1
|
Gao X, Yuan S, Li X, Xing W. Non-synergistic effects of microplastics and submerged macrophytes on sediment microorganisms involved in carbon and nitrogen cycling. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 374:126213. [PMID: 40210162 DOI: 10.1016/j.envpol.2025.126213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 03/17/2025] [Accepted: 04/04/2025] [Indexed: 04/12/2025]
Abstract
Submerged macrophyte communities play a crucial role in regulating sediment carbon and nitrogen cycling in lake ecosystems. However, their interactions with emerging pollutants such as polystyrene microplastics (PS-MPs) remain poorly understood. In this study, we employed metagenomic analysis to examine the combined effects of submerged macrophyte communities and PS-MPs on sediment microbial communities, focusing on microbial populations, functional genes, and metabolic pathways involved in carbon and nitrogen cycling. Our results revealed a non-synergistic interaction between macrophyte communities and PS-MPs in shaping sediment biogeochemical processes. While increasing PS-MPs concentrations (from 0.5 to 2.5 % w/w) significantly enhanced microbial diversity (species richness increased from 533 to 1301), the presence of macrophytes moderated this response. Notably, we observed differential selective pressures on functional genes involved in key carbon and nitrogen cycling steps, particularly amoAB and amoC, nirS, and nirK, indicating distinct shifts in microbial functional groups. Furthermore, we identified complex substrate-pathway interactions: nitrate and ammonium differentially influenced fermentation and methanogenesis, while inorganic carbon positively regulated nitrate dissimilatory reduction. These findings provide novel insights into the regulatory mechanisms of submerged macrophytes in sediment biogeochemical cycling under microplastic stress, highlighting their potential role in maintaining ecosystem functions in contaminated aquatic environments.
Collapse
Affiliation(s)
- Xueyuan Gao
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China; University of Chinese Academy of Sciences, Beijing, 100039, China.
| | - Saibo Yuan
- Ecological Environment Monitoring and Scientific Research Center, Ecology and Environment Supervision and Administration Bureau of Yangtze Valley, Ministry of Ecology and Environment of the People's Republic of China, Wuhan, 430014, China.
| | - Xiaowei Li
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China.
| | - Wei Xing
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China; Key Laboratory of Lake and Watershed Science for Water Security, Chinese Academy of Sciences, Wuhan, 430074, China.
| |
Collapse
|
2
|
Chen Y, Li D, Liu S, Song X, Li Z, Sun J, Xu Y, Hou J. Deposited dead algae influence the microbial communities and functional potentials on the surface sediment in eutrophic shallow lakes. ENVIRONMENTAL RESEARCH 2025; 271:121072. [PMID: 39922263 DOI: 10.1016/j.envres.2025.121072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 01/06/2025] [Accepted: 02/06/2025] [Indexed: 02/10/2025]
Abstract
Dead algae deposition will change the nutrient transformation on the sediment-water interface. However, the key factors that drive nutrient turnover, particularly the influence of sediment microbiota, remain poorly understood. As a result, this study conducted an 80-day simulated incubation to investigate the effect of different deposition of death algae on microbial communities and functional potentials in sediments. It was revealed that dead algae deposition changed the microbial communities and interactions. Changes in the bacteria are not only reflected in community composition and diversity but also in the interrelation among bacteria taxa, while changes in the fungi are mainly reflected in the interrelation among fungi taxa. Meanwhile, dead algae deposition increased the abundance of mostly functional genes related to the C, N, P, and S cycle processes and improved the function potentials of microorganisms. Both of them led to the increase of PO43-, NO3-, NH4+, and TOC content in the overlying water, influencing the nutrient cycle processes. Moreover, partial least squares path modeling indicated which key factors are to influence different nutrient cycle processes. Sediment nutrients directly influenced the P cycle process, whereas the C, N, and S cycle processes were directly affected by the changes in biological properties. These results provide a new perspective on the effects of dead algal deposition on the sediment nutrient cycle processes mediated by the sediment microbiota.
Collapse
Affiliation(s)
- Yanqi Chen
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, PR China
| | - Dapeng Li
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, PR China.
| | - Songqi Liu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, PR China.
| | - Xinyu Song
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, PR China
| | - Ziyu Li
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, PR China
| | - Jingqiu Sun
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, PR China
| | - Yao Xu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, PR China
| | - Jun Hou
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, PR China, 210098
| |
Collapse
|
3
|
Yu W, Wang L, Ma X, Li J, Li Z, Wang H, Li D, Fan S, Liu C, Yu D. Restoration of submerged vegetation modulates microbial communities to decrease nitrogen and phosphorus loads in sediment-water systems. WATER RESEARCH 2025; 269:122835. [PMID: 39602861 DOI: 10.1016/j.watres.2024.122835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/28/2024] [Accepted: 11/21/2024] [Indexed: 11/29/2024]
Abstract
The release of nitrogen and phosphorus from sediments, known as internal nutrient loading, plays a crucial role in determining the eutrophic state of lakes and the timeframe for their ecological recovery. The restoration of submerged macrophytes is considered an effective measure to improve lake eutrophication. However, the impact of submerged macrophytes restoration on the storage and transformation mechanisms of nitrogen and phosphorus in lake sediment-water systems has not yet been systematically studied. This study constructed two submerged macrophyte communities with species richness of either two or five and monitored the physicochemical characteristics, nitrogen and phosphorus dynamics, and the structural and functional changes of sediment microbiomes in the plant-water-sediment system during three growth stages of the plants (May, July, and October). Our results demonstrated that the presence of submerged vegetation effectively reduced the nitrogen and phosphorus loads in the sediment-water system, encompassing their chemical forms, active concentrations, and release fluxes. Simultaneously, the restoration of submerged vegetation altered the composition of sediment microbial communities and the nitrogen and phosphorus cycling functions. Following the restoration, the abundance of functional genes associated with nitrogen fixation, organic nitrogen metabolism, nitrate reduction, and nitrification exhibited an average decrease of 2.95 %. In contrast, the abundance of genes involved in denitrification and nitrogen limitation response regulation increased by 20.24 %, while those related to phosphorus cycling processes showed a 7.29 % increase. Additionally, submerged macrophyte communities with varying richness differentially affected lake nitrogen and phosphorus loads, as well as the structure and function of sediment microbiomes, primarily related to the life cycle stages of the submerged macrophytes. These findings highlight the crucial role of submerged plants in maintaining lake nutrient balance and sediment microbiomes, providing valuable insights into how the restoration of submerged vegetation affects nutrient cycling in aquatic ecosystems.
Collapse
Affiliation(s)
- Weicheng Yu
- Dongting Lake Station for Wetland Ecosystem Research, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; The National Field Station of Freshwater Ecosystem of Liangzi Lake, College of Life Science, Wuhan University, Wuhan 430072, China
| | - Ligong Wang
- The National Field Station of Freshwater Ecosystem of Liangzi Lake, College of Life Science, Wuhan University, Wuhan 430072, China
| | - Xiaowen Ma
- Dongting Lake Station for Wetland Ecosystem Research, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Jiahe Li
- The National Field Station of Freshwater Ecosystem of Liangzi Lake, College of Life Science, Wuhan University, Wuhan 430072, China
| | - Zhuoya Li
- Dongting Lake Station for Wetland Ecosystem Research, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Huiyuan Wang
- The National Field Station of Freshwater Ecosystem of Liangzi Lake, College of Life Science, Wuhan University, Wuhan 430072, China
| | - Dexiang Li
- The National Field Station of Freshwater Ecosystem of Liangzi Lake, College of Life Science, Wuhan University, Wuhan 430072, China
| | - Shufeng Fan
- The National Field Station of Freshwater Ecosystem of Liangzi Lake, College of Life Science, Wuhan University, Wuhan 430072, China.
| | - Chunhua Liu
- The National Field Station of Freshwater Ecosystem of Liangzi Lake, College of Life Science, Wuhan University, Wuhan 430072, China.
| | - Dan Yu
- The National Field Station of Freshwater Ecosystem of Liangzi Lake, College of Life Science, Wuhan University, Wuhan 430072, China
| |
Collapse
|
4
|
Marchand J, Schoefs B. Editorial: Aquatic photosynthetic organisms under global change. FRONTIERS IN PLANT SCIENCE 2025; 15:1539716. [PMID: 39917598 PMCID: PMC11799234 DOI: 10.3389/fpls.2024.1539716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 12/30/2024] [Indexed: 02/09/2025]
Affiliation(s)
| | - Benoît Schoefs
- Metabolism, Molecular Engineering of Microalgae and Applications, Laboratory Biology of Organisms, Stress, Health and Environment, IUML – FR 3473 CNRS, Le Mans University, Le Mans, France
| |
Collapse
|
5
|
Yin X, Chen H, Jiang K, Zhang B, Li R, Zhu X, Sun L, Ng ZL, Su M. Distribution Characteristics of Nitrogen-Cycling Microorganisms in Deep-Sea Surface Sediments of Western South China Sea. Microorganisms 2024; 12:1901. [PMID: 39338575 PMCID: PMC11434414 DOI: 10.3390/microorganisms12091901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/11/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024] Open
Abstract
Nitrogen-cycling processes in the deep sea remain understudied. This study investigates the distribution of nitrogen-cycling microbial communities in the deep-sea surface sediments of the western South China Sea, using metagenomic sequencing and real-time fluorescent quantitative PCR techniques to analyze their composition and abundance, and the effects of 11 environmental parameters, including NH4+-N, NO3--N, NO2--N, PO43--P, total nitrogen (TN), total organic carbon (TOC), C/N ratio, pH, electrical conductivity (EC), SO42-, and Cl-. The phylum- and species-level microbial community compositions show that five sites can be grouped as a major cluster, with sites S1 and S9 forming a sub-cluster, and sites S13, S19, and S26 forming the other; whereas sites S3 and S5 constitute a separate cluster. This is also evident for nitrogen-cycling functional genes, where their abundance is influenced by distinct environmental conditions, including water depths (shallower at sites S1 and S9 against deeper at sites S13, S19, and S26) and unique geological features (sites S3 and S5), whereas the vertical distribution of nitrogen-cycling gene abundance generally shows a decreasing trend against sediment depth. Redundancy analysis (RDA) exploring the correlation between the 11 environmental parameters and microbial communities revealed that the NO2--N, C/N ratio, and TN significantly affect microbial community composition (p < 0.05). This study assesses the survival strategies of microorganisms within deep-sea surface sediments and their role in the marine nitrogen cycle.
Collapse
Affiliation(s)
- Xingjia Yin
- School of Marine Sciences, Sun Yat-Sen University & Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China; (X.Y.); (H.C.); (K.J.); (B.Z.); (Z.L.N.)
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Zhuhai 519082, China
- College of Life Science and Technology, Hubei Engineering University, Xiaogan 432000, China
| | - Hui Chen
- School of Marine Sciences, Sun Yat-Sen University & Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China; (X.Y.); (H.C.); (K.J.); (B.Z.); (Z.L.N.)
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Zhuhai 519082, China
| | - Kaixi Jiang
- School of Marine Sciences, Sun Yat-Sen University & Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China; (X.Y.); (H.C.); (K.J.); (B.Z.); (Z.L.N.)
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Zhuhai 519082, China
- Office of Laboratory Safety and Equipment Management, Beijing Normal University, Zhuhai 519087, China
| | - Boda Zhang
- School of Marine Sciences, Sun Yat-Sen University & Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China; (X.Y.); (H.C.); (K.J.); (B.Z.); (Z.L.N.)
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Zhuhai 519082, China
- Center for Environmental Monitoring of Geology, Shenzhen 518034, China
| | - Ruohong Li
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China; (R.L.); (X.Z.); (L.S.)
| | - Xinzhe Zhu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China; (R.L.); (X.Z.); (L.S.)
| | - Lianpeng Sun
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China; (R.L.); (X.Z.); (L.S.)
| | - Zhi Lin Ng
- School of Marine Sciences, Sun Yat-Sen University & Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China; (X.Y.); (H.C.); (K.J.); (B.Z.); (Z.L.N.)
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Zhuhai 519082, China
| | - Ming Su
- School of Marine Sciences, Sun Yat-Sen University & Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China; (X.Y.); (H.C.); (K.J.); (B.Z.); (Z.L.N.)
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Zhuhai 519082, China
| |
Collapse
|
6
|
Zhao C, Liu Y, Yan Z, Zhao W, Sun J. Combining effects of submerged macrophytes and lanthanum-modified bentonite on sediment enzyme activity: Evidence from mesocosm study. CHEMOSPHERE 2024; 364:143002. [PMID: 39097111 DOI: 10.1016/j.chemosphere.2024.143002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/27/2024] [Accepted: 07/31/2024] [Indexed: 08/05/2024]
Abstract
Lanthanum-modified bentonite (LMB) combined with submerged macrophytes (SM) has been a conventional means of eutrophication management in lakes in recent years, and is one of the most important methods for P removal. However, trends in nutrients and sediment enzymes at the water-sediment interface during this process have not been systematically assessed, and there are still some gaps in how abiotic properties drive changes in enzyme activity. Here, we show changes in aquatic environmental conditions under the action of different ratios of modified bentonite (0, 10%, 20%, and 30%) in combination with SM (Vallisneria natans, Potamogeton lucens, and Hydrilla verticillate) and quantify their effects on sediment enzyme activities. The results showed that the nutrient cycling at the water-sediment interface was facilitated by the combined effect of SM and LMB, which effectively reduced the overlying water nutrient concentration, increased the sediment enzyme activity and enhanced the N cycling process. Partial least squares structural equation model (PLS-SEM) showed that sediment parameters strongly influenced changes in enzyme activity, with NO3-N as the main controlling factors. Our study fills in the process of changing environmental conditions in lake water under geoengineered materials combined with macrophyte measures, especially the changes in biological properties enzyme activities, which contributes to a clearer understanding of nutrient fluxes during the management of eutrophication in lakes.
Collapse
Affiliation(s)
- Chenxu Zhao
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an, Shaanxi, 710048, China
| | - Yuling Liu
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an, Shaanxi, 710048, China.
| | - Zixuan Yan
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an, Shaanxi, 710048, China
| | - Wangben Zhao
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an, Shaanxi, 710048, China
| | - Jiayu Sun
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an, Shaanxi, 710048, China
| |
Collapse
|
7
|
Shi Y, Li W, Guo X. Exploring environment-specific regulation: Characterizing bacterioplankton community dynamics in a typical lake of Inner Mongolia, China. ENVIRONMENTAL RESEARCH 2024; 253:119154. [PMID: 38754616 DOI: 10.1016/j.envres.2024.119154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/12/2024] [Accepted: 05/14/2024] [Indexed: 05/18/2024]
Abstract
Lakes serve as heterogeneous ecosystems with rich microbiota. Although previous studies on bacterioplankton have advanced our understanding, there are gaps in our knowledge concerning variations in the taxonomic composition and community assembly processes of bacterioplankton across different environment conditions. This study explored the spatial dynamics, assembly processes, and co-occurrence relationships among bacterioplankton communities in 35 surface water samples collected from Hulun Lake (a grassland-type lake), Wuliangsuhai Lake (an irrigated agricultural recession type lake), and Daihai Lake (an inland lake with mixed farming and grazing) in the Inner Mongolia Plateau, China. The results indicated a significant geographical distance decay pattern, with biomarkers (Proteobacteria and Bacteroidota) exhibiting differences in the contributions of different bacteria branches to the lakes. The relative abundance of Proteobacteria (42.23%) were high in Hulun Lake and Wuliangsuhai Lake. Despite Actinobacteriota was most dominant, Firmicutes accounted for approximately 17.07% in Daihai Lake, suggested the potential detection of anthropogenic impacts on bacteria within the agro-pastoral inland lake. Lake heterogeneity caused bacterioplankton responses to phosphorus, chlorophyll a, and salinity in Hulun Lake, Wuliangsuhai Lake, and Daihai Lake. Although bacterioplankton community assembly processes in irrigated agricultural recession type lake were more affected by dispersal limitation than those in grassland-type lake and inland lake with mixed farming and grazing (approximately 52.7% in Hulun Lake), dispersal limitation and undominated processes were key modes of bacterioplankton community assembly in three lakes. This suggested stochastic processes exerted a greater impact on bacterioplankton community assembly in a typical Inner Mongolia Lake than deterministic processes. Overall, the bacterioplankton communities displayed the potential for collaboration, with lowest connectivity observed in irrigated agricultural recession type lake, which reflected the complex dynamic patterns of aquatic bacteria in typical Inner Mongolia Plateau lakes. These findings enhanced our understanding of the interspecific relationships and assembly processes among microorganisms in lakes with distinct habitats.
Collapse
Affiliation(s)
- Yujiao Shi
- Water Conservancy and Civil Engineering College, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Wenbao Li
- Water Conservancy and Civil Engineering College, Inner Mongolia Agricultural University, Hohhot, 010018, China; Inner Mongolia Key Laboratory of Protection and Utilization of Water Resources, Hohhot, 010018, China.
| | - Xin Guo
- Water Conservancy and Civil Engineering College, Inner Mongolia Agricultural University, Hohhot, 010018, China
| |
Collapse
|
8
|
Gao X, Li X, Wang Y, Lin C, Zuo Y, Li X, Xing W. Does invasive submerged macrophyte diversity affect dissimilatory nitrate reduction processes in sediments with varying microplastics? JOURNAL OF HAZARDOUS MATERIALS 2024; 472:134510. [PMID: 38704909 DOI: 10.1016/j.jhazmat.2024.134510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/24/2024] [Accepted: 04/30/2024] [Indexed: 05/07/2024]
Abstract
Nitrogen removal is essential for restoring eutrophic lakes. Microorganisms and aquatic plants in lakes are both crucial for removing excess nitrogen. However, microplastic (MP) pollution and the invasion of exotic aquatic plants have become increasingly serious in lake ecosystems due to human activity and plant-dominant traits. This field mesocosm study explored how the diversity of invasive submerged macrophytes affects denitrification (DNF), anammox (ANA), and dissimilatory nitrate reduction to ammonium (DNRA) in lake sediments with varying MPs. Results showed that invasive macrophytes suppressed DNF rates, but DNRA and ANA were less sensitive than DNF to the diversity of invasive species. Sediment MPs increased the biomass of invasive species more than native species, but did not affect microbial processes. The effects of MPs on nitrate dissimilatory reduction were process-specific. MPs increased DNF rates and the competitive advantage of DNF over DNRA by changing the sediment environment. The decoupling of DNF and ANA was also observed, with increased DNF rates and decreased ANA rates. The study findings suggested new insights into how the invasion of exotic submerged macrophytes affects the sediment nitrogen cycle complex environments.
Collapse
Affiliation(s)
- Xueyuan Gao
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Xiaowei Li
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Yingcai Wang
- Eco-Environment Monitoring and Scientific Research Center, Changjiang Basin Ecology and Environment Administration, Ministry of Ecology and Environment, Wuhan 430010, China.
| | - Cheng Lin
- Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resource and Environment, Hubei University, Wuhan 430062, China
| | - Yanxia Zuo
- Analysis and Testing Center, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Xiaolu Li
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| | - Wei Xing
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; Key Laboratory of Lake and Watershed Science for Water Security, Chinese Academy of Sciences, Wuhan 430074, China; Hubei Key Laboratory of Wetland Evolution & Ecological Restoration, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China.
| |
Collapse
|
9
|
Hu Y, Sun S, Gu X, Li Z, Zhang J, Xing Y, Wang L, Zhang W. Linking the removal of enrofloxacin to the extracellular polymers of microalgae in water bodies: A case study focusing on the shifts in microbial communities. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:48062-48072. [PMID: 39017865 DOI: 10.1007/s11356-024-34238-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 07/01/2024] [Indexed: 07/18/2024]
Abstract
Microalgae can promote antibiotic removal, which has attracted growing attention. However, its synergistic removal performance with bacteria in antibiotic pollutants is still poorly understood. In this study, firstly, we selected two green algae (Dictyosphaerium sp. and Chlorella sp.) and exposed them to Enrofloxacin (ENR) to observe their extracellular polysaccharides (EPS) concentration dynamic and the removal of antibiotics. Secondly, EPS was extracted and added to in situ lake water (no algae) to investigate its combined effect with bacteria. The results indicate that both Dictyosphaerium sp. and Chlorella sp. exhibited high tolerance to ENR stress. When the biomass of microalgae was low, ENR could significantly stimulate algae to produce EPS. The removal rates of Dictyosphaerium sp. and Chlorella sp. were 15.8% and 10.5%, respectively. The addition of EPS can both alter the microbial community structure in the lake water and promote the removal of ENR. The LEfSe analysis showed that there were significant differences in the microbial marker taxa, which promoted the increase of special functional bacteria for decomposing ENR, between the EPS-added group and the control group. The EPS of Dictyosphaerium sp. increased the abundance of Moraxellaceae and Spirosomaceae, while the EPS of Chlorella sp. increased the abundance of Sphingomonadaceae and Microbacteriaceae. Under the synergistic effect, Chlorella sp. achieved a maximum removal rate of 24.2%, while Dictyosphaerium sp. achieved a maximum removal rate of 28.9%. Our study provides new insights into the removal performance and mechanism of antibiotics by freshwater microalgae in water bodies and contribute to the development of more effective water treatment strategies.
Collapse
Affiliation(s)
- Youyin Hu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources of the Ministry of Education, Engineering Research Center of Environmental DNA and Ecological Water Health Assessment, Shanghai Ocean University, Shanghai, 201306, China
| | - Shangsheng Sun
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources of the Ministry of Education, Engineering Research Center of Environmental DNA and Ecological Water Health Assessment, Shanghai Ocean University, Shanghai, 201306, China
| | - Xuewei Gu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources of the Ministry of Education, Engineering Research Center of Environmental DNA and Ecological Water Health Assessment, Shanghai Ocean University, Shanghai, 201306, China
| | - Ziyi Li
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources of the Ministry of Education, Engineering Research Center of Environmental DNA and Ecological Water Health Assessment, Shanghai Ocean University, Shanghai, 201306, China
| | - Jialin Zhang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources of the Ministry of Education, Engineering Research Center of Environmental DNA and Ecological Water Health Assessment, Shanghai Ocean University, Shanghai, 201306, China
| | - Yawei Xing
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources of the Ministry of Education, Engineering Research Center of Environmental DNA and Ecological Water Health Assessment, Shanghai Ocean University, Shanghai, 201306, China
| | - Liqing Wang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources of the Ministry of Education, Engineering Research Center of Environmental DNA and Ecological Water Health Assessment, Shanghai Ocean University, Shanghai, 201306, China
| | - Wei Zhang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources of the Ministry of Education, Engineering Research Center of Environmental DNA and Ecological Water Health Assessment, Shanghai Ocean University, Shanghai, 201306, China.
| |
Collapse
|
10
|
Wang X, Yang Y, Nan Q, Guo JW, Tan Z, Shao X, Tian C. Barley farmland harbors a highly homogeneous soil bacterial community compared to wild ecosystems in the Qinghai-Xizang Plateau. Front Microbiol 2024; 15:1418161. [PMID: 38979541 PMCID: PMC11228161 DOI: 10.3389/fmicb.2024.1418161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 06/11/2024] [Indexed: 07/10/2024] Open
Abstract
Introduction Understanding patterns and processes of microbial biogeography in soils is important for monitoring ecological responses to human activities, particularly in ecologically vulnerable areas such as the Qinghai-Xizang Plateau. Highland barley is the staple food of local people and has mainly been cultivated along the Yarlung Zangbo River valley in Xizang. Methods Here we investigated soil bacterial communities from 33 sampling sites of highland barley farmland in this region and compared them to those from wild ecosystems including alpine tundra, meadow, forest, and swamp. Additionally, the effects of environmental factors on bacterial communities, as well as the relative importance of stochastic and deterministic processes in shaping the beta diversity of soil bacterial communities in alpine ecosystems were assessed. Results In contrast to soils of wild ecosystems, these farmland samples harbored a highly homogeneous bacterial community without significant correlations with geographic, elevation, and edaphic distances. Discriminant bacterial taxa identified for farmland samples belong to Acidobacteria, with Acidobacteria Gp4 as the dominant clade. Although Acidobacteria were the most abundant members in all ecosystems, characterized bacterial taxa of meadow and forest were members of other phyla such as Proteobacteria and Verrucomicrobia. pH and organic matter were major edaphic attributes shaping these observed patterns across ecosystems. Null model analyses revealed that the deterministic assembly was dominant in bacterial communities in highland barley farmland and tundra soils, whereas stochastic assembly also contributed a large fraction to the assembly of bacterial communities in forest, meadow and swamp soils. Discussion These findings provide an insight into the consequences of human activities and agricultural intensification on taxonomic homogenization of soil bacterial communities in the Qinghai-Xizang Plateau.
Collapse
Affiliation(s)
- Xiaolin Wang
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, China
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yibin Yang
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, China
| | - Qiong Nan
- Institute of Environmental Science and Technology, College of Environment and Resource Science, Zhejiang University, Hangzhou, China
| | - Jian-Wei Guo
- College of Agronomy and Life Sciences, Yunnan Urban Agricultural Engineering and Technological Research Center, Kunming University, Kunming, China
| | - Zhiyuan Tan
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, China
| | - Xiaoming Shao
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Changfu Tian
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| |
Collapse
|
11
|
Liu J, Huang X, Jiang X, Qing C, Li Y, Xia P. Loss of submerged macrophytes in shallow lakes alters bacterial and archaeal community structures, and reduces their co-occurrence networks connectivity and complexity. Front Microbiol 2024; 15:1380805. [PMID: 38601927 PMCID: PMC11004660 DOI: 10.3389/fmicb.2024.1380805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 03/12/2024] [Indexed: 04/12/2024] Open
Abstract
Introduction Bacteria and archaea are important components in shallow lake ecosystems and are crucial for biogeochemical cycling. While the submerged macrophyte loss is widespread in shallow lakes, the effect on the bacteria and archaea in the sediment and water is not yet widely understood. Methods In this study, 16S rRNA gene sequencing was used to explore the bacteria and archaea in samples taken from the sediment and water in the submerged macrophyte abundant (MA) and submerged macrophyte loss (ML) areas of Caohai Lake, Guizhou, China. Results The results showed that the dominant bacterial phyla were Proteobacteria and Chloroflexi in the sediment; the dominant phyla were Proteobacteria, Actinobacteriota, and Bacteroidota in the water. The dominant archaea in sediment and water were the same, in the order of Crenarchaeota, Thermoplasmatota, and Halobacterota. Non-metric multidimensional scaling (NMDS) analyses showed that bacterial and archaeal community structures in the water were significantly affected by the loss of submerged macrophytes, but not by significant changes in the sediment. This suggests that the loss of submerged macrophytes has a stronger effect on the bacterial and archaeal community structures in water than in sediment. Furthermore, plant biomass (PB) was the key factor significantly influencing the bacterial community structure in water, while total nitrogen (TN) was the main factor significantly influencing the archaeal community structure in water. The loss of submerged macrophytes did not significantly affect the alpha diversity of the bacterial and archaeal communities in either the sediment or water. Based on network analyses, we found that the loss of submerged macrophytes reduced the connectivity and complexity of bacterial patterns in sediment and water. For archaea, network associations were stronger for MA network than for ML network in sediment, but network complexity for archaea in water was not significantly different between the two areas. Discussion This study assesses the impacts of submerged macrophyte loss on bacteria and archaea in lakes from microbial perspective, which can help to provide further theoretical basis for microbiological research and submerged macrophytes restoration in shallow lakes.
Collapse
Affiliation(s)
- Jiahui Liu
- Guizhou Province Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, Guiyang, China
| | - Xianfei Huang
- Guizhou Province Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, Guiyang, China
| | - Xin Jiang
- Guizhou Province Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, Guiyang, China
| | - Chun Qing
- Guizhou Province Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, Guiyang, China
| | - Yue Li
- Guizhou Caohai National Nature Reserve Management Committee, Bijie, Guizhou, China
| | - Pinhua Xia
- Guizhou Province Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, Guiyang, China
| |
Collapse
|
12
|
Tao M, Zhang C, Zhang Z, Zuo Z, Zhao H, Lv T, Li Y, Yu H, Liu C, Yu D. Species-specific functional trait responses of canopy-forming and rosette-forming macrophytes to nitrogen loading: Implications for water-sediment interactions. ENVIRONMENT INTERNATIONAL 2024; 185:108557. [PMID: 38458117 DOI: 10.1016/j.envint.2024.108557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 03/03/2024] [Accepted: 03/03/2024] [Indexed: 03/10/2024]
Abstract
Globally intensified lake eutrophication, attributed to excessive anthropogenic nitrogen loading, emerges as a significant driver of submerged vegetation degradation. Consequently, the impact of nitrogen on the decline of submerged macrophytes has received increasing attention. However, a functional trait-based approach to exploring the response of submerged macrophytes to nitrogen loading and its environmental feedback mechanism was unclear. Our study utilized two different growth forms of submerged macrophytes (canopy-forming Myriophyllum spicatum, and rosette-forming Vallisneria natans) to established "submerged macrophytes-water-sediment" microcosms. We assessed the influence of nitrogen loading, across four targeted total nitrogen concentrations (original control, 2, 5, 10 mg/L), on plant traits, water parameters, sediment properties, enzyme activities, and microbial characteristics. Our findings revealed that high nitrogen (10 mg/L) adversely impacted the relative growth rate of fresh biomass and total chlorophyll content in canopy-forming M. spicatum, while the chlorophyll a/b and free amino acid content increased. On the contrary, the growth and photosynthetic traits of resource-conservative V. natans were not affected by nitrogen loading. Functional traits (growth, photosynthetic, and stoichiometric) of M. spicatum but not V. natans exhibited significant correlations with environmental variables. Nitrogen loading significantly increased the concentration of nitrogen components in overlying water and pore water. The presence of submerged macrophytes significantly reduced the ammonia nitrogen and total nitrogen both in overlying water and pore water, and decreased total organic carbon in pore water. Nitrogen loading significantly inhibited sediment extracellular enzyme activities, but the planting of submerged macrophytes mitigated their negative effects. Furthermore, rhizosphere bacterial interactions were less compact compared to bare control, while eukaryotic communities exhibited increased complexity and connectivity. Path modeling indicated that submerged macrophytes mitigated the direct effects of nitrogen loading on overlying water and amplified the indirect effects on pore water, while also attenuating the direct negative effects of pore water on extracellular enzymes. The findings indicated that the restoration of submerged vegetation can mitigate eutrophication resulting from increased nitrogen loading through species-specific changes in functional traits and direct or indirect feedback mechanisms in the water-sediment system.
Collapse
Affiliation(s)
- Min Tao
- The National Field Station of Freshwater Ecosystem of Liangzi Lake, College of Life Science, Wuhan University, Wuhan, PR China
| | - Chang Zhang
- The National Field Station of Freshwater Ecosystem of Liangzi Lake, College of Life Science, Wuhan University, Wuhan, PR China
| | - Zhiqiang Zhang
- The National Field Station of Freshwater Ecosystem of Liangzi Lake, College of Life Science, Wuhan University, Wuhan, PR China
| | - Zhenjun Zuo
- The National Field Station of Freshwater Ecosystem of Liangzi Lake, College of Life Science, Wuhan University, Wuhan, PR China
| | - Haocun Zhao
- The National Field Station of Freshwater Ecosystem of Liangzi Lake, College of Life Science, Wuhan University, Wuhan, PR China
| | - Tian Lv
- The National Field Station of Freshwater Ecosystem of Liangzi Lake, College of Life Science, Wuhan University, Wuhan, PR China
| | - Yang Li
- The National Field Station of Freshwater Ecosystem of Liangzi Lake, College of Life Science, Wuhan University, Wuhan, PR China
| | - Haihao Yu
- The National Field Station of Freshwater Ecosystem of Liangzi Lake, College of Life Science, Wuhan University, Wuhan, PR China
| | - Chunhua Liu
- The National Field Station of Freshwater Ecosystem of Liangzi Lake, College of Life Science, Wuhan University, Wuhan, PR China.
| | - Dan Yu
- The National Field Station of Freshwater Ecosystem of Liangzi Lake, College of Life Science, Wuhan University, Wuhan, PR China.
| |
Collapse
|
13
|
Jiang X, Wang M, He D, Zhu J, Yang S, Fang F, Yang L. Submerged macrophyte promoted nitrogen removal function of biofilms in constructed wetland. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 914:169666. [PMID: 38184255 DOI: 10.1016/j.scitotenv.2023.169666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/29/2023] [Accepted: 12/23/2023] [Indexed: 01/08/2024]
Abstract
Biofilm is one of the important factors affecting nitrogen removal in constructed wetlands (CWs). However, the impact of submerged macrophyte on nitrogen conversion of biofilms on leaf of submerged macrophyte and matrix remains poorly understood. In this study, the CWs with Vallisneria natans and with artificial plant were established to investigate the effects of submerged macrophyte on nitrogen conversion and the composition of nitrogen-converting bacteria in leaf and matrix biofilms under high ammonium nitrogen (NH4+-N) loading. The 16S rRNA sequencing method was employed to explore the changes in bacterial communities in biofilms in CWs. The results showed that average removal rates of total nitrogen and NH4+-N in CW with V. natans reached 71.38% and 82.08%, respectively, representing increases of 24.19% and 28.79% compared with the control with artificial plant. Scanning electron microscope images indicated that high NH4+-N damaged the leaf cells of V. natans, leading to the cellular content release and subsequent increases of aqueous total organic carbon. However, the specific surface area and carrier function of V. natans were unaffected within 25 days. As a natural source of organic matters, submerged macrophyte provided organic matters for bacterial growth in biofilms. Bacterial composition analysis revealed the predominance of phylum Proteobacteria in CW with V. natans. The numbers of nitrifiers and denitrifiers in leaf biofilms reached 1.66 × 105 cells/g and 1.05 × 107 cells/g, as well as 2.79 × 105 cells/g and 7.41 × 107 cells/g in matrix biofilms, respectively. Submerged macrophyte significantly increased the population of nitrogen-converting bacteria and enhanced the expressions of nitrification genes (amoA and hao) and denitrification genes (napA, nirS and nosZ) in both leaf and matrix biofilms. Therefore, our study emphasized the influence of submerged macrophyte on biofilm functions and provided a scientific basis for nitrogen removal of biofilms in CWs.
Collapse
Affiliation(s)
- Xue Jiang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, PR China
| | - Mengmeng Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, PR China
| | - Di He
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, PR China
| | - Jinling Zhu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, PR China
| | - Shunqing Yang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, PR China
| | - Fei Fang
- School of Resources and Environment, Anqing Normal University, Anqing 246133, PR China
| | - Liuyan Yang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, PR China.
| |
Collapse
|
14
|
Zhang L, Bai J, Zhai Y, Zhang K, Wang Y, Tang R, Xiao R, Jorquera MA. Seasonal changes in N-cycling functional genes in sediments and their influencing factors in a typical eutrophic shallow lake, China. Front Microbiol 2024; 15:1363775. [PMID: 38374918 PMCID: PMC10876089 DOI: 10.3389/fmicb.2024.1363775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 01/22/2024] [Indexed: 02/21/2024] Open
Abstract
N-cycling processes mediated by microorganisms are directly linked to the eutrophication of lakes and ecosystem health. Exploring the variation and influencing factors of N-cycling-related genes is of great significance for controlling the eutrophication of lakes. However, seasonal dynamics of genomic information encoding nitrogen (N) cycling in sediments of eutrophic lakes have not yet been clearly addressed. We collected sediments in the Baiyangdian (BYD) Lake in four seasons to explore the dynamic variation of N-cycling functional genes based on a shotgun metagenome sequencing approach and to reveal their key influencing factors. Our results showed that dissimilatory nitrate reduction (DNRA), assimilatory nitrate reduction (ANRA), and denitrification were the dominant N-cycling processes, and the abundance of nirS and amoC were higher than other functional genes by at least one order of magnitude. Functional genes, such as nirS, nirK and amoC, generally showed a consistent decreasing trend from the warming season (i.e., spring, summer, fall) to the cold season (i.e., winter). Furthermore, a significantly higher abundance of nitrification functional genes (e.g., amoB, amoC and hao) in spring and denitrification functional genes (e.g., nirS, norC and nosZ) in fall were observed. N-cycling processes in four seasons were influenced by different dominant environmental factors. Generally, dissolved organic carbon (DOC) or sediment organic matter (SOM), water temperature (T) and antibiotics (e.g., Norfloxacin and ofloxacin) were significantly correlated with N-cycling processes. The findings imply that sediment organic carbon and antibiotics may be potentially key factors influencing N-cycling processes in lake ecosystems, which will provide a reference for nitrogen management in eutrophic lakes.
Collapse
Affiliation(s)
- Ling Zhang
- School of Environment, Beijing Normal University, Beijing, China
- School of Chemistry and Chemical Engineering, Qinghai Normal University, Xining, China
| | - Junhong Bai
- School of Environment, Beijing Normal University, Beijing, China
| | - Yujia Zhai
- School of Environment, Beijing Normal University, Beijing, China
| | - Kegang Zhang
- Department of Environmental Engineering and Science, North China Electric Power University, Baoding, China
| | - Yaqi Wang
- School of Environment, Beijing Normal University, Beijing, China
| | - Ruoxuan Tang
- School of Environment, Beijing Normal University, Beijing, China
| | - Rong Xiao
- College of Environment & Safety Engineering, Fuzhou University, Fuzhou, China
| | - Milko A. Jorquera
- Laboratorio de Ecología Microbiana Aplicada (EMALAB), Departamento de Ciencias Químicas y Recursos Naturales, Universidad de La Frontera, Temuco, Chile
| |
Collapse
|
15
|
Peng Q, Huo B, Yang H, Xu Z, Mao H, Yang S, Dai Y, Li Z, Deng X. Increased invasion of submerged macrophytes makes native species more susceptible to eutrophication in freshwater ecosystems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 909:168658. [PMID: 37979865 DOI: 10.1016/j.scitotenv.2023.168658] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/13/2023] [Accepted: 11/15/2023] [Indexed: 11/20/2023]
Abstract
Invasion and eutrophication are considered to pose serious threats to freshwater biodiversity and ecosystem function. However, little is known about the synergistic effects of invasion density and nutrient concentration on native submerged macrophytes. Here, we selected a common invasive species (Elodea nuttallii) and two native plants (Hydrilla verticillata and Potamogeton maackianus) to elucidate the effects of invasion density and eutrophication on native submerged plants. We found that (1) high nutrient concentrations inhibited the growth of both invasive and native species, but E. nuttallii, with a wide ecological niche, was more tolerant to eutrophication than the two native species. (2) High invasion density had a remarkable negative effect on the growth of the two native species under the medium and high nutrient concentrations. (3) Medium and high invasion densities of E. nuttallii made native macrophytes more susceptible to eutrophication. (4) The two native macrophytes had species-specific responses to medium and high invasion densities under medium and high nutrient concentrations. Specifically, a high invasion density of E. nuttallii significantly delayed the growth of H. verticillata rather than P. maackianus. Thus, it is necessary to consider the synergistic effects of invasion with eutrophication when assessing invasion in freshwater ecosystems. And our results implied that invasion with eutrophication was a powerful factor determining the results of interspecific competition among submerged macrophytes, which could change the biodiversity, community structure and functions of freshwater ecosystems.
Collapse
Affiliation(s)
- Qiutong Peng
- Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resource and Environment, Hubei University, Wuhan 430062, China.
| | - Bingbing Huo
- Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resource and Environment, Hubei University, Wuhan 430062, China.
| | - Hui Yang
- Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resource and Environment, Hubei University, Wuhan 430062, China.
| | - Zhiyan Xu
- Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resource and Environment, Hubei University, Wuhan 430062, China.
| | - Hongzhi Mao
- Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resource and Environment, Hubei University, Wuhan 430062, China.
| | - Shiwen Yang
- Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resource and Environment, Hubei University, Wuhan 430062, China.
| | - Yuitai Dai
- Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resource and Environment, Hubei University, Wuhan 430062, China.
| | - Zhongqiang Li
- Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resource and Environment, Hubei University, Wuhan 430062, China.
| | - Xuwei Deng
- Donghu Experimental Station of Lake Ecosystems, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| |
Collapse
|
16
|
de Paula M, da Costa TA, Silva, Soriano AAB, Lacorte GA. Spatial distribution of sediment bacterial communities from São Francisco River headwaters is influenced by human land-use activities and seasonal climate shifts. Braz J Microbiol 2023; 54:3005-3019. [PMID: 37910306 PMCID: PMC10689647 DOI: 10.1007/s42770-023-01150-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 10/05/2023] [Indexed: 11/03/2023] Open
Abstract
Riverbed sediments are dynamic freshwater environments colonized by a great diversity of microorganisms which play important roles in supporting freshwater ecosystem by performing a vast array of metabolic functions. Recent evidence generated by HTS approaches has revealed that the structure of sediment microbial communities is influenced by natural seasonal variations in water such as temperature or streamflow as well by disturbances caused by local human activities. Here, a spatiotemporal analysis of sediment microbial distribution from São Francisco River headwaters section was conducted using Illumina 16S rRNA-V4 region amplicon sequencing in order to accomplish three major goals: (i) to investigate whether the diversity and composition of bacterial communities accessed in riverbed sediments vary in response to distinct land-use activities; (ii) to estimate whether the diversity patterns vary between the dry and wet seasons; and (iii) to evaluate whether the diversity of bacterial metabolic functions, predicted by PICRUSt2 approach, varies similarly to the estimated taxonomic diversity. Our findings revealed that bacterial communities in the sediment show differences in diversity and taxonomic composition according to the anthropic activities performed in the local environment. However, the patterns in which this taxonomic diversity is spatially structured show differences between the dry and wet seasons. On the other hand, the most changes in predicted bacterial metabolic functions were verified between sediment samples accessed in portions of the river located in protected and unprotected areas. Our findings contributed with new evidence about the impact of typical land-use practices conducted in countryside landscapes from developing countries on riverbed bacterial communities, both in their taxonomic and functional structure.
Collapse
Affiliation(s)
- Marcos de Paula
- Bambuí Campus, Federal Institute of Minas Gerais, Bambuí, Minas Gerais State, Brazil
| | | | - Silva
- Bambuí Campus, Federal Institute of Minas Gerais, Bambuí, Minas Gerais State, Brazil
| | | | | |
Collapse
|
17
|
Zhang J, Liu K, Li Y, Deng H, Huang D, Zhang J. Characterization and seasonal variation in biofilms attached to leaves of submerged plant. World J Microbiol Biotechnol 2023; 40:19. [PMID: 37993701 DOI: 10.1007/s11274-023-03832-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 11/08/2023] [Indexed: 11/24/2023]
Abstract
The microorganisms and functional predictions of leaf biofilms on submerged plants (Vallisneria natans (Val)) and in water samples (surface water (S) and bottom water (B)) in different seasons were evaluated in this study. S and B groups had 3249 identical operational taxonomic units (OTUs) (50.03%), while the Val group only had 1201 (18.49%) unique OTUs. There was significant overlap between microbial communities of S and B groups in the same season, while Val group showed the greater diversity. The dominant microbial clades were Proteobacteria (18.2-47.3%), Cyanobacteria (3.74-39.3%), Actinobacteria (1.64-29.3%), Bacteroidetes (1.31-21.7%), and Firmicutes (1.10-15.72%). Furthermore, there was a significant relationship between total organic carbon and the distribution of microbial taxa (p = 0.047), and TN may have altered the status of Cyanobacteria by affecting its biological nitrogen fixation capacity and reproductive capacity. The correlation network analysis results showed that the whole system consisted of 249 positive correlations and 111 negative correlations, indicating strong interactions between microbial communities. Functional predictions indicated that microbial functions were related to seasonal variation. These findings would guide the use of submerged plants to improve the diversity and stability of wetland microbial communities.
Collapse
Affiliation(s)
- Jiawei Zhang
- Department of Environmental Science and Engineering, Fudan Unersity, Shanghai, 200433, P.R. China
- Shanghai Shifang Ecology and Landscape Co., Ltd, Shanghai, 200233, P.R. China
| | - Kexuan Liu
- Department of Environmental Science and Engineering, Fudan Unersity, Shanghai, 200433, P.R. China
| | - Yaguang Li
- Department of Environmental Science and Engineering, Fudan Unersity, Shanghai, 200433, P.R. China
- Shanghai Shifang Ecology and Landscape Co., Ltd, Shanghai, 200233, P.R. China
| | - Hong Deng
- School of Ecological and Environmental Science, Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, Institute of Eco-Chongming, East China Normal University, Shanghai, 200241, P.R. China
| | - Deying Huang
- Department of Chemistry, Fudan University, Shanghai, 200433, P.R. China.
| | - Jibiao Zhang
- Department of Environmental Science and Engineering, Fudan Unersity, Shanghai, 200433, P.R. China.
- Shanghai Shifang Ecology and Landscape Co., Ltd, Shanghai, 200233, P.R. China.
| |
Collapse
|
18
|
Jiang X, Liu C, Cai J, Hu Y, Shao K, Tang X, Gong Y, Yao X, Xu Q, Gao G. Relationships between environmental factors and N-cycling microbes reveal the indirect effect of further eutrophication on denitrification and DNRA in shallow lakes. WATER RESEARCH 2023; 245:120572. [PMID: 37688860 DOI: 10.1016/j.watres.2023.120572] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 08/23/2023] [Accepted: 09/01/2023] [Indexed: 09/11/2023]
Abstract
Traditional views indicate that eutrophication and subsequent algal blooms favor denitrification and dissimilatory nitrate reduction to ammonium (DNRA) in lake ecosystems. However, lakes tend to show an increasing propensity for inorganic nitrogen (N) limitation as they become more eutrophic. Thus, the influence of further eutrophication on denitrification and DNRA in eutrophic lakes are unclear due to the uncertainty of N availability. To fill this gap, we investigated the genes abundance (AOA, AOB, nirS, nirK and nrfA) and the composition of N-cycling microbes through quantitative PCR and 16S rRNA sequencing analysis, respectively, in 15 shallow eutrophic lakes of the Yangtze-Huaihe River basin, China. The results indicated that denitrification and DNRA rates could be modulated mainly by their functional gene abundances (nirS, nirK and nrfA), followed by the environmental factors (sediment total organic carbon and nitrogen). Denitrification rates significantly increased from slightly to highly eutrophic lakes, but DNRA rates were not. An explanation is that nitrification provided ample nitrate for denitrification, and this cooperative interaction was indicated by the positive correlation of their gene abundances. In addition, Pseudomonas and Anaeromyxobacter was the dominant genus mediated denitrification and DNRA, showing the potential to perform facultative anaerobic and strict anaerobic nitrate reduction, respectively. High level of dissolved oxygen might favor the facultatively aerobic denitrifiers over the obligately anaerobic fermentative DNRA bacteria in these shallow lakes. Chlorophyll a had a weak but positive effect on the gene abundances for nitrification (AOA and AOB). Further eutrophication had an indirect effect on denitrification and DNRA rates through modulating the genes abundances of N-cycling microbes.
Collapse
Affiliation(s)
- Xingyu Jiang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Changqing Liu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jian Cai
- Xiangyang Polytechnic, Xiangyang 441050, China
| | - Yang Hu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Keqiang Shao
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Xiangming Tang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Yi Gong
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Xiaolong Yao
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Qiujin Xu
- Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Guang Gao
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China.
| |
Collapse
|
19
|
Ding J, Yang W, Liu X, Zhao Q, Dong W, Zhang C, Liu H, Zhao Y. Unraveling the rate-limiting step in microorganisms' mediation of denitrification and phosphorus absorption/transport processes in a highly regulated river-lake system. Front Microbiol 2023; 14:1258659. [PMID: 37901815 PMCID: PMC10613053 DOI: 10.3389/fmicb.2023.1258659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 09/12/2023] [Indexed: 10/31/2023] Open
Abstract
River-lake ecosystems are indispensable hubs for water transfers and flow regulation engineering, which have frequent and complex artificial hydrological regulation processes, and the water quality is often unstable. Microorganisms usually affect these systems by driving the nutrient cycling process. Thus, understanding the key biochemical rate-limiting steps under highly regulated conditions was critical for the water quality stability of river-lake ecosystems. This study investigated how the key microorganisms and genes involving nitrogen and phosphorus cycling contributed to the stability of water by combining 16S rRNA and metagenomic sequencing using the Dongping river-lake system as the case study. The results showed that nitrogen and phosphorus concentrations were significantly lower in lake zones than in river inflow and outflow zones (p < 0.05). Pseudomonas, Acinetobacter, and Microbacterium were the key microorganisms associated with nitrate and phosphate removal. These microorganisms contributed to key genes that promote denitrification (nirB/narG/narH/nasA) and phosphorus absorption and transport (pstA/pstB/pstC/pstS). Partial least squares path modeling (PLS-PM) revealed that environmental factors (especially flow velocity and COD concentration) have a significant negative effect on the key microbial abundance (p < 0.001). Our study provides theoretical support for the effective management and protection of water transfer and the regulation function of the river-lake system.
Collapse
Affiliation(s)
- Jiewei Ding
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, China
| | - Wei Yang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, China
| | - Xinyu Liu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, China
| | - Qingqing Zhao
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Ji'nan, China
| | - Weiping Dong
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, China
| | - Chuqi Zhang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, China
| | - Haifei Liu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, China
| | - Yanwei Zhao
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, China
| |
Collapse
|
20
|
Zhao S, Zhao X, Li Y, Zhang R, Zhao Y, Fang H, Li W. Impact of altered groundwater depth on soil microbial diversity, network complexity and multifunctionality. Front Microbiol 2023; 14:1214186. [PMID: 37601343 PMCID: PMC10434790 DOI: 10.3389/fmicb.2023.1214186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 07/12/2023] [Indexed: 08/22/2023] Open
Abstract
Understanding the effects of groundwater depth on soil microbiota and multiple soil functions is essential for ecological restoration and the implementation of groundwater conservation. The current impact of increased groundwater levels induced by drought on soil microbiota and multifunctionality remains ambiguous, which impedes our understanding of the sustainability of water-scarce ecosystems that heavily rely on groundwater resources. This study investigated the impacts of altered groundwater depths on soil microbiota and multifunctionality in a semi-arid region. Three groundwater depth levels were studied, with different soil quality and soil moisture at each level. The deep groundwater treatment had negative impacts on diversity, network complexity of microbiota, and the relationships among microbial phylum unites. Increasing groundwater depth also changed composition of soil microbiota, reducing the relative abundance of dominant phyla including Proteobacteria and Ascomycota. Increasing groundwater depth led to changes in microbial community characteristics, which are strongly related to alterations in soil multifunctionality. Overall, our results suggest that groundwater depth had a strongly effect on soil microbiota and functionality.
Collapse
Affiliation(s)
- Siteng Zhao
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xueyong Zhao
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
- University of Chinese Academy of Sciences, Beijing, China
- Naiman Desertification Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Tongliao, China
| | - Yulin Li
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
- University of Chinese Academy of Sciences, Beijing, China
- Naiman Desertification Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Tongliao, China
| | - Rui Zhang
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
- University of Chinese Academy of Sciences, Beijing, China
- Naiman Desertification Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Tongliao, China
| | - Yanming Zhao
- Tongliao Hydrology and Water Resources Sub-center, Tongliao, China
| | - Hong Fang
- Tongliao Hydrology and Water Resources Sub-center, Tongliao, China
| | - Wenshuang Li
- Tongliao Hydrology and Water Resources Sub-center, Tongliao, China
| |
Collapse
|
21
|
Feng L, Zhang Z, Yang G, Wu G, Yang Q, Chen Q. Microbial communities and sediment nitrogen cycle in a coastal eutrophic lake with salinity and nutrients shifted by seawater intrusion. ENVIRONMENTAL RESEARCH 2023; 225:115590. [PMID: 36863651 DOI: 10.1016/j.envres.2023.115590] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 02/24/2023] [Accepted: 02/26/2023] [Indexed: 06/18/2023]
Abstract
Coastal waters are often influenced by seawater intrusion and terrestrial emissions because of its special location. In this study, the dynamics of microbial community with the role of nitrogen cycle in sediment in a coastal eutrophic lake were studied under a warm season. The water salinity gradually increased from 0.9‰ in June to 4.2‰ in July and 10.5‰ in August because of seawater invasion. Bacterial diversity of surface water was positively related with salinity and nutrients of total nitrogen (TN) as well as total phosphorus (TP), but eukaryotic diversity had no relationship with salinity. In surface water, algae belonging to Cyanobacteria and Chlorophyta were dominant phyla in June with the relative abundances of >60%, but Proteobacteria became the largest bacterial phylum in August. The variation of these predominant microbes had strong relationship with salinity and TN. In sediment, the bacterial and eukaryotic diversity was greater than that of water, and a significantly different microbial community was observed with dominant bacterial phyla Proteobacteria and Chloroflexi, and dominant eukaryotic phyla Bacillariophyta, Arthropoda, and Chlorophyta. Proteobacteria was the only enhanced phylum in the sediment with the highest relative abundance of 54.62% ± 8.34% due to seawater invasion. Denitrifying genera (29.60%-41.81%) were dominant in surface sediment, then followed by microbes related to nitrogen fixation (24.09%-28.87%), assimilatory nitrogen reduction (13.54%-19.17%), dissimilatory nitrite reduction to ammonium (DNRA, 6.49%-10.51%) and ammonification (3.07%-3.71%). Higher salinity caused by seawater invasion enhanced the accumulation of genes involved in dentrificaiton, DNRA and ammonification, but decreased genes related to nitrogen fixation and assimilatory nitrogen reduction. Significant variation of dominant genes of narG, nirS, nrfA, ureC, nifA and nirB mainly caused by the changes in Proteobacteria and Chloroflexi. The discovery of this study would be helpful to understand the variation of microbial community and nitrogen cycle in coastal lake under seawater intrusion.
Collapse
Affiliation(s)
- Lijuan Feng
- Zhejiang Provincial Key Laboratory of Petrochemical Pollution Control, Zhejiang Ocean University, Zhoushan, 316022, People's Republic of China; College of Marine Science and Technology, Zhejiang Ocean University, Zhoushan, 316022, People's Republic of China
| | - Zeliang Zhang
- College of Marine Science and Technology, Zhejiang Ocean University, Zhoushan, 316022, People's Republic of China
| | - Guangfeng Yang
- Zhejiang Provincial Key Laboratory of Petrochemical Pollution Control, Zhejiang Ocean University, Zhoushan, 316022, People's Republic of China.
| | - GuiYang Wu
- College of Marine Science and Technology, Zhejiang Ocean University, Zhoushan, 316022, People's Republic of China
| | - Qiao Yang
- Zhejiang Provincial Key Laboratory of Petrochemical Pollution Control, Zhejiang Ocean University, Zhoushan, 316022, People's Republic of China; Donghai Laboratory, Zhoushan, 316022, People's Republic of China
| | - Qingguo Chen
- Zhejiang Provincial Key Laboratory of Petrochemical Pollution Control, Zhejiang Ocean University, Zhoushan, 316022, People's Republic of China
| |
Collapse
|
22
|
Lei Y, Dong F, Liu X, Ma B, Huang W. Short-term variations and correlations in water quality after dam removal in the Chishui river basin. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 327:116917. [PMID: 36470191 DOI: 10.1016/j.jenvman.2022.116917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 11/20/2022] [Accepted: 11/26/2022] [Indexed: 06/17/2023]
Abstract
Dam damming has an adverse effect on river connectivity, leading to downstream nutrient transport and ecosystem fragmentation. Dam demolition has already been used as an effective measurement to promote the ecological restoration of rivers. Few studies have analyzed the short-term variations of water quality following dam removal. This study investigated the response of multi-element and multi-form water quality parameters, such as water temperature (TEM), dissolved oxygen (DO), pH, biochemical oxygen demand (BOD5), chemical oxygen demand (COD), ammonia nitrogen (NH3-N), total nitrogen (TN) and total phosphorus (TP), to the demolition of 4 dams in Chishui River Basin in short term. The study employed Spearman correlation analysis and Generalized Additive Models to identify the critical variables and examine the inter-relationship between these water quality parameters. Our results show that COD, BOD5, and TP increased after two weeks of dam removal, while NH3-N and TN decreased. Dams with larger volumes and higher heights led to more obvious deterioration for DO, COD, and BOD5. We also found that denitrification and resuspension dominantly affect the water quality indicators following dam removal. Denitrification is responsible for downstream TN increase, and resuspension and related sediment transport contribute to downstream TP increase. Our study provides an opportunity to explore the transformation and migration of N and P in reservoirs following dam removal in the short term and presents a scientific basis and new thought for the short-term protection and management following the clean-up and rectification of multiple small hydropower plants.
Collapse
Affiliation(s)
- Yang Lei
- State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, Beijing, 100038, China; China Institute of Water Resources and Hydropower Research, Beijing, 100038, China
| | - Fei Dong
- State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, Beijing, 100038, China; China Institute of Water Resources and Hydropower Research, Beijing, 100038, China.
| | - Xiaobo Liu
- State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, Beijing, 100038, China; China Institute of Water Resources and Hydropower Research, Beijing, 100038, China.
| | - Bing Ma
- State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, Beijing, 100038, China; China Institute of Water Resources and Hydropower Research, Beijing, 100038, China
| | - Wei Huang
- State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, Beijing, 100038, China; China Institute of Water Resources and Hydropower Research, Beijing, 100038, China; Guizhou Institute of Water Conservancy Science, Guizhou, Guiyang, 550002, China
| |
Collapse
|
23
|
Li X, Deng Q, Zhang Z, Bai D, Liu Z, Cao X, Zhou Y, Song C. The role of sulfur cycle and enzyme activity in dissimilatory nitrate reduction processes in heterotrophic sediments. CHEMOSPHERE 2022; 308:136385. [PMID: 36096301 DOI: 10.1016/j.chemosphere.2022.136385] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 09/02/2022] [Accepted: 09/05/2022] [Indexed: 06/15/2023]
Abstract
The dissimilatory nitrate (NO3-) reduction processes (DNRPs) play an important role in regulating the nitrogen (N) balance of aquatic ecosystem. Organic carbon (OC) and sulfur are important factors that influence the DNRPs. In this study, we investigated the effects of sulfur cycle and enzyme activity on DNRPs in the natural and human-modified heterotrophic sediments. Quarterly monitoring of anaerobic ammonium oxidation, denitrification (DNF), and dissimilatory NO3- reduction to ammonium (DNRA) in sediments was conducted using 15N isotope tracing method. qPCR and high-throughput sequencing were applied to characterize the DNF and DNRA microbial abundances and communities. Results showed that instead of the OC, the glucosidase activity (GLU) was the key driver of the DNRPs. Furthermore, instead of the ratio of OC to NO3-, the GLU and the ratio of OC to sulfide (C/S) correctly indicated the partitioning of DNRPs in this study. We deduced that the sulfur reduction processes competed with the DNRPs for the available OC. In addition, the inhibitory effect of sulfide (final product of the sulfur reduction processes) on the DNRPs bacterial community were observed, which suggested a general restrictive role of the sulfur cycle in the regulation and partitioning of the DNRPs in heterotrophic sediments.
Collapse
Affiliation(s)
- Xiaowen Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, PR China.
| | - Qinghui Deng
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, PR China; Shenzhen Key Laboratory of Marine Bioresource & Eco-environmental Sciences, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, 518071, PR China.
| | - Zhimin Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, PR China.
| | - Dong Bai
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, PR China; University of Chinese Academy of Sciences, Beijing, 100039, PR China.
| | - Zhenghan Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, PR China; University of Chinese Academy of Sciences, Beijing, 100039, PR China.
| | - Xiuyun Cao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, PR China.
| | - Yiyong Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, PR China.
| | - Chunlei Song
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, PR China.
| |
Collapse
|
24
|
Zhang N, Wu M, Che Y, Kong Y, Shu F, Wang Q, Sha W, Gong Z, Zhou J. Effects of shining pondweed (Potamogeton lucens) on bacterial communities in water and rhizosphere sediments in Nansi Lake, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:51665-51673. [PMID: 35249194 DOI: 10.1007/s11356-022-19516-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 02/25/2022] [Indexed: 06/14/2023]
Abstract
Submerged macrophytes and microbial communities are important parts of lake ecosystems. In this study, the bacterial community composition in rhizosphere sediments and water from areas cultivated with (PL) and without (CK) shining pondweed (Potamogeton lucens Linn.) was investigated to determine the effects of P. lucens Linn. on the structure of the bacterial communities in Nansi Lake, China. Molecular techniques, including Illumina MiSeq and qPCR targeting of the 16S rRNA gene, were used to analyze the composition and abundance of the bacterial community. We found that bacterial alpha diversity was higher in PL water than in CK water, and the opposite trend was observed in sediment. In addition, 16S rRNA gene copy number in sediment was lower in PL than in CK. We found 30 (e.g., Desulfatiglans) and 29 (e.g., Limnohabitans) significantly different genera in sediment and water, respectively. P. lucens Linn. can change chemical properties in sediment and water and thereby affect the bacterial community. At the genus level, members of bacterial community clustered according to source (water/sediment) and area (PL/CK). Our study demonstrated that submerged macrophytes can affect the bacterial community composition in both sediment and water, suggesting that submerged macrophytes affect the transportation and cycling of nutrients in lake ecosystems.
Collapse
Affiliation(s)
- Nianxin Zhang
- School of Life Sciences, Qufu Normal University, Jining, 273 165, China
| | - Mengmeng Wu
- Shandong Freshwater Fisheries Research Institute, Jinan, 250013, China
| | - Yuying Che
- School of Life Sciences, Qufu Normal University, Jining, 273 165, China
| | - Yong Kong
- School of Life Sciences, Qufu Normal University, Jining, 273 165, China
| | - Fengyue Shu
- School of Life Sciences, Qufu Normal University, Jining, 273 165, China
| | - Qingfeng Wang
- Eco-Environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, People's Republic of China
| | - Weilai Sha
- School of Life Sciences, Qufu Normal University, Jining, 273 165, China
| | - Zhijin Gong
- School of Life Sciences, Qufu Normal University, Jining, 273 165, China
| | - Jing Zhou
- School of Life Sciences, Qufu Normal University, Jining, 273 165, China.
| |
Collapse
|
25
|
Wang WH, Wang Y, Zhao KX, Zhu Z, Han XY. Active and synchronous control of nitrogen and organic matter release from sediments induced with calcium peroxide. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 802:149855. [PMID: 34455280 DOI: 10.1016/j.scitotenv.2021.149855] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 08/18/2021] [Accepted: 08/19/2021] [Indexed: 06/13/2023]
Abstract
In order to realize the active and synchronous control of nitrogen (N) and organic matter (OM) release from sediments, this study compared the spatiotemporal changes in the physical, chemical, and biological indicators in the water system under different CaO2 dosing modes. Results from 90-day incubation experiment showed that CaO2 formed a dense barrier layer near its dosing position, improved the anoxic condition of water system, increased the physical adsorption of pollutants by sediments, and reduced the nutrients in overlying water, interstitial water, and sediments. Comprehensive comparison, the improvement effect of shallow injection group (I1) was the most obvious. Meanwhile, the activities of ammonia oxidizing bacteria and nitrite oxidizing bacteria near dosing position and those of denitrifiers and anammox bacteria adjacent to dosing site were significantly increased in all test groups (p < 0.01), thereby realizing the biological removal of N and OM in sediments. In addition, DO and ORP were steadily higher than 5 mg L-1 and 100 mV in I1, where the NH4+-N concentration in overlying water was stable below 1 mg L-1, and the easily released N content in the upper (0-3 cm) and middle (4-6 cm) sediments decreased by 41.64% and 43.56%, respectively. Compared with the large pollutant flux in control (14.31 TN mg m-2 d-1 and 194.05 mg TCOD m-2 d-1), I1 completely inhibited the pollutant release and reduced the original nutrients in overlying water. In general, CaO2 efficiently and synchronously controlled the endogenous release of N and OM under the combined actions of physical interception, physical adsorption, chemical oxidation, and biological transformation. Therefore, this study may provide valuable reference and guidance for the active and synchronous removal of N and OM in sediments and inhibition of endogenous pollutant release under anoxic condition.
Collapse
Affiliation(s)
- Wen-Huai Wang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Yi Wang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Ke-Xin Zhao
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Zheng Zhu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Xue-Yi Han
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|
26
|
Wu H, Hao B, Jo H, Cai Y. Seasonality and Species Specificity of Submerged Macrophyte Biomass in Shallow Lakes Under the Influence of Climate Warming and Eutrophication. FRONTIERS IN PLANT SCIENCE 2021; 12:678259. [PMID: 34659276 PMCID: PMC8517270 DOI: 10.3389/fpls.2021.678259] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 08/31/2021] [Indexed: 06/13/2023]
Abstract
Climate warming and eutrophication caused by anthropogenic activities strongly affect aquatic ecosystems. Submerged macrophytes usually play a key role in shallow lakes and can maintain a stable clear state. It is extremely important to study the effects of climate warming and eutrophication on the growth of submerged macrophytes in shallow lakes. However, the responses of submerged macrophytes to climate warming and eutrophication are still controversial. Additionally, the understanding of the main pathways impacting submerged macrophytes remains to be clarified. In addition, the influence of seasonality on the growth responses of submerged macrophytes to climate warming and eutrophication requires further elucidation. In this study, we conducted a series of mesocosm experiments with four replicates across four seasons to study the effects of rising temperature and nutrient enrichment on the biomass of two submerged macrophytes, Potamogeton crispus and Elodea canadensis. Our results demonstrated the seasonality and species specificity of plant biomass under the influence of climate warming and eutrophication, as well as the main explanatory factors in each season. Consistent with the seasonal results, the overall results showed that E. canadensis biomass was directly increased by rising temperature rather than by nutrient enrichment. Conversely, the overall results showed that P. crispus biomass was indirectly reduced by phosphorus enrichment via the strengthening of competition among primary producers. Distinct physiological and morphological traits may induce species-specific responses of submerged macrophytes to climate warming and eutrophication, indicating that further research should take interspecies differences into account.
Collapse
Affiliation(s)
- Haoping Wu
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- Department of Bioscience, Aarhus University, Silkeborg, Denmark
| | - Beibei Hao
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- Department of Bioscience, Aarhus University, Silkeborg, Denmark
| | - Hyunbin Jo
- Department of Bioscience, Aarhus University, Silkeborg, Denmark
- Institute for Environment and Energy, Pusan National University, Busan, South Korea
| | - Yanpeng Cai
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| |
Collapse
|