1
|
Waldron S, Heal K, Elayouty A, Flowers H, Scott EM, Zheng Y, Murray H, Coleman M, Phin A, Pickard A. Identifying and understanding how critical landscapes for carbon sequestration respond to development for low carbon energy production: Insight to inform optimal land planning and management strategies. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 385:125063. [PMID: 40347864 DOI: 10.1016/j.jenvman.2025.125063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 03/16/2025] [Accepted: 03/16/2025] [Indexed: 05/14/2025]
Abstract
Wind farms can mitigate increasing CO2 emissions by fossil-fuel free energy generation. However, landscape disturbance during development must not have lasting impacts on C sequestration, an ecosystem service. To understand how a critical carbon landscape responds to wind farm development, we monitored for 10 years dissolved organic carbon (DOC) export in five catchments draining Europe's second largest onshore wind farm, Whitelee, UK. The DOC flux trend and seasonality were modelled using Generalised Additive and Mixed Models, novelly using first derivatives of trends to identify responses to wind farm development. Unlike a nearby, minimally-disturbed catchment, Whitelee catchment DOC fluxes increased over the decade, tracking successive phases of wind farm development, particularly forest felling to enable turbine location. Inter-catchment differences in the rate of DOC flux, where slowing suggests recovery (not always evident), reflect differing intensity (timing and spatial reach) of catchment disturbance. However, increased DOC flux approximated 3.5 % maximum of C likely sequestered and therefore soil C sequestration is unlikely to be compromised unless the soils are highly degraded and close to not being a C sink. For the greenest energy transition, responsible planning should minimise C losses, even when small, and in a critical landscape may require consideration of impact on other ecosystem services. For example, deterioration in quality of potable water supply occurred within the observation period. Ongoing provisioning of multiple ecosystem services from critical carbon landscapes requires planning. We demonstrate an example of such an approach for wind farm development considering in priority order carbon storage, forest products, potable water supply. Our findings are relevant to integrated landscape planning and management in temperate and high latitude/altitude peatlands globally that are subject to wind energy development and/or forest felling.
Collapse
Affiliation(s)
- Susan Waldron
- School of Geographical and Earth Sciences, University of Glasgow, Glasgow, G12 8QQ, UK.
| | - Kate Heal
- School of GeoSciences, University of Edinburgh, Edinburgh, EH9 3FF, UK
| | - Amira Elayouty
- Department of Statistics, Faculty of Economics and Political Science, Cairo University, Giza, Egypt
| | - Hugh Flowers
- School of Chemistry, University of Glasgow, Glasgow, G12 8QQ, UK
| | - E Marian Scott
- School of Mathematics and Statistics, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Ying Zheng
- School of Geographical and Earth Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Helen Murray
- School of Geographical and Earth Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Martin Coleman
- School of Geographical and Earth Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Antony Phin
- School of GeoSciences, University of Edinburgh, Edinburgh, EH9 3FF, UK
| | - Amy Pickard
- UK Centre for Ecology & Hydrology, Edinburgh, Bush Estate, Penicuik, Midlothian, EH26 0QB, UK
| |
Collapse
|
2
|
Sondej I, Puchlik M, Paluch R. Air pollution in Białowieża forest: Analysis of short-term trends from 2014 to 2021. ENVIRONMENTAL RESEARCH 2024; 255:119219. [PMID: 38782348 DOI: 10.1016/j.envres.2024.119219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/20/2024] [Accepted: 05/21/2024] [Indexed: 05/25/2024]
Abstract
Air pollution caused by sulphur dioxide (SO2) and nitrogen oxides (NOx) has negative impacts on forest health and can initiate forest dieback. Long-term monitoring and analysis of these pollution are carried out in Białowieża Forest in NE Poland due to the threats from abiotic, biotic and anthropogenic factors. The main objective of our study was to monitor the levels and trends of air pollutant deposition in Białowieża Forest. During a short-term monitoring period over six years (2014-2021), the concentration of SO2 in the air decreased significantly (from 2.03 μg m-3 in December 2015 to 0.20 μg m-3 in July 2016), while the concentration of NO2 in the air showed a non-significant decrease (from 8.24 μg m-3 in December 2015 to 1.61 μg m-3 May 2016). There was no significant linear trend in the wet deposition of S-SO4 anions. Mean monthly S-SO4 deposition varies between 4.54 and 94.14 mg m-2month-1. Wet nitrogen deposition, including oxidized nitrogen (N-NO3) and reduced nitrogen (N-NH4), showed a non-significant increase. Mean monthly precipitation of N-NO3 and N-N H4 ranged from 1.91 to 451.73 mg m-2month-1. Neither did total sulphur deposition nor total nitrogen deposition exceed the mean deposition values for forests in Europe (below 6 ha-1yr-1 and 3-15 ha-1yr-1, respectively). Our results indicate that air pollutants originate from local sources (households), especially from the village of Białowieża, as demonstrated by the level and spatial distribution of air pollutant deposition. This indicates that air pollutants from the village of Białowieża could spread to other parts of Białowieża Forest in the future and may have a negative impact on forest health and can initiate forest dieback. It is therefore important to continue monitoring air pollution to assess the threats to this valuable forest ecosystem.
Collapse
Affiliation(s)
- Izabela Sondej
- Department of Natural Forests, Forest Research Institute, Park Dyrekcyjny 6, 17-230, Białowieża, Poland.
| | - Monika Puchlik
- Department of Silviculture and Forest Utilization, Faculty of Construction and Environmental Sciences, Białystok University of Technology, Wiejska 45A, 15-351, Białystok, Poland
| | - Rafał Paluch
- Department of Natural Forests, Forest Research Institute, Park Dyrekcyjny 6, 17-230, Białowieża, Poland
| |
Collapse
|
3
|
Lam WY, Mackereth RW, Mitchell CPJ. Mercury concentrations and export from small central Canadian boreal forest catchments before, during, and after forest harvest. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168691. [PMID: 37996028 DOI: 10.1016/j.scitotenv.2023.168691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 11/15/2023] [Accepted: 11/16/2023] [Indexed: 11/25/2023]
Abstract
Northern boreal forests are a strong sink for mercury (Hg), a global contaminant of significant concern to wildlife and human health. Mercury stored in forest soils can be mobilized via runoff and erosion, and under suitable conditions can be methylated to its much more bioaccumulative form, methylmercury. Forest harvesting can affect the mobilization and methylation of Hg, though the direction and magnitude of the impact is unclear or conflicting across previous studies. This study examined 5 harvested and 2 reference watersheds in northwestern Ontario, Canada, before, during, and after harvest to quantify changes in stream total and methylmercury concentration and loads and identified potential landscape and management factors that contribute to differences in stream response. In watersheds where streams were buffered by natural vegetation (≥30 m), no significant changes in total Hg or methylmercury concentrations or loads were observed. Significant increases in methylmercury concentrations and loads were observed downstream of a stream crossing in a watershed where the relatively small stream was unmapped and therefore only buffered by a 3 m machine exclusion zone. These results show that when current best management practices that minimize soil and water disturbance are followed, harvest can have a minimal impact on total and methylmercury loads, even in extensively harvested watersheds. However, there is a need for improved mapping of small streams to ensure best management practices are applied adequately across the landscape.
Collapse
Affiliation(s)
- W Y Lam
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, ON, Canada
| | - R W Mackereth
- Centre for Northern Forest Ecosystem Research, Ontario Ministry of Natural Resources and Forestry, Thunder Bay, ON, Canada
| | - C P J Mitchell
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, ON, Canada.
| |
Collapse
|
4
|
Laudon H, Mosquera V, Eklöf K, Järveoja J, Karimi S, Krasnova A, Peichl M, Pinkwart A, Tong CHM, Wallin MB, Zannella A, Hasselquist EM. Consequences of rewetting and ditch cleaning on hydrology, water quality and greenhouse gas balance in a drained northern landscape. Sci Rep 2023; 13:20218. [PMID: 37980440 PMCID: PMC10657473 DOI: 10.1038/s41598-023-47528-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 11/14/2023] [Indexed: 11/20/2023] Open
Abstract
Drainage for forestry has created ~ 1 million km of artificial waterways in Sweden, making it one of the largest human-induced environmental disturbances in the country. These extensive modifications of both peatland and mineral soil dominated landscapes still carry largely unknown, but potentially enormous environmental legacy effects. However, the consequences of contemporary ditch management strategies, such as hydrological restoration via ditch blocking or enhancing forest drainage to promote biomass production via ditch cleaning, on water resources and greenhouse gas (GHG) fluxes are unclear. To close the gap between science and management, we have developed a unique field research platform to experimentally evaluate key environmental strategies for drained northern landscapes with the aim to avoid further environmental degeneration. The Trollberget Experimental Area (TEA) includes replicated and controlled treatments applied at the catchment scale based on a BACI approach (before-after and control-impact). The treatments represent the dominant ecosystem types impacted by ditching in Sweden and the boreal zone: (1) rewetting of a drained peatland, (2) ditch cleaning in productive upland forests and (3) leaving these ditches unmanaged. Here we describe the TEA platform, report initial results, suggest ways forward for how to best manage this historical large-scale alteration of the boreal landscape, as well as warn against applying these treatments broadly before more long-term results are reported.
Collapse
Affiliation(s)
- Hjalmar Laudon
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, Umeå, Sweden.
| | - Virginia Mosquera
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Karin Eklöf
- Department of Aquatic Sciences and Assessment, Swedish University of Agriculture Sciences, Uppsala, Sweden
| | - Järvi Järveoja
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Shirin Karimi
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Alisa Krasnova
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Matthias Peichl
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Alexander Pinkwart
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Cheuk Hei Marcus Tong
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Marcus B Wallin
- Department of Aquatic Sciences and Assessment, Swedish University of Agriculture Sciences, Uppsala, Sweden
| | - Alberto Zannella
- Department of Aquatic Sciences and Assessment, Swedish University of Agriculture Sciences, Uppsala, Sweden
| | - Eliza Maher Hasselquist
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, Umeå, Sweden
| |
Collapse
|
5
|
Kuglerová L, Nilsson G, Hasselquist EM. Too much, too soon? Two Swedish case studies of short-term deadwood recruitment in riparian buffers. AMBIO 2023; 52:440-452. [PMID: 36208407 PMCID: PMC9755393 DOI: 10.1007/s13280-022-01793-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 08/17/2022] [Accepted: 09/01/2022] [Indexed: 06/16/2023]
Abstract
Forested riparian buffers are retained along streams during forest harvest to maintain a number of ecological functions. In this paper, we examine how recently established riparian buffers along northern Swedish streams provide deadwood, a key objective for riparian buffer management in Sweden. We used observational and experimental data to show that the investigated buffers provided large volumes of deadwood to streams and riparian zones shortly after their establishment, likely jeopardizing continued recruitment over the long term. Deadwood volume decreased with increasing buffer width, and the narrowest buffers tended to blow down completely. Wider buffers (~ 15 m) provided similar volumes of deadwood as narrow buffers due to blowdowns but were, overall, more resistant to wind-felling. It is clear from our study, that wider buffers are currently a safer strategy for riparian management that aims to sustain provision of deadwood and other ecological objectives continuously on the long term.
Collapse
Affiliation(s)
- Lenka Kuglerová
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, Skogsmarksgränd 17, 907 36 Umeå, Sweden
| | - Gustaf Nilsson
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, Skogsmarksgränd 17, 907 36 Umeå, Sweden
| | - Eliza Maher Hasselquist
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, Skogsmarksgränd 17, 907 36 Umeå, Sweden
| |
Collapse
|
6
|
Stanković N, Jovanović B, Kokić IK, Piperac MS, Simeunović J, Jakimov D, Dimkić I, Milošević D. Toxic effects of a cyanobacterial strain on Chironomus riparius larvae in a multistress environment. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 253:106321. [PMID: 36308821 DOI: 10.1016/j.aquatox.2022.106321] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 09/23/2022] [Accepted: 10/01/2022] [Indexed: 05/06/2023]
Abstract
Cyanobacteria and their toxic metabolites present a global threat to water habitats, but their impact on aquatic organisms in a multistress environment has been poorly investigated. Here we present the results of a survey on the effects of the toxic cyanobacterial strain Trichormus variabilis (heterotypic synonym Anabaena variabilis), and its toxic metabolite, cyanotoxin microcystin-LR, on Chironomus riparius larvae in a multistress environment. An environmentally relevant concentration of microcystin-LR (0.01 mg/L) caused an increase in larvae mortality in an acute toxicity test, which became greater in the presence of environmental stressors (NO3-, NH4+, PO43- and Cd2+), pointing to an additive effect of these agents. Chronic exposure of C. riparius larvae to the microcystin-LR producing strain of T. variabilis in a multistress environment led to a reduction in the larval mass and hemoglobin concentration, and it induced DNA damage in larval somatic cells. The results revealed the additive effect of microcystin-LR in combination with all three tested stressors (NO3-, NH4+, PO43-), and the deleterious effect of chronic exposure of C. riparius larvae to the microcystin-LR producing T. variabilis in a multistress environment. However, the present study further emphasizes the importance of investigating interactions between stressors and cyanotoxins, and their effect on aquatic organisms.
Collapse
Affiliation(s)
- Nikola Stanković
- Department of Biology and Ecology, Faculty of Sciences and Mathematics, University of Niš, Višegradska 33, 18000 Niš, Serbia.
| | - Boris Jovanović
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, USA
| | - Ivana Kostić Kokić
- Department of Chemistry, Faculty of Sciences and Mathematics, University of Niš, Višegradska 33, 18000 Niš, Serbia
| | - Milica Stojković Piperac
- Department of Biology and Ecology, Faculty of Sciences and Mathematics, University of Niš, Višegradska 33, 18000 Niš, Serbia
| | - Jelica Simeunović
- Department of Biology and Ecology, Faculty of Science, University of Novi Sad, Dr Zorana Đinđića 1, 21000 Novi Sad, Serbia
| | - Dimitar Jakimov
- Oncology Institute of Vojvodina, Faculty of Medicine, University of Novi Sad, Put Dr Goldmana 4, 21204 Sremska Kamenica, Serbia
| | - Ivica Dimkić
- Department of Biochemistry and Molecular Biology, University of Belgrade - Faculty of Biology, Studentski Trg 16, 11158 Belgrade, Serbia
| | - Djuradj Milošević
- Department of Biology and Ecology, Faculty of Sciences and Mathematics, University of Niš, Višegradska 33, 18000 Niš, Serbia
| |
Collapse
|
7
|
Negrazis L, Kidd KA, Erdozain M, Emilson EJS, Mitchell CPJ, Gray MA. Effects of forest management on mercury bioaccumulation and biomagnification along the river continuum. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 310:119810. [PMID: 35940481 DOI: 10.1016/j.envpol.2022.119810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 07/15/2022] [Accepted: 07/16/2022] [Indexed: 06/15/2023]
Abstract
Forest management can alter the mobilization of mercury (Hg) into headwater streams and its conversion to methylmercury (MeHg), the form that bioaccumulates in aquatic biota and biomagnifies through food webs. As headwater streams are important sources of organic materials and nutrients to larger systems, this connectivity may also increase MeHg in downstream biota through direct or indirect effects of forestry on water quality or food web structure. In this study, we collected water, seston, food sources (biofilm, leaves, organic matter), five macroinvertebrate taxa and fish (slimy sculpin; Cottus cognata) at 6 sites representing different stream orders (1-5) within three river basins with different total disturbances from forestry (both harvesting and silviculture). Methylmercury levels were highest in water and some food sources from the basin with moderate disturbance (greater clearcutting but less silviculture). Water, leaves, stoneflies and fish increased in MeHg or total Hg along the river continuum in the least disturbed basin, and there were some dissipative effects of forest management on these spatial patterns. Trophic level (δ15N) was a significant predictor of MeHg (and total Hg in fish) within food webs across all 18 sites, and biomagnification slopes were significantly lower in the basin with moderate total disturbance but not different in the other two basins. The elevated MeHg in lower trophic levels but its reduced trophic transfer in the basin with moderate disturbance was likely due to greater inputs of sediments and of dissolved organic carbon that is more humic, as these factors are known to both increase transport of Hg to streams and its uptake in primary producers but to also decrease MeHg bioaccumulation in consumers. Overall, these results suggest that the type of disturbance from forestry affects MeHg bioaccumulation and trophic transfer in stream food webs and some longitudinal patterns along a river continuum.
Collapse
Affiliation(s)
- Lauren Negrazis
- Department of Biology, McMaster University, 1280 Main St. W., Hamilton, Ontario L8S 4K1, Canada
| | - Karen A Kidd
- Department of Biology, McMaster University, 1280 Main St. W., Hamilton, Ontario L8S 4K1, Canada; School of Earth, Environment and Society, McMaster University, 1280 Main St. W., Hamilton, Ontario L8S 4K1, Canada.
| | - Maitane Erdozain
- Canadian Rivers Institute and Biology Department, University of New Brunswick, 100 Tucker Park Road, Saint John, New Brunswick E2L 4L5, Canada
| | - Erik J S Emilson
- Natural Resources Canada, Canadian Forest Service, Great Lakes Forestry Centre, 1219 Queen St. East, Sault Ste. Marie, Ontario P6A 2E5, Canada
| | - Carl P J Mitchell
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON M1C 1A4, Canada
| | - Michelle A Gray
- Canadian Rivers Institute, Faculty of Forestry and Environmental Management, University of New Brunswick, 28 Dineen Drive, Fredericton, New Brunswick E3B 5A3, Canada
| |
Collapse
|
8
|
Jyväsjärvi J, Rajakallio M, Brüsecke J, Huttunen K, Huusko A, Muotka T, Taipale SJ. Dark matters: Contrasting responses of stream biofilm to browning and loss of riparian shading. GLOBAL CHANGE BIOLOGY 2022; 28:5159-5171. [PMID: 35624548 PMCID: PMC9545655 DOI: 10.1111/gcb.16279] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 04/09/2022] [Accepted: 05/17/2022] [Indexed: 06/03/2023]
Abstract
Concentrations of terrestrial-derived dissolved organic carbon (DOC) in freshwater ecosystems have increased consistently, causing freshwater browning. The mechanisms behind browning are complex, but in forestry-intensive regions browning is accelerated by land drainage. Forestry actions in streamside riparian forests alter canopy shading, which together with browning is expected to exert a complex and largely unpredictable control over key ecosystem functions. We conducted a stream mesocosm experiment with three levels of browning (ambient vs. moderate vs. high, with 2.7 and 5.5-fold increase, respectively, in absorbance) crossed with two levels of riparian shading (70% light reduction vs. open canopy) to explore the individual and combined effects of browning and loss of shading on the quantity (algal biomass) and nutritional quality (polyunsaturated fatty acid and sterol content) of the periphytic biofilm. We also conducted a field survey of differently colored (4.7 to 26.2 mg DOC L-1 ) streams to provide a 'reality check' for our experimental findings. Browning reduced greatly the algal biomass, suppressed the availability of essential polyunsaturated fatty acids, especially eicosapentaenoic acid (EPA), and sterols, but increased the availability of terrestrial-derived long-chain saturated fatty acids (LSAFA). In contrast, loss of shading increased primary productivity, which resulted in elevated sterol and EPA contents of the biofilm. The field survey largely repeated the same pattern: biofilm nutritional quality decreased significantly with increasing DOC, as indicated particularly by a decrease of the ω-3:ω-6 ratio and increase in LSAFA content. Algal biomass, in contrast, was mainly controlled by dissolved inorganic nitrogen (DIN) concentration, while DOC concentration was of minor importance. The ongoing browning process is inducing a dramatic reduction in the nutritional quality of the stream biofilm. Such degradation of the major high-quality food source available for stream consumers may reduce the trophic transfer efficiency in stream ecosystems, potentially extending across the stream-forest ecotone.
Collapse
Affiliation(s)
| | | | - Joanna Brüsecke
- Ecology and Genetics Research UnitUniversity of OuluOuluFinland
| | | | - Ari Huusko
- Natural Resources Institute Finland (Luke)PaltamoFinland
| | - Timo Muotka
- Ecology and Genetics Research UnitUniversity of OuluOuluFinland
| | - Sami J. Taipale
- Department of Biological and Environmental ScienceUniversity of JyväskyläJyväskyläFinland
| |
Collapse
|
9
|
Hoppenreijs JHT, Eckstein RL, Lind L. Pressures on Boreal Riparian Vegetation: A Literature Review. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2021.806130] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Riparian zones are species-rich and functionally important ecotones that sustain physical, chemical and ecological balance of ecosystems. While scientific, governmental and public attention for riparian zones has increased over the past decades, knowledge on the effects of the majority of anthropogenic disturbances is still lacking. Given the increasing expansion and intensity of these disturbances, the need to understand simultaneously occurring pressures grows. We have conducted a literature review on the potential effects of anthropogenic pressures on boreal riparian zones and the main processes that shape their vegetation composition. We visualised the observed and potential consequences of flow regulation for hydropower generation, flow regulation through channelisation, the climate crisis, forestry, land use change and non-native species in a conceptual model. The model shows how these pressures change different aspects of the flow regime and plant habitats, and we describe how these changes affect the extent of the riparian zone and dispersal, germination, growth and competition of plants. Main consequences of the pressures we studied are the decrease of the extent of the riparian zone and a poorer state of the area that remains. This already results in a loss of riparian plant species and riparian functionality, and thus also threatens aquatic systems and the organisms that depend on them. We also found that the impact of a pressure does not linearly reflect its degree of ubiquity and the scale on which it operates. Hydropower and the climate crisis stand out as major threats to boreal riparian zones and will continue to be so if no appropriate measures are taken. Other pressures, such as forestry and different types of land uses, can have severe effects but have more local and regional consequences. Many pressures, such as non-native species and the climate crisis, interact with each other and can limit or, more often, amplify each other’s effects. However, we found that there are very few studies that describe the effects of simultaneously occurring and, thus, potentially interacting pressures. While our model shows where they may interact, the extent of the interactions thus remains largely unknown.
Collapse
|