1
|
Ma Y, Chen M, Yi P, Guo R, Ji R, Chen J, Liu Y. Transformation and environmental fate of 6-OH-BDE-47 and 6-MeO-BDE-47 in oxic and anoxic sediments. JOURNAL OF HAZARDOUS MATERIALS 2025; 483:136663. [PMID: 39608074 DOI: 10.1016/j.jhazmat.2024.136663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 11/19/2024] [Accepted: 11/24/2024] [Indexed: 11/30/2024]
Abstract
Pollutants often exhibit different environmental behaviors at varying redox potentials, and the fate and microbial response of 6-OH-BDE-47 and 6-MeO-BDE-47 under these conditions remain unclear. Herein, 14C-labeled 6-OH-BDE-47 and 6-MeO-BDE-47 were used to investigate their fate in water-sediment systems at different redox potentials. For 6-OH-BDE-47, aerobic microorganisms and nitrate electron acceptors promoted nonextractable residues (NERs) formation and anaerobic microorganisms facilitated their release and was highest formed in the O2-containing group. For 6-MeO-BDE-47, aerobic microorganisms, electron acceptors, and anaerobic microorganisms promoted NER formation, and was highest formed in the nitrate group. Microorganisms markedly promoted 6-OH/MeO-BDE-47 transformation. For 6-OH-BDE-47, the degradation followed the order nitrate group (29.6 %) > O2-containing group (6.5 %) > sulfate group (1.45 %) > anaerobic group (0 %), while for 6-MeO-BDE-47, the order was O2-containing group (8.8 %) > nitrate group = sulfate group = anaerobic group (0 %). The complexity of the 6-OH-BDE-47 and 6-MeO-BDE-47 microbial community network was consistent with the results of redox potentials, where microbial networks connectivity linking were more complex under O2-containing and nitrate conditions. Overall, our study comprehensively revealed the fate of 6-OH-BDE-47 and 6-MeO-BDE-47 under different redox conditions, showing that electron acceptors can alter microbial community structure and regulating interactions. It provided guidelines for selecting electron acceptors in the remediation of 6-OH-BDE-47 and 6-MeO-BDE-47.
Collapse
Affiliation(s)
- Yunfeng Ma
- School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Meilin Chen
- School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Pan Yi
- School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Ruixin Guo
- School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Rong Ji
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Jianqiu Chen
- School of Engineering, China Pharmaceutical University, Nanjing 210009, China.
| | - Yanhua Liu
- School of Engineering, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
2
|
Li B, Shi J, Xiang X, Zhang M, Ge H, Sun S. Exploring the biosynthetic possibilities of hydroxylated polybrominated diphenyl ethers from bromophenols in Prorocentrum donghaiense: Implications for bioremediation. CHEMOSPHERE 2024; 362:142611. [PMID: 38878983 DOI: 10.1016/j.chemosphere.2024.142611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/12/2024] [Accepted: 06/13/2024] [Indexed: 08/09/2024]
Abstract
Bromophenols has been proven to synthesize hydroxylated polybrominated diphenyl ethers (OH-PBDEs), which may pose additional environmental and health risks in the process of bioremediation. In this study, the removal of 2,4-dibromophenol (2,4-DBP) and 2,4,6-tribromophenol (2,4,6-TBP) and the biosynthetic of OH-PBDEs by Prorocentrum donghaiense were explored. The removal efficiencies of 2,4-DBP and 2,4,6-TBP ranged from 32.71% to 76.89% and 31.15%-78.12%, respectively. Low concentrations of 2,4-DBP stimulated algal growth, while high concentrations were inhibitory. Furthermore, exposure to 10.00 mg L-1 2,4-DBP resulted in the detection of 2'-hydroxy-2,3',4,5'-tetrabromodiphenyl ether (2'-OH-BDE-68) within P. donghaiense. In contrast, increasing concentrations of 2,4,6-TBP considerably inhibited P. donghaiense growth, with 4'-hydroxy-2,3',4,5',6-pentabromodiphenyl ether (4'-OH-BDE-121) detected within P. donghaiense under 5.00 mg L-1 2,4,6-TBP. Metabolomic analysis further revealed that the synthesized OH-PBDEs exhibited higher toxicity than their precursors and identified the oxidative coupling as a key biosynthetic mechanism. These findings confirm the capacity of P. donghaiense to remove bromophenols and biosynthesize OH-PBDEs from bromophenols, offering valuable insights into formulating algal bioremediation to mitigate bromophenol contamination.
Collapse
Affiliation(s)
- Bin Li
- School of Environment, Harbin Institute of Technology, Harbin, 150090, China; Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Jianghong Shi
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Xueling Xiang
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Mengtao Zhang
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Hui Ge
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Shuhan Sun
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| |
Collapse
|
3
|
Tao HY, Shi J, Zhang J, Ge H, Zhang M, Li XY. Developmental toxicity and mechanism of dibutyl phthalate and alternative diisobutyl phthalate in the early life stages of zebrafish (Danio rerio). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 272:106962. [PMID: 38797068 DOI: 10.1016/j.aquatox.2024.106962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/02/2024] [Accepted: 05/15/2024] [Indexed: 05/29/2024]
Abstract
Diisobutyl phthalate (DiBP), is widely chemical replacement for Dibutyl phthalate (DBP). Although DBP and DiBP have been detected in surface water worldwide, few studies to date have systematically assessed the risks of DBP and its alternatives to aquatic organisms. The present study compared DBP and DiBP for their individual and joint toxicity as well as thyroid hormone levels in zebrafish embryo. Transcripts of key genes related to the hypothalamic-pituitary-thyroid (HPT) axis were investigated in developing zebrafish larvae by application of real time polymerase chain reaction. The median half-lethal concentrations of DBP and DiBP to zebrafish at 96 h were 0.545 mg L-1 and 1.149 mg L-1, respectively. The joint toxic effect of DBP-DiBP (0.25-0.53 mg L-1) with the same ratio showed a synergistic effect. Thyroid hormones levels increased with exposure to 10 μg L-1 of DBP or 50 μg L-1 of DiBP, and exposure to both compounds significantly increased thyroid gland-specific transcription of thyroglobulin gene (tg), hyronine deiodinase (dio2), and transthyretin (ttr), indicating an adverse effect associated with the HPT axis. Molecular docking results indicated that DBP (-7.10 kcal/M and -7.53 kcal/M) and DiBP (-6.63 kcal/M and -7.42 kcal/M) had the same docking energy with thyroid hormone receptors. Our data facilities an understand of potential harmful effects of DBP and its alternative (DiBP).
Collapse
Affiliation(s)
- Huan-Yu Tao
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Environmental Engineering Research Centre, Department of Civil Engineering, The University of Hong Kong, Hong Kong, China
| | - Jianghong Shi
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Jiawei Zhang
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Environmental Engineering Research Centre, Department of Civil Engineering, The University of Hong Kong, Hong Kong, China
| | - Hui Ge
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Mengtao Zhang
- Key Laboratory of Microorganism Application and Risk Control of Shenzhen, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China
| | - Xiao-Yan Li
- Environmental Engineering Research Centre, Department of Civil Engineering, The University of Hong Kong, Hong Kong, China; Key Laboratory of Microorganism Application and Risk Control of Shenzhen, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China.
| |
Collapse
|
4
|
Zhang M, Shi J, Li B, Ge H, Tao H, Zhang J, Li X, Cai Z. Thyroid Hormone Receptor Agonistic and Antagonistic Activity of Newly Synthesized Dihydroxylated Polybrominated Diphenyl Ethers: An In Vitro and In Silico Coactivator Recruitment Study. TOXICS 2024; 12:281. [PMID: 38668504 PMCID: PMC11053510 DOI: 10.3390/toxics12040281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/20/2024] [Accepted: 03/28/2024] [Indexed: 04/29/2024]
Abstract
Dihydroxylated polybrominated diphenyl ethers (DiOH-PBDEs) could be the metabolites of PBDEs of some organisms or the natural products of certain marine bacteria and algae. OH-PBDEs may demonstrate binding affinity to thyroid hormone receptors (TRs) and can disrupt the functioning of the systems modulated by TRs. However, the thyroid hormone disruption mechanism of diOH-PBDEs remains elusive due to the absence of diOH-PBDEs standards. This investigation explores the potential disruptive effects of OH/diOH-PBDEs on thyroid hormones via competitive binding and coactivator recruitment with TRα and TRβ. At levels of 5000 nM and 25,000 nM, 6-OH-BDE-47 demonstrated significant recruitment of steroid receptor coactivator (SRC), whereas none of the diOH-PBDEs exhibited SRC recruitment within the range of 0.32-25,000 nM. AutoDock CrankPep (ADCP) simulations suggest that the conformation of SRC and TR-ligand complexes, particularly their interaction with Helix 12, rather than binding affinity, plays a pivotal role in ligand agonistic activity. 6,6'-diOH-BDE-47 displayed antagonistic activity towards both TRα and TRβ, while the antagonism of 3,5-diOH-BDE-100 for TRα and TRβ was concentration-dependent. 3,5-diOH-BDE-17 and 3,5-diOH-BDE-51 exhibited no discernible agonistic or antagonistic activities. Molecular docking analysis revealed that the binding energy of 3,3',5-triiodo-L-thyronine (T3) surpassed that of OH/diOH-PBDEs. 3,5-diOH-BDE-100 exhibited the highest binding energy, whereas 6,6'-diOH-BDE-47 displayed the lowest. These findings suggest that the structural determinants influencing the agonistic and antagonistic activities of halogen phenols may be more intricate than previously proposed, involving factors beyond high-brominated PBDEs or hydroxyl group and bromine substitutions. It is likely that the agonistic or antagonistic propensities of OH/diOH-PBDEs are instigated by protein conformational changes rather than considerations of binding energy.
Collapse
Affiliation(s)
- Mengtao Zhang
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; (M.Z.); (H.G.); (H.T.); (J.Z.)
- China State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China;
- Institute of Environment and Ecology, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; (B.L.); (X.L.)
| | - Jianghong Shi
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; (M.Z.); (H.G.); (H.T.); (J.Z.)
| | - Bing Li
- Institute of Environment and Ecology, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; (B.L.); (X.L.)
| | - Hui Ge
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; (M.Z.); (H.G.); (H.T.); (J.Z.)
| | - Huanyu Tao
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; (M.Z.); (H.G.); (H.T.); (J.Z.)
| | - Jiawei Zhang
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; (M.Z.); (H.G.); (H.T.); (J.Z.)
| | - Xiaoyan Li
- Institute of Environment and Ecology, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; (B.L.); (X.L.)
| | - Zongwei Cai
- China State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China;
| |
Collapse
|
5
|
Qadeer A, Mubeen S, Liu M, Bekele TG, Ohoro CR, Adeniji AO, Alraih AM, Ajmal Z, Alshammari AS, Al-Hadeethi Y, Archundia D, Yuan S, Jiang X, Wang S, Li X, Sauvé S. Global environmental and toxicological impacts of polybrominated diphenyl ethers versus organophosphate esters: A comparative analysis and regrettable substitution dilemma. JOURNAL OF HAZARDOUS MATERIALS 2024; 466:133543. [PMID: 38262318 DOI: 10.1016/j.jhazmat.2024.133543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 01/13/2024] [Accepted: 01/15/2024] [Indexed: 01/25/2024]
Abstract
The prevalence of organophosphate esters (OPEs) in the global environment is increasing, which aligns with the decline in the usage of polybrominated diphenyl ethers (PBDEs). PBDEs, a category of flame retardants, were banned and classified as persistent organic pollutants (POPs) through the Stockholm Convention due to their toxic and persistent properties. Despite a lack of comprehensive understanding of their ecological and health consequences, OPEs were adopted as replacements for PBDEs. This research aims to offer a comparative assessment of PBDEs and OPEs in various domains, specifically focusing on their persistence, bioaccumulation, and toxicity (PBT) properties. This study explored physicochemical properties (such as molecular weight, octanol-water partition coefficient, octanol-air partition coefficient, Henry's law constant, and vapor pressures), environmental behaviors, global concentrations in environmental matrices (air, water, and soil), toxicities, bioaccumulation, and trophic transfer mechanisms of both groups of compounds. Based on the comparison and analysis of environmental and toxicological data, we evaluate whether OPEs represent another instance of regrettable substitution and global contamination as much as PBDEs. Our findings indicate that the physical and chemical characteristics, environmental behaviors, and global concentrations of PBDEs and OPEs, are similar and overlap in many instances. Notably, OPE concentrations have even surged by orders of several magnitude compared to PBDEs in certain pristine regions like the Arctic and Antarctic, implying long-range transport. In many instances, air and water concentrations of OPEs have been increased than PBDEs. While the bioaccumulation factors (BAFs) of PBDEs (ranging from 4.8 to 7.5) are slightly elevated compared to OPEs (-0.5 to 5.36) in aquatic environments, both groups of compounds exhibit BAF values beyond the threshold of 5000 L/kg (log10 BAF > 3.7). Similarly, the trophic magnification factors (TMFs) for PBDEs (ranging from 0.39 to 4.44) slightly surpass those for OPEs (ranging from 1.06 to 3.5) in all cases. Metabolic biotransformation rates (LogKM) and hydrophobicity are potentially major factors deciding their trophic magnification potential. However, many compounds of PBDEs and OPEs show TMF values higher than 1, indicating biomagnification potential. Collectively, all data suggest that PBDEs and OPEs have the potential to bioaccumulate and transfer through the food chain. OPEs and PBDEs present a myriad of toxicity endpoints, with notable overlaps encompassing reproductive issues, oxidative stress, developmental defects, liver dysfunction, DNA damage, neurological toxicity, reproductive anomalies, carcinogenic effects, and behavior changes. Based on our investigation and comparative analysis, we conclude that substituting PBDEs with OPEs is regrettable based on PBT properties, underscoring the urgency for policy reforms and effective management strategies. Addressing this predicament before an exacerbation of global contamination is imperative.
Collapse
Affiliation(s)
- Abdul Qadeer
- State Key Laboratory of Environmental Criteria and Risk Assessment, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Key Laboratory for Lake Pollution Control, Chinese Research Academy of Environmental Science, Beijing, China.
| | - Sidra Mubeen
- State Key Laboratory of Environmental Criteria and Risk Assessment, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Key Laboratory for Lake Pollution Control, Chinese Research Academy of Environmental Science, Beijing, China; Faculty of Computer Science and Information Technology, Superior University Lahore, Pakistan
| | - Mengyang Liu
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong 999077, Hong Kong SAR China
| | - Tadiyose Girma Bekele
- Department of Biology, Eastern Nazarene College, 23 East Elm Avenue, Quincy, MA 02170, USA
| | - Chinemerem R Ohoro
- Water Research Group, Unit for Environmental Sciences and Management, North, West University, Potchefstroom 2520, South Africa
| | - Abiodun O Adeniji
- Department of Chemistry and Chemical Technology, Faculty of Science and Technology, National University of Lesotho, Lesotho
| | - Alhafez M Alraih
- Department of Chemistry, College of Science and Arts, Mohail Aseer, King Khalid University, Saudi Arabia
| | - Zeeshan Ajmal
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, Zhejiang, PR China
| | - Ahmad S Alshammari
- King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia
| | - Yas Al-Hadeethi
- Physics Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Denisse Archundia
- Instituto de Geología, Universidad Nacional Autónoma de México, Coyoacán, CDMX, México 04510, Mexico
| | - Shengwu Yuan
- State Key Laboratory of Environmental Criteria and Risk Assessment, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Key Laboratory for Lake Pollution Control, Chinese Research Academy of Environmental Science, Beijing, China
| | - Xia Jiang
- State Key Laboratory of Environmental Criteria and Risk Assessment, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Key Laboratory for Lake Pollution Control, Chinese Research Academy of Environmental Science, Beijing, China.
| | - Shuhang Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Key Laboratory for Lake Pollution Control, Chinese Research Academy of Environmental Science, Beijing, China.
| | - Xixi Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Key Laboratory for Lake Pollution Control, Chinese Research Academy of Environmental Science, Beijing, China.
| | - Sébastien Sauvé
- Department of Chemistry, Université de Montréal, Campus MIL, 1375 Av. Thérèse-Lavoie-Roux, Montréal H2V 0B3, QC, Canada
| |
Collapse
|
6
|
De Oro-Carretero P, Sanz-Landaluze J. Miniaturized method for the quantification of persistent organic pollutants and their metabolites in HepG2 cells: assessment of their biotransformation. Anal Bioanal Chem 2023:10.1007/s00216-023-04781-w. [PMID: 37289209 DOI: 10.1007/s00216-023-04781-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/22/2023] [Accepted: 05/30/2023] [Indexed: 06/09/2023]
Abstract
Biotransformation can greatly influence the accumulation and, subsequently, toxicity of substances in living beings. Although traditionally these studies to quantify metabolization of a compound have been carried out with in vivo species, currently, in vitro test methods with very different cell lines are being developed for their evaluation. However, this is still a very limited field due to multiple variables of a very diverse nature. So, an increasing number of analytical chemists are working with cells or other similar biological samples of very small size. This makes it necessary to address the development of analytical methods that allow determining their concentration both inside the cells and in their exposure medium. The aim of this study is to develop a set of analytical methodologies for the quantification of polycyclic aromatic hydrocarbons, PAHs (phenanthrene, PHE), and polybrominated diphenyl ethers, PBDEs (2,2',4,4'-tetrabromodiphenyl ether, BDE-47), and their major metabolites in cells and their exposure medium. Analytical methodologies, based on miniaturized ultrasound probe-assisted extraction, gas chromatography-mass spectrometry-microelectron capture detector (GC-MS-µECD), and liquid chromatography-fluorescence detector (LC-FL) determination techniques, have been optimized and then applied to a biotransformation study in HepG2 at 48 h of exposure. Significant concentrations of the major metabolites of PHE (1-OH, 2-OH, 3-OH, 4-OH-, and 9-OH-PHE) and BDE-47 (5-MeO-, 5-OH-, and 3-OH-BDE-47) were detected and quantified inside the cells and in the exposure medium. These results provide a new method for determination and improve information on the metabolization ratios for a better knowledge of the metabolic pathways and their toxicity.
Collapse
Affiliation(s)
- Paloma De Oro-Carretero
- Department of Analytical Chemistry, Faculty of Chemical Science, Complutense University of Madrid, Avenida Complutense S/N, 28040, Madrid, Spain.
| | - Jon Sanz-Landaluze
- Department of Analytical Chemistry, Faculty of Chemical Science, Complutense University of Madrid, Avenida Complutense S/N, 28040, Madrid, Spain
| |
Collapse
|
7
|
Tian D, Yu Y, Yu Y, Lu L, Tong D, Zhang W, Zhang X, Shi W, Liu G. Tris(2-chloroethyl) Phosphate Exerts Hepatotoxic Impacts on Zebrafish by Disrupting Hypothalamic-Pituitary-Thyroid and Gut-Liver Axes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023. [PMID: 37276532 DOI: 10.1021/acs.est.3c01631] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The ubiquitous environmental presence of tris(2-chloroethyl) phosphate (TCEP) poses a potential threat to animals; however, little is known about its hepatotoxicity. In this study, the effects of TCEP exposure (0.5 and 5.0 μg/L for 28 days) on liver health and the potential underlying toxification mechanisms were investigated in zebrafish. Our results demonstrated that TCEP exposure led to hepatic tissue lesions and resulted in significant alterations in liver-injury-specific markers. Moreover, TCEP-exposed fish had significantly lower levels of thyrotropin-releasing hormone and thyroid-stimulating hormone in the brain, evidently less triiodothyronine whereas more thyroxine in plasma, and markedly altered expressions of genes from the hypothalamic-pituitary-thyroid (HPT) axis in the brain or liver. In addition, a significantly higher proportion of Bacteroidetes in the gut microbiota, an elevated bacterial source endotoxin lipopolysaccharide (LPS) in the plasma, upregulated expression of LPS-binding protein and Toll-like receptor 4 in the liver, and higher levels of proinflammatory cytokines in the liver were detected in TCEP-exposed zebrafish. Furthermore, TCEP-exposed fish also suffered severe oxidative damage, possibly due to disruption of the antioxidant system. These findings suggest that TCEP may exert hepatotoxic effects on zebrafish by disrupting the HPT and gut-liver axes and thereafter inducing hepatic inflammation and oxidative stress.
Collapse
Affiliation(s)
- Dandan Tian
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Yihan Yu
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Yingying Yu
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Lingzheng Lu
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Difei Tong
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Weixia Zhang
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Xunyi Zhang
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Wei Shi
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Guangxu Liu
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China
| |
Collapse
|
8
|
De Oro-Carretero P, Sanz-Landaluze J. Bioaccumulation and Biotransformation of BDE-47 Using Zebrafish Eleutheroembryos (Danio rerio). ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2023; 42:835-845. [PMID: 36705440 DOI: 10.1002/etc.5569] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/02/2022] [Accepted: 01/15/2023] [Indexed: 06/18/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs) are well-known endocrine disrupting chemicals identified as organic persistent pollutants. Their metabolites OH-BDE and MeO-BDE have been reported to be potentially more toxic than the postulated precursor PBDEs. One of the most predominant congeners of PBDEs in the environment is BDE-47, due to its high presence in industrially used mixtures. In the present study, the bioaccumulation and biotransformation of BDE-47 into its major metabolites is evaluated using zebrafish (Danio rerio) eleutheroembryos adapting a previously developed alternative method to bioconcentration official guideline Organisation for Economic Co-ordination and Development 305, which reduces the animal suffering, time, and cost. For the simultaneous determination of BDE-47 and its metabolites in larvae and exposure medium, and considering the polarity difference of the analytes and the small sample size, the development of a validated analytical method is a step to ensure quality results. In the present study, an ultrasound-assisted extraction followed by a solid phase extraction dispersive clean-up step and gas chromatography-mass spectrometry-microelectron capture detector (GC-MS-μECD) with a previous derivatization process was optimized and validated. Bioconcentration factors (BCFs) were calculated using a first-order one-compartment toxicokinetic model. The profiles found show rapid absorption in the first hours of larval development and great bioaccumulative capacity, finding BCFs of 7294 ± 899 and 36 363 ± 5702 at nominal concentrations of 10 and 1 μg L-1 , respectively. Metabolization studies show increasing concentrations of the metabolites BDE-28, 2'-OH-BDE-28, and 5-MeO-BDE-47 throughout the exposure time. The results obtained show the feasibility of the method for bioaccumulation and open up the possibility of metabolic studies with zebrafish eleutheroembryos, which is a very underdeveloped field without official testing or regulation. Environ Toxicol Chem 2023;42:835-845. © 2023 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Paloma De Oro-Carretero
- Department of Analytical Chemistry, Faculty of Chemical Science, Complutense University of Madrid, Madrid, Spain
| | - Jon Sanz-Landaluze
- Department of Analytical Chemistry, Faculty of Chemical Science, Complutense University of Madrid, Madrid, Spain
| |
Collapse
|
9
|
Qiu H, Gao H, Yu F, Xiao B, Li X, Cai B, Ge L, Lu Y, Wan Z, Wang Y, Xia T, Wang A, Zhang S. Perinatal exposure to low-level PBDE-47 programs gut microbiota, host metabolism and neurobehavior in adult rats: An integrated analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 825:154150. [PMID: 35218822 DOI: 10.1016/j.scitotenv.2022.154150] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/19/2022] [Accepted: 02/22/2022] [Indexed: 06/14/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs), a major class of flame retardants, have been extensively applied in plastics, electrical equipment, textile fabrics, and so on. Early-life exposure to PBDEs is correlated to neurobehavioral deficits in adulthood, yet the underlying mechanism has not been fully understood. Increasing evidence has demonstrated that gut microbiota dysbiosis and serum metabolites alterations play a role in behavioral abnormalities. However, whether their perturbation is implicated in PBDEs-induced neurotoxicity remains unclear. Here, we sought to explore the effects of developmental exposure to environmentally relevant levels of 2, 2', 4, 4'-tetrabromodiphenyl ether (PBDE-47), a major congener in human samples, on gut microbiota and serum metabolic profile as well as their link to neurobehavioral parameters in adult rats. The open field test showed that gestational and lactational exposure to PBDE-47 caused hyperactivity and anxiety-like behavior. Moreover, 16S rRNA sequencing of fecal samples identified a distinct community composition in gut microbiota following PBDE-47 exposure, manifested as decreased genera Ruminococcaceae and Moraxella, increased families Streptococcaceae and Deferribacteraceae as well as genera Escherichia-Shigella, Pseudomonas and Peptococcus. Additionally, the metabolomics of the blood samples based on liquid chromatography-mass spectrometry revealed a significant shift after PBDE-47 treatment. Notably, these differential serum metabolites were mainly involved in amino acid, carbohydrate, nucleotide, xenobiotics, and lipid metabolisms, which were further validated by pathway analysis. Importantly, the disturbed gut microbiota and the altered serum metabolites were associated with each other and with neurobehavioral disorders, respectively. Collectively, these results suggest that gut microbiota dysbiosis and serum metabolites alterations potentially mediated early-life low-dose PBDE-47 exposure-induced neurobehavioral impairments, which provides a novel perspective on understanding the mechanisms of PBDE-47 neurotoxicity.
Collapse
Affiliation(s)
- Haixia Qiu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; MOE Key Laboratory of Environment and Health, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hui Gao
- Department of Clinical Nutrition, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fangjin Yu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; MOE Key Laboratory of Environment and Health, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Boya Xiao
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; MOE Key Laboratory of Environment and Health, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoning Li
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; MOE Key Laboratory of Environment and Health, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bo Cai
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; MOE Key Laboratory of Environment and Health, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Long Ge
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; MOE Key Laboratory of Environment and Health, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yinting Lu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; MOE Key Laboratory of Environment and Health, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhengyi Wan
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; MOE Key Laboratory of Environment and Health, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yafei Wang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; MOE Key Laboratory of Environment and Health, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tao Xia
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; MOE Key Laboratory of Environment and Health, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Aiguo Wang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; MOE Key Laboratory of Environment and Health, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shun Zhang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; MOE Key Laboratory of Environment and Health, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
10
|
Park K, Kwak IS. Apoptotic p53 Gene Expression in the Regulation of Persistent Organic Pollutant (POP)-Induced Oxidative Stress in the Intertidal Crab Macrophthalmusjaponicus. Antioxidants (Basel) 2022; 11:antiox11040771. [PMID: 35453456 PMCID: PMC9028815 DOI: 10.3390/antiox11040771] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/08/2022] [Accepted: 04/11/2022] [Indexed: 11/30/2022] Open
Abstract
Persistent organic pollutants (POPs), some of the most dangerous chemicals released into the aquatic environment, are distributed worldwide due to their environmental persistence and bioaccumulation. In the study, we investigated p53-related apoptotic responses to POPs such as hexabromocyclododecanes (HBCDs) or 2,2′,4,4′-tetrabromodiphenyl ether (BDE-47) in the mud crab Macrophthalmus japonicus. To do so, we characterized M. japonicus p53 and evaluated basal levels of p53 expression in different tissues. M. japonicus p53 has conserved amino acid residues involving sites for protein dimerization and DNA and zinc binding. In phylogenetic analysis, the homology of the deduced p53 amino acid sequence was not high (67−70%) among crabs, although M. japonicus p53 formed a cluster with one clade with p53 homologs from other crabs. Tissue distribution patterns revealed that the highest expression of p53 mRNA transcripts was in the hepatopancreas of M. japonicus crabs. Exposure to POPs induced antioxidant defenses to modulate oxidative stress through the upregulation of catalase expression. Furthermore, p53 expression was generally upregulated in the hepatopancreas and gills of M. japonicus after exposure to most concentrations of HBCD or BDE-47 for all exposure periods. In hepatopancreas tissue, significant increases in p53 transcript levels were observed as long-lasting apoptotic responses involving cellular defenses until day 7 of relative long-term exposure. The findings in this study suggest that exposure to POPs such as HBCD or BDE-47 may trigger the induction of cellular defense processes against oxidative stress, including DNA repair, cell cycle arrest, and apoptosis through the transcriptional upregulation of p53 expression in M. japonicus.
Collapse
Affiliation(s)
- Kiyun Park
- Fisheries Science Institute, Chonnam National University, Yeosu 59626, Korea;
| | - Ihn-Sil Kwak
- Fisheries Science Institute, Chonnam National University, Yeosu 59626, Korea;
- Department of Ocean Integrated Science, Chonnam National University, Yeosu 59626, Korea
- Correspondence: ; Tel.: +82-61-659-7148
| |
Collapse
|
11
|
Li T, Sun Y, Zeng Y, Sanganyado E, Liang B, Liu W. 6-OH-BDE-47 inhibited proliferation of skin fibroblasts from pygmy killer whale by inducing cell cycle arrest. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 807:150561. [PMID: 34624692 DOI: 10.1016/j.scitotenv.2021.150561] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 08/16/2021] [Accepted: 09/20/2021] [Indexed: 06/13/2023]
Abstract
Hydroxylated polybrominated diphenyl ethers (OH-BDEs) are major transformation products of PBDEs that readily bioaccumulate in the marine food web. Although 6-OH-BDE-47 is frequently and abundantly detected in cetaceans, its potential toxic effects are largely unknown. We explored the toxicological pathways and mechanisms of OH-BDEs by exposing pygmy killer whale skin fibroblast cell lines (PKW-LWHT) to 6-OH-BDE-47 at concentrations ranging from 0.02, 0.2, 2 to 4 μM. The result showed that 6-OH-BDE-47 inhibited cell proliferation in a concentration- and time-dependent manner. The cell cycle data revealed that the cell cycle was arrest at the G0/G1 phase by 6-OH-BDE-47. Using qPCR and Western blot assay, we found that 6-OH-BDE-47 up-regulated the transcription and expression level of p21 and RB1 and down-regulated the expression level of Proliferating Cell Nuclear Antigen (PCNA), CDK2, CDK4, cyclin D1, cyclin E2, E2F1, and E2F3 and the cellular phosphorylated RB1. The results showed that 6-OH-BDE-47 was able to arrest the cell cycle of PKW-LWHT cells at G1 phase by changing the expression level of related regulatory genes in G1 stage, and finally inhibit cell proliferation.
Collapse
Affiliation(s)
- Tong Li
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Science, Shantou University, Shantou, Guangdong 515063, China; Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou 511458, China
| | - Yajing Sun
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Science, Shantou University, Shantou, Guangdong 515063, China; Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou 511458, China
| | - Ying Zeng
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Science, Shantou University, Shantou, Guangdong 515063, China; Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou 511458, China
| | - Edmond Sanganyado
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Science, Shantou University, Shantou, Guangdong 515063, China; Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou 511458, China
| | - Bo Liang
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Science, Shantou University, Shantou, Guangdong 515063, China; Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou 511458, China.
| | - Wenhua Liu
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Science, Shantou University, Shantou, Guangdong 515063, China; Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou 511458, China.
| |
Collapse
|