1
|
Abidli A, Ben Rejeb Z, Zaoui A, Naguib HE, Park CB. Comprehensive insights into the application of graphene-based aerogels for metals removal from aqueous media: Surface chemistry, mechanisms, and key features. Adv Colloid Interface Sci 2024; 335:103338. [PMID: 39577338 DOI: 10.1016/j.cis.2024.103338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 08/26/2024] [Accepted: 11/07/2024] [Indexed: 11/24/2024]
Abstract
Efficient removal of heavy metals and other toxic metal pollutants from wastewater is essential to protect human health and the surrounding vulnerable ecosystems. Therefore, significant efforts have been invested in developing practical and sustainable tools to address this issue, including high-performance adsorbents. In this respect, within the last few years, graphene-based aerogels/xerogels/cryogels (GBAs) have emerged and drawn significant attention as excellent materials for removing and recovering harmful and valuable metals from different aqueous media. Such an upward trend is mainly due to the features of the aerogel materials combined with the properties of the graphene derivatives within the aerogel's network, including the GBAs' unique three-dimensional (3D) porous structure, high porosity, low density, large specific surface area, exceptional electron mobility, adjustable and rich surface chemistry, remarkable mechanical features, and tremendous stability. This review offers a comprehensive analysis of the fundamental and practical aspects and phenomena related to the application of GBAs for metals removal. Herein, we cover all types of (bottom-up) synthesized GBAs, including true microporous graphene-based aerogels as well as other 3D graphene-based open-cell interconnected mesoporous and macroporous aerogels, foams, and sponges. Indeed, we provide insights into the fundamental understanding of the GBAs' suitability for such an important application by revealing the mechanisms involved in metals removal and the factors inducing and controlling the highly selective behavior of these distinctive adsorbents. Besides conventional adsorptive pathways, we critically analyzed the ability of GBAs to electrochemically capture metal pollutants (i.e., electrosorption) as well as their efficiency in metals detoxification through reductive mechanisms (i.e., adsorption-reduction-readsorption). We also covered the reusability aspect of graphene aerogels (GAs)-based adsorbents, which is strongly linked to the GBAs' outstanding stability and efficient desorption of captured metals. Furthermore, in view of their numerous practical and environmental benefits, the development and application of magnetically recoverable GAs for metals removal is also highlighted. Moreover, we shed light on the potential practical and scalable implementation of GBAs by evaluating their performance in continuous metals removal processes while highlighting the GBAs' versatility demonstrated by their ability to remove multiple contaminants along with metal pollutants from wastewater media. Finally, this review provides readers with an accessible overview and critical discussion of major recent achievements regarding the development and applications of GAs-based adsorbents for metal ions removal. Along with our recommendations and suggestions for potential future work and new research directions and opportunities, this review aims to serve as a valuable resource for researchers in the field of wastewater treatment and inspire further progress towards developing next-generation high-performance GBAs and expanding their application.
Collapse
Affiliation(s)
- Abdelnasser Abidli
- Microcellular Plastics Manufacturing Laboratory (MPML), Department of Mechanical and Industrial Engineering, Faculty of Applied Science and Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario M5S 3G8, Canada; Institute for Water Innovation (IWI), Faculty of Applied Science & Engineering, University of Toronto, 55 St. George Street, Toronto, Ontario M5S 1A4, Canada.
| | - Zeineb Ben Rejeb
- Microcellular Plastics Manufacturing Laboratory (MPML), Department of Mechanical and Industrial Engineering, Faculty of Applied Science and Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario M5S 3G8, Canada; Toronto Smart Materials and Structures (TSMART), Department of Mechanical and Industrial Engineering, Department of Materials Science and Engineering, Institute of Biomaterials and Biomedical Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario M5S 3G8, Canada
| | - Aniss Zaoui
- Microcellular Plastics Manufacturing Laboratory (MPML), Department of Mechanical and Industrial Engineering, Faculty of Applied Science and Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario M5S 3G8, Canada
| | - Hani E Naguib
- Toronto Smart Materials and Structures (TSMART), Department of Mechanical and Industrial Engineering, Department of Materials Science and Engineering, Institute of Biomaterials and Biomedical Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario M5S 3G8, Canada.
| | - Chul B Park
- Microcellular Plastics Manufacturing Laboratory (MPML), Department of Mechanical and Industrial Engineering, Faculty of Applied Science and Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario M5S 3G8, Canada; Institute for Water Innovation (IWI), Faculty of Applied Science & Engineering, University of Toronto, 55 St. George Street, Toronto, Ontario M5S 1A4, Canada.
| |
Collapse
|
2
|
Laxmi V, Agarwal S, Khan S. Advanced nanoribbons in water purification: A comprehensive review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122645. [PMID: 39342836 DOI: 10.1016/j.jenvman.2024.122645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/19/2024] [Accepted: 09/21/2024] [Indexed: 10/01/2024]
Abstract
The increasing scarcity of clean water, coupled with the environmental repercussions of municipal and industrial wastewater, underscores the imperative for advancing novel technologies aimed at clean water production and effectively removing impurities and toxic contaminants. Research focusing on ribbon-based technologies has garnered substantial attention in recent years due to their promising applications in various fields. This article presents a comprehensive review of the diverse applications of ribbon in water and wastewater treatment. It delves into the various types of ribbon employed for water purification, elucidating their effectiveness in removing contaminants such as heavy metals, dyes, pesticides, medical waste, oil pollutants, and radioactive waste. We will also discuss methods such as adsorption, membrane separation, and advanced oxidation processes, which help to understand how ribbons remove pollutants from water. This review summarizes the recent progress in the field of water purification and discusses the current state-of-the-art research on the use of ribbons in wastewater treatment. The end of this article gives information about the regeneration and reusability of ribbons and about challenges and prospects.
Collapse
Affiliation(s)
- Vijay Laxmi
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Rajasthan, 304022, India
| | - Swati Agarwal
- Drumlins Water Technologies Pvt. Ltd., Jaipur, Rajasthan, 302005, India
| | - Suphiya Khan
- Shriram Institute for Industrial Research, Gurugram, Haryana, 122015, India.
| |
Collapse
|
3
|
Ye H, Wu MB, Ye QH, Wen RM, Hu ZT, Yao J, Zhang C. Achieving ultrahigh uranium/vanadium selectivity of poly(amidoxime) via coupling MXene-enabled strong intermolecular interaction and separated photothermal interface. MATERIALS HORIZONS 2024; 11:2685-2693. [PMID: 38497840 DOI: 10.1039/d3mh02196c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Poly(amidoxime) (PAO) has been recognized as the most potential candidate for extracting uranium from seawater, owing to its merits of outstanding uranium affinity, low cost, and large-scale production. Despite remarkable achievements, existing PAO sorbents suffer from unsatisfactory uranium extraction efficiency and selectivity, as imposed by the inherently sluggish uranium adsorption kinetics and inevitable spatial configuration transition of amidoxime, which diminishes uranium affinity. Herein, we discover a facile and integrated design to elaborate a PAO/MXene nanocomposite that delivers ultrahigh and durable uranium/vanadium (U/V) selectivity. The key to our design lies in harnessing MXene-enabled strong intermolecular interactions to PAO to minimize the spatial configuration transition of amidoxime and stabilizing its superior uranium affinity, as well as creating a separated photothermal interface to maximize temperature-strengthened affinity for uranium over vanadium. Such a synergetic effect allows the nanocomposite to acquire over a 4-fold improvement in U/V selectivity compared to that of pure PAO as well as an unprecedented distribution coefficient of uranium compared to most state-of-the-art sorbents. We further demonstrate that our nanocomposite exhibits durable U/V selectivity with negligible attenuation and good antibacterial ability even in long-term operation. The design concept and extraordinary performance in this study bring PAO-based sorbents a step closer to practical uranium extraction from seawater.
Collapse
Affiliation(s)
- Hao Ye
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| | - Ming-Bang Wu
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China.
- Zhejiang Provincial Innovation Center of Advanced Textile Technology, Shaoxing 312000, China
| | - Qi-Hui Ye
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| | - Rou-Ming Wen
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| | - Zhang-Ting Hu
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| | - Juming Yao
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China.
- Zhejiang Provincial Innovation Center of Advanced Textile Technology, Shaoxing 312000, China
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Chao Zhang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, and Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China.
- The "Belt and Road" Sino-Portugal Joint Lab on Advanced Materials, International Research Center for X Polymers, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|
4
|
Liao J, Ding C, Shi J, Jiang L, Wang Q, Wang L, Wang R. A sodium alginate gel bead adsorbent doping with amidoxime-modified hydroxyapatite for the efficient adsorption of uranium. Int J Biol Macromol 2024; 266:131112. [PMID: 38537863 DOI: 10.1016/j.ijbiomac.2024.131112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/19/2024] [Accepted: 03/21/2024] [Indexed: 04/06/2024]
Abstract
In this work, the modified‑sodium alginate gel beads were prepared by sol-gel method. Due to the presence of water channels in the sodium alginate gel bead, amidoxime groups and PO43- were exposed to the surface of the adsorbent to the maximum extent, resulting in the excellent adsorption capacity of modified‑sodium alginate gel beads. The introduction of amidoxime-modified hydroxyapatite significantly improved the adsorption capacity and the adsorption rate of the gel beads. The adsorption capacity increased from 308.7 to 466.0 mg/g and the adsorption equilibrium time was shortened from 300 min to 120 min. The modified‑sodium alginate gel bead possessed the advantages of short adsorption time, high adsorption efficiency and large adsorption capacity, which could be regarded as a potential adsorbent for uranium. Moreover, the uranium removal ability on the modified gel beads was mainly attributed to the Coulomb force between PO43- and uranium and the complexation between uranium and amidoxime groups. In summary, this work would provide a new idea for the modification and application of sodium alginate-based materials.
Collapse
Affiliation(s)
- Jun Liao
- Fundamental Science on Nuclear Wastes and Environmental Safety Laboratory, Southwest University of Science and Technology, Mianyang 621010, PR China.
| | - Congcong Ding
- Fundamental Science on Nuclear Wastes and Environmental Safety Laboratory, Southwest University of Science and Technology, Mianyang 621010, PR China
| | - Junping Shi
- Fundamental Science on Nuclear Wastes and Environmental Safety Laboratory, Southwest University of Science and Technology, Mianyang 621010, PR China
| | - Liang Jiang
- Fundamental Science on Nuclear Wastes and Environmental Safety Laboratory, Southwest University of Science and Technology, Mianyang 621010, PR China
| | - Qiuyi Wang
- Fundamental Science on Nuclear Wastes and Environmental Safety Laboratory, Southwest University of Science and Technology, Mianyang 621010, PR China
| | - Lielin Wang
- Fundamental Science on Nuclear Wastes and Environmental Safety Laboratory, Southwest University of Science and Technology, Mianyang 621010, PR China
| | - Rong Wang
- Fundamental Science on Nuclear Wastes and Environmental Safety Laboratory, Southwest University of Science and Technology, Mianyang 621010, PR China.
| |
Collapse
|
5
|
Zhang X, Zhang K, Shi Y, Xiang H, Yang W, Zhao F. Surface engineering of multifunctional nanostructured adsorbents for enhanced wastewater treatment: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 920:170951. [PMID: 38367722 DOI: 10.1016/j.scitotenv.2024.170951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/20/2024] [Accepted: 02/11/2024] [Indexed: 02/19/2024]
Abstract
Rapid urbanization and industrialization have significantly contributed to the contamination of the environment through the discharge of wastewater containing various pollutants. The development of high-performance surface functional nanostructured adsorbents is of wide interest for researchers. Therefore, we explore the significant advancements in this field, focusing on the efficiency of nanostructured materials, as well as their nanocomposites, for wastewater treatment applications. The crucial role of surface modification in enhancing the affinity of these nanostructured adsorbents towards targeted pollutants, addressing a key bottleneck in the utilization of nanomaterials for wastewater treatment, was specifically emphasized. In addition to highlighting the advantages of surface engineering in enhancing the efficiency of nanostructured adsorbents, this review also provides a comprehensive overview of the limitations and challenges associated with surface-modified nanostructured adsorbents, including high cost, low stability, poor scalability, and potential nanotoxicity. Addressing these limitations is essential for realizing the commercial viability of these state-of-the-art materials for large-scale wastewater treatment applications. This review also thoroughly discusses the potential scalability and environmental safety aspects of surface-modified nanostructured adsorbents, offering insights into their future prospects for wastewater treatment. It is believed that this review will contribute significantly to the existing body of knowledge in the field and provide valuable information for researchers and practitioners working in the area of environmental remediation and nanomaterials.
Collapse
Affiliation(s)
- Xiaowei Zhang
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Kejing Zhang
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Yan Shi
- School of Metallurgy and Environment, Central South University, Changsha 410083, China; Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Central South University, Changsha 410083, China
| | - Hongrui Xiang
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Weichun Yang
- School of Metallurgy and Environment, Central South University, Changsha 410083, China; Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Central South University, Changsha 410083, China
| | - Feiping Zhao
- School of Metallurgy and Environment, Central South University, Changsha 410083, China; Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Central South University, Changsha 410083, China.
| |
Collapse
|
6
|
Yin X, Wu P, Shi S, Zhao Y, Li H, Li F, Liao J, Liu N, Yang Y, Lan T. Sorption behavior and mechanism of U(VI) on Tamusu clay in the presence of U(VI)-CO 3 complexes. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2023; 270:107286. [PMID: 37633243 DOI: 10.1016/j.jenvrad.2023.107286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/17/2023] [Accepted: 08/20/2023] [Indexed: 08/28/2023]
Abstract
The sorption behavior of U(VI) on Tamusu clay sampled from a pre-selected high-level radioactive waste (HLW) disposal site in Inner Mongolia (China) was studied systematically in the U(VI)-CO3 solution at pH 7.8 by batch experiments. The results demonstrated that the distribution coefficients (Kd) decreased with the increasing values of pHinitial, [U(VI)]initial, and ionic strength, but increased with the extended time and the rising temperature. The sorption was a pH-dependent, heterogeneous, spontaneous, and endothermic chemical process, which could be better described by Freundlich isothermal model and pseudo-second-order kinetic model. The presence of humic acid (HA) or fulvic acid (FA) significantly inhibited the U(VI) sorption, due to the enhanced electrostatic repulsion between the negatively charged HA/FA adsorbed on the clay surface and the negative U(VI) species, as well as the well dispersed HA/FA aggregates in solution wrapping the U(VI) species. The FTIR and XPS spectra indicated that the HCO3- groups on the surface of Tamusu clay after hydroxylation and the ‒OH groups in HA/FA were involved in the U(VI) sorption. The results reported here provide valuable insights into the further understanding of U(VI) migration in geological media.
Collapse
Affiliation(s)
- Xiaoyu Yin
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu, 610064, PR China
| | - Peng Wu
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu, 610064, PR China
| | - Shilong Shi
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu, 610064, PR China
| | - Yufan Zhao
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu, 610064, PR China
| | - Honghui Li
- China Institute for Radiation Protection, Taiyuan, 030006, PR China
| | - Feize Li
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu, 610064, PR China
| | - Jiali Liao
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu, 610064, PR China
| | - Ning Liu
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu, 610064, PR China
| | - Yuanyou Yang
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu, 610064, PR China.
| | - Tu Lan
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu, 610064, PR China.
| |
Collapse
|
7
|
Wu J, Shi N, Li N, Wang Z. Dual-Ligand ZIF-8 Bearing the Cyano Group for Efficient and Selective Uranium Capture from Seawater. ACS APPLIED MATERIALS & INTERFACES 2023; 15:46952-46961. [PMID: 37774146 DOI: 10.1021/acsami.3c09809] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2023]
Abstract
Uranium extraction from seawater is a potential technique that will change the world. Adsorption capacity, selectivity, and antibacterial ability for high-performance uranium adsorbents remain the major challenges. In this study, a dual-ligand zeolitic imidazolate framework 8 (ZIF-8) decorated with cyano groups (ZIF-8-CN) is prepared via a facile blend strategy at room temperature. Owing to the abundant mesopores and nitrogen functional groups, ZIF-8-CN shows an extremely high uranium uptake of 1000 mg/g at pH = 6, which is 2.42 times that of pristine ZIF-8. Noteworthily, ZIF-8-CN possesses a 16.2 mg/g uranium adsorption in natural seawater within 28 days, and the distribution coefficient (Kd = 3.25 × 106 mL/g) is far greater than that for other coexisting metal ions, demonstrating a marked preference for uranyl ions. Except for the coordination between uranium and nitrogen in imidazole, the cyano groups provide additional adsorption sites and preferentially bind to uranyl, thereby strengthening the affinity for uranyl. Notably, ZIF-8-CN displays ultrastrong antimicrobial ability against both Escherichia coli and Staphylococcus aureus, which is greatly desired for the scale-up marine tests. Our study demonstrates the high potential of ZIF-8-CN in uranium capture and provides a wide scope for the application of mixed-ligand MOFs.
Collapse
Affiliation(s)
- Jiakun Wu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, P. R. China
| | - Na Shi
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, P. R. China
| | - Nan Li
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, P. R. China
- School of Information Science and Engineering, Shandong University, Qingdao 266237, P. R. China
| | - Zhining Wang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, P. R. China
| |
Collapse
|
8
|
Wu P, Yin X, Zhao Y, Li F, Yang Y, Liu N, Liao J, Lan T. Porphyrin-based hydrogen-bonded organic framework for visible light driven photocatalytic removal of U(VI) from real low-level radioactive wastewater. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132179. [PMID: 37531757 DOI: 10.1016/j.jhazmat.2023.132179] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/17/2023] [Accepted: 07/27/2023] [Indexed: 08/04/2023]
Abstract
The reduction of soluble U(VI) to insoluble U(IV) precipitates by visible light is an environmentally friendly and highly effective strategy to remove uranium from uranium-containing radioactive wastewater. Herein, a porous hydrogen-bonded organic framework (HOF) of UPC-H4a was self-assembled by intermolecular hydrogen bonds of 5,10,15,20-tetra(4-(2,4-diaminotriazine)phenyl) porphyrin to remove U(VI) from aqueous solution. UPC-H4a has high crystallinity with permanent porosity, excellent photocatalytic property, good chemical stability, and strong photocatalytic reducibility. The experiments showed that UPC-H4a removed 98.18% of U(VI) after illumination for 120 min, with high selectivity, strong ion interference resistance, and good reusability. A real low-level radioactive wastewater was employed to estimate the potential of UPC-H4a for practical application and its removal rate can reach 66.14% in the presence of redox competing metal ions, exhibiting great potential for practical application. The DFT calculations and EPR spectra revealed that a more negative electrostatic potential of DAT-porphyrin and the formed intermolecular hydrogen bonds in UPC-H4a can facilitate the participation of photogenerated electrons in the O2/∙O2- reaction, and the radical of ∙O2- was proved to be the critical participant in U(VI) photoreduction. The discovery of UPC-H4a in this work will help to develop more potential applications of HOFs as photocatalysts in radioactive wastewater treatment.
Collapse
Affiliation(s)
- Peng Wu
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, PR China
| | - Xiaoyu Yin
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, PR China
| | - Yufan Zhao
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, PR China
| | - Feize Li
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, PR China
| | - Yuanyou Yang
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, PR China
| | - Ning Liu
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, PR China
| | - Jiali Liao
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, PR China.
| | - Tu Lan
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, PR China.
| |
Collapse
|
9
|
Zhang Y, Huang S, Mei B, Tian X, Jia L, Sun N. Magnetite/β-cyclodextrin/fly ash composite as an effective and recyclable adsorbent for uranium(VI) capture from wastewater. CHEMOSPHERE 2023; 331:138750. [PMID: 37105305 DOI: 10.1016/j.chemosphere.2023.138750] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/13/2023] [Accepted: 04/20/2023] [Indexed: 05/19/2023]
Abstract
As a novel adsorbent for the separation of uranium(VI) from wastewater, Magnetite/β-cyclodextrin/fly ash composite (Fe3O4/β-CD/FA) was first prepared via a chemical coprecipitation technology. The characterization results indicated that Fe3O4 and β-CD had been successfully loaded on FA, which had brought abundant oxygen-containing functional groups, providing numerous adsorptive sites for the removal of uranium(VI). At pH = 5.0 and T = 25 °C, the maximum uranium(VI) removal efficiency and capacity of Fe3O4/β-CD/FA were higher to 97.8% and 444.4 mg g-1, respectively. Pseudo-second-order and Langmuir models fitted better with the experimental data, illustrating that chemical adsorption dominated the uranium(VI) removal process. In addition, Fe3O4/β-CD/FA showed good anti-interference ability and recoverability. After five cycles, the removal rate of uranium(VI) on Fe3O4/β-CD/FA was still higher to 90.4%. The immobilization of uranium(VI) on Fe3O4/β-CD/FA was mainly ascribed to the synergism of redox reaction, complex reaction, chemical reaction and electrostatic interaction. Given the above, Fe3O4/β-CD/FA would be regarded as an efficacious, green and promising adsorbent for uranium(VI) separation from wastewater.
Collapse
Affiliation(s)
- Yong Zhang
- State Key Laboratory of Environment-friendly Energy Materials, Sichuan Co-Innovation Center for New Energetic Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Nuclear Waste and Environmental Safety Key Laboratory of Defense, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang, 621010, China.
| | - Siqi Huang
- State Key Laboratory of Environment-friendly Energy Materials, Sichuan Co-Innovation Center for New Energetic Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Nuclear Waste and Environmental Safety Key Laboratory of Defense, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Bingyu Mei
- State Key Laboratory of Environment-friendly Energy Materials, Sichuan Co-Innovation Center for New Energetic Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Nuclear Waste and Environmental Safety Key Laboratory of Defense, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Xiaoyu Tian
- State Key Laboratory of Environment-friendly Energy Materials, Sichuan Co-Innovation Center for New Energetic Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Nuclear Waste and Environmental Safety Key Laboratory of Defense, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Lingyi Jia
- State Key Laboratory of Environment-friendly Energy Materials, Sichuan Co-Innovation Center for New Energetic Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Nuclear Waste and Environmental Safety Key Laboratory of Defense, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Nan Sun
- State Key Laboratory of Environment-friendly Energy Materials, Sichuan Co-Innovation Center for New Energetic Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Nuclear Waste and Environmental Safety Key Laboratory of Defense, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang, 621010, China.
| |
Collapse
|
10
|
Lan T, Wu P, Yin X, Zhao Y, Liao J, Wang D, Liu N. Rigidity and Flexibility: Unraveling the Role of Fulvic Acid in Uranyl Sorption on Graphene Oxide Using Molecular Dynamics Simulations. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023. [PMID: 37399448 DOI: 10.1021/acs.est.3c01026] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/05/2023]
Abstract
Using molecular dynamics simulations, this work targets a molecular understanding on the rigidity and flexibility of fulvic acid (FA) in uranyl sorption on graphene oxide (GO). The simulations demonstrated that both rigid Wang's FA (WFA) and flexible Suwannee River FA (SRFA) can provide multiple sites to cooperate with GO for uranyl sorption and act as "bridges" to connect uranyl and GO to form GO-FA-U (type B) ternary surface complexes. The presence of flexible SRFA was more beneficial to uranyl sorption on GO. The interactions of WFA and SRFA with uranyl were primarily driven by electrostatics, and the electrostatic interaction of SRFA-uranyl was significantly stronger owing to the formation of more complexes. The flexible SRFA could markedly enhance the bonding strength of uranyl with GO by folding itself to provide more sites to coordinate with uranyl. The rigid WFAs tended to be adsorbed on the GO surface in parallel due to π-π interactions, whereas the flexible SRFAs took more slant configurations resulting from intermolecular hydrogen bonds. This work provides new insights into the sorption dynamics, structure, and mechanism and addresses the effect of molecular rigidity and flexibility, with great significance for FA-based remediation strategies of uranium-contaminated sites.
Collapse
Affiliation(s)
- Tu Lan
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, People's Republic of China
| | - Peng Wu
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, People's Republic of China
| | - Xiaoyu Yin
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, People's Republic of China
| | - Yufan Zhao
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, People's Republic of China
| | - Jiali Liao
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, People's Republic of China
| | - Dongqi Wang
- School of Chemical Engineering, Dalian University of Technology, Dalian 116024, People's Republic of China
| | - Ning Liu
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, People's Republic of China
| |
Collapse
|
11
|
Zhang Y, Mei B, Shen B, Jia L, Liao J, Zhu W. Preparation of biochar@chitosan-polyethyleneimine for the efficient removal of uranium from water environment. Carbohydr Polym 2023; 312:120834. [PMID: 37059560 DOI: 10.1016/j.carbpol.2023.120834] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 03/07/2023] [Accepted: 03/17/2023] [Indexed: 03/28/2023]
Abstract
A novel chitosan-based composite with rich active sites was synthesized by uniformly dispersing biochar into the cross-linked network structure formed by chitosan and polyethyleneimine. Due to the synergistic effect of biochar (minerals) and chitosan-polyethyleneimine interpenetrating network (amino and hydroxyl), the chitosan-based composite possessed an excellent adsorption performance for uranium(VI). It could rapidly (<60 min) achieve a high adsorption efficiency (96.7 %) for uranium(VI) from water and a high static saturated adsorption capacity (633.4 mg/g), which was far superior to other chitosan-based adsorbents. Moreover, the separation for uranium(VI) on the chitosan-based composite was suitable for a variety of actual water environments and the adsorption efficiencies all exceeded 70 % in different water bodies. The soluble uranium(VI) could be completely removed by the chitosan-based composite in the continuous adsorption process, which could meet the permissible limits of the World Health Organization. In sum, the novel chitosan-based composite could overcome the bottleneck of current chitosan-based adsorption materials and become a potential adsorbent for the remediation of actual uranium(VI) contaminated wastewater.
Collapse
Affiliation(s)
- Yong Zhang
- State Key Laboratory of Environment-friendly Energy Materials, Sichuan Co-Innovation Center for New Energetic Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Nuclear Waste and Environmental Safety Key Laboratory of Defense, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang 621010, China
| | - Bingyu Mei
- State Key Laboratory of Environment-friendly Energy Materials, Sichuan Co-Innovation Center for New Energetic Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Nuclear Waste and Environmental Safety Key Laboratory of Defense, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang 621010, China
| | - Binhao Shen
- State Key Laboratory of Environment-friendly Energy Materials, Sichuan Co-Innovation Center for New Energetic Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Nuclear Waste and Environmental Safety Key Laboratory of Defense, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang 621010, China
| | - Lingyi Jia
- State Key Laboratory of Environment-friendly Energy Materials, Sichuan Co-Innovation Center for New Energetic Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Nuclear Waste and Environmental Safety Key Laboratory of Defense, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang 621010, China
| | - Jun Liao
- State Key Laboratory of Environment-friendly Energy Materials, Sichuan Co-Innovation Center for New Energetic Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Nuclear Waste and Environmental Safety Key Laboratory of Defense, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang 621010, China..
| | - Wenkun Zhu
- State Key Laboratory of Environment-friendly Energy Materials, Sichuan Co-Innovation Center for New Energetic Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Nuclear Waste and Environmental Safety Key Laboratory of Defense, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang 621010, China..
| |
Collapse
|
12
|
Pu Y, Qiang T, Li G, Ruan X, Ren L. Efficient adsorption of low-concentration uranium from aqueous solutions. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 259:115053. [PMID: 37224785 DOI: 10.1016/j.ecoenv.2023.115053] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 05/10/2023] [Accepted: 05/19/2023] [Indexed: 05/26/2023]
Abstract
The development of nuclear energy has led to the depletion of uranium resources and now presents the challenge of treating radioactive wastewater. Extracting uranium from seawater and nuclear wastewater has been identified as an effective strategy for addressing these issues. However, extracting uranium from nuclear wastewater and seawater is still extremely challenging. In this study, an amidoxime-modified feather keratin aerogel (FK-AO aerogel) was prepared using feather keratin for efficient uranium adsorption. The FK-AO aerogel showed an impressive adsorption capacity of 585.88 mg·g-1 in an 8 ppm uranium solution, with a calculated maximum adsorption capacity of 990.10 mg·g-1. Notably, the FK-AO aerogel demonstrated excellent selectivity for U(VI) in simulated seawater that contained coexisting heavy metal ions. In a uranium solution having a salinity of 35 g·L-1 and a concentration of 0.1-2 ppm, the FK-AO aerogel achieved a uranium removal rate of greater than 90 %, indicating its effectiveness in adsorbing uranium in environments having high salinity and low concentration. This suggests that FK-AO aerogel is an ideal adsorbent for extracting uranium from seawater and nuclear wastewater, and it is also expected that it could be used in industrial applications for extracting uranium from seawater.
Collapse
Affiliation(s)
- Yadong Pu
- College of Bioresources and Materials Engineering, Shaanxi University of Science & Technology, Xi'an, Shaanxi, 710021, PR China; Department of Chemistry and Environmental Engineering, Hubei Minzu University, Enshi 445000, Hubei, PR China
| | - Taotao Qiang
- College of Bioresources and Materials Engineering, Shaanxi University of Science & Technology, Xi'an, Shaanxi, 710021, PR China.
| | - Guoxiang Li
- Department of Chemistry and Environmental Engineering, Hubei Minzu University, Enshi 445000, Hubei, PR China
| | - Xiaonan Ruan
- College of Bioresources and Materials Engineering, Shaanxi University of Science & Technology, Xi'an, Shaanxi, 710021, PR China
| | - Longfang Ren
- College of Bioresources and Materials Engineering, Shaanxi University of Science & Technology, Xi'an, Shaanxi, 710021, PR China.
| |
Collapse
|
13
|
Liu H, Wang X, Li Y, Min Z, You H, Xie S, Liu Y, Yang H. Efficient uranium(VI) adsorbing bioinspired nano-sized hydroxyapatite composites: synthesis, tuning, and adsorption mechanism. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:18156-18167. [PMID: 36207633 DOI: 10.1007/s11356-022-23492-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 10/03/2022] [Indexed: 06/16/2023]
Abstract
The production of large amounts of uranium-containing wastewater and its potential hazards has stimulated green and efficient material removal of uranium (VI). Inspired by the natural mineralization of bone, a facile and eco-friendly biomimetic synthesis of nano-hydroxyapatite (HAP) was carried out using chitosan (CS) as a template. It was found that the reaction temperature and the amount of precursors influence the particle size, crystallinity and specific surface area of the CS/HAP nanorods, and consequently their U(VI) adsorption efficiency. Moreover, the synthesized CS/HAP-40 with smaller particle size, lower crystallinity, and larger specific surface area show a more efficient U(VI) removal compared with CS/HAP-55 and CS/HAP-55-AT. It has a maximum adsorption capacity of 294.12 mg·g-1 of the CS/HAP-40. Interestingly, the U(VI) removal mechanism of CS/HAP-40 in acidic (pH = 3) and alkaline (pH = 8) aqueous solutions was found to be different. As one of the main results, the U(VI) adsorption mechanisms at pH 8 could be surface complexation and ion exchange. On the contrary, three different mechanisms could be observed at pH 3: dissolution-precipitation to form chernikovite, surface complexation, and ion exchange.
Collapse
Affiliation(s)
- Hongjuan Liu
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan, 430074, People's Republic of China
- School of Nuclear Science and Technology, University of South China, Hengyang, 421001, People's Republic of China
| | - Xi Wang
- School of Nuclear Science and Technology, University of South China, Hengyang, 421001, People's Republic of China
| | - Yongjiang Li
- School of Nuclear Science and Technology, University of South China, Hengyang, 421001, People's Republic of China
| | - Zefu Min
- School of Nuclear Science and Technology, University of South China, Hengyang, 421001, People's Republic of China
| | - Hang You
- School of Nuclear Science and Technology, University of South China, Hengyang, 421001, People's Republic of China
| | - Shuibo Xie
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Hengyang, 421001, People's Republic of China
- Hunan Province Key Laboratory of Pollution Control and Resources Reuse Technology, University of South China, Hengyang, 421001, People's Republic of China
| | - Yingjiu Liu
- Hunan Province Key Laboratory of Pollution Control and Resources Reuse Technology, University of South China, Hengyang, 421001, People's Republic of China
| | - Huaming Yang
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan, 430074, People's Republic of China.
- Key Laboratory of Functional Geomaterials in China Nonmetallic Minerals Industry, China University of Geosciences, Wuhan, 430074, People's Republic of China.
| |
Collapse
|
14
|
Shu J, Liu J, Shi S, Wang J, Wu P, Cheng Z, Liu N, Lan T. Highly Efficient Sorption of U(VI) on TiO2 Nanosheets Supported by Amidoxime Polyacrylonitrile in A Variety of Multi-carbonate Solutions. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
|
15
|
Georgiou E, Raptopoulos G, Anastopoulos I, Giannakoudakis DA, Arkas M, Paraskevopoulou P, Pashalidis I. Uranium Removal from Aqueous Solutions by Aerogel-Based Adsorbents-A Critical Review. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13020363. [PMID: 36678117 PMCID: PMC9866664 DOI: 10.3390/nano13020363] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/03/2023] [Accepted: 01/09/2023] [Indexed: 06/12/2023]
Abstract
Aerogels are a class of lightweight, nanoporous, and nanostructured materials with diverse chemical compositions and a huge potential for applications in a broad spectrum of fields. This has led the IUPAC to include them in the top ten emerging technologies in chemistry for 2022. This review provides an overview of aerogel-based adsorbents that have been used for the removal and recovery of uranium from aqueous environments, as well as an insight into the physicochemical parameters affecting the adsorption efficiency and mechanism. Uranium removal is of particular interest regarding uranium analysis and recovery, to cover the present and future uranium needs for nuclear power energy production. Among the methods used, such as ion exchange, precipitation, and solvent extraction, adsorption-based technologies are very attractive due to their easy and low-cost implementation, as well as the wide spectrum of adsorbents available. Aerogel-based adsorbents present an extraordinary sorption capacity for hexavalent uranium that can be as high as 8.8 mol kg−1 (2088 g kg−1). The adsorption data generally follow the Langmuir isotherm model, and the kinetic data are in most cases better described by the pseudo-second-order kinetic model. An evaluation of the thermodynamic data reveals that the adsorption is generally an endothermic, entropy-driven process (ΔH0, ΔS0 > 0). Spectroscopic studies (e.g., FTIR and XPS) indicate that the adsorption is based on the formation of inner-sphere complexes between surface active moieties and the uranyl cation. Regeneration and uranium recovery by acidification and complexation using carbonate or chelating ligands (e.g., EDTA) have been found to be successful. The application of aerogel-based adsorbents to uranium removal from industrial processes and uranium-contaminated waste waters was also successful, assuming that these materials could be very attractive as adsorbents in water treatment and uranium recovery technologies. However, the selectivity of the studied materials towards hexavalent uranium is limited, suggesting further developments of aerogel materials that could be modified by surface derivatization with chelating agents (e.g., salophen and iminodiacetate) presenting high selectivity for uranyl moieties.
Collapse
Affiliation(s)
- Efthalia Georgiou
- Radioanalytical and Environmental Chemistry Group, Department of Chemistry, University of Cyprus, P.O. Box 20537, Nicosia CY-1678, Cyprus
| | - Grigorios Raptopoulos
- Inorganic Chemistry Laboratory, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
| | - Ioannis Anastopoulos
- Department of Agriculture, University of Ioannina, UoI Kostakii Campus, 47100 Arta, Greece
| | | | - Michael Arkas
- Demokritos National Centre for Scientific Research, Institute of Nanoscience and Nanotechnology, 15771 Athens, Greece
| | - Patrina Paraskevopoulou
- Inorganic Chemistry Laboratory, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
| | - Ioannis Pashalidis
- Radioanalytical and Environmental Chemistry Group, Department of Chemistry, University of Cyprus, P.O. Box 20537, Nicosia CY-1678, Cyprus
| |
Collapse
|
16
|
Huang S, Chen C, Zhao Z, Jia L, Zhang Y. In situ synthesis of magnesium-doped hydroxyapatite aerogel for highly efficient U(VI) separation with ultra high adsorption capacity and excellent recyclability. CHEMOSPHERE 2023; 312:137226. [PMID: 36372341 DOI: 10.1016/j.chemosphere.2022.137226] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/26/2022] [Accepted: 11/09/2022] [Indexed: 06/16/2023]
Abstract
Mg-doped HAP aerogel (MHAPA) was firstly in situ prepared via freeze-drying-calcination technology to capture U(VI). The U(VI) removal capacity by MHAPA even arrived 2685.6 mg g-1, which was about 2 times over purchased HAP, illustrating that the incorporation of Mg ions could greatly enhance the U(VI) removal capacity. Compared with HAP, MHAPA also showed better anti-ion interference ability and dynamic removal performances. In comparison with other HAP-based adsorbents, MHAPA possessed good recyclability and its desorption rate was up to 93.4% in the first cycle. The excellent U(VI) removal performances of MHAPA might be owing to its low crystallinity and grain size, fast ion exchange rate and partial ionization under acidic conditions, which would accelerate the process of electrostatic attraction, ion-exchange, and complexation to immobilize U(VI). To sum up, the prepared MHAPA was expected to be an environmentally friendly, recyclable and effective adsorbent to immobilize U(VI) in actual wastewater.
Collapse
Affiliation(s)
- Siqi Huang
- State Key Laboratory of Environment-friendly Energy Materials, Sichuan Co-Innovation Center for New Energetic Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Nuclear Waste and Environmental Safety Key Laboratory of Defense, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Congcong Chen
- State Key Laboratory of Environment-friendly Energy Materials, Sichuan Co-Innovation Center for New Energetic Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Nuclear Waste and Environmental Safety Key Laboratory of Defense, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Zhibo Zhao
- State Key Laboratory of Environment-friendly Energy Materials, Sichuan Co-Innovation Center for New Energetic Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Nuclear Waste and Environmental Safety Key Laboratory of Defense, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Lingyi Jia
- State Key Laboratory of Environment-friendly Energy Materials, Sichuan Co-Innovation Center for New Energetic Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Nuclear Waste and Environmental Safety Key Laboratory of Defense, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Yong Zhang
- State Key Laboratory of Environment-friendly Energy Materials, Sichuan Co-Innovation Center for New Energetic Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Nuclear Waste and Environmental Safety Key Laboratory of Defense, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang, 621010, China.
| |
Collapse
|
17
|
Design and synthesis of a novel bifunctional polymer with malonamide and carboxyl group for highly selective separation of uranium (VI). Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
18
|
Yu H, Zhou L, Li Z, Liu Y, Ao X, Ouyang J, Le Z, Liu Z, Adesina AA. Electrodeposited polypyrrole/biomass-derived carbon composite electrodes with high hybrid capacitance and hierarchical porous structure for enhancing U(VI) electrosorption from aqueous solution. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
19
|
Tian Y, Wang Y, Liu L, Dong H, Zhu X, Ma F, Zhang C. Fabrication of amidoxime functionalized hyper-cross-linked polymer for efficient extraction of uranium (VI) from water. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.121171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
20
|
Yang K, Wu F, Yan X, Pan J. Self-Locomotive Composites Based on Asymmetric Micromotors and Covalently Attached Nanosorbents for Selective Uranium Recovery. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
21
|
Chen Z, He X, Li Q, Yang H, Liu Y, Wu L, Liu Z, Hu B, Wang X. Low-temperature plasma induced phosphate groups onto coffee residue-derived porous carbon for efficient U(VI) extraction. J Environ Sci (China) 2022; 122:1-13. [PMID: 35717075 DOI: 10.1016/j.jes.2021.10.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/07/2021] [Accepted: 10/07/2021] [Indexed: 06/15/2023]
Abstract
For the continuous utilization of nuclear energy and efficient control of radioactive pollution, low-cost materials with high efficient U(VI) removal are of great importance. In this study, low temperature plasma method was applied for the successful modification of O-phosphorylethanolamine (O-PEA) on the porous carbon materials. The produced materials (Cafe/O-PEA) could adsorb U(VI) efficiently with the maximum sorption capacity of 648.54 mg/g at 1 hr, T=298 K, and pH=6.0, much higher than those of most carbon-based composites. U(VI) sorption was mainly controlled by strong surface complexation. From FTIR, SEM-EDS and XPS analyses, the sorption of U(VI) was related to the complexation with -NH2, phosphate and -OH groups on Cafe/O-PEA. The low temperature plasma method was an efficient, environmentally friendly and low-cost method for surface modification of materials for the effective enrichment of U(VI) from aqueous solutions.
Collapse
Affiliation(s)
- Zhongshan Chen
- School of Life Science, Shaoxing University, Shaoxing 312000, China; College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Xuan He
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Qian Li
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Hui Yang
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Yang Liu
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Lining Wu
- School of Energy Power and Mechanical Engineering, North China Electric Power University, Beijing 102206, China
| | - Zhixin Liu
- School of Life Science, Shaoxing University, Shaoxing 312000, China
| | - Baowei Hu
- School of Life Science, Shaoxing University, Shaoxing 312000, China.
| | - Xiangke Wang
- School of Life Science, Shaoxing University, Shaoxing 312000, China; College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China.
| |
Collapse
|
22
|
Ma M, Deng H, Ren Z, Zhong X. High-speed and efficient removal of uranium (VI) from aqueous solution by hydroxyapatite-modified ordered mesoporous carbon (CMK-3). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:78989-79001. [PMID: 35704231 DOI: 10.1007/s11356-022-21351-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 06/04/2022] [Indexed: 06/15/2023]
Abstract
In recent years, the synthesis and application of green, cost-effective, and sustainable materials for uranium (VI) removal was significant to environmental protection. The ordered mesoporous carbon (CMK-3) supported different mass of hydroxyapatite materials (HAP@CMK-3) were facilely synthesized via hydrothermal method. The resultant materials were characterized by XRD, FT-IR, BET, SEM, TEM mapping, and XPS, and implemented for immobilizing U(VI). Not only the specific surface area of HAP (7.01 m2/g) was increased by the loading on CMK-3 (818.37 m2/g), but also the adsorption capacity of CMK-3 was increased by HAP modification. Impressively, HAP@CMK-3 exhibited highly adsorption capacity of U(VI) with the increase of HAP deposition and was capable of achieving fast reaction. Therein to, the specific surface area of HAP@CMK-3(2:1) was 253.68 m2/g, as well as the adsorption capacity was up to 1072 mg/g (fitted by Langmuir isotherm, at pH=3.0, 298 K) and the adsorption process was completed in 30 min (followed by pseudo-second-order kinetic). The adsorption mechanisms of U(VI) on HAP@CMK-3 involved electrostatic forces, ionic interactions, and chemical complexation. This work offered new avenues to address the limitations of cost and less secondary pollution for the removal of U(IV) from wastewater.
Collapse
Affiliation(s)
- Ming Ma
- School of Life Science, Shaoxing University, Huancheng West Road 508, Shaoxing, 312000, People's Republic of China
| | - Hao Deng
- School of Life Science, Shaoxing University, Huancheng West Road 508, Shaoxing, 312000, People's Republic of China
| | - Zhenyu Ren
- School of Life Science, Shaoxing University, Huancheng West Road 508, Shaoxing, 312000, People's Republic of China
| | - Xin Zhong
- School of Life Science, Shaoxing University, Huancheng West Road 508, Shaoxing, 312000, People's Republic of China.
| |
Collapse
|
23
|
An antibacterial and antifouling amidoxime-functionalized graphene oxide aerogel for selective uranium adsorption in Salt Lake water. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129367] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
24
|
An efficient and high-capacity porous functionalized-membranes for uranium recovery from wastewater. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
25
|
Zeng Y, Yuan G, Lan T, Li F, Yang J, Liao J, Yang Y, Liu N. Synthesis and application of zirconium phosphate mesoporous coordination polymer for effective removal of Co(II) from aqueous solutions. NUCLEAR ENGINEERING AND TECHNOLOGY 2022. [DOI: 10.1016/j.net.2022.06.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
26
|
Study of the performance of a bloom-forming cyanobacterium (Microcystis aeruginosa) on the biosorption of uranium. J Radioanal Nucl Chem 2022. [DOI: 10.1007/s10967-022-08384-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
27
|
Hamza MF, Wei Y, Khalafalla MS, Abed NS, Fouda A, Elwakeel KZ, Guibal E, Hamad NA. U(VI) and Th(IV) recovery using silica beads functionalized with urea- or thiourea-based polymers - Application to ore leachate. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 821:153184. [PMID: 35051487 DOI: 10.1016/j.scitotenv.2022.153184] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 12/15/2021] [Accepted: 01/12/2022] [Indexed: 06/14/2023]
Abstract
Urea and thiourea have been successfully deposited at the surface of silica beads (through one-pot reaction with formaldehyde) for designing new sorbents for U(VI) and Th(IV) recovery (UR/SiO2 and TUR/SiO2 composites, respectively). These materials have been characterized by FTIR, titration, elemental analysis, BET, TGA, SEM-EDX for identification of structural and chemical properties, and interpretation of binding mechanisms. Based on deprotonation of reactive groups (amine, carbonyl, or thiocarbonyl) and metal speciation, the optimum pH was ~4. Uptake kinetics was fast (equilibrium within 60-90 min). Although the kinetic profiles are fitted by the pseudo-first order rate equation, the resistance to intraparticle diffusion cannot be neglected. Sorption isotherms were fitted by Langmuir equation (maximum sorption capacities: 1-1.2 mmol g-1). Thermodynamics are also investigated showing differences between the two types of functionalized groups: exothermic for TUR/SiO2 and endothermic for UR/SiO2. Metal desorption is highly effective using 0.3-0.5 M HCl solutions: total desorption occurs within 30-60 min; sorption/desorption properties are remarkably stable for at least 5 cycles. The sorbents have marked preference for U(VI) and Th(IV) over alkali-earth and base metals at pHeq ~4.8. By preliminary precipitation steps, it is possible "cleaning" ore leachates of pegmatite ore, and recovering U(VI) and Th(IV) using functionalized silica beads. After elution and selective recovery by precipitation with oxalate (Th-cake) and alkaline (U-cake), the metals can be valorized.
Collapse
Affiliation(s)
- Mohammed F Hamza
- School of Nuclear Science and Technology, University of South China, Heng Yang 421001, China; Nuclear Materials Authority, POB 530, El-Maadi, Cairo, Egypt.
| | - Yuezhou Wei
- School of Nuclear Science and Technology, University of South China, Heng Yang 421001, China; School of Nuclear Science and Engineering, Shanghai Jiao Tong University, Shanghai, China.
| | | | - Neveen S Abed
- Nuclear Materials Authority, POB 530, El-Maadi, Cairo, Egypt.
| | - Amr Fouda
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt.
| | - Khalid Z Elwakeel
- University of Jeddah, College of Science, Department of Chemistry, Jeddah, Saudi Arabia; Environmental Science Department, Faculty of Science, Port-Said University, Port-Said, Egypt.
| | - Eric Guibal
- Polymers Composites and Hybrids (PCH), IMT Mines Ales, Alès, France.
| | - Nora A Hamad
- Faculty of Science, Menoufia University, Shebine El-Koam, Egypt.
| |
Collapse
|
28
|
Macroporous hydrogel membrane by cooperative reaming for highly efficient uranium extraction from seawater. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120823] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
29
|
A comparative investigation of uranium and thorium adsorption behavior on amidoximated copolymeric hydrogel. J Radioanal Nucl Chem 2022. [DOI: 10.1007/s10967-022-08250-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
AbstractThis work focuses on investigating the feasibility of using a crosslinked amidoximated copolymeric hydrogel as a potential adsorbent to recover uranium and thorium ions from aqueous media. The hydrogel was synthesized via gamma-irradiation copolymerization and characterized through FTIR, TGA, and SEM. The medium acidity notably affected the adsorption capacity of both ions. The adsorption data was in line with the pseudo-1st-order equation and the Freundlich isothermal model. The thermodynamics analysis showed that the temperature rise promoted the adsorption capacity. The reusability studies highlighted the good performance of the hydrogel up to five regeneration rounds.
Collapse
|
30
|
Ou T, Wu Y, Han W, Kong L, Song G, Chen D, Su M. Synthesis of thickness-controllable polydopamine modified halloysite nanotubes (HNTs@PDA) for uranium (VI) removal. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127208. [PMID: 34592591 DOI: 10.1016/j.jhazmat.2021.127208] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 08/19/2021] [Accepted: 09/09/2021] [Indexed: 06/13/2023]
Abstract
Halloysite nanotubes (HNTs) are considered structurally promising adsorption materials, but their application is limited due to their poor native adsorption properties. Improving the adsorption capacity of HNTs for radioactive U(VI) is of great significance. By controlling the mass ratio of HNTs and dopamine (DA), composite adsorbents (HNTs@PDA) with different polydopamine (PDA) layer thicknesses were synthesized. Characterization of HNTs@PDA demonstrated that the original structure of the HNTs was maintained. Adsorption experiments verified that the adsorption capacity of HNTs@PDA for U(VI) was significantly improved. The effects of solution pH, temperature, and coexisting ions on the adsorption process were investigated. The removal efficiency was observed to be 75% after five repeated uses. The adsorption mechanism of U(VI) by HNTs@PDA can be explained by considering electrostatic interactions and the complexation of C-O, -NH- and C-N/CN in the PDA layer. This study provides some basic information for the application of HNTs for U(VI) removal.
Collapse
Affiliation(s)
- Tao Ou
- Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, Guangzhou University, Guangzhou 510006, China; School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Yuhua Wu
- Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, Guangzhou University, Guangzhou 510006, China; School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Weixing Han
- Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, Guangzhou University, Guangzhou 510006, China; School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Lingjun Kong
- Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, Guangzhou University, Guangzhou 510006, China; School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Gang Song
- Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, Guangzhou University, Guangzhou 510006, China; School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Diyun Chen
- Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, Guangzhou University, Guangzhou 510006, China; School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Minhua Su
- Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, Guangzhou University, Guangzhou 510006, China; School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China.
| |
Collapse
|
31
|
Effective separation of uranium(VI) from wastewater using a magnetic carbon as a recyclable adsorbent. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120140] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
32
|
Guo Y, Xia M, Shao K, Xu G, Cheng W, Shang Z, Peng H, Teng YG, Dou J. Theoretical and experimental investigations of enhanced uranium(VI) adsorption by nitrogen doping strategy. Phys Chem Chem Phys 2022; 24:17163-17173. [DOI: 10.1039/d2cp01386j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
With the ongoing development and utilization of nuclear energy, uranium pollution has become an increasingly serious issue. Although many adsorbents are able to remove hexavalent uranium (U(VI)) from aqueous solution,...
Collapse
|
33
|
Verma S, Kim KH. Graphene-based materials for the adsorptive removal of uranium in aqueous solutions. ENVIRONMENT INTERNATIONAL 2022; 158:106944. [PMID: 34689036 DOI: 10.1016/j.envint.2021.106944] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 09/19/2021] [Accepted: 10/17/2021] [Indexed: 06/13/2023]
Abstract
Ground water contamination by radioactive elements has become a critical issue that can pose significant threats to human health. Adsorption is the most promising approach for the removal of radioactive elements owing to its simplicity, effectiveness, and easy operation. Among the plethora of functional adsorbents, graphene oxide and its derivatives are recognized for their excellent potential as adsorbent with the unique 2D structure, high surface area, and intercalated functional groups. To learn more about their practical applicability, the procedures involved in their preparation and functionalization are described with the microscopic removal mechanism by GO functionalities across varying solution pH. The performance of these adsorbents is assessed further in terms of the basic performance metrics such as partition coefficient. Overall, this article is expected to provide valuable insights into the current status of graphene-based adsorbents developed for uranium removal with a guidance for the future directions in this research field.
Collapse
Affiliation(s)
- Swati Verma
- Department of Civil & Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul 04763, Korea
| | - Ki-Hyun Kim
- Department of Civil & Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul 04763, Korea.
| |
Collapse
|
34
|
Carbon cloth as an important electrode support for the high selective electrosorption of uranium from acidic uranium mine wastewater. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.119843] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
35
|
Li N, Gao P, Chen H, Li F, Wang Z. Amidoxime modified Fe 3O 4@TiO 2 particles for antibacterial and efficient uranium extraction from seawater. CHEMOSPHERE 2022; 287:132137. [PMID: 34496335 DOI: 10.1016/j.chemosphere.2021.132137] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/12/2021] [Accepted: 08/31/2021] [Indexed: 06/13/2023]
Abstract
Uranium extraction and recovery play a critical role in guaranteeing the sustainable nuclear energy supply and protecting the environmental safety. The ideal uranium sorbents possess high adsorption capacity, excellent selectivity and reusability, as well as outstanding antimicrobial property, which are greatly desired for the real application of uranium extraction from seawater. To address this challenge, a novel magnetic core-shell adsorbent was designed and fabricated by a facile method. The obtained amidoximed Fe3O4@TiO2 particles (Fe3O4@TiO2-AO) achieved equilibrium in 2 h and the maximum adsorption capacity calculated from Langmuir model is 217.0 mg/g. The adsorption kinetics followed the pseudo-second-order model. Meanwhile, the Fe3O4@TiO2-AO exhibited great selectivity when competitive metal ions and anions coexisted. In addition, the magnetic Fe3O4@TiO2-AO could be conveniently separated and collected by an external magnetic field, the regeneration efficiency maintained at 78.5% even after ten adsorption-desorption cycles. In natural seawater, the uranium uptake reached 87.5 μg/g in 33 days. Furthermore, the TiO2 contained adsorbent showed effective photo induced bactericidal properties against both E. coli and S. aureus. The Fe3O4@TiO2-AO with great U(VI) adsorption performance is highly promising in uranium extraction and reclamation.
Collapse
Affiliation(s)
- Nan Li
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, PR China
| | - Pin Gao
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, PR China
| | - Huawei Chen
- Water Resources Research Institute of Shandong Province, Shandong Key Laboratory of Water Resources and Environment, Jinan, 250014, PR China.
| | - Fulin Li
- Water Resources Research Institute of Shandong Province, Shandong Key Laboratory of Water Resources and Environment, Jinan, 250014, PR China
| | - Zhining Wang
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, PR China.
| |
Collapse
|
36
|
Li J, Zhang Y, Zhou Y, Fang F, Li X. Tailored metal-organic frameworks facilitate the simultaneously high-efficient sorption of UO 22+ and ReO 4- in water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 799:149468. [PMID: 34371410 DOI: 10.1016/j.scitotenv.2021.149468] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 07/31/2021] [Accepted: 07/31/2021] [Indexed: 06/13/2023]
Abstract
The simultaneously efficient extraction of radioactive metal cations and anions from radioactive waste is of great interest for the proper disposal of spent fuel and environmental protection. Modifying metal-organic frameworks (MOFs) into multifunctional materials with controllable and desired properties is an efficient strategy for broadening their practical applications. Herein, poly(ethyleneimine) (PEI) tailored MIL-101(Cr) (MILP) was obtained through an easy operation and low-cost strategy and was utilized to simultaneously extract uranium (UO22+) and rhenium (ReO4-) from water. The effects of PEI coating amounts, system pH, contact time, initial UO22+/ReO4- concentrations, ionic strength, as well as interfering ions were studied to evaluate the sorption performance of MILP composites. The maximum sorption capacity was 416.67 mg/g for UO22+ at pH 5.5 and 434.78 mg/g for ReO4- at pH 3.5, levels that are superior to those of most adsorbents. The sorption of UO22+/ReO4- occurred in a pH-dependent, spontaneous and endothermic manner, which showed preferable modeling by the pseudo-second-order (PSO) kinetic equation and Freundlich isotherm equation. The adsorption of ReO4- was inhibited by the coexistence of UO22+ and high ion strength. Batch experiments and X-ray photoelectron spectroscopy (XPS) results indicate that UO22+/ReO4- sorption was driven by the abundant amino groups and unsaturated metal sites in the MILP-3 composites. MILP-3 also showed excellent recycling performance and maintained high sorption capacities for UO22+/ReO4- in different simulated water samples. This study shows that MILP composites can effectively extract radioactive metal cations and anions from water, and lays a foundation for designing an excellent new category of candidates with versatile functions for wastewater management.
Collapse
Affiliation(s)
- Jie Li
- School of Resources and Environment, Anhui Agricultural University, Hefei 230036, PR China; Hefei Scientific Observing and Experimental Station of Agro-Environment, Ministry of Agriculture, PR China
| | - Yan Zhang
- School of Resources and Environment, Anhui Agricultural University, Hefei 230036, PR China; Hefei Scientific Observing and Experimental Station of Agro-Environment, Ministry of Agriculture, PR China
| | - Yi Zhou
- School of Resources and Environment, Anhui Agricultural University, Hefei 230036, PR China; Hefei Scientific Observing and Experimental Station of Agro-Environment, Ministry of Agriculture, PR China
| | - Fei Fang
- School of Resources and Environment, Anhui Agricultural University, Hefei 230036, PR China; Hefei Scientific Observing and Experimental Station of Agro-Environment, Ministry of Agriculture, PR China
| | - Xuede Li
- School of Resources and Environment, Anhui Agricultural University, Hefei 230036, PR China; Hefei Scientific Observing and Experimental Station of Agro-Environment, Ministry of Agriculture, PR China.
| |
Collapse
|
37
|
Zhu P, Wang Y, Bai X, Pan J. CO2-in-Water Pickering Emulsion-Assisted Polymerization-Induced Self-Assembly of Raspberry-like sorbent microbeads for uranium adsorption. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
38
|
Fabrication of a novel electrospun polyvinyl alcohol/polyacrylic acid nanofiber adsorbent loading with montmorillonite or zeolite for uranium (VI) removal. J Radioanal Nucl Chem 2021. [DOI: 10.1007/s10967-021-08092-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
39
|
Chen YM, Wang CZ, Wu QY, Lan JH, Chai ZF, Shi WQ. Theoretical insights into the possible applications of amidoxime-based adsorbents in neptunium and plutonium separation. Dalton Trans 2021; 50:15576-15584. [PMID: 34667997 DOI: 10.1039/d1dt01900g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Efficient separation of neptunium and plutonium from spent nuclear fuel is essential for advanced nuclear fuel cycles. At present, the development of effective actinide separation ligands has become a top priority. As common adsorbents for extracting uranium from seawater, amidoxime-based adsorbents may also be able to separate actinides from high-level liquid waste (HLLW). In this work, the complexation of Np(IV,V,VI) and Pu(IV) and alkyl chains (R = C13H26) modified with amidoximate (AO-) and carboxyl (Ac-) functional groups was systematically studied by quantum chemical calculations. For all the studied complexing species, the RAc- and RAO- ligands act as monodentate or bidentate ligands. Complexes with AO- groups show higher covalency of the metal-ligand bonding than the analogues with Ac- groups, in line with the binding energy analysis. Bonding analysis verifies that these amidoxime/carboxyl-based adsorbents possess higher coordination affinity toward Pu(IV) than toward Np(IV), and the Np(VI) complexes have stronger covalent interactions than Np(V). According to thermodynamic analysis, these adsorbents have the ability to separate Np(IV,V,VI) and Pu(IV), and also exhibit potential performance for partitioning Pu(IV) from Np(IV) under acidic conditions. This work can help to deeply understand the interaction between transuranium elements and amidoxime-based adsorbents, and provide a theoretical basis for the separation of actinides with amidoxime-based adsorbents.
Collapse
Affiliation(s)
- Yan-Mei Chen
- Engineering Laboratory of Advanced Energy Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201, China
| | - Cong-Zhi Wang
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China.
| | - Qun-Yan Wu
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China.
| | - Jian-Hui Lan
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China.
| | - Zhi-Fang Chai
- Engineering Laboratory of Advanced Energy Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201, China.,Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China.
| | - Wei-Qun Shi
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
40
|
Effect of bi-functionalization silica micro beads on uranium adsorption from synthetic and washing pregnant uranyl solutions. J Radioanal Nucl Chem 2021. [DOI: 10.1007/s10967-021-07945-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
41
|
Qiang S, Li Z, Zhang L, Luo D, Geng R, Zeng X, Liang J, Li P, Fan Q. Cytotoxic Effect of Graphene Oxide Nanoribbons on Escherichia coli. NANOMATERIALS 2021; 11:nano11051339. [PMID: 34069641 PMCID: PMC8160729 DOI: 10.3390/nano11051339] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/11/2021] [Accepted: 05/12/2021] [Indexed: 11/25/2022]
Abstract
The biological and environmental toxicity of graphene and graphene derivatives have attracted great research interest due to their increasing applications. However, the cytotoxic mechanism is poorly understood. Here, we investigated the cytotoxic effect of graphene oxide nanoribbons (GORs) on Escherichia coli (E. coli) in an in vitro method. The fabricated GORs formed long ribbons, 200 nm wide. Based on the results of the MTT assay and plate-culture experiments, GORs significantly inhibited the growth and reproduction of E. coli in a concentration-dependent manner. We found that GORs stimulated E. coli to secrete reactive oxygen species, which then oxidized and damaged the bacterial cell membrane. Moreover, interaction between GORs and E. coli cytomembrane resulted in polysaccharide adsorption by GORs and the release of lactic dehydrogenase. Furthermore, GORs effectively depleted the metal ions as nutrients in the culture medium by adsorption. Notably, mechanical cutting by GORs was not obvious, which is quite different from the case of graphene oxide sheets to E. coli.
Collapse
Affiliation(s)
- Shirong Qiang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China; (S.Q.); (Z.L.); (L.Z.); (X.Z.)
| | - Zhengbin Li
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China; (S.Q.); (Z.L.); (L.Z.); (X.Z.)
| | - Li Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China; (S.Q.); (Z.L.); (L.Z.); (X.Z.)
| | - Dongxia Luo
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; (R.G.); (J.L.); (P.L.); (Q.F.)
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
- Correspondence: ; Tel.: +18-919081544
| | - Rongyue Geng
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; (R.G.); (J.L.); (P.L.); (Q.F.)
| | - Xueli Zeng
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China; (S.Q.); (Z.L.); (L.Z.); (X.Z.)
| | - Jianjun Liang
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; (R.G.); (J.L.); (P.L.); (Q.F.)
| | - Ping Li
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; (R.G.); (J.L.); (P.L.); (Q.F.)
| | - Qiaohui Fan
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; (R.G.); (J.L.); (P.L.); (Q.F.)
| |
Collapse
|