had response thresholds to each environmental indicator, and these results supported the restoration of landscape structure and function of each habitat site. This study emphasized the importance of foods, water resources and hidden conditions for habitat selection in rare waterbirds. Finally, we proposed the maintenance and restoration patterns of the landscape structure and function of rare waterbird habitats, which are available for other coastal tidal wetlands.
Collapse
Affiliation(s)
- Cheng Wang
- School of Geography, Nanjing Normal University, Nanjing 210023, China; Key Laboratory of Virtual Geographic Environment, Nanjing Normal University, Ministry of Education, Nanjing 210023, China; Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing 210023, China.
| | - Hongyu Liu
- School of Marine Science and Engineering, Nanjing Normal University, Nanjing 210023, China.
| | - Yufeng Li
- School of Marine Science and Engineering, Nanjing Normal University, Nanjing 210023, China.
| | - Bin Dong
- School of Science, Anhui Agricultural University, Hefei 230036, China
| | - Chunqi Qiu
- School of Marine Science and Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Jialing Yang
- School of Marine Science and Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Ying Zong
- School of Marine Science and Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Hao Chen
- Jiangsu Yancheng Wetland National Nature Reserve, Rare Birds, Yancheng, Jiangsu 224057, China
| | - Yongqiang Zhao
- Jiangsu Yancheng Wetland National Nature Reserve, Rare Birds, Yancheng, Jiangsu 224057, China
| | - Yanan Zhang
- Jiangsu Yancheng Wetland National Nature Reserve, Rare Birds, Yancheng, Jiangsu 224057, China
| |
Collapse
|
18
|
Artificial Plantation Responses to Periodic Submergence in Massive Dam and Reservoir Riparian Zones: Changes in Soil Properties and Bacterial Community Characteristics. BIOLOGY 2021; 10:biology10080819. [PMID: 34440051 PMCID: PMC8389660 DOI: 10.3390/biology10080819] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/12/2021] [Accepted: 08/22/2021] [Indexed: 01/03/2023]
Abstract
Simple Summary This study focuses on plants in riparian zones that are very vulnerable due to water stress and anthropogenic disturbances, which are particularly important regarding their ecological and environmental role. Although plants and microbiome interactions are necessary for plant nutrient acquisition, relatively little is known about the responses of roots, bulk, and rhizosphere soil microbial communities of different artificial vegetation types in riparian areas of massive dams and reservoirs. Therefore, this study aims to assess the responses of woody and herbaceous plants in the riparian zones of the Three Gorges Dam Reservoir, China. Results revealed that the weight of dominant soil bacteria in different periods, including Proteobacteria, Acidobacteria, Actinobacteria, Chloroflexi, and Cyanobacteria, was higher, and their composition was different in the rhizosphere, bulk soil, and endophyte. In the soil co-occurrence networks, the weight of soil physical properties was higher than chemical properties in the early emergence stage. The current study provides knowledge about bacteria in bulk, rhizosphere soils, and within roots in different emergence phases. Additionally, these results provide valuable information to inoculate the soil with key microbiota members by applying fertilizers, potentially improving plant and soil production and health. Abstract Plant and microbiome interactions are necessary for plant nutrient acquisition. However, relatively little is known about the responses of roots, bulk, and rhizosphere soil microbial communities in different artificial vegetation types (woody and herbaceous) in riparian areas of massive dams and reservoirs. Therefore, this study aims to assess such responses at elevations of 165–170 m a.s.l. in the riparian zones of the Three Gorges Dam Reservoir, China. The samples were collected containing the rhizosphere soil, bulk soil, and roots of herbaceous and woody vegetation at different emergence stages in 2018. Then, all the samples were analyzed to quantify the soil properties, bacterial community characteristics, and their interaction in the early and late emergence phases. In different periods, the weight of dominant soil bacteria, including Proteobacteria, Acidobacteria, Actinobacteria, Chloroflexi, and Cyanobacteria, was higher, and their composition was different in the rhizosphere, bulk soil, and endophytes. Moreover, the soil co-occurrence networks indicated that the weight of soil physical properties was higher than chemical properties in the early emergence stage. In contrast, the weight of chemical properties was relatively higher in the late emergence stage. Furthermore, the richness and diversity of the bacterial community were mainly affected by soil organic matter. This study suggests that these herbaceous and woody vegetation are suitable for planting in reservoir areas affected by hydrology and human disturbance in light of soil nutrients and soil microbial communities, respectively. Additionally, these results provide valuable information to inoculate the soil with key microbiota members by applying fertilizers, potentially improving plant health and soil production.
Collapse
|
19
|
Liu Z, Li Z, Castro DMP, Tan X, Jiang X, Meng X, Ge Y, Xie Z. Effects of different types of land-use on taxonomic and functional diversity of benthic macroinvertebrates in a subtropical river network. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:44339-44353. [PMID: 33847890 DOI: 10.1007/s11356-021-13867-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 04/06/2021] [Indexed: 06/12/2023]
Abstract
Expansion of agricultural and urban areas and intensification of catchment land-use increasingly affect different facets of biodiversity in aquatic communities. However, understanding the responses of taxonomic and functional diversity to specific conversion from natural forest to agriculture and urban land-use remains limited, especially in subtropical streams where biomonitoring programs and using functional traits are still under development. Here, we conducted research in a subtropical stream network to examine the responses of macroinvertebrate taxonomic and functional diversity to different types of land-use in central China. Our results showed that medium body size, univoltine, gill respiration, and slow seasonal development were much higher in natural forest sites, while certain traits related to strong resilience and resistance (e.g., small body size, fast seasonal development, bi-or multivoltine, abundant occurrence in drift, sprawler) dominated in high-intensity agriculture and urbanization sites. We further found that land-use compromised water quality (e.g., increases in total phosphate, conductivity and water temperature) and habitat conditions (e.g., high proportion of sand and silt, gravel, and channel width) accounted for the changes in trait composition based on a combination of RLQ and fourth-corner analysis. Moreover, natural forest sites presented relatively high values of functional richness than other land-use, demonstrating the importance of natural forest maintenance to promote high levels of functional diversity. However, taxonomic diversity indexes showed higher sensitivity to distinguish different types of land-use compared to functional diversity measures. Even so, given that certain trait categories showed significant relationships with specific local environmental stressors, trait-based approaches can provide reliable evidence to diagnose the cause of impairment and complement the results of the taxonomic-based approaches. Our findings support the idea that taxonomic and functional approaches should be integrated in river restoration and land-use management.
Collapse
Affiliation(s)
- Zhenyuan Liu
- The Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhengfei Li
- The Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
| | - Diego M P Castro
- Federal University of Minas Gerais, Biological Sciences Institute, Department of Genetics, Ecology, and Evolution, Laboratory of Benthos Ecology, Av. Antônio Carlos 6627, Minas Gerais, CEP 31270-901, Belo Horizonte, Brazil
| | - Xiang Tan
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Xiaoming Jiang
- State Key Laboratory of Eco-hydraulic in Northwest Arid Region of China, Xi'an University of Technology, Xi'an, 710048, China
| | - Xingliang Meng
- The Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Yihao Ge
- The Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhicai Xie
- The Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
| |
Collapse
|
20
|
Callisto M, Linares MS, Kiffer WP, Hughes RM, Moretti MS, Macedo DR, Solar R. Beta diversity of aquatic macroinvertebrate assemblages associated with leaf patches in neotropical montane streams. Ecol Evol 2021; 11:2551-2560. [PMID: 33815762 PMCID: PMC8009175 DOI: 10.1002/ece3.7215] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 01/04/2021] [Accepted: 01/07/2021] [Indexed: 12/04/2022] Open
Abstract
Over 70% of the total channel length in all river basins is formed by low order streams, many of which originate on mountaintops. Headwater streams play fundamental roles in processing and transporting terrestrial and aquatic organic matter, often harboring high biodiversity in bottom leaf patches deposited from riparian vegetation. The objective of this study was to assess the variation in taxonomic composition (measured by beta diversity of aquatic macroinvertebrates) among stream sites located in the Espinhaço Meridional Mountain Range, part of a UNESCO Biosphere Reserve in eastern Brazil. We tested two hypotheses. (a) Taxa turnover is the main reason for differences in aquatic insect assemblages within stream sites; we predicted that turnover would be higher than nestedness in all stream sites. (b) Stream site altitude and catchment elevation range are the main explanatory variables for the differences in beta diversity; we predicted that local stream site variables would account for only minor amounts of variation. In both dry and wet seasons, we sampled twice in two habitat types (five leaf patches in pools and five in riffles) in each of nine stream sites distributed in three different river basins. We computed average pairwise beta diversity among sampling stations and seasons in each stream site by using Jaccard and Bray-Curtis indices, and calculated the percentages of diversity resulting from turnover and nestedness. Finally, we tested the degree that local- or catchment-level predictor variables explained beta diversity. We found that turnover was the main component of beta diversity and that both dissolved oxygen and elevation range best explained Bray-Curtis beta diversity. These results reinforce the importance of leaf patches in montane (sky islands) Neotropical savanna streams as biodiversity hotbeds for macroinvertebrates, and that both local and landscape variables explained beta diversity.
Collapse
Affiliation(s)
- Marcos Callisto
- Laboratório de Ecologia de BentosDepartamento de Genética, Ecologia e EvoluçãoInstituto de Ciências BiológicasUniversidade Federal de Minas GeraisBelo HorizonteBrazil
| | - Marden S. Linares
- Laboratório de Ecologia de BentosDepartamento de Genética, Ecologia e EvoluçãoInstituto de Ciências BiológicasUniversidade Federal de Minas GeraisBelo HorizonteBrazil
| | - Walace P. Kiffer
- Laboratório de Ecologia de Insetos AquáticosUniversidade Vila VelhaVila VelhaBrazil
| | - Robert M. Hughes
- Amnis Opes InstituteCorvallisORUSA
- Department of Fisheries & WildlifeCorvallisORUSA
| | - Marcelo S. Moretti
- Laboratório de Ecologia de Insetos AquáticosUniversidade Vila VelhaVila VelhaBrazil
| | - Diego R. Macedo
- Laboratório de Geomorfologia e Recursos HídricosDepartamento de GeografiaInstituto de GeociênciasUniversidade Federal de Minas GeraisBelo HorizonteBrazil
| | - Ricardo Solar
- Departamento de Genética, Ecologia e EvoluçãoCentro de Síntese Ecológica e ConservaçãoInstituto de Ciências BiológicasUniversidade Federal de Minas GeraisBelo HorizonteBrazil
| |
Collapse
|
21
|
Espinoza-Toledo A, Mendoza-Carranza M, Castillo MM, Barba-Macías E, Capps KA. Taxonomic and functional responses of macroinvertebrates to riparian forest conversion in tropical streams. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 757:143972. [PMID: 33321337 DOI: 10.1016/j.scitotenv.2020.143972] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 11/09/2020] [Accepted: 11/14/2020] [Indexed: 06/12/2023]
Abstract
Land use change threatens the ecological integrity of tropical rivers and streams; however, few studies have simultaneously analyzed the taxonomic and functional responses of tropical macroinvertebrates to riparian forest conversion. Here, we used community structure, functional diversity, and stable isotope analyses to assess the impacts of riparian deforestation on macroinvertebrate communities of streams in southern Mexico. Monthly sampling during the dry season was conducted in streams with riparian forest (forest streams), and in streams with pasture dominating the riparian vegetation (pasture streams). Samples were collected for water quality (physical-chemical variables, nutrient concentrations, and total suspended solids), organic matter (leaf litter abundance and algal biomass), and macroinvertebrate abundance and diversity. Higher temperature, conductivity, suspended solids, and chlorophyll a were detected in pasture streams, while nitrate concentrations and leaf litter biomass were greater in forest streams. Macroinvertebrate density was higher in pasture sites, while no differences in taxonomic diversity and richness were found between land uses. Functional evenness was greater in forest streams, while richness and divergence were similar between land uses, despite differences in taxonomic composition. Environmental variables were associated with taxa distribution but not with functional traits, suggesting current conditions still promote redundancy in ecological function. Isotopic analyses indicated consumers in pasture streams were enriched in 13C and 15N relative to forest streams, potentially reflecting the higher algal biomass documented in pasture systems. Isotopic niches were broader and more overlapped in pasture streams, indicating more generalist feeding habits. No significant losses of taxonomic or functional diversity were detected in pasture streams. However, changes in trophic ecology suggest landscape-level processes are altering macroinvertebrate feeding habits in streams. The changes we observed in habitat, water quality, and macroinvertebrate community were related to the removal of the riparian vegetation, suggesting the structure and function of the focal systems would benefit from riparian restoration.
Collapse
Affiliation(s)
- Andrea Espinoza-Toledo
- Departamento de Ciencias de la Sustentabilidad, El Colegio de la Frontera Sur, Unidad Villahermosa, Carretera Villahermosa-Reforma Km 15.5, Ranchería Guineo, 2da. Sección, CP 86280 Villahermosa, Tabasco, Mexico
| | - Manuel Mendoza-Carranza
- Departamento de Ciencias de la Sustentabilidad, El Colegio de la Frontera Sur, Unidad Villahermosa, Carretera Villahermosa-Reforma Km 15.5, Ranchería Guineo, 2da. Sección, CP 86280 Villahermosa, Tabasco, Mexico
| | - María M Castillo
- Departamento de Ciencias de la Sustentabilidad, El Colegio de la Frontera Sur, Unidad Villahermosa, Carretera Villahermosa-Reforma Km 15.5, Ranchería Guineo, 2da. Sección, CP 86280 Villahermosa, Tabasco, Mexico.
| | - Everardo Barba-Macías
- Departamento de Ciencias de la Sustentabilidad, El Colegio de la Frontera Sur, Unidad Villahermosa, Carretera Villahermosa-Reforma Km 15.5, Ranchería Guineo, 2da. Sección, CP 86280 Villahermosa, Tabasco, Mexico
| | - Krista A Capps
- Odum School of Ecology, University of Georgia, Athens, GA, USA; Savannah River Ecology Laboratory, University of Georgia, Aiken, SC, USA
| |
Collapse
|
22
|
Feio MJ, Hughes RM, Callisto M, Nichols SJ, Odume ON, Quintella BR, Kuemmerlen M, Aguiar FC, Almeida SF, Alonso-EguíaLis P, Arimoro FO, Dyer FJ, Harding JS, Jang S, Kaufmann PR, Lee S, Li J, Macedo DR, Mendes A, Mercado-Silva N, Monk W, Nakamura K, Ndiritu GG, Ogden R, Peat M, Reynoldson TB, Rios-Touma B, Segurado P, Yates AG. The Biological Assessment and Rehabilitation of the World's Rivers: An Overview. WATER 2021; 13:371. [PMID: 33868721 PMCID: PMC8048141 DOI: 10.3390/w13030371] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
The biological assessment of rivers i.e., their assessment through use of aquatic assemblages, integrates the effects of multiple-stressors on these systems over time and is essential to evaluate ecosystem condition and establish recovery measures. It has been undertaken in many countries since the 1990s, but not globally. And where national or multi-national monitoring networks have gathered large amounts of data, the poor water body classifications have not necessarily resulted in the rehabilitation of rivers. Thus, here we aimed to identify major gaps in the biological assessment and rehabilitation of rivers worldwide by focusing on the best examples in Asia, Europe, Oceania, and North, Central, and South America. Our study showed that it is not possible so far to draw a world map of the ecological quality of rivers. Biological assessment of rivers and streams is only implemented officially nation-wide and regularly in the European Union, Japan, Republic of Korea, South Africa, and the USA. In Australia, Canada, China, New Zealand, and Singapore it has been implemented officially at the state/province level (in some cases using common protocols) or in major catchments or even only once at the national level to define reference conditions (Australia). In other cases, biological monitoring is driven by a specific problem, impact assessments, water licenses, or the need to rehabilitate a river or a river section (as in Brazil, South Korea, China, Canada, Japan, Australia). In some countries monitoring programs have only been explored by research teams mostly at the catchment or local level (e.g., Brazil, Mexico, Chile, China, India, Malaysia, Thailand, Vietnam) or implemented by citizen science groups (e.g., Southern Africa, Gambia, East Africa, Australia, Brazil, Canada). The existing large-extent assessments show a striking loss of biodiversity in the last 2-3 decades in Japanese and New Zealand rivers (e.g., 42% and 70% of fish species threatened or endangered, respectively). A poor condition (below Good condition) exists in 25% of South Korean rivers, half of the European water bodies, and 44% of USA rivers, while in Australia 30% of the reaches sampled were significantly impaired in 2006. Regarding river rehabilitation, the greatest implementation has occurred in North America, Australia, Northern Europe, Japan, Singapore, and the Republic of Korea. Most rehabilitation measures have been related to improving water quality and river connectivity for fish or the improvement of riparian vegetation. The limited extent of most rehabilitation measures (i.e., not considering the entire catchment) often constrains the improvement of biological condition. Yet, many rehabilitation projects also lack pre-and/or post-monitoring of ecological condition, which prevents assessing the success and shortcomings of the recovery measures. Economic constraints are the most cited limitation for implementing monitoring programs and rehabilitation actions, followed by technical limitations, limited knowledge of the fauna and flora and their life-history traits (especially in Africa, South America and Mexico), and poor awareness by decision-makers. On the other hand, citizen involvement is recognized as key to the success and sustainability of rehabilitation projects. Thus, establishing rehabilitation needs, defining clear goals, tracking progress towards achieving them, and involving local populations and stakeholders are key recommendations for rehabilitation projects (Table 1). Large-extent and long-term monitoring programs are also essential to provide a realistic overview of the condition of rivers worldwide. Soon, the use of DNA biological samples and eDNA to investigate aquatic diversity could contribute to reducing costs and thus increase monitoring efforts and a more complete assessment of biodiversity. Finally, we propose developing transcontinental teams to elaborate and improve technical guidelines for implementing biological monitoring programs and river rehabilitation and establishing common financial and technical frameworks for managing international catchments. We also recommend providing such expert teams through the United Nations Environment Program to aid the extension of biomonitoring, bioassessment, and river rehabilitation knowledge globally.
Collapse
Affiliation(s)
- Maria João Feio
- Department of Life Sciences, MARE-Marine and Environmental Sciences Centre, University of Coimbra, 3000-456 Coimbra, Portugal
| | - Robert M. Hughes
- Amnis Opes Institute, Corvallis, OR 97333, USA
- Department of Fisheries & Wildlife, Oregon State University, Corvallis, OR 97331, USA
| | - Marcos Callisto
- Laboratory of Ecology of Benthos, Department of Genetic, Ecology and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Avenida Antônio Carlos 6627, CEP 31270-901 Belo Horizonte, MG, Brazil
| | - Susan J. Nichols
- Centre for Applied Water Science, Institute for Applied Ecology, University of Canberra, 2601 Canberra, Australia
| | - Oghenekaro N. Odume
- Unilever Centre for Environmental Water Quality, Institute for Water Research, Rhodes University, P.O. Box 94, Grahamstown 6140, South Africa
| | - Bernardo R. Quintella
- MARE—Marine and Environmental Sciences Centre, University of Évora, 7000-812 Évora, Portugal
- Department of Animal Biology, Faculty of Sciences of the University of Lisbon, Campo Grande, 1749-016 Lisboa, Portugal
| | - Mathias Kuemmerlen
- Department of Zoology, School of Natural Sciences, Trinity Centre for the Environment, Trinity College Dublin, The University of Dublin, College Green, Dublin 2, Ireland
| | - Francisca C. Aguiar
- Centro de Estudos Florestais, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal
| | - Salomé F.P. Almeida
- Department of Biology and GeoBioTec—GeoBioSciences, GeoTechnologies and GeoEngineering Research Centre, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| | - Perla Alonso-EguíaLis
- Mexican Institute of Water Technology, Bioindicators Laboratory, Jiutepec Morelos 62550, Mexico
| | - Francis O. Arimoro
- Department of Animal and Environmental Biology (Applied Hydrobiology Unit), Federal University of Technology, P.M.B. 65 Minna, Nigeria
| | - Fiona J. Dyer
- Centre for Applied Water Science, Institute for Applied Ecology, University of Canberra, 2601 Canberra, Australia
| | - Jon S. Harding
- School of Biologcal Sciences, University of Canterbury, 8140 Christchurch, New Zealand
| | - Sukhwan Jang
- Department of Civil Engineering, Daejin University, Hoguk-ro, Pocheon-si 1007, Gyeonggi-do, Korea
| | - Philip R. Kaufmann
- Department of Fisheries & Wildlife, Oregon State University, Corvallis, OR 97331, USA
- Pacific Ecological Systems Division, Center for Public Health and Environmental Assessment, Office of Research and Development, U.S. Environmental Protection Agency, Corvallis, OR 97333, USA
| | - Samhee Lee
- Korea Institute of Civil Engineering and Building Technology (KICT), 283 Goyangdaero, Ilsanseo-gu, Goyang-si 10223, Gyeonggi-do, Korea
| | - Jianhua Li
- Key Laboratory of Yangtze River Water Environment, Ministry of Education of China, Tongji University, Shanghai 200092, China
| | - Diego R. Macedo
- Department of Geography, Geomorphology and Water Resources Laboratory, Institute of Geosciences, Federal University of Minas Gerais, Avenida Antônio Carlos 6627, CEP 31270-901 Belo Horizonte, MG, Brazil
| | - Ana Mendes
- MED—Instituto Mediterrâneo para a Agricultura, Ambiente e Desenvolvimento, LabOr—Laboratório de Ornitologia, Universidade de Évora, Polo da Mitra, 7002-774 Évora, Portugal
| | - Norman Mercado-Silva
- Centro de Investigación en Biodiversidad y Conservacíon, Universidad Autónoma del Estado de Morelos, Cuernavaca, 62209 Morelos, Mexico
| | - Wendy Monk
- Environment and Climate Change Canada and, Canadian Rivers Institute, Faculty of Forestry and Environmental Management, University of New Brunswick, Fredericton, NB E3B 5A3, Canada
| | - Keigo Nakamura
- Water Environment Research Group, Public Works Research Institute, 1-6 Minamihara, Tsukuba 305-8516, Japan
| | - George G. Ndiritu
- School of Natural Resources and Environmental Studies, Karatina University, P.O. Box 1957, 10101 Karatina, Kenya
| | - Ralph Ogden
- Environment, Planning and Sustainable Development Directorate, 2601 Canberra, Australia
| | - Michael Peat
- Wetlands, Policy and Northern Water Use Branch, Commonwealth Environmental Water Office, 2601 Canberra, Australia
| | | | - Blanca Rios-Touma
- Grupo de Investigación en Biodiversidad, Medio Ambiente y Salud (BIOMAS), Facultad de Ingenierías y Ciencias Aplicadas, Ingeniería Ambiental, Universidad de Las Américas, Vía Nayón S/N, 170503 Quito, Ecuador
| | - Pedro Segurado
- Department of Animal Biology, Faculty of Sciences of the University of Lisbon, Campo Grande, 1749-016 Lisboa, Portugal
| | - Adam G. Yates
- Department of Geography, Western University and Canadian Rivers Institute, London, ON N6A 5C2, Canada
| |
Collapse
|