1
|
Yang Y, Hu X, Yang L, Zhang H, Zheng H, Shen Z. Novel insights into seasonal airborne bacterial interactions and potential threats to human health in a northwest city, China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 367:125611. [PMID: 39756569 DOI: 10.1016/j.envpol.2024.125611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/24/2024] [Accepted: 12/29/2024] [Indexed: 01/07/2025]
Abstract
Bioaerosols significantly influence air quality and human health. This study investigated the diversity, structure, and interaction of bacterial communities in particulate matter (PM2.5) across four seasons in Xi'an. The results revealed that operational taxonomic units (OTUs) were the highest in autumn, reaching levels comparable to those in winter, but were 3.7 and 1.8 times higher than in summer and spring respectively. The Chao1 index was the highest in winter and the lowest in summer. Proteobacteria dominated in summer (38.8%) and spring (35.9%), while Actinobacteria was more abundant in autumn (43.1%) and winter (50.9%). Co-occurrence network analysis showed more complex microbial relationships in spring and summer, with increased bacterial competition observed in summer, evidenced by the highest negative edges ratio (8.7%). Potential pathogenic bacteria were most prevalent in winter (41.1%), compared to 12.1% in spring and 18.6% in summer. Notably, Rhodococcus and Gardnerella were significantly enriched in winter and autumn, while Acinetobacter and Bacteroides were more prevalent in spring and summer, as indicated by STAMP analysis. This study provides crucial insights into how seasonal changes affect bacterial interactions and the potential pathogenicity of airborne bacterial communities, highlighting their potential threats to human health.
Collapse
Affiliation(s)
- Yiming Yang
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, China; Key Lab of Aerosol Chemistry & Physics, SKLLQG, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, 710049, China
| | - Xiaoyan Hu
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Liu Yang
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, China; Key Lab of Aerosol Chemistry & Physics, SKLLQG, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, 710049, China.
| | - Hongai Zhang
- Department of Neonatology, Shanghai General Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 650 Xinsongjiang Rd, Songjiang District, Shanghai, 201620, China
| | - Honghao Zheng
- Key Lab of Aerosol Chemistry & Physics, SKLLQG, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, 710049, China
| | - Zhenxing Shen
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, China.
| |
Collapse
|
2
|
Fu K, Zhou Q, Wang H. Variability in Microbial Communities Driven by Particulate Matter on Human Facial Skin. TOXICS 2024; 12:497. [PMID: 39058149 PMCID: PMC11280976 DOI: 10.3390/toxics12070497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/01/2024] [Accepted: 07/02/2024] [Indexed: 07/28/2024]
Abstract
Microbial communities are known to play an important role in maintaining ecological balance and can be used as an indicator for assessing environmental pollution. Numerous studies have revealed that air pollution can alter the structure of microbial communities, which may increase health risks. Nevertheless, the relationships between microbial communities and particulate matter (PM) caused by air pollution in terms of health risk assessment are not well understood. This study aimed to validate the influences of PM chemical compositions on microbial communities and assess the associated health risks. Our results, based on similarity analysis, revealed that the stability structure of the microbial communities had a similarity greater than 73%. In addition, the altered richness and diversity of microbial communities were significantly associated with PM chemical compositions. Volatile organic compounds (VOCs) and polycyclic aromatic hydrocarbons (PAHs) exerted a positive influence on microbial communities in different environmental variables. Additionally, a stronger linear correlation was observed between hydroxyl radicals (·OH) and the richness of microbial communities. All estimated health risks from PM chemical compositions, calculated under different environmental variables, significantly exceeded the acceptable level by a factor of more than 49. Cr and 1,2-Dibromoethane displayed dual adverse effects of non-carcinogenic and carcinogenic risks. Overall, the study provides insights into the fundamental mechanisms of the variability in microbial communities driven by PM, which may support the crucial role of PM chemical compositions in the risk of microorganisms in the atmospheric environment.
Collapse
Affiliation(s)
- Kai Fu
- School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, China; (K.F.)
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Carbon Neutrality Interdisciplinary Science Centre/College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Qixing Zhou
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Carbon Neutrality Interdisciplinary Science Centre/College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Heli Wang
- School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, China; (K.F.)
| |
Collapse
|
3
|
Jiang S, Sun B, Zhu R, Che C, Ma D, Wang R, Dai H. Airborne microbial community structure and potential pathogen identification across the PM size fractions and seasons in the urban atmosphere. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 831:154665. [PMID: 35314242 DOI: 10.1016/j.scitotenv.2022.154665] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 03/14/2022] [Accepted: 03/14/2022] [Indexed: 06/14/2023]
Abstract
As a vital component of airborne bioaerosols, bacteria and fungi seriously endanger human health as pathogens and allergens. However, comprehensive effects of environmental variables on airborne microbial community structures remain poorly understood across the PM sizes and seasons. We collected atmospheric PM1.0, PM2.5, and PM10 samples in Hefei, a typical rapidly-developing city in East China, across three seasons, and performed a comprehensive analysis of airborne microbial community structures using qPCR and high-throughput sequencing. Overall the bacterial and fungal abundances in PM1.0 were one to two orders of magnitude higher than those in PM2.5 and PM10 across seasons, but their α-diversity tended to increase from PM1.0 to PM10. The bacterial gene abundances showed a strong positive correlation (P < 0.05) with atmospheric SO2 and NO2 concentrations and air quality index. The bacterial gene abundances were significantly higher (P = 0.001) than fungi, and the bacterial diversity showed stronger seasonality. The PM sizes influenced distribution patterns for airborne microbial communities within the same season. Source-tracking analysis indicated that soils, plants, human and animal feces represented important sources of airborne bacteria with a total relative abundance of more than 60% in summer, but total abundance from the unidentified sources surpassed in fall and winter. Total 10 potential bacterial and 12 potential fungal pathogens were identified at the species level with the highest relative abundances in summer, and their abundances increased with the PM sizes. Together, our results indicated that a complex set of environmental factors, including water-soluble ions in PM, changes in air pollutant levels and meteorological conditions, and shifts in the relative importance of available microbial sources, acted to control the seasonal compositions of microbial communities in the urban atmosphere.
Collapse
Affiliation(s)
- Shaoyi Jiang
- Institute of Polar Environment & Anhui Key Laboratory of Polar Environment and Global Change, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China
| | - Bowen Sun
- Institute of Polar Environment & Anhui Key Laboratory of Polar Environment and Global Change, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China
| | - Renbin Zhu
- Institute of Polar Environment & Anhui Key Laboratory of Polar Environment and Global Change, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China.
| | - Chenshuai Che
- Institute of Polar Environment & Anhui Key Laboratory of Polar Environment and Global Change, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China
| | - Dawei Ma
- State Grid Anhui Electric Power Research Institute, Hefei 230601, China
| | - Runfang Wang
- State Grid Anhui Electric Power Research Institute, Hefei 230601, China
| | - Haitao Dai
- Institute of Polar Environment & Anhui Key Laboratory of Polar Environment and Global Change, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
4
|
Zhang Y, Chen H, Du R, Zhang S, Zhao H. Microbial Activity and Community Structure in PM 2 .5 at Different Heights in Ground Boundary Layer of Beijing Atmosphere under Various Air Quality Levels. Environ Microbiol 2022; 24:4013-4029. [PMID: 35466499 DOI: 10.1111/1462-2920.16023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 03/10/2022] [Accepted: 04/19/2022] [Indexed: 11/29/2022]
Abstract
The outbreak of the COVID-19 epidemic is a reminder that aerosols have important health effects as a potential route for disease transmission. Biological components in aerosols (especially PM2.5 ) may pose potential threats to humans as pathogens and allergens. Research on PM2.5 and biological components currently focuses mainly on polluted conditions, with less emphasis on clean environments. Sampling has also been primarily based on a single point with a lack of data at different positions. In this study, a modified fluorescein diacetate hydrolysis method was used to measure microbial activity in PM2.5 at different altitudes over a year in Beijing, China. A high-throughput sequencing method was used to study the microbial community. Results showed that microbial activity 1.5 m (0.0465 ng m-3 ) above the ground was higher than 31.5 m (0.0348 ng m-3 ). There was higher microbial activity at both heights during spring. Furthermore, a positive correlation was observed between microbial activity and relative abundance of dominant species. Microbial activity increased during autumn and winter increased alongside the pollution level, but in spring higher levels of microbial activity were observed in excellent or good weather conditions. The results from this study are valuable for further research regarding the biological components of atmospheric PM, the prevention of biological pollution, and establishing a comprehensive air quality evaluation system. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Yongtao Zhang
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hanlin Chen
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Rui Du
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Sujian Zhang
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hua Zhao
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
5
|
Zhang Y, Du R, Chen H, Du P, Zhang S, Ren W. Different characteristics of microbial diversity and special functional microbes in rainwater and topsoil before and after 2019 new coronavirus epidemic in Inner Mongolia Grassland. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 809:151088. [PMID: 34687707 PMCID: PMC8527739 DOI: 10.1016/j.scitotenv.2021.151088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 10/03/2021] [Accepted: 10/15/2021] [Indexed: 05/05/2023]
Abstract
Grassland ecosystems are vital terrestrial ecosystems. As areas sensitive to climate change, they are critical for assessing the effects of global climate change. In China, grasslands account for over 40% of the land area. There is currently limited information on microbial diversity evolution in different grassland areas, particularly microorganisms with ice nucleation activity (INA) and their potential resources with potential influence to regulate regional precipitation and climate. We used Illumina MiSeq to sequence the 16S rRNA V3-V4 hypervariable region and performed a simple droplet freezing experiment to determine the variation in the grassland microbial community species composition and community structure. Rainwater and topsoil samples from the Hulunbuir Grassland in Inner Mongolia collected over three years were characterized. The dominant bacterial genus in the rainwater was Massilia, and the dominant fungus was Cladosporium. Additionally, the dominant bacteria in the soil were Sphingomonas, and the dominant fungus was Gibberella. There were differences in the microbial communities before and after the coronavirus disease epidemic. Pathogenic microorganisms exhibited inconsistent responses to environmental changes. The low relative abundance of known high-INA microorganisms and the higher freezing temperature indicated that unknown high-efficiency biological ice nucleating particles may be present. We found significant differences in species diversity and richness between the rainwater and soil populations in grassland areas by analyzing the sample community structures. Our research results revealed the species composition and structure of the microbiota in grassland ecosystems in China, indicating that environmental media and human activities may affect the microbiota in the grassland area and indicating underlying microorganisms with high INA.
Collapse
Affiliation(s)
- Yongtao Zhang
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rui Du
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Hanlin Chen
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Pengrui Du
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Sujian Zhang
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weishan Ren
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
6
|
Chen H, Du R, Zhang Y, Du P, Zhang S, Ren W, Yang M. Evolution of PM 2.5 bacterial community structure in Beijing's suburban atmosphere. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 799:149387. [PMID: 34365268 DOI: 10.1016/j.scitotenv.2021.149387] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/21/2021] [Accepted: 07/28/2021] [Indexed: 06/13/2023]
Abstract
Biosafety has become one of the greatest challenges facing humanity. Outbreaks of infectious diseases caused by bacteria and viruses have had a huge impact on public health. In addition, non-severe polluted air quality has gradually become the norm; however, literature on the impacts of bioaerosols under long-term exposure to low concentrations of PM2.5 in China is limited. This study analyzed the evolution of the PM2.5 bacterial community in the Huairou district of Beijing under different pollution conditions. We used high-throughput sequencing to seasonally analyze samples over a year (from July 2018 to May 2019) and winter samples from different years (2015, 2016, 2018, and 2019). The results showed that the bacterial diversity and community composition of PM2.5 were significantly different in different seasons, whereas under different pollution levels, there were no significant differences. During the observation period, the number of bacterial species decreased with the increase in pollution; however, a high proportion of bacteria can exist as core species under different pollution levels for a long time. Furthermore, bacteria can be relatively stable in the local environment during the same season but in different years. Although the relative abundances of different bacteria change differently with the variation in pollution level, there is no statistical difference. Importantly, there was a higher abundance of opportunistic pathogenic bacteria when the air quality index was 0-100 in winter. This study comprehensively revealed the characteristics of the evolution of bacterial communities under different pollution levels and in different years and emphasized the health effects of non-pollution air quality. This study can provide a theoretical basis for establishing a sound environmental microbial monitoring and defense system.
Collapse
Affiliation(s)
- Hanlin Chen
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rui Du
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Yongtao Zhang
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Pengrui Du
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Sujian Zhang
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weishan Ren
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mei Yang
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
7
|
Liu F, Wang Z, Wei Y, Liu R, Jiang C, Gong C, Liu Y, Yan B. The leading role of adsorbed lead in PM 2.5-induced hippocampal neuronal apoptosis and synaptic damage. JOURNAL OF HAZARDOUS MATERIALS 2021; 416:125867. [PMID: 34492814 DOI: 10.1016/j.jhazmat.2021.125867] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 03/22/2021] [Accepted: 04/08/2021] [Indexed: 06/13/2023]
Abstract
Neurodegenerative diseases may be caused by air pollution, such as PM2.5. However, particles still need to be elucidated the mechanism of synergistic neurotoxicity induced by pollutant-loading PM2.5. In this study, we used a reductionist approach to study leading role of lead (Pb) in PM2.5-induced hippocampal neuronal apoptosis and synaptic damage both in vivo and in vitro. Pb in PM2.5 caused neurotoxicity: 1) by increasing ROS levels and thus causing apoptosis in neuronal cells and 2) by decreasing the expression of PSD95 via interfering with the calcium signaling pathway through cAMP/CREB/pCREB/BDNF/PSD95 pathway and reducing the synapse length by 50%. This study clarifies a key factor in PM2.5-induced neurotoxicity and provides the experimental basis for reducing PM2.5-induced neurotoxicity.
Collapse
Affiliation(s)
- Fang Liu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Zengjin Wang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Yongyi Wei
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Rongrong Liu
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Cuijuan Jiang
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Chen Gong
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Yin Liu
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 330106, China.
| | - Bing Yan
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China; School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China.
| |
Collapse
|
8
|
Seasonal Variation Characteristics of Bacteria and Fungi in PM2.5 in Typical Basin Cities of Xi’an and Linfen, China. ATMOSPHERE 2021. [DOI: 10.3390/atmos12070809] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Microorganisms existing in airborne fine particulate matter (PM2.5) have key implications in biogeochemical cycling and human health. In this study, PM2.5 samples, collected in the typical basin cities of Xi’an and Linfen, China, were analyzed through high-throughput sequencing to understand microbial seasonal variation characteristics and ecological functions. For bacteria, the highest richness and diversity were identified in autumn. The bacterial phyla were dominated by Proteobacteria, Actinobacteria, Firmicutes, and Bacteroidetes. Metabolism was the most abundant pathway, with the highest relative abundance found in autumn. Pathogenic bacteria (Pseudomonas, Acinetobacter, Serratia, and Delftia) were positively correlated with most disease-related pathways. Besides, C cycling dominated in spring and summer, while N cycling dominated in autumn and winter. The relative abundance of S cycling was highest during winter in Linfen. For fungi, the highest richness was found in summer. Basidiomycota and Ascomycota mainly constituted the fungal phyla. Moreover, temperature (T) and sulfur dioxide (SO2) in Xi’an, and T, SO2, and nitrogen dioxide (NO2) in Linfen were the key factors affecting microbial community structures, which were associated with different pollution characteristics in Xi’an and Linfen. Overall, these results provide an important reference for the research into airborne microbial seasonal variations, along with their ecological functions and health impacts.
Collapse
|