1
|
Alukkal CR, Modiri M, Ruiz RA, Choi YJ, Lee LS. Evaluation of PFAS extraction and analysis methods for biosolids. Talanta 2025; 286:127485. [PMID: 39736209 DOI: 10.1016/j.talanta.2024.127485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 12/15/2024] [Accepted: 12/26/2024] [Indexed: 01/01/2025]
Abstract
Per- and polyfluoroalkyl substances (PFAS) in the environment is a growing concern leading to a focus on PFAS occurrence in biosolids, a byproduct of wastewater treatment processes, often applied to improve soil health. This led to the need for analytical method development for assessing PFAS in biosolids. This study compares three methods for PFAS quantitation, evaluating solvent extraction, clean-up techniques, and final injection solvents. Three biosolids examined included not stabilized, anaerobically digested, and activated sludge with long-term lagoon-stabilized solids, resulting in differing properties. One method is a methanolic extraction with ENVI-Carb clean-up (ME), modified by adding isopropanol (ME-P) to the injection vial to prevent emulsification that can occur with more complex biosolids matrices. The second method was the U.S. EPA 1633 method involving additional solid-phase extraction (SPE) and filtration while the third method was Quick Easy Cheap Effective Rugged and Safe (QuEChERS), yet to be tested on biosolids. Method performance was evaluated based on instrument precision, limit of quantitation (LOQ), and extraction recoveries. PFAS concentrations and recoveries were similar for Me-P and 1633 methods while QuEChERS performed poorly. Method 1633 exhibited better reproducibility with lower relative standard deviations but had higher LOQ values due to sample dilution. Most LOQs ranged between 0.06 and 0.3 μg/kg across methods, while recovery of spiked native PFAS ranged between 70 and 130 % in most cases. Methanol-based mobile phases resulted in better peak shape. ME-P excelled in overall cost-effectiveness showing superior extraction efficiency with fewer operational steps compared to other methods for PFAS quantitation in biosolids.
Collapse
Affiliation(s)
- Caroline Rose Alukkal
- Interdisciplinary Ecological Sciences & Engineering, Purdue University, West Lafayette, IN, 47907, USA; Department of Environmental & Ecological Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Mahsa Modiri
- Department of Agronomy, Purdue University, West Lafayette, IN, 47907, USA
| | | | - Youn Jeong Choi
- Department of Agronomy, Purdue University, West Lafayette, IN, 47907, USA
| | - Linda S Lee
- Interdisciplinary Ecological Sciences & Engineering, Purdue University, West Lafayette, IN, 47907, USA; Department of Environmental & Ecological Engineering, Purdue University, West Lafayette, IN, 47907, USA; Department of Agronomy, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
2
|
Tran-Lam TT, Pham PT, Dao YH, Tran QH. Organophosphate esters and their metabolites in eggs from Vietnam. FOOD ADDITIVES & CONTAMINANTS. PART B, SURVEILLANCE 2025; 18:65-77. [PMID: 39514129 DOI: 10.1080/19393210.2024.2419588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 10/17/2024] [Indexed: 11/16/2024]
Abstract
Data on the occurrence of organophosphate tri-esters (tri-OPEs) and their metabolites (di-OPEs) in hen's eggs are scarce. Therefore, 200 egg samples were gathered in 2023 in Hanoi, Vietnam and analysed by UHPLC-Q-Exactive HRMS. The majority of these compounds were detected, with tris(2-ethylhexyl) phosphate (0.10-2.7 ng/g wet weight (ww)) and trihexyl phosphate (0.08-2.3 ng/g ww) being the most prevalent tri-OPEs. Significant differences in tri-OPE profiles were observed in egg samples from battery-cage and free-range farming (p < .05). Despite egg levels ranging from 0.05 to 11.2 ng/g ww, Σdi-OPE accumulation in yolk and egg white was not significantly different in (p > .05). Among di-OPEs, dibutyl phosphate was found at the highest levels in the egg white, while bis(2-ethylhexyl) phosphate had the highest levels in yolk. There was no carcinogenic human health risk associated with OPEs in eggs (HQs <1).
Collapse
Affiliation(s)
- Thanh-Thien Tran-Lam
- Department of Marine Mechanics and Environment, Institute of Mechanics and Applied Informatics, Vietnam Academy of Science and Technology (VAST), Ho Chi Minh City, Vietnam
- Institute of Mechanics and Applied Informatics, Vietnam Academy of Science and Technology (VAST), Ho Chi Minh City, Vietnam
| | - Phuong Thi Pham
- Institute of Chemistry, Vietnam Academy of Science and Technology (VAST), Hanoi, Vietnam
| | - Yen Hai Dao
- Institute of Chemistry, Vietnam Academy of Science and Technology (VAST), Hanoi, Vietnam
| | - Quang Huu Tran
- Institute of Chemistry, Vietnam Academy of Science and Technology (VAST), Hanoi, Vietnam
| |
Collapse
|
3
|
Li Y, Chen B, Yang S, Jiao Z, Zhang M, Yang Y, Gao Y. Advances in environmental pollutant detection techniques: Enhancing public health monitoring and risk assessment. ENVIRONMENT INTERNATIONAL 2025; 197:109365. [PMID: 40101528 DOI: 10.1016/j.envint.2025.109365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 02/20/2025] [Accepted: 03/03/2025] [Indexed: 03/20/2025]
Abstract
Accurate detection and monitoring of environmental pollutants are of paramount importance for disease prevention and public health. In recent years, the ever-expanding human activities and industrial production have given rise to a sharp increase in the complexity and variety of these pollutants, which pose significant threats to human well - being. Environmental pollutants stem from multiple sources, such as heavy metals, persistent organic pollutants, inorganic non - metallic pollutants, emerging pollutants, and biological contaminants. Traditional detection technologies, though valuable for their sensitivity and accuracy, are constrained by complex sample preparation, poor selectivity, and the absence of standardized detection methods. On the other hand, emerging technologies, including nanotechnology, molecular detection methods, biosensors, Surface-Enhanced Raman Spectroscopy (SERS), multi-omics, and big data analysis, offer promising solutions for rapid and sensitive pollutant detection. The establishment of environmental monitoring networks and data - sharing platforms further enhances real - time pollutant monitoring and provides solid data support for public health initiatives. Nonetheless, challenges persist, including data integration, exposure assessment, and the development of cost-effective and portable detection solutions. Future progress in interdisciplinary approaches and technology integration will be crucial for advancing environmental pollutant detection and facilitating comprehensive disease prevention. This review systematically classifies environmental pollutants and showcases the latest advancements in detection technologies, offering critical insights for environmental monitoring and public health protection.
Collapse
Affiliation(s)
- Yang Li
- College of Pharmacy, Research Center for Innovative Technology of Pharmaceutical Analysis, Harbin Medical University, Heilongjiang 150081, PR China; Heilongjiang Eye Hospital, Harbin, 150001, PR China; Department of Traditional Chinese Medicine, The Second Affiliated Hospital of Zhejiang University, Zhejiang, 310009, PR China; State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), College of Pharmacy, Harbin Medical University, Harbin, 150081, PR China; Research Unit of Health Sciences and Technology (HST), Faculty of Medicine University of Oulu, Penttikaiterankatu 1, 90570, Oulu, Finland; Department of Clinical Laboratory Diagnosis, Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150006, PR China.
| | - Biqing Chen
- Gynaecology and Obstetrics, The Second Affiliated Hospital of Harbin Medical University, Harbin Medical University, Heilongjiang 150081, PR China.
| | - Shuaifei Yang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin 150081, PR China.
| | - Zhe Jiao
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin 150081, PR China.
| | - Meichen Zhang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin 150081, PR China.
| | - Yanmei Yang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin 150081, PR China.
| | - Yanhui Gao
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin 150081, PR China.
| |
Collapse
|
4
|
Shukla S, Khan R, Chrzanowski Ł, Vagliasindi FGA, Roccaro P. Advancing sustainable agriculture through multi-omics profiling of biosolids for safe application: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 375:124292. [PMID: 39889433 DOI: 10.1016/j.jenvman.2025.124292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 01/15/2025] [Accepted: 01/19/2025] [Indexed: 02/03/2025]
Abstract
Biosolids, derived from wastewater treatment processes, are valuable resources for soil amendment in agriculture due to their nutrient-rich composition. However, various contaminants of concern (CEC) such as pharmaceuticals, per-and poly-fluoroalkyl substances, endocrine disruptive chemicals, surfactants, pathogens, nanoplastics, and microplastics, are also reported in biosolids. The use of biosolids for agriculture may introduce these CEC into the soil, which raises concerns about their environmental and human health impacts. Moreover, the presence of pathogens (Escherichia coli, Salmonella sp., Shigella, Giardia, Rotavirus, etc.) even after treatment calls for microbial profiling of biosolids, especially in developing countries. Multi-omics approaches can be used as powerful tools for characterizing microbial communities and highlighting metabolic pathways. Moreover, these approaches also help in predicting the ecological and agronomic effects of biosolids application in agricultural soils. This review discusses the advantages and challenges of using biosolids in agriculture, considering the range of different CEC reported in biosolids. Moreover, the current legislation for the use of biosolids in agriculture is also presented, highlighting the limitations with respect to guidelines for emerging contaminants in biosolids. Furthermore, the role of the multi-omics approach in biosolids management, focusing on genomics, transcriptomics, proteomics, and metabolomics is also assessed. Multi-omics also allows for real-time monitoring, ensuring continuous optimization of biosolids towards changing environmental conditions. This dynamic approach not only enhances the safe use, but also enhances the sustainability of waste management practices, minimizing the negative effects. Finally, the future research directions for integrating the multi-omics approach into biosolid management practices are also suggested. The need for updating the legislative framework, continued innovation to promote sustainable and robust agricultural systems, bringing the process closer to the principles of a circular bioeconomy is also empahasized.
Collapse
Affiliation(s)
- Saurabh Shukla
- Department of Civil Engineering and Architecture, University of Catania, Catania, Italy.
| | - Ramsha Khan
- Department of Civil Engineering and Architecture, University of Catania, Catania, Italy.
| | - Łukasz Chrzanowski
- Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, 60-965, Poznan, Poland.
| | | | - Paolo Roccaro
- Department of Civil Engineering and Architecture, University of Catania, Catania, Italy.
| |
Collapse
|
5
|
Qu H, Han Y, Wang C, Zheng D, Ni Y, Xiao X. Unveiling the Research Void: Exploring the Reproductive Effects of PFAS Compounds on Male Health. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1469:127-162. [PMID: 40301256 DOI: 10.1007/978-3-031-82990-1_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/01/2025]
Abstract
Per- and polyfluoroalkyl substances (PFAS) represent an emerging concern for male reproductive health. Epidemiological studies have reported associations between increased PFAS exposure and reduced semen quality parameters, lower sperm counts, and potential alterations in reproductive hormone levels. Toxicology research has revealed possible mechanisms including blood-testis barrier disruption, oxidative stress, interference with testicular cell function, and epigenetic changes. However, significant uncertainties remain regarding definitive exposure-response relationships, developmental windows of heightened vulnerability, combined mixture effects, and causality interpretation, given limitations inherent to observational studies. Ongoing investigation of short-chain and replacement PFAS compounds is also critically needed. Additionally, directly connecting the mechanistic insights from animal models to human fertility impacts remains challenging. While controlled toxicology studies have described pathways by which PFAS could impair cellular functioning in the testes, uncertainty persists in extrapolating these experimental effects to real-world human exposures and sperm parameter declines reported epidemiologically. Overall, current findings suggest PFAS may contribute to declining male reproductive function, but additional clarification through well-designed longitudinal cohort studies integrated with mechanistic animal work is still warranted to confirm exposure-fertility links across a range of PFAS types and inform evidence-based public health mitigation strategies.
Collapse
Affiliation(s)
- Haoyang Qu
- Center for Reproductive Health, School of Pharmaceutical Sciences, Hangzhou Medical College (Zhejiang Academy of Medical Sciences), Hangzhou, China
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, China
| | - Yating Han
- Center for Reproductive Health, School of Pharmaceutical Sciences, Hangzhou Medical College (Zhejiang Academy of Medical Sciences), Hangzhou, China
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, China
| | - Chenglu Wang
- Center for Reproductive Medicine, Department of Reproductive Endocrinology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, China
| | - Dongwang Zheng
- Center for Reproductive Health, School of Pharmaceutical Sciences, Hangzhou Medical College (Zhejiang Academy of Medical Sciences), Hangzhou, China
| | - Ya Ni
- Center for Reproductive Health, School of Pharmaceutical Sciences, Hangzhou Medical College (Zhejiang Academy of Medical Sciences), Hangzhou, China
| | - Xiang Xiao
- Center for Reproductive Health, School of Pharmaceutical Sciences, Hangzhou Medical College (Zhejiang Academy of Medical Sciences), Hangzhou, China.
- Zhejiang Provincial Laboratory of Experimental Animal's and Nonclinical Laboratory Studies, Hangzhou Medical College, Hangzhou, China.
- Engineering Research Center of Novel Vaccine of Zhejiang Province, Hangzhou Medical College, Hangzhou, China.
| |
Collapse
|
6
|
Li Y, Sidikjan N, Huang L, Chen Y, Zhang Y, Li Y, Yang J, Shen G, Liu M, Huang Y. Multi-media environmental fate of polychlorinated dibenzo-p-dioxins and dibenzofurans in China: A systematic review of emissions, presence, transport modeling and health risks. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 362:124970. [PMID: 39284404 DOI: 10.1016/j.envpol.2024.124970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 09/12/2024] [Accepted: 09/13/2024] [Indexed: 09/20/2024]
Abstract
Polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCDD/Fs) are notorious persistent organic pollutants (POPs) with proven toxicity to human and ecosystems. This review critically evaluates existing research, emphasizing knowledge gaps regarding PCDD/F emissions, environmental behavior, human exposure, and associated risks in China. The current emission inventory of PCDD/Fs in China remains highly uncertain, both in terms of total emissions and emission trends. Moreover, existing monitoring data primarily focus on areas near pollution sources, limiting comprehensive understanding of the overall spatiotemporal characteristics of PCDD/F pollution. To address this, we propose a novel approach that integrates the Multi-media Urban Mode (MUM) model with an atmospheric chemical transport model that includes a dual adsorption model to capture gas-particle partitioning of PCDD/Fs in the atmosphere. This coupled model can simulate the transport and fate of PCDD/Fs in multi-media environments with high spatiotemporal resolution, facilitating a nuanced understanding of the impacts of emissions, climate, urbanization and other factors on PCDD/F pollution. Additionally, dietary ingestion, particularly from animal-derived foods, is identified as the predominant source (up to 98%) of human exposure to PCDD/Fs. While the changes in dietary structure, population distribution, and age structure can influence human exposure to PCDD/Fs, their impacts have not yet been quantified. The proposed model lays the foundation for a systematic assessment of health risks from PCDD/F exposure through various pathways by further incorporating a food chain model. Overall, this review offers a comprehensive strategy for assessing PCDD/F pollution, encompassing the entire continuum from emissions to environmental impacts.
Collapse
Affiliation(s)
- Ying Li
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographical Sciences, East China Normal University, 200241, Shanghai, China
| | - Nazupar Sidikjan
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographical Sciences, East China Normal University, 200241, Shanghai, China
| | - Lin Huang
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographical Sciences, East China Normal University, 200241, Shanghai, China
| | - Yangmin Chen
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographical Sciences, East China Normal University, 200241, Shanghai, China
| | - Yunshan Zhang
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographical Sciences, East China Normal University, 200241, Shanghai, China
| | - Ye Li
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographical Sciences, East China Normal University, 200241, Shanghai, China
| | - Jing Yang
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographical Sciences, East China Normal University, 200241, Shanghai, China
| | - Guofeng Shen
- Laboratory of Earth Surface Processes, College of Urban and Environmental Science, Peking University, Beijing, 100871, China
| | - Min Liu
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographical Sciences, East China Normal University, 200241, Shanghai, China
| | - Ye Huang
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographical Sciences, East China Normal University, 200241, Shanghai, China.
| |
Collapse
|
7
|
Sharkey M, Wang S, Harrad S, Stubbings WA, Healy MG, Jin J, Coggins AM. Legacy and emerging flame retardants in sediments and wastewater treatment plant-derived biosolids. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176582. [PMID: 39353490 DOI: 10.1016/j.scitotenv.2024.176582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/16/2024] [Accepted: 09/26/2024] [Indexed: 10/04/2024]
Abstract
A baseline assessment of legacy and emerging flame retardant chemicals was performed in inland and transitional sediments as well as biosolids emanating from a selection of wastewater treatment plants (WWTPs) in Ireland. A selection of 24 polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs), and chlorinated organophosphate esters (Cl-OPEs) were quantified in: 81 inland and transitional sediment samples collected during 2023; 39 transitional sediments collected between 2018 and 2022; and 21 biosolid samples collected from 7 WWTPs over 4-month intervals in January, May, and September 2023. Highest concentrations of BDE-209 and several Cl-OPEs were detected in both sediment and biosolid samples, while most PCBs and penta-/octa-BDEs were comparatively low. Moderate levels of PBDEs and Cl-OPEs were detected in Irish sediments compared to similar studies conducted internationally. In biosolid samples, levels of BDE-209 were on the higher end of figured reported worldwide while levels of Σ8Cl-OPEs were the highest relative to comparable international studies. PCBs meanwhile are on the lower end of international levels for both biosolids and sediments. Based on available predicted no-effect concentrations (PNECs), the majority of compounds assessed were found to be of low-risk based on their levels in sediments with the exception of TCIPP (Risk Quotient - RQ = 1.354 = high risk) as well as EHDPP, TEHP, PCB-118, and PCB-52 (RQ = 0.948, 0.576, 0.446, and 0.257 respectively = moderate risk). Similar risk assessment could not be performed on contaminants in biosolids, though levels of BDE-209 were on the higher end of figured reported worldwide (avg = 3155 ng/g) while levels of Σ8Cl-OPEs were the highest relative to comparable international studies (avg8 = 3290 ng/g). As the legacy PBDEs and PCBs have been listed as persistent organic pollutants (POPs) and replacement flame retardants such as Cl-OPEs have been flagged by programmes such as human biomonitoring for EU (HBM4EU) and the NORMAN Network as chemicals of emerging concern, continued monitoring of these moderate and high-risk contaminants in sediments, as well as an investigation of potential contamination of the food chain through land-spreading of biosolids on agricultural lands, would be warranted.
Collapse
Affiliation(s)
- Martin Sharkey
- Physics, School of Natural Sciences, University of Galway, Galway City H91 CF50, Ireland.
| | - Shijie Wang
- School of Geography, Earth, and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom.
| | - Stuart Harrad
- School of Geography, Earth, and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - William A Stubbings
- School of Geography, Earth, and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Mark G Healy
- Civil Engineering, College of Science and Engineering, University of Galway, Galway City H91 HX31, Ireland
| | - Jingxi Jin
- School of Geography, Earth, and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Ann Marie Coggins
- Physics, School of Natural Sciences, University of Galway, Galway City H91 CF50, Ireland
| |
Collapse
|
8
|
Xu X, He Y, Cheng Z, Zhang H, Chu Y, Wang Z, An X. Environmental endocrine disrupting chemical-DEHP exposure-provoked biotoxicity about microbiota-gut-mammary axis in lactating mice via multi-omics technologies. ENVIRONMENT INTERNATIONAL 2024; 193:109130. [PMID: 39522489 DOI: 10.1016/j.envint.2024.109130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 11/01/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
Plastics, pervasive in humans and nature, often contain Di (2-ethylhexyl) phthalate (DEHP) that enhance plastic's elasticity. However, DEHP is an environmental endocrine disruptor, affecting organisms upon exposure. Understanding mammary gland development in lactating females is crucial for offspring nourishment and dairy production. Employing multi-omics technology, this study aimed to uncover DEHP's impact on the microbial-gut-mammary axis. Forty mice were exposed to varying DEHP doses for 18 d. We performed 16S sequencing, metabolomics, mammary tissue observation, and gene expression profiling. Results revealed DEHP's influence on microbial diversity, with increased Lactobacillus abundance and reduced Proteobacteria, alongside colonic inflammation. Elevated GMP and adenosine 5'-monophosphate levels in the bloodstream were noted, while ascorbic acid, glycitein, and others decreased. MEHP, a DEHP metabolite, damaged mammary tissues, inhibiting ERK1/2 phosphorylation, triggering apoptosis and ferroptosis. These findings unveil potential therapeutic targets for DEHP-induced chronic toxicity in humans and animals, aiding dairy livestock health and human well-being. This study underscores the importance of understanding the adverse effects of DEHP exposure on mammalian systems.
Collapse
Affiliation(s)
- Xiaolong Xu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Yonglong He
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Zefang Cheng
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Haoyuan Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Yijian Chu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Zhewei Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Xiaopeng An
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China.
| |
Collapse
|
9
|
Sonter CA, Tighe M, Rader R, Wilson SC. Can Bees Detect Perfluorooctane Sulfonate (PFOS)? ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2024; 43:1638-1647. [PMID: 38721889 DOI: 10.1002/etc.5881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/14/2023] [Accepted: 04/01/2024] [Indexed: 06/27/2024]
Abstract
The European honey bee (Apis mellifera) is an important crop pollinator threatened by multiple stressors, including exposure to contaminants. Perfluorooctane sulfonate (PFOS) is a persistent global contaminant that accumulates and biomagnifies in food chains and is detected in honey. Even sublethal exposure to PFOS is detrimental to bee health, but exposure routes are unclear and nothing is known about bee response (detection, avoidance, or attraction) to PFOS. Using Y-mazes, we studied the response of individual bees to PFOS-spiked sugar syrup at four concentrations, 0.02, 30, 61 and 103 µg L-1. Bee activity, choice behavior, and drink duration for unspiked and spiked sugar syrup was recorded for 10 min in the Y-maze system. Most bees (≥80%) tasted and then drank the sugar syrup solutions, including the PFOS-contaminated syrup. Only at 61 and 103 µg L-1 did bees significantly avoid drinking PFOS-spiked syrup, and only when given a choice with unspiked syrup. When the choice of consuming unspiked syrup was removed, the bees drank PFOS-spiked syrup at all the PFOS concentrations tested, and avoidance was not evident. Avoidance was not observed in any treatment at 0.02 or 30 µg L-1 PFOS, concentrations that are frequently reported in environmental waters in contaminated areas. These findings confirm that bees will access PFOS-contaminated resources at concentrations detrimental to the colony health, and provide evidence of potential exposure pathways that may threaten crop pollination services and also human health via food chain transfer in PFOS-contaminated areas. Environ Toxicol Chem 2024;43:1638-1647. © 2024 SETAC.
Collapse
Affiliation(s)
- Carolyn A Sonter
- School of Environmental and Rural Science, University of New England, Armidale, New South Wales, Australia
| | - Matthew Tighe
- School of Environmental and Rural Science, University of New England, Armidale, New South Wales, Australia
| | - Romina Rader
- School of Environmental and Rural Science, University of New England, Armidale, New South Wales, Australia
| | - Susan C Wilson
- School of Environmental and Rural Science, University of New England, Armidale, New South Wales, Australia
| |
Collapse
|
10
|
Korcz W, Czaja K, Liszewska M, Lewiński R, Słomczyńska A, Struciński P. Decabromodifenyl Ether (BDE-209) in Surface Soils from Warsaw and Surrounding Areas: Characterization of Non-Carcinogenic Risk Associated with Oral and Dermal Exposure. Molecules 2024; 29:2335. [PMID: 38792195 PMCID: PMC11124241 DOI: 10.3390/molecules29102335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/09/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024] Open
Abstract
Polybrominated diphenyl ethers (PBDEs) have been used for many years as flame retardants. Due to their physicochemical and toxicological properties, they are considered to be persistent organic pollutants (POPs). BDE-209 is the main component of deca-BDE, the one PBDE commercial mixture currently approved for use in the European Union. The aim of this study was to analyse BDE-209 in surface soil samples from Warsaw and surrounding areas (Poland) as an indicator of environmental pollution with PBDEs, and to characterise the associated health risk. A total of 40 samples were analysed using gas chromatography with electron capture detection (GC-µECD). Concentrations of BDE-209 in soil ranged from 0.4 ng g-1 d.w. (limit of quantification) to 158 ng g-1 d.w. Overall, 52.5% of results were above the method's limit of quantification. The highest levels were found at several locations with heavy traffic and in the vicinity of a CHP plant in the city. The lowest concentrations were observed in most of the samples collected from low industrialized or green areas (<0.4 to 1.68 ng g-1 d.w.). Exposure to BDE-209 was estimated for one of the most sensitive populations, i.e., young children. The following exposure routes were selected: oral and dermal. No risk was found to young children's health.
Collapse
Affiliation(s)
- Wojciech Korcz
- Department of Toxicology and Health Risk Assessment, National Institute of Public Health NIH—National Research Institute, Chocimska 24, 00-791 Warsaw, Poland
| | | | | | | | | | - Paweł Struciński
- Department of Toxicology and Health Risk Assessment, National Institute of Public Health NIH—National Research Institute, Chocimska 24, 00-791 Warsaw, Poland
| |
Collapse
|
11
|
Graça J, Kwapinska M, Murphy B, Duggan T, Leahy JJ, Kelleher B. Pyrolysis, a recovery solution to reduce landfilling of residual organic waste generated from mixed municipal waste. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:30676-30687. [PMID: 38613758 PMCID: PMC11512856 DOI: 10.1007/s11356-024-33282-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 04/07/2024] [Indexed: 04/15/2024]
Abstract
Despite policies to restrict the mixing of organic waste with other general waste and improve its separation at source, municipal solid waste still contains a high proportion of organic waste. The residual organic waste is generated as a by-product of the mechanical treatment of municipal solid waste (MSW) and is mainly disposed in landfills after composting. Its reuse and recovery status varies across European countries. Most countries restrict the use of biostabilised residual waste (BSRW) to landfill cover, whereas others have regulated it as marketable compost. Crucially, BSRW is set to lose its "recycled" status under the revised European Union waste framework, with probably tighter restrictions and increased costs imposed for the landfilling of organic waste. Our research aimed to investigate pyrolysis as an alternative technology to treat the 10-40 mm fraction of BSRW (representing 50% of BSRW generated). Pyrolysis at 700 °C was carried out and feedstock and pyrolysis products were characterized. Mass and energy balances showed that pyrolysis produced hot vapour/gas whose combustion may render the pyrolysis process energetically sustainable. Biochar comprises 30-50% of BRSW mass after removal of glass, metal and stones. Our results indicate that pyrolysis has the potential to create options for contributing to reduce the landfilling of BSRW; however, the presence of residual impurities may limit biochar applications.
Collapse
Affiliation(s)
- Jessica Graça
- School of Chemical Sciences, Dublin City University, Dublin 9, Ireland
| | - Marzena Kwapinska
- Department of Chemical Sciences, University of Limerick, Limerick, V94 T9PX, Ireland.
| | - Brian Murphy
- Enrich Environmental Ltd, Larch Hill, Kilcock, Co Meath, Ireland
| | - Tim Duggan
- Enrich Environmental Ltd, Larch Hill, Kilcock, Co Meath, Ireland
| | - James J Leahy
- Department of Chemical Sciences, Bernal Institute, University of Limerick, Limerick, V94 T9PX, Ireland
| | - Brian Kelleher
- School of Chemical Sciences, Dublin City University, Dublin 9, Ireland
| |
Collapse
|
12
|
Vo PHN, Ky Le G, Huy LN, Zheng L, Chaiwong C, Nguyen NN, Nguyen HTM, Ralph PJ, Kuzhiumparambil U, Soroosh D, Toft S, Madsen C, Kim M, Fenstermacher J, Hai HTN, Duan H, Tscharke B. Occurrence, spatiotemporal trends, fate, and treatment technologies for microplastics and organic contaminants in biosolids: A review. JOURNAL OF HAZARDOUS MATERIALS 2024; 466:133471. [PMID: 38266587 DOI: 10.1016/j.jhazmat.2024.133471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 01/06/2024] [Accepted: 01/06/2024] [Indexed: 01/26/2024]
Abstract
This review provides a comprehensive overview of the occurrence, fate, treatment and multi-criteria analysis of microplastics (MPs) and organic contaminants (OCs) in biosolids. A meta-analysis was complementarily analysed through the literature to map out the occurrence and fate of MPs and 10 different groups of OCs. The data demonstrate that MPs (54.7% occurrence rate) and linear alkylbenzene sulfonate surfactants (44.2% occurrence rate) account for the highest prevalence of contaminants in biosolids. In turn, dioxin, polychlorinated biphenyls (PCBs) and phosphorus flame retardants (PFRs) have the lowest rates (<0.01%). The occurrence of several OCs (e.g., dioxin, per- and polyfluoroalkyl substances, polycyclic aromatic hydrocarbons, pharmaceutical and personal care products, ultraviolet filters, phosphate flame retardants) in Europe appear at higher rates than in Asia and the Americas. However, MP concentrations in biosolids from Australia are reported to be 10 times higher than in America and Europe, which required more measurement data for in-depth analysis. Amongst the OC groups, brominated flame retardants exhibited exceptional sorption to biosolids with partitioning coefficients (log Kd) higher than 4. To remove these contaminants from biosolids, a wide range of technologies have been developed. Our multicriteria analysis shows that anaerobic digestion is the most mature and practical. Thermal treatment is a viable option; however, it still requires additional improvements in infrastructure, legislation, and public acceptance.
Collapse
Affiliation(s)
- Phong H N Vo
- Climate Change Cluster, Faculty of Science, University of Technology Sydney, 15 Broadway, Ultimo, NSW 2007, Australia.
| | - Gia Ky Le
- Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura, Saitama 338-8570, Japan
| | - Lai Nguyen Huy
- Environmental Engineering and Management, Asian Institute of Technology (AIT), Klong Luang, Pathumthani, Thailand
| | - Lei Zheng
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, China; Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, QLD 4103, Australia
| | - Chawalit Chaiwong
- Environmental Engineering and Management, Asian Institute of Technology (AIT), Klong Luang, Pathumthani, Thailand
| | - Nam Nhat Nguyen
- School of Chemical Engineering, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Hong T M Nguyen
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, QLD 4103, Australia
| | - Peter J Ralph
- Climate Change Cluster, Faculty of Science, University of Technology Sydney, 15 Broadway, Ultimo, NSW 2007, Australia
| | - Unnikrishnan Kuzhiumparambil
- Climate Change Cluster, Faculty of Science, University of Technology Sydney, 15 Broadway, Ultimo, NSW 2007, Australia
| | - Danaee Soroosh
- Biotechnology Department, Iranian Research Organization for Science and Technology, Tehran 3353-5111, Iran
| | - Sonja Toft
- Urban Utilities, Level 10/31 Duncan St, Fortitude Valley, QLD 4006, Australia
| | - Craig Madsen
- Urban Utilities, Level 10/31 Duncan St, Fortitude Valley, QLD 4006, Australia
| | - Mikael Kim
- Climate Change Cluster, Faculty of Science, University of Technology Sydney, 15 Broadway, Ultimo, NSW 2007, Australia
| | | | - Ho Truong Nam Hai
- Faculty of Environment, University of Science, 227 Nguyen Van Cu Street, District 5, Ho Chi Minh City 700000, Viet Nam
| | - Haoran Duan
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Ben Tscharke
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, QLD 4103, Australia
| |
Collapse
|
13
|
Braine MF, Kearnes M, Khan SJ. Quality and risk management frameworks for biosolids: An assessment of current international practice. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 915:169953. [PMID: 38215849 DOI: 10.1016/j.scitotenv.2024.169953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 12/11/2023] [Accepted: 01/04/2024] [Indexed: 01/14/2024]
Abstract
Biosolids, a product of wastewater treatment, provide a valuable resource, but to optimize the use of this resource it is necessary to manage risks posed to public health and the environment. Key requirements include identifying contaminant sources and providing barriers to ensure containment and treatment while maintaining the viability and value of biosolids products. Responsibility for managing biosolids is the remit of many stakeholders but primarily it rests with private and public wastewater facilities. The global variabilities in the way biosolids resources are acknowledged, applied, and managed are substantial. For example, some countries are increasing incineration because of their ability to remove contaminants while others have experienced a proportional decrease in incineration dependent on industrial resources or regarding resource recovery costs and needs. Some jurisdictions focus on energy recovery and others on land application. A risk management framework is a tool that may provide a suitable holistic approach to biosolids management. With this focus, current instruments in practice globally to manage biosolids were assessed for the degree to which they have adopted a risk management framework. To form a basis for this assessment a set of criteria was established by concept mapping several internationally recognized standards. Guidelines for a range of developed and developing countries were then assessed against these criteria. That process enabled the identification of which current practices were holistic in terms of applying biosolids risk management principles from production to end-use. Through this process, risk management gaps and vulnerabilities were identified. The results reveal that the incorporation of risk standards into risk management frameworks around the world is variable for the presence of risk criteria and the scale of detail provided. Contaminant concentrations need perspective within the changing risk landscape for stakeholders and the environment while jointly the opportunities and contaminant challenges require solutions that balance risks.
Collapse
Affiliation(s)
- Marilyn F Braine
- Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, NSW 2052, Australia
| | - Matthew Kearnes
- School of Humanities & Language, University of New South Wales, NSW 2052, Australia
| | - Stuart J Khan
- Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, NSW 2052, Australia; School of Civil Engineering, University of Sydney, NSW 2006, Australia.
| |
Collapse
|
14
|
Huang W, Focker M, van Dongen KCW, van der Fels-Klerx HJ. Factors influencing the fate of chemical food safety hazards in the terrestrial circular primary food production system-A comprehensive review. Compr Rev Food Sci Food Saf 2024; 23:e13324. [PMID: 38517020 DOI: 10.1111/1541-4337.13324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 02/22/2024] [Accepted: 02/28/2024] [Indexed: 03/23/2024]
Abstract
Food safety is recognized as a major hurdle in the transition toward circular food production systems due to the potential reintroduction and accumulation of chemical contaminants in these food systems. Effectively managing these hazardous contaminants in a risk-based manner requires quantitative insights into the factors influencing the presence and fate of contaminants in the entire circular food chain. A systematic literature review was performed to gain an up-to-date overview of the known factors and their influence on the transfer and accumulation of contaminants. This review focused on the terrestrial circular primary food production system, including the pathways between waste- or byproduct-based fertilizers, soil, crops, animal feed, and farmed animals. This review revealed an imbalance in research regarding the different pathways: studies on the soil-to-crop pathway were most abundant. The factors identified can be categorized as compound-related (intrinsic) factors, such as hydrophobicity, molecular weight, and chain length, and extrinsic factors, such as soil organic matter and carbon, pH, milk yield of cows, crop age, and biomass. Quantitative data on the influence of the identified factors were limited. Most studies quantified the influence of individual factors, whereas only a few studies quantified the combined effect of multiple factors. By providing a holistic insight into the influential factors and the quantification of their influence on the fate of contaminants, this review contributes to the improvement of food safety management for chemical hazards when transitioning to a circular food system.
Collapse
Affiliation(s)
- Weixin Huang
- Wageningen Food Safety Research, Wageningen University & Research, Wageningen, The Netherlands
| | - Marlous Focker
- Wageningen Food Safety Research, Wageningen University & Research, Wageningen, The Netherlands
| | - Katja C W van Dongen
- Wageningen Food Safety Research, Wageningen University & Research, Wageningen, The Netherlands
| | - H J van der Fels-Klerx
- Wageningen Food Safety Research, Wageningen University & Research, Wageningen, The Netherlands
| |
Collapse
|
15
|
Bünemann EK, Reimer M, Smolders E, Smith SR, Bigalke M, Palmqvist A, Brandt KK, Möller K, Harder R, Hermann L, Speiser B, Oudshoorn F, Løes AK, Magid J. Do contaminants compromise the use of recycled nutrients in organic agriculture? A review and synthesis of current knowledge on contaminant concentrations, fate in the environment and risk assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168901. [PMID: 38042198 DOI: 10.1016/j.scitotenv.2023.168901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 11/24/2023] [Accepted: 11/24/2023] [Indexed: 12/04/2023]
Abstract
Use of nutrients recycled from societal waste streams in agriculture is part of the circular economy, and in line with organic farming principles. Nevertheless, diverse contaminants in waste streams create doubts among organic farmers about potential risks for soil health. Here, we gather the current knowledge on contaminant levels in waste streams and recycled nutrient sources, and discuss associated risks. For potentially toxic elements (PTEs), the input of zinc (Zn) and copper (Cu) from mineral feed supplements remains of concern, while concentrations of PTEs in many waste streams have decreased substantially in Europe. The same applies to organic contaminants, although new chemical groups such as flame retardants are of emerging concern and globally contamination levels differ strongly. Compared to inorganic fertilizers, application of organic fertilizers derived from human or animal feces is associated with an increased risk for environmental dissemination of antibiotic resistance. The risk depends on the quality of the organic fertilizers, which varies between geographical regions, but farmland application of sewage sludge appears to be a safe practice as shown by some studies (e.g. from Sweden). Microplastic concentrations in agricultural soils show a wide spread and our understanding of its toxicity is limited, hampering a sound risk assessment. Methods for assessing public health risks for organic contaminants must include emerging contaminants and potential interactions of multiple compounds. Evidence from long-term field experiments suggests that soils may be more resilient and capable to degrade or stabilize pollutants than often assumed. In view of the need to source nutrients for expanding areas under organic farming, we discuss inputs originating from conventional farms vs. non-agricultural (i.e. societal) inputs. Closing nutrient cycles between agriculture and society is feasible in many cases, without being compromised by contaminants, and should be enhanced, aided by improved source control, waste treatment and sound risk assessments.
Collapse
Affiliation(s)
- E K Bünemann
- Research Institute of Organic Agriculture (FiBL), Ackerstrasse 113, 5070 Frick, Switzerland.
| | - M Reimer
- University of Hohenheim, Department of Fertilization and Soil Matter Dynamics, Fruwirthstr. 20, 70599 Stuttgart, Germany; Aarhus University, Department of Agroecology, Blichers Allé 20, 8830 Tjele, Denmark
| | - E Smolders
- Division Soil and Water Management, KU Leuven, Kasteelpark Arenberg 20, 3001 Leuven, Belgium
| | - S R Smith
- Department of Civil and Environmental Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - M Bigalke
- Department of Soil Mineralogy and Soil Chemistry, Institute for Applied Geosciences, Technical University of Darmstadt, Schnittspahnstraße 9, 64287 Darmstadt, Germany
| | - A Palmqvist
- Department of Science and Environment, Roskilde University, Universitetsvej 1, 4000 Roskilde, Denmark
| | - K K Brandt
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg, Denmark
| | - K Möller
- University of Hohenheim, Department of Fertilization and Soil Matter Dynamics, Fruwirthstr. 20, 70599 Stuttgart, Germany
| | - R Harder
- Environmental Engineering Group, Department of Energy and Technology, Swedish University of Agricultural Sciences (SLU), Uppsala, Sweden
| | - L Hermann
- Proman Management GmbH, Weingartenstrasse 92, 2214 Auersthal, Austria
| | - B Speiser
- Research Institute of Organic Agriculture (FiBL), Ackerstrasse 113, 5070 Frick, Switzerland
| | - F Oudshoorn
- Innovation Centre for Organic Farming (ICOEL), Agro Food Park 26, 8200 Aarhus, Denmark
| | - A K Løes
- Norwegian Centre for Organic Agriculture (NORSØK), Gunnars veg 6, N-6630 Tingvoll, Norway
| | - J Magid
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg, Denmark
| |
Collapse
|
16
|
Schrenk D, Bignami M, Bodin L, Chipman JK, del Mazo J, Grasl‐Kraupp B, Hogstrand C, (Ron) Hoogenboom L, Leblanc J, Nebbia CS, Nielsen E, Ntzani E, Petersen A, Sand S, Schwerdtle T, Wallace H, Benford D, Fürst P, Hart A, Rose M, Schroeder H, Vrijheid M, Ioannidou S, Nikolič M, Bordajandi LR, Vleminckx C. Update of the risk assessment of polybrominated diphenyl ethers (PBDEs) in food. EFSA J 2024; 22:e8497. [PMID: 38269035 PMCID: PMC10807361 DOI: 10.2903/j.efsa.2024.8497] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024] Open
Abstract
The European Commission asked EFSA to update its 2011 risk assessment on polybrominated diphenyl ethers (PBDEs) in food, focusing on 10 congeners: BDE-28, -47, -49, -99, -100, -138, -153, -154, -183 and ‑209. The CONTAM Panel concluded that the neurodevelopmental effects on behaviour and reproductive/developmental effects are the critical effects in rodent studies. For four congeners (BDE-47, -99, -153, -209) the Panel derived Reference Points, i.e. benchmark doses and corresponding lower 95% confidence limits (BMDLs), for endpoint-specific benchmark responses. Since repeated exposure to PBDEs results in accumulation of these chemicals in the body, the Panel estimated the body burden at the BMDL in rodents, and the chronic intake that would lead to the same body burden in humans. For the remaining six congeners no studies were available to identify Reference Points. The Panel concluded that there is scientific basis for inclusion of all 10 congeners in a common assessment group and performed a combined risk assessment. The Panel concluded that the combined margin of exposure (MOET) approach was the most appropriate risk metric and applied a tiered approach to the risk characterisation. Over 84,000 analytical results for the 10 congeners in food were used to estimate the exposure across dietary surveys and age groups of the European population. The most important contributors to the chronic dietary Lower Bound exposure to PBDEs were meat and meat products and fish and seafood. Taking into account the uncertainties affecting the assessment, the Panel concluded that it is likely that current dietary exposure to PBDEs in the European population raises a health concern.
Collapse
|
17
|
Evans NP, Bellingham M, Elcombe CS, Ghasemzadeh-Hasankolaei M, Lea RG, Sinclair KD, Padmanabhan V. Sexually dimorphic impact of preconceptional and gestational exposure to a real-life environmental chemical mixture (biosolids) on offspring growth dynamics and puberty in sheep. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 102:104257. [PMID: 37659607 DOI: 10.1016/j.etap.2023.104257] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/25/2023] [Accepted: 08/29/2023] [Indexed: 09/04/2023]
Abstract
Humans are ubiquitously exposed to complex mixtures of environmental chemicals (ECs). This study characterised changes in post-natal and peripubertal growth, and the activation of the reproductive axis, in male and female offspring of sheep exposed to a translationally relevant EC mixture (in biosolids), during pregnancy. Birthweight in both sexes was unaffected by gestational biosolids exposure. In contrast to females (unaffected), bodyweight in biosolids males was significantly lower than controls across the peripubertal period, however, they exhibited catch-up growth eventually surpassing controls. Despite weighing less, testosterone concentrations were elevated earlier, indicative of early puberty in the biosolids males. This contrasted with females in which the mean date of puberty (first progesterone cycle) was delayed. These results demonstrate that developmental EC-mixture exposure has sexually dimorphic effects on growth, puberty and the relationship between body size and puberty. Such programmed metabolic/reproductive effects could have significant impacts on human health and wellbeing.
Collapse
Affiliation(s)
- Neil P Evans
- School of Biodiversity One Health and Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK.
| | - Michelle Bellingham
- School of Biodiversity One Health and Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK
| | - Christopher S Elcombe
- School of Biodiversity One Health and Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK
| | - Mohammad Ghasemzadeh-Hasankolaei
- School of Biodiversity One Health and Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK
| | - Richard G Lea
- University of Nottingham, Sutton Bonington Campus, Loughborough, UK
| | - Kevin D Sinclair
- University of Nottingham, Sutton Bonington Campus, Loughborough, UK
| | | |
Collapse
|
18
|
Zhang J, Gao L, Bergmann D, Bulatovic T, Surapaneni A, Gray S. Review of influence of critical operation conditions on by-product/intermediate formation during thermal destruction of PFAS in solid/biosolids. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 854:158796. [PMID: 36115408 DOI: 10.1016/j.scitotenv.2022.158796] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/11/2022] [Accepted: 09/12/2022] [Indexed: 06/15/2023]
Abstract
Poly- and perfluoroalkyl substances (PFAS) are a large group of synthetic organofluorine compounds. Over 4700 PFAS compounds have been produced and used in our daily life since the 1940s. PFAS have received considerable interest because of their toxicity, environmental persistence, bioaccumulation and wide existence in the environment. Various treatment methods have been developed to overcome these issues. Thermal treatment such as combustion and pyrolysis/gasification have been employed to treat PFAS contaminated solids and soils. However, short-chain PFAS and/or volatile organic fluorine is produced and emitted via exhaust gas during the thermal treatment. Combustion can achieve complete mineralisation of PFAS at large scale operation using temperatures >1000 °C. Pyrolysis has been used in treatment of biosolids and has demonstrated that it could remove PFAS completely from the generated biochar by evaporation and degradation. Although pyrolysis partially degrades PFAS to short-chain fluorine containing organics in the syngas, it could not efficiently mineralise PFAS. Combustion of PFAS containing syngas at 1000 °C can achieve complete mineralisation of PFAS. Furthermore, the by-product of mineralisation, HF, should also be monitored due to its low regulated atmospheric discharge values. Alkali scrubbing is normally required to lower the HF concentration in the exhaust gas to acceptable discharge concentrations.
Collapse
Affiliation(s)
- Jianhua Zhang
- Institute for Sustainable Industries and Liveable Cities, Victoria University, Melbourne, VIC 8001, Australia.
| | - Li Gao
- Institute for Sustainable Industries and Liveable Cities, Victoria University, Melbourne, VIC 8001, Australia; South East Water Corporation, PO Box 2268, Seaford, Victoria 3198, Australia
| | - David Bergmann
- South East Water Corporation, PO Box 2268, Seaford, Victoria 3198, Australia
| | - Tamara Bulatovic
- South East Water Corporation, PO Box 2268, Seaford, Victoria 3198, Australia
| | - Aravind Surapaneni
- South East Water Corporation, PO Box 2268, Seaford, Victoria 3198, Australia
| | - Stephen Gray
- Institute for Sustainable Industries and Liveable Cities, Victoria University, Melbourne, VIC 8001, Australia
| |
Collapse
|
19
|
Gbadamosi MR, Abdallah MAE, Harrad S. Organophosphate esters in UK diet; exposure and risk assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 849:158368. [PMID: 36116644 DOI: 10.1016/j.scitotenv.2022.158368] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/22/2022] [Accepted: 08/24/2022] [Indexed: 06/15/2023]
Abstract
Food ingestion has been established as an important human exposure route to many environmental contaminants (brominated flame retardants, dioxins, organochlorine pesticides etc). However, information regarding dietary exposure to organophosphate esters (OPEs) in the UK remains limited. This study provides the first comprehensive dataset on OPEs in the UK diet by measuring concentrations of eight OPEs in 393 food samples, divided into 15 food groups, collected from Birmingham, UK. All target OPEs were measured above the limit of quantification in at least one of the food groups analysed. Concentrations were highest (mean ∑8OPEs = 18.4 ng/g wet weight (ww)) in milk and milk products, followed by those in cereal and cereal products (mean ∑8OPEs = 15.9 ng/g ww), with concentrations lowest in chickens' eggs (mean ∑8OPEs = 1.61 ng/g ww). Interestingly, concentrations in animal-derived foods (mean ∑8OPEs = 44.2 ng/g ww) were statistically indistinguishable (p˃0.05) from plant-derived foods (mean ∑8OPEs = 36.8 ng/g ww). Estimated daily dietary intakes (EDIs) of ∑8OPEs under mean and high-end exposure scenarios for the four age groups considered were: toddlers (420 and 1547 ng/kg bw/day) ˃ children (155 and 836) ˃ elderly (74.3 and 377) ˃ adults (62.3 and 278) ng/kg bw/day, respectively. Baby food contributed 39 % of ∑8OPEs exposure for toddlers, with non-alcoholic beverages contributing 27 % of exposure for children, while cereal and cereal products (25 %) and fruits (22 %) were the main contributors for adults and the elderly. The concentrations of OPEs in UK foodstuffs were generally of the same order of magnitude as those reported for other countries and our estimates of dietary exposure were well below the corresponding health-based limit values.
Collapse
Affiliation(s)
- Muideen Remilekun Gbadamosi
- School of Geography, Earth, and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, UK; Department of Chemical Sciences, Tai Solarin University of Education, Ijebu-Ode, Ogun State, Nigeria.
| | | | - Stuart Harrad
- School of Geography, Earth, and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| |
Collapse
|
20
|
Fernandes AR, Kilanowicz A, Stragierowicz J, Klimczak M, Falandysz J. The toxicological profile of polychlorinated naphthalenes (PCNs). THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 837:155764. [PMID: 35545163 DOI: 10.1016/j.scitotenv.2022.155764] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 04/05/2022] [Accepted: 05/03/2022] [Indexed: 06/15/2023]
Abstract
The legacy of polychlorinated naphthalenes (PCNs) manufactured during the last century continues to persist in the environment, food and humans. Metrological advances have improved characterisation of these occurrences, enabling studies on the effects of exposure to focus on congener groups and individual PCNs. Liver and adipose tissue show the highest retention but significant levels of PCNs are also retained by the brain and nervous system. Molecular configuration appears to influence tissue disposition as well as retention, favouring the higher chlorinated (≥ four chlorines) PCNs while most lower chlorinated molecules readily undergo hydroxylation and excretion through the renal system. Exposure to PCNs reportedly provokes a wide spectrum of adverse effects that range from hepatotoxicity, neurotoxicity and immune response suppression along with endocrine disruption leading to reproductive disorders and embryotoxicity. A number of PCNs, particularly hexachloronaphthalene congeners, elicit AhR mediated responses that are similar to, and occur within similar potency ranges as most dioxin-like polychlorinated biphenyls (PCBs) and some chlorinated dibenzo-p-dioxins and furans (PCDD/Fs), suggesting a relationship based on molecular size and configuration between these contaminants. Most toxicological responses generally appear to be associated with higher chlorinated PCNs. The most profound effects such as serious and sometimes fatal liver disease, chloracne, and wasting syndrome resulted either from earlier episodes of occupational exposure in humans or from acute experimental dosing of animals at levels that reflected these exposures. However, since the restriction of manufacture and controls on inadvertent production (during combustion processes), the principal route of human and animal exposure is likely to be dietary intake. Therefore, further investigations should include the effects of chronic lower level intake of higher chlorinated PCN congeners that persist in the human diet and subsequently in human and animal tissues. PCNs in the diet should be evaluated cumulatively with other similarly occurring dioxin-like contaminants.
Collapse
Affiliation(s)
- Alwyn R Fernandes
- School of Environmental Sciences, University of East Anglia, Norwich NR4 7TJ, UK.
| | - Anna Kilanowicz
- Department of Toxicology, Medical University of Lodz, Muszyńskiego 1, 90-15 Łódź, Poland
| | - Joanna Stragierowicz
- Department of Toxicology, Medical University of Lodz, Muszyńskiego 1, 90-15 Łódź, Poland
| | - Michał Klimczak
- Department of Toxicology, Medical University of Lodz, Muszyńskiego 1, 90-15 Łódź, Poland
| | - Jerzy Falandysz
- Department of Toxicology, Medical University of Lodz, Muszyńskiego 1, 90-15 Łódź, Poland
| |
Collapse
|
21
|
Turner T, Wheeler R, Oliver IW. Evaluating land application of pulp and paper mill sludge: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 317:115439. [PMID: 35751254 DOI: 10.1016/j.jenvman.2022.115439] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 02/24/2022] [Accepted: 05/27/2022] [Indexed: 06/15/2023]
Abstract
It is estimated that >400 Mt of board and paper are produced globally per year, and that 4.3-40 kg (dw) of sludge like material, pulp and paper mill sludge (PPMS), is generated for every tonne of product. PPMS are now more widely reused in agriculture as a soil amendment due to their high organic content of 40-50% by weight, perceived low toxicity and possible liming capabilities. Within this review article historic and recent literature on PPMS land spreading are combined with knowledge of European and UK regulation to explore the benefits, potential impacts and viability of land spreading PPMS. The review reveals that risks relating to potential N immobilisation in soils post-application can be readily mitigated, if desired, by coapplication of an N source, or even pre-treatment of sludge via composting. The benefits to crops have been demonstrated emphatically, while negative ecological impacts under typical field application rates have not been observed to date. The case is therefore strong for continued land application of the material as an environmentally responsible and sustainable use option. However, there are currently gaps in the literature regarding longer-term implications of PPMS applications in agriculture and in regards to the possible presence of emerging contaminants in some PPMS materials, both of which have been identified as areas that merit further research.
Collapse
Affiliation(s)
- Tomi Turner
- School of Geography, Geology and the Environment, Keele University, Keele, ST5 5BG, UK.
| | - Rebecca Wheeler
- 4R Group, Control House, A1 Business Park, Knottingley Road, Knottingley, WF11 0BU, UK
| | - Ian W Oliver
- School of Geography, Geology and the Environment, Keele University, Keele, ST5 5BG, UK
| |
Collapse
|
22
|
Elcombe CS, Evans NP, Bellingham M. Critical review and analysis of literature on low dose exposure to chemical mixtures in mammalian in vivo systems. Crit Rev Toxicol 2022; 52:221-238. [PMID: 35894754 PMCID: PMC9530410 DOI: 10.1080/10408444.2022.2091423] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Anthropogenic chemicals are ubiquitous throughout the environment. Consequentially, humans are exposed to hundreds of anthropogenic chemicals daily. Current chemical risk assessments are primarily based on testing individual chemicals in rodents at doses that are orders of magnitude higher than that of human exposure. The potential risk from exposure to mixtures of chemicals is calculated using mathematical models of mixture toxicity based on these analyses. These calculations, however, do not account for synergistic or antagonistic interactions between co-exposed chemicals. While proven examples of chemical synergy in mixtures at low doses are rare, there is increasing evidence that, through non-conformance to current mixture toxicity models, suggests synergy. This review examined the published studies that have investigated exposure to mixtures of chemicals at low doses in mammalian in vivo systems. Only seven identified studies were sufficient in design to directly examine the appropriateness of current mixture toxicity models, of which three showed responses significantly greater than additivity model predictions. While the remaining identified studies were unable to provide evidence of synergistic toxicity, it became apparent that many results of such studies were not always explicable by current mixture toxicity models. Additionally, two data gaps were identified. Firstly, there is a lack of studies where individual chemical components of a complex mixture (>10 components) are tested in parallel to the chemical mixture. Secondly, there is a lack of dose-response data for mixtures of chemicals at low doses. Such data is essential to address the appropriateness and validity of future chemical mixture toxicity models.
Collapse
Affiliation(s)
- Chris S Elcombe
- Institute of Biodiversity Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK.,School of Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Neil P Evans
- Institute of Biodiversity Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Michelle Bellingham
- School of Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| |
Collapse
|
23
|
Zhang W, Giesy JP, Wang P. Organophosphate esters in agro-foods: Occurrence, sources and emerging challenges. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 827:154271. [PMID: 35245542 DOI: 10.1016/j.scitotenv.2022.154271] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 02/03/2022] [Accepted: 02/27/2022] [Indexed: 06/14/2023]
Abstract
Safety and sustainable agro-food production is important for food and nutrition security. Agro-foods safety is challenged by various emerging environmental contaminants. Organophosphate esters (OPEs) have been reported to occur in various agro-food items worldwide, which has resulted in increasing concerns for effects on health of humans and wildlife, including through agriculture. However, information on presence, sources and transfer routes of OPEs in agro-foods, and consequent health risks remains scant. This review critically evaluates available information on concentrations of OPEs in various agro-foods, and discusses potential sources of OPEs in agro-foods, which are closely related to the ambient agri-environment, agricultural inputs, and agro-foods processing. Some directions for future research are suggested. First, since food is an important exposure pathway to OPEs, systematic monitoring of concentrations of OPEs in various categories of agro-foods is recommended. Second, surveillance of concentrations and characteristics of OPEs in agro-foods and ambient agri-environments, agricultural inputs or processing in the agro-food chain is needed to obtain a more complete description of exposure and transmission behavior of OPEs in agro-foods. Third, future comprehensive studies of transmission, metabolism and accumulation of OPEs in animals or plants, are required. Finally, measures to control emissions of OPEs as sources to agriculture should be taken.
Collapse
Affiliation(s)
- Wei Zhang
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - John P Giesy
- Department of Veterinary Biomedical Sciences and Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan S7N5B3, Canada; Department of Zoology and Center for Integrative Toxicology, Michigan State University, East Lansing, MI 48824, United States; Department of Environmental Sciences, Baylor University, Waco, TX 76798-7266, United States; State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210046, PR China
| | - Peilong Wang
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China.
| |
Collapse
|
24
|
Gontar Ł, Sitarek-Andrzejczyk M, Kochański M, Buła M, Drutowska A, Zych D, Markiewicz J. Dynamics and Diversity of Microbial Contamination in Poultry Bedding Materials Containing Parts of Medicinal Plants. MATERIALS 2022; 15:ma15041290. [PMID: 35207831 PMCID: PMC8877630 DOI: 10.3390/ma15041290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 01/31/2022] [Accepted: 02/05/2022] [Indexed: 12/10/2022]
Abstract
Microorganisms thriving in poultry bedding materials during their exploitation are involved in the development of several diseases and disfunctions of animals. They can also contaminate food products and pose risks to the environment and human health. This study provides an analysis of dynamics and diversity in microbiological contamination observed during the exploitation of poultry bedding materials containing parts of medicinal plants: Satureja hortensis, Origanum vulgare, Melissa officinalis, Salvia officinalis, and Thymus vulgaris, compared with standard types of beddings: straw chaff and straw pellets. The research was carried out in two 42-day experimental cycles involving in total 2400 broiler chickens. Each week, the total count of mesophilic bacteria, fungi and yeasts, the presumptive presence and count of Staphylococcus sp., Escherichia sp., Listeria sp., Salmonella sp., and Candida sp. were determined by culturing on selective media, along with pH and moisture measurements. After 35 days of the experiment, a reduction of the total count of mesophilic bacteria above 1 log compared to the control (11.86 vs. 13.02 log CFU/g) was observed. As the count of yeasts decreased after 21 days, an increase in the total count of bacteria was reported, which indicates a strong competition between microorganisms. The results improve our understanding of the temporal effects of using materials containing parts of medicinal plants on the microbial contamination in poultry litter.
Collapse
Affiliation(s)
- Łukasz Gontar
- Correspondence: (Ł.G.); (M.S.-A.); Tel.: +48-42-636-12-59 (Ł.G.); +48-42-636-12-26 (M.S.-A.)
| | | | | | | | | | | | | |
Collapse
|
25
|
Spatiotemporal Distribution and Analysis of Organophosphate Flame Retardants in the Environmental Systems: A Review. Molecules 2022; 27:molecules27020573. [PMID: 35056888 PMCID: PMC8780022 DOI: 10.3390/molecules27020573] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 01/03/2022] [Accepted: 01/05/2022] [Indexed: 12/04/2022] Open
Abstract
In recent times, there has been a cumulative apprehension regarding organophosphate flame retardants (OPFRs) owing to their high manufacturing and usage after brominated flame retardants were strictly regulated and banned from being distributed and used in many countries. OPFRs are known as the main organic pollutants in the terrestrial and aquatic environment. They are very dangerous to humans, plants and animals. They are also carcinogenic and some have been implicated in neurodevelopmental and fertility challenges. OPFRs are distributed into the environment through a number of processes, including the usage, improper disposal and production of materials. The solid phase extraction (SPE) method is suggested for the extraction of OPFRs from water samples since it provides high quality recoveries ranging from 67% to 105% and relative standard deviations (RSDs) below 20%. In the same vein, microwave-assisted extraction (MAE) is highly advocated for the extraction of OPFRs from sediment/soil. Recoveries in the range of 78% to 105% and RSDs ranging from 3% to 8% have been reported. Hence, it is a faster method of extraction for solid samples and only demands a reduced amount of solvent, unlike other methods. The extract of OPFRs from various matrices is then followed by a clean-up of the extract using a silica gel packed column followed by the quantification of compounds by gas chromatography coupled with a mass spectrometer (GC–MS) or a flame ionization detector (GC-FID). In this paper, different analytical methods for the evaluation of OPFRs in different environmental samples are reviewed. The effects and toxicities of these contaminants on humans and other organisms are also discussed.
Collapse
|
26
|
Rodenburg LA, Hermanson MR, Sumner AL. Effect of membrane filtration on the fate of polychlorinated biphenyls in wastewater treatment. CHEMOSPHERE 2022; 287:132335. [PMID: 34563767 DOI: 10.1016/j.chemosphere.2021.132335] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 09/17/2021] [Accepted: 09/21/2021] [Indexed: 06/13/2023]
Abstract
The Spokane River is impacted by levels of polychlorinated biphenyls (PCBs) that have triggered fish consumption advisories and exceed water quality standards. Select wastewater treatment plants (WWTPs) on the river have been upgraded from secondary (biological) treatment to tertiary treatment in the form of membrane filtration to address phosphorus contamination. Because membrane filtration is effective at removing particles, it is likely to reduce PCB concentrations in the effluent as well. In this work, PCBs measured in the influents and effluent of several WWTPs discharging to the river were examined. Implementation of membrane filtration reduced PCB concentrations in the effluent (and therefore PCB loads to the river) by 33% at a facility that produces recycled and virgin paper and by ∼55% at municipal WWTPs, compared to secondary (activated sludge) treatment. Largest reductions in concentrations in effluent and loads were achieved for higher molecular weight (MW) PCB congeners (i.e. those with six or more chlorines), homologs, and formulations. The more modest reductions in effluent concentrations achieved at the paper WWTP may be due to the mix of PCBs in the wastewater there: it contained primarily the low MW Aroclor 1242 (presumably from carbonless copy paper) and PCB 11 (3,3'-dichlorobiphenyl) possibly from pigments. PCBs that appear to be associated with silicone products such as caulk, tubing, and o-rings are relatively more abundant in the effluent of some plants compared to the influent, suggesting that these congeners arise from contamination during sampling or from within the plant itself. At some WWTPs, this contamination accounts for nearly a third of PCBs measured in the effluent.
Collapse
Affiliation(s)
- Lisa A Rodenburg
- Department of Environmental Sciences, Rutgers University, 14 College Farm Road, New Brunswick, NJ, 08901, USA.
| | - Michael R Hermanson
- Spokane County Environmental Services, 1116 W. Broadway Avenue, Spokane, WA, 99260, USA
| | - Amy L Sumner
- Spokane County Environmental Services, 1116 W. Broadway Avenue, Spokane, WA, 99260, USA
| |
Collapse
|